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ABSTRACT

The results of a previous theoretical study of a class of

systems are applied for the design of neural nets which try to

simulate biological behavior.

Besides the models for single aperiodic and periodic neurons,

a "neural oscillator" is developed which consists of two. cross-

excited neurons. Its response is similar to the firing pattern of

certain biological neural oscillators and, by proper change of its

paranneters, can be made highly irregular, providing a determin

istic model for the spontaneous neural activity.
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University of California, Berkeley, Calif.
Department of Electrical Engineering

I. Introduction. In the recent years a large number of models

for neurons and neural nets have been proposed (for review see Har

mon, 1962 and Jury, 1963). Most of them however, were concerned

rather with analog hardware simulation than with the mathematical

analysis of the model (Harmon, 1961; Hilz, 1963; Lewis, 1963, etc. ).

Landahl (1961) and Nelson (1962) can be mentioned among the recent

contributors who dealt with the mathematical analysis of models

while for the previous analytical work one is referred to Rashevsky

(1960). The present study is concerned with the use of the results

of a theoretical study of a class of systems for the design of models

for neural nets. The emphasis will be rather in the study of nets

containing a relatively small number of neurons because of the

complexity of the proposed model. However, in this way, a more

accurate description of the behavior of a certain net may be obtained.

The following basic simplifying assumptions were used as starting

point for the definition of the system:

1. The wave shape of the neural pulse is not of importance,

due to its very short duration (about 1 msec) compared to the usual

firing frequencies (Ruch, I960) as well as to the usual "low pass"

properties of the synaptic transmission.

2. The variable threshold refractoriness can be substituted

by a negative feedback. Indeed, let the time of the emission of the

pulse be determined by a relation of the form

p(t) - r(t) = rQ (1)
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where p(t) is the membrane potential and r + r(t) the value of the

threshold. Then if q(t) = r (t) around the solution of Eq. (1) this

can be substituted by

p(t) - q(t) = rQ (2)

q(t) will be called the refractory feedback.

3. No effort should be made to simulate the absolute refrac

toriness because it is of importance only in very high firing fre

quencies (1000 per sec), well above the usual range.

4. The phenomenon of accommodation can be neglected at

first approximation because it is of importance only in very par

ticular cases.

5. The phenomenon of inhibition can be represented by

inverting the sign of the pulses.

Of course these assumptions are not enough to specify a

simple model but we want to emphasize that no effort will be made

to simulate the properties of the neural membrane in detail. The

main interest will be the study of aggregates of neurons.

Among the original contributions of this note is a model for

a neural net consisting basically from two neurons which are cross-

excited. This has an oscillatory behavior and moreover its output

can be made highly irregular, so as to possibly represent a sample

from a random process. This is not obtained by adding any random

input but simply because of the peculiar but completely deterministic

structure of the system. In this way a deterministic model for the

spontaneous neural activity can be obtained. This problem will

be discussed in detail in Section V.

II. S- Pulse Frequency Modulation Systems. We define as a

neural trigger a device with scalar input p (t) which emits an impulse

of area |i whenever its input reaches a value r, which is called the
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threshold; immediately after, p(t) is reset to the zero value. If

its (k - 1) first derivatives are also reset to the zero value then the

trigger will be referred asa.k-.th order trigger. Consider now an

abstract system containing m first order triggers. Let their inputs

be p^, p., .. ., p^ and their outputs A,, A-, . . ., A where

Ai(t) =t .1 «j • *<t-tj)f6rtn<t<t x (3)
j = 1 J J

where € . = jr_ 1, depending on the sign of the pulses and £ their

areas. All the other state variables of the system are denoted by

Xj, x^, . . . , xn and the inputs by u., u , . . ., u . Then the following

vectors are defined as

p(t) = col (pL, p2, • .->Pm) (4)

A(t) = col (Av A2, ...,Am) (5)

x(t) = col (xL, x2, ...,xn) (6)

u(t) = col (ulf u£, . ..,u^) (7)

Then the following two state equations (Zadeh, 1963) give a

complete description of the system

dx

•jp =Zi <3 *> P» ii) (8)

dp
= F_(x, A, p, u) (9)

dt -2*-'-' ^
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The above form is very general but too complicated to deal with.

Some simplification can be readily made if we have in mind that

our purpose is to simulate neural nets, p corresponds to the

membrane potentials and x to the various agents between input

and membrane potential. Hence there is no direct connection be

tween u or A andp. A second assumption is that £ does not act

directly on x but only through A . This is debatable from the

physiological point of view but there are many cases where it can

be true. Then Eq. (8) and (9) are simplified to

dx

at

dP

dt

= Fx (x, A, u) (10)

= F2(x,£) (11)

The A.'s have constant amplitude and hence can be expressed in a

linear form. Moreover it can be seen that the following change of

notation can be made (Pavlidis, 1964b)

A.(t) = £ sgn [p.(t)] • 6[r.(t) -p.(t)] (12)

Now we can use a mathematical trick to express analytically the

resetting of the p. to zero. This can be done by adding a term

-r. sgn (p.) • 6(r - Pj) (13)

to each one of the Eqs. (11) (Pavlidis, 1964b).
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Then by defining

r = col (r,, . . . r ) (14)
— • 1 m' N '

R = diagonal matrix (r., r , . . . r ) (15)

6 (£-r)= col [6(rL - Pl)...6(r^- Pr^] (16)

S(p) = diagonal matrix [sgn (p^. . . sgn (Pm)] (17)

M = diagonal matrix [p, , jx -, . . . |x ] (18)

Eq. (10) and (11) are written

~- x(t) = FL [x(t), u(t)] + M • S [p(t)] • &.[pit) - r(t)] (19)

A- £(t) = F2 [x(t), R(t)] - R. S [p(t)] .. 6[p(t) - r(t)] (20)

This class of systems will be called S- Pulse Frequency Modulation

Systems .

They are a generalization of Integral Pulse Frequency Modu

lation Systems [ Li, 1961 ] and they fit better with some of the basip

properties of neural nets, as for example the presence of input
threshold.

Eqs. (19) and (20) can be said to represent a "neural net, "

containing m neurons. Obviously the behavior of such a net is

not going to be the same with one of a biological neural net but never

theless they will have many common features. It is expected that

these features are the essentail ones for some of the functions of

the nervous system.
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If F. and F are linear functions with respect to x and u Eqs.

(19) and (20) are simplified to

"HT *<*> = ^a ££(t) + A2u(t) + MS.[p(t)] . 6[£(t)-r(t)] (21)

"TT P(fc) = ^x(t) + G[p(t)] - RS[p(t)]- 6[p(t)-r(t)] (22)

This will be called an almost-linear S- P. F. M. System. There A,

is nxn, A is nxi and B, is mxn matrices with constant elements.

If G ( • ) is also linear, i. e.,

G [p(t)] = B2-£(t)

where B~ is a mxm matrix with constant elements then the system

will be called a linear S - P. F. M. System.

The analytical study of such systems has been presented else

where. (Pavlidis, 1963a, 1963b, 1964a, 1964b) It was proven that a

modification of the Liapunov Method can be applied for the investigation

of their stability.

Moreover, if the system contains an antagonistic pair of

"neurons," i.e., two triggers with opposite signs of pulse weights

then a quasi-describing function can be used for their study (Pav

lidis, 1963b).

Here we will present the application of these results in the

design of "neural nets. "

HI. Models of Single Neurons. The system of Fig. 1 can be

considered as model of a single neuron. Its state equations are
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x1 = -ax1 + Ku 6(r - p) (24)

x. , = -b.x. , , + L.u. for j = 1, 2, . . . i (25)
J+l J J+l J 3 J »

r + 1

p = -x. + V x. - cp - r . 6 (r - p) (26)

We do not proceed in detailed analysis of this model because it is

similar to other proposed models, and it has been also analyzed in

detail elsewhere (Bertaux, 1963, Pavlidis, 1964a). Here we note

that it presents refractoriness, temporal summation, spatial sum:-

mation, inhibition (by inverting the sign of some of the L's) and the

strength-duration curve (Pavlidis, 1963a).

The system'A": inside the dotted lines will be called a S - Pulse

Frequency Modulator. From this unit we can start building

various neural nets. A simple variation can account for a rate-

sensitive neuro-receptor. This can be obtained by adding a second

feedback loop with transfer function R/s. Then the corresponding

state equation will be

xi+2 = R|i • 6(r - p) . (27)

The response of such a unit is shown in Fig. 2. Note the delay

introduced in all cases by the time needed for p (t) to reach the

level of the threshold.

* The name Neural P. F. Modulator has been used in the past, but
this was considered as implying a greater similarity to neural
behavior than the system actually presents. The letter "2' is
used to indicate the "summing up" property of this modulator.
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In many cases a neuron may keep on firing periodically

with no input. This is the case of a pacemaker or generally a

"periodic" neuron (Nelson, 196*2). This can be achieved by adding

a pair of imaginary poles to the input or the previously mentioned

model (Fig. 3). Then the membrane potential will be given by a

function whose Laplace Transform is

Ld Bo

P(s) = 2 T" + s la + c\ (28)(s+ c) (s2 + b2) s (s + c)

or by using the appropriate tables (Gardner, 1942, Table C, item

1. 308)

i,\ Lde . Ld . ... h -1 b^Bo,. -ct.p(t) = —= 5— + —-——— • sin (bt- tan —)+ (1 - e )
2 , i^2 /—= =- c c

c + b , _ / 2 , , 2>vb-v/c** + b'
(29)

All that is needed for the excitation of this model is a pulse of area

d and then firing will go on indefinitely provided that

Bo kcl
-£•£- + > r (30)

^b^/c2 + b2

The state equations governing the behavior of such a model are

(if we neglect the refractoriness, which may be justified if a « b).

kl = x2 (31)

kz = -h\ <32>
p = -cp + x1 + Bo (33)

where x^ = x and x2 = x. The state space is now 3-dimensional
^Xl' x2' P '̂ A Previous rnodel proposed by Nelson (1962) was only
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Fig. 3.

Model of a "periodic" neuron.

Fig. 4.

State-apace trajectory of a "periodic" neuron
(two firings: BB. and CC,).
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two-dimensional but it required resetting of two initial conditions

after the firing of a pulse while the present model requires only one.

This is an advantage because the existing physiological data do not

give any indication about the resetting of a second parameter.

The projection of the trajectories of the system on the x. - x

plane are ellipses as one can readily see by integrating equations

(31) and (32). Then the trajectory is a helix on an orthogonal cylinder

with axis paralled to op (Fig. 4). The size of the axes of the

ellipse depend on Ld. Each time the trajectory reaches the plane

p = r, the firing of a pulse occurs and p(t) returns to the zero value.

Typical trajectories are shown in Fig. 4.

If the model is modified as in Fig. 3 (dotted lines) then input

pulses will have the effect of facilitating the firing. This is also in

agreement with experimental observation and the behavior of Nel

son's model (ibid). The addition of refractoriness can be illustrated

by adding a fourth dimension (if the arrangement of Fig. 3 is to

be kept) or by substituting the plane p = r by a time-varying surface.

A more detailed study of this model and the choice of specific

values for its parameters is beyond the scope of this note.

IV. Design of an Oscillating Neural Net. Now we proceed in

a more interesting case, the one of a "neural oscillator. " This has

never been studied analytically before. It consists of two units of

the form of Fig. 1 which are cross-excited. At the same time

provision has been made not to allow simultaneous cross-excitation

of the system. The physical neural net which will operate on this

principle is shown in Fig. 5a and the corresponding 2 - F. F. M.

system in Fig. 6. Note the way that the mutual inhibition of the two

"cross-excitors" is obtained in the model. The impulse sign of one

unit is inverted and is "mixed" with the other by passing through

the block G(s) and then they are again separated by the diodes. No

response should occur when both units fire almost simultaneously.
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R-junction

(a) (b)

Possible connections of two neurons forming a natural neural
oscillator.

Input

Input

Fig. 6.
Model of an oscillating neural net.

Fig. 7.

Simplification of the model of Fig. 6.
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For this purpose G(s) should be of the form N/(s + e). A slightly

different interpretation of this mode of operation is the one shown

in Fig. 5b. There two pulses travelling in opposite directions

cancel each other. This is comparable to the R-junction described

by H. D. Crane (1962).

One could write the state equations of the system but for this

case we will rather try to apply the concept of the quasi-describing

function.

To this end the system of Fig. 6 should be simplified. First,

we note that if the frequency of oscillations is much smaller than "a",

then the refractory feedback can be omitted. Second the "mixing"

can be carried also through the second block L/s + b. Then the

system of Fig. 7 results which looks like a conventional control

system. In this case the quasi-describing function can be used to

predict the nature of the occurring oscillations.

In Fig. 8 the plot of a normalized quasi-describing function

is shown (Pavlidis, 1963b, 1964a). If S is the amplitude of the out-

pur and w its angular velocity then x = S/rc and 9 = co/irc. If G(s)

is the transfer function of the linear part [in this case LN/(s + b) (s + e)]

than a series of curves G(j0):/u/r). o- are plotted where o* varies
between 1/2 and 1. The points of intersection give a series of modes

of oscillations at the output of the system. The sectors where these

points lie give the number of pulses per half period. It is easy to

see from the graph that for increasing frequency of oscillations the
amplitude also increases, which in turn means that if the firing
frequency of the neurons is increasing, each one of them will start

firing more than one pulse before the other fires. In this way if we
want to obtain a particular firing pattern we can fix the points on the

complex plane and then choose a function G(s) such as to give the
desired intersections. Actually the general form of G(s) can be

chosen a priori and only an adjustment of parameters (e. g. gain)
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9=0

3 or more pulses
per half period

0=0.04

2 pulses
per half period

0=0. 08

0=0.1

/\^ 0=0.2

1 pulse per half period

+j

0=0.4

0=0. 3

Fig. 8. Complex plane plot of the normalized quasi-describing
function of an N. P. F. M. System.
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will be sufficient. Recordings of such responses are shown in Figs.

9 and 10. The model used was of the form of Fig. 6 with the indicated

values of parameters.

It should be noted that no direct external input is needed for

the elicitation of the oscillations. Only a high value of the gain LN

is required, which can be computed by the method indicated above.

Slight adjustments are needed in going from the approximate system

of Fig. 7 to the original model of Fig. 6. The physiological interp

retation of the gain increase is facilitation or threshold decrease

of the synaptic cross-excitation at the points A and B of Fig. 5. In

this way no direct correlation between input and output pattern can

be found while the input will still be necessary for the elicitation

of the oscillations. After-effect is also possible. This kind of

behavior is in agreement with observations of the response of the

neurons innervating the elevator and depressor muscles of the wings

of certain insects (Wilson, 1961,- 1962, 1963).

V. A Model for Spontaneous Neural Activity. Another interest

ing feature of these oscillations is their irregularity. This is not

due to any noise or random variation of parameters but the very

nature of the mechanism which generates them. This was reppesented

in the application of the quasi-describing function by the factor tr. A

mathematical discussion about this fact can be found elsewhere

(Pavlidis, 1963b).

Here we may indicate that the system of Fig. 7 (or 6) does

not present a limit cycle but rather a "limit annulus, " i. e., a

multiplicity of trajectories, all lying in a certain region of the state

space. The application of the quasi-describing function is equivalent

to the description of the system in terms of an equivalent complex

gain. Then this approximate system will have true limit cycles. We

have to use a non-countable number of them to cover the original

"limit annulus" and this is the significance of the coefficient o-.
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By appropriate variations of the parameters of the system this

irregularity can become smaller or greater. In this way the "neural

oscillator" can be used as model for the spontaneous neural activity,

and the response of two "neurons" is shown in Fig. 11. In a ganglion

it is possible to have cross-excitation and this gives a biological

justification of the model. The pattern may become more complex

if a larger number of neurons is used. This model is basically

different than the ones proposed by other investigators (Gernstein,

1964; Fetz, 1963). What seems to be a decisive experiment for the

value of the one proposed here is whether the histogram of its

response will compare with histograms from actual neurons which

show spontaneous activity. The fact that a deterministic model is

used does not exclude the possibility that it may represent a random

phenomenon. Actually it has been already proven (Kalman, 1956)

that a first order Markov process can be represented by the quantized

output of a first order nonlinear difference equation. A more

general result was derived by Ormsby (1962). In the present case

one is faced with a more complicated problem but an analytical study

is still possible.

A distinguishing experiment between the two kinds of models

will be the simultaneous recording of more than one fiber in the

same nerve trunk. The existence of a correlation factor between the

histograms of these fibers will be supporting the proposed

new model.

Both these experiments and the analytical study will be the

subject of future research.

Note: The analog computer used for the simulation of the above
described models was a Donner Model 3400.
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