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V

Abstract

The computational complexity of deciding whether a polynomial with

integer coefficients has natural-number zeroes ranges from deterministic

polynomial time feasibility (for polynomials in one variable or of degree

one) to undecidability (presently known to hold for polynomials in 9 or

more variables). We show that for the 2-variable quadratics of the form

2
ax +By-Y = 0 ; a, $, y e u>

the problem is NP-complete. This implies NP-completeness of certain ques

tions about the solutions x of

x = a modulo 0 ; a, 3, x e w .

It also shows that a nondeterministic Turing machine restricted to evaluating

deterministically polynomials of a given form at nondeterministically

constructed argument values (called a nondeterministic Diophantine machine

below) can solve an NP-complete problem in polynomial time.



1. Introduction

Many number theoretical questions are formulated or can be formulated

as questions about the solvability of Diophantine equations (i.e. p(x, "-x ) = 0

for a multivariate polynomial p(x,''-x ) with integer coefficients) in

natural numbers or integers. This becomes clear upon examination of the

section on Diophantine problems in any standard number theory text; it is

in fact made mathematically precise by Matijasevic's theorem [10] that all

recursively enumerable sets are Diophantine (i.e. the elements of the set S

correspond to the parameter values a for which an appropriate Diophantine

equation ps(a,x,"*x )=0 has a solution). It is therefore of fundamental

importance to consider algorithms for deciding the solvability of Diophantine
J.L.

equations, as Hilbert stressed in asking for such algorithms in the 10 of

his famous set of mathematical problems in 1900 [6]. One wishes to know

(a) the complexity of deciding solvability for various classes of Diophantine

equations, and especially (b) for which subclasses of Diophantine equations

a feasible (i.e. deterministic polynomial time) algorithmic procedure to

decide solvability exists.

It follows from Matijasevic's theorem that for some fixed n, the

set of solvable n-variable Diophantine equations is nonrecursive. Much

effort has been devoted to determining the minimum n for which this is

true. The best published result is n < 13 [11]; Matijasevic has improved

this to n < 9 [12]. In [11], it is conjectured that n = 3 may be

possible, though this cannot be shown by present methods.

Even for equations with two unknowns, the decision problem is tantaliz-

ingly difficult. For example, the first major positive contribution after

Hilbert1 s address [6] was Thue's theorem [18] (1909) that for any polynomial

f(x,y) irreducible over the rationals and homogeneous of degree >_ 3,



f(x,y) -m = 0

has at most finitely many integer solutions. Regrettably, Thue's argument

provided no algorithm for deciding the solvability of equations of this

form, and no such algorithm was found until Alan Baker's fundamental contribu

tion [4] (1967) which yields a nondeterministic exponential time algorithm.

Baker's methods extend to various equations in two unknowns.

On the other hand, the question of solvability (in integers or natural

numbers) of linear equations in two unknowns can be answered in deterministic

polynomial time. Thus only the question for binary quadratics remains in

the gap between tractable (binary linear) and apparently intractable (binary

of degree 3) solvability questions. We show below that for binary quadratics

of the form

2
ax, +3x2 -Y = 0 » a, 3» Y e w

the problem of deciding whether there are natural-number solutions is NP-

complete. The reduction also shows that the problem of deciding whether,

for a, 3» Y e w,

2
x = a modulo 8

0 < x < y

has a solution in natural numbers is NP-complete, even if the prime factori

zation of the modulus 0 is given. If the restriction on the size of x

is omitted, this problem can be solved in deterministic polynomial time

using the factorization of 8. Thus the results yield a fairly precise

indication of the class of binary Diophantine equations of this type for

which the solvability question is tractable.



The problems which we show NP-complete are distinctly number-theoretic

in character; they also differ from the classically NP-complete problems

(such as propositional satisfiability) with respect to the number of variables

involved: Most known NP-complete problems involve an unbounded number of

variables, whereas our problems involve only two variables. Because of

these properties, we hope that the NP-completeness of these problems will

play a role in showing the NP-completeness of further problems of a numerical

nature, much as the propositional satisfiability problem has played in

showing the NP-completeness of combinatorial problems [5], [7],

Our results also give information about a different type of question:

What is lost in computational ability and efficiency of a nondeterministic

Turing machine if we restrict it to deterministically evaluating polynomials

of a fixed form at a nondeterministically constructed argument value, and

accepting if and only if the polynomial evaluates to 0? This question is

of interest because this computational model is number theoretically con

venient; the sets accepted by such machines are exactly the Diophantine

sets. In section .3 below we consider this model of computation, called a

nondeterministic Diophantine machine (NDDM). We give an overview of what

is known about the computational ability of NDDM's and relate the results

of the present paper to this question. All known results support the con

jecture that nondeterministic computation can be studied without loss of

generality on NDDM's; this possibility suggests many research questions.

The NP-completeness results are formulated and proved in section 2;

section 3 is devoted to the discussion of NDDM's. Research problems are

formulated at the ends of both sections.



2. Main Results

We recall the following (well-known) definitions: A relation R on

the natural numbers is accepted in polynomial time by a (deterministic or

nondeterministic) Turing machine M if and only if there is a polynomial

q(-) such that for any x,,...,x e w

<x,-*'X > e R ^ there is a computation of M on input <Xi,,,xn>

which halts in an accepting state within q(|x|)

steps, where |x| is the length of x in binary,

x = <x, •'*x >.

P is the collection of relations on the natural numbers acdepted by

some deterministic Turing machine (DTM) in polynomial time; NP is the

collection of relations on the natural numbers accepted by some nondeter

ministic Turing machine (NDTM) in polynomial time; a set in NP is NP-complete

if for any set A e NP there is a deterministic polynomial time computable

recursive function f(*) such that

(Vxeco)[xeA <> f(x) eS] .

Theorem 1. The (problem of accepting the) set of Diophantine equations

(in a standard binary encoding) of the form

2
ax, + 0x« -y = 0 ; a, 0, y e u)

which have natural-number solutions x,, x« is NP-complete.

Theorem 2. The (problem of accepting the) set of quadratic congruences

(in a standard encoding)
2
x = a modulo 0



with solutions x e a> satisfying

0 < x < y ; a, 0, y 6 a)

is NP-complete.

Supplement (to Theorems 1 and 2). If we consider only Diophantine

equations (Theorem 1) and congruences (Theorem 2) in which all prime factors

of 0 are less than log 0, the sets are still NP-complete.

Theorems 1 and 2 are obtained by a common argument. Let S be the

set of satisfiable propositional formulas in conjunctive normal form with

at most 3 literals per clause. By Cook [5] it suffices to show that there

is a deterministic polynomial-time algorithm which reduces the problem of

membership in S to a problem of the form(s) mentioned in the theorem, and

that the problems themselves are in NP, Both problems considered are

solvable by a nondeterministic "guess a solution and check whether it is

correct" algorithm in polynomial time, and hence in NP. This is because,

as is easily verified, there is a bound on the size of possible solutions

to either problem given by a polynomial in the coefficients a, 0, y.

For proof of the Supplement, we must also show that the reduction

algorithms yield only equations and congruences with 0 having all prime

factors less than log 0. This will be evident from the algorithm.

We now give the reduction algorithm, followed by proof of correctness

and analysis of computation time. The reader may wish to merely skim the

algorithm initially, referring back to it when this is suggested in the

proof and analysis.

The reduction algorithms for Theorems 1 and 2 are identical except for

the final step, which will be given separately. The initial steps of the



algorithm in fact give a reduction of 3-satisfiability to a convenient

special case of Knapsack (see [7]). The basic idea behind the algorithm is

to set up means of going back and forth between the representation of a

sequence as the digits of a number in some base, and as the residues of a

number with respect to a system of moduli. (See comment (1) following the

proof.)

2.1 The Algorithm

"On input <J>, read <J> and eliminate all duplicate conjuncts and those

in which, for some variable x., both x. and x. occur. Count the I

variables occurring in the remaining formula <j)R. Let

E = {a,,...,a}

be a standard enumeration of all possible disjunctive clauses, formed from

x-j,...,x« and their complements, with at most 3 literals per clause and no

variable occurring twice or both complemented and uncomplemented in a clause,

Setti ng

e. =

J

1 if a. occurs in <{>R
, j = 1,2,...,m

0 otherwise

m

compute t. = I e.«8J .
^ j=l J

[Comment: t, is the only quantity computed which depends specifically on

<{>R, rather than just on the number I of variables occurring in <(>R.]

Compute:

f\ = I 8j , i=1,2,...,*
x. occurs

inaj
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e
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which
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solvable
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and
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satis-
j=0

J
J

J
n

fiable;
moreover,

for
any

value
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e
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|
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so
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J
J

c
.
a
.

=
t

n

j
=
0

1
0

m
+
1

the
knapsack

problem
is

equivalent
to

Jc.a.
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proof
of
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Determine
the

first
n+1

primes,
pQ,...,p

,
exceeding

n+V4(n+l)8m+1
.

[This
in

fact
never

exceeds
12,

so
we

can
set

p0
=

13.]

Determine
parameters

6.,
j
=
0,1,...,n,

as:
the

least
e.

e
w

such
that

J
j

e.
=

c.
modulo

8m+1
n

,

6.
=
0

modulo
n

pj+l
J
,

1«
1

0.
f
0

modulo
p.

j
j
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n n +1Compute H = I 6., K = Hp1! and output:
j=0 J j=0 J

(a) for Theorem 1:

(K+l)3-2-8m+1.(H2-x2) +K(x2-t2) -x2-2-8m+1.K =0

(b) for Theorem 2:

x2 =(2-8m+1+K)_1.(KT2 +2.8m+1H2) modulo 2.8m+1-K

0 < x < H

where (2-8m+1 +K)"1 is the inverse of (2-8m+1 +K) modulo 2.8m+1-K.

2.2 Analysis of Computation Time

A, and hence m and n, are bounded by a polynomial in the length

of the input <j>. Hence, by the Prime Number Theorem, the primes pQ,...,p

are also bounded by such a polynomial. It follows that the sizes (numbers

n+l
of digits in binary representation) of p. , K, and H are bounded by a

polynomial in the length of (Jr, hence the same is true of the output of the

algorithm.

Moreover, we can obtain all quantities needed deterministically within

polynomial time in the length of the input: The primes can be found as we

have exponential time in their length to do so; i.e. we can afford to sieve

for the primes. Each 9. is of the form
j

•v tt «n+l «*, fy .om+1 \ tt „n+lA.- n p. or (X.+8 )• n p.
3 i=0 n J i=0 n

where



A, =c,-( n pf1)"1 modulo 8m+1 , 0<X. <8m+1

and the inverse can be found in polynomial time [9] using the Euclidean

Algorithm [15]. All other computations are trivially polynomial time, given

the bounds on the numbers involved.

2.3 Proof of Correctness

In this section, '|x|' will denote the absolute value of x.

We first show that the original propositional formula <J> is satis

fiable if and only if

n ,

I 6.a. = t modulo 8 , a. e {-1,+1}, j = 0,...,n
j=0 J J J

is solvable.

Clearly, <J>R is satisfiable if and only if <J> is; (|>R is satisfiable

if and only if there is a valuation r: {x,,...,x-} -*• {0,1} such that for

each disjunctive clause a. e {a,,...,a }
\\ I HI

yk - I r(x.) - . I (l-r(x..)) +1 if ak e <|>R
x. e ak x. e ak

0 = Rk =
yk " I rUi) " . I (1-Kx.)) if ak ^ (J>R

x.eak x.eak

12

is solvable by yk e {0,1,2,3}. (In this definition of Rk, 'e' abbreviates

'occurs in'.) For convenience on a technical point later in the proof, we

add an artificial condition

0 = RQ =aQ +l , aQ e {-!,+!}



which does not influence the satisfiability of the system.

For any <{>R, any valuation r: {x^... ,x^} -»• {0,1}, and any

yk e {0,1,2,3}, we have

and therefore

and

so that

-3 < Rk <4 , k = l,2,...,m

0 < RQ < 2

m .

R. =0, k=0,l,...,m o I R.-8K = 0
K k=0 K

k=0 K '

R. =0, k=0,l,...,m o I R.8k =0modulo 8m+1
K k=0 k

In this condition, we replace the variables y. and r(x.) by {-1,+1}-

valued variables a2k_-|, a«k and a« . respectively:

r(x.) =-^(l-a2m+i)

Let Rk result from Rk by these substitutions. Then the conditi

I R'8k =0modulo 8m+1
k=0 K

on

contains only the {-1,+l}-valued variables aQ,...,a2 , and is solvable

if and only if <j> is satisfiable. By rearrangement of terms, using the

quantities defined in the algorithm, the condition can be rewritten as

13



C.a.; =tmodulo 8m+1 , a. e{-1,+1}
j=0 J J

which by the definition of 6., j = 0,...,n, is equivalent to

I 6.a. =xmodulo 8m+1 , a. e{-1,+1} .
j=0 J J J

Lemma 1. Let K and H be as in the algorithm. The general solution

of the system

is given by

0 < |x| < H , x e

(H+x)(H-x) = 0 mod K

x = I a.9. , a. e {-!,+!}, j = 0,1,...,n .
j=0J J J

(1)

(2)

Proof (of Lemma 1). It is easy to verify that all x of the given

form satisfy the system. We now show that these are the only solutions.

Let x be a solution to the system (l)-(2). Then

(H+x)(H-x) =0mod (p.)n+1 , j=0,l,...,n .
j

Assume (for reductio) that for some j«,

p. |(H+x) and p. |(H-x) .
0 '0

(Notation: a|b means a divides b; this is equivalent to b = 0 mod a.)

Then p. |(H+x) +(H-x) = 2H. But p. > 2, p. prime, so we must have
J0 n J0 J0

p. |H, i.e. p. |£ 6.. But by definition of 6., p. |e. for all j f jn.
Jq J0 j j J Jq j u
Hence it would have to be that p. |e. , contradicting the third condition

J0 J0

14
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in the definition of 8. .

n+1Thus rejecting our assumption, we conclude that for each j, p.

divides exactly one of (H+x) and (H-x). We define

Then we get:

a.

J

x' =

1 if pJ+1|(H-x)

Y a.0.
1 J J

-1 if p^+1I(H+x)

n+1

x* = x mod p. for all j so x' = x mod K

-H < x' < H

-H < x < H

=> |x-x'| < 2H

.>n+1^But by our choice of p. >,,T,V4(n+l)8m+1, and the fact that A. = 6./ n p?+1

<2«8m+1 (for each j), each term of H is bounded by K/2(n+l). Hence

2H < K; we now conclude that x = x'. Thus any solution of (l)-(2) is

indeed of the form given. (End of proof.)

Using the lemma, we find that the condition

m+1I e.a. = t modulo 8m ' , a, e {-1,+1}
1=0 J J Jj=0

is equivalent to the system

(i) 0 < |x| < H , x eZ

(ii) x =t modulo 8m+1

(iii) (H+x)(H-x) = 0 modulo K

(I)
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Lemma 2. Let t be odd, x e Z, k ^ 3.

k+l k
(t+x)(t-x) = 0 mod 2 <> either t+ x = 0 or t -x = 0 mod 2 .

(The straightforward proof is left to the reader.)

We note that in our case the conditions of Lemma 2 are satisfied. Hence

the system (I) is satisfiable if and only if system (II) below is satisfiable:

(i) 0 < |x| < H , x e:

(ii) (t+x)(t-x) = 0 mod 2-81

(iii) (H+x)(H-x) = 0 mod K

m+1
(II)

For if x satisfies (I), clearly x satisfies (II); if x satisfies (II),

then either t + x = 0 mod 8 or t - x = 0 mod 8 ; in the second case

(I) is satisfied by x, in the first case, -x satisfies conditions (i)

and (iii) common to both systems, and

m+1
-x = t mod 8

so that -x satisfies system (I).

Finally, system (II) is equivalent to

(i) 0 < x, < H , x, e Z

,m+l,..2 2 2 2* _ ,m+l(ii) A1-2-8m+,(H^)+A2K(T -xf) =0modulo 2-8m'n-K
m+1(iii) gcd(ArK) =gcd(A2,2-8m ') =1; A], A£ eZ

(III)

2
For system (II) only involves x and |x|, so that we may assume x > 0

without loss of generality; and the congruences (ii) and (iii) of (II) are

equivalent to (ii), (iii) of (III) because 2*8 and K are relatively

prime. The parameters A,, A« of system (III) can be freely chosen subject



to conditions Ill(iii), and we will make different choices for the proofs

of Theorems 1 and 2; conditions (III)(i), (ii) are satisfiable either for

all A.j, A2 satisfying (III)(iii) or for no such A,, A2.

We now complete the arguments separately for Theorems 1 and 2.

(a) Theorem 1. We choose A1 = (K+l) , A2 = -1, clearly satisfying

(III)(iii). Now for x > 0

(K+l)3-2-8m+1-(H2-x2)+K(x2-T2) >0 o O^x^H

For the first inequality can be written as

9 9 Vr >r

A <H + 3 1 m+1 = RHS
1" (K+l)3.K"'-2.8m+1-l

and because t <H< K, RHS satisfies H2 < RHS <H2 +l. It follows that

the equation output by the algorithm is solvable by x,, x2 e w if and only

if system (III) is satisfiable, i.e. if <j> is satisfiable.

(b) Theorem 2. We choose A1 =A2 =1, satisfying (III)(iii). Then

(III)(ii) becomes

(2.8m+1 +K)x2 =Kx2 +2.8m+1H2 modulo 2.8m+1.K

and as 2*8m+1 +K is relatively prime to 2-8m+1»K, it has an inverse

modulo 2-8 «K. Multiplying by the inverse, we obtain the congruence

condition output by the algorithm. Thus again the conditions output by

the algorithm are satisfiable if and only if system III is satisfiable.

17
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2.4 Comments on the Reduction

(1) It is of broader interest to clarify the basic idea of the reduction

algorithm from which a general method for reducing computational problems

to Diophantine equations by deterministic computation can be derived. The

crucial elements are contained in the system of definitions in the algorithm,

and Lemma 1 of the above proof. A version of this pared to bare essentials

may be obtained by picking p19...,pn any sufficiently large primes, K

as above, and for all j, 6. minimal such that
j

e. = 23"1

e.to

and

We then obtain

n
modulo 2

n

modulo n (p.)
i=l 1

modulo p.

H = I 6. .

n+1

n-1

Lemma 3 (Conversion Lemma). For any a e w, i.e. a = I a.2 +a2 ,
i=0 1

a., e {0,1}, a e to. The unique a e co satisfying

(1) a < K

(ii) a = a mod 2n

(iii) a(a-H) = 0 mod K

is

n

ia =i,aj-iej •

a. coefficients of binary representation of a above.

The proof of Lemma 3 is of course analogous to that of Lemma 1 above.



The crucial idea is to provide a means of going back and forth between

the representation of a sequence as the digits of a number in some base b

(e.g. 2), and as the residues of a number with respect to a system of rela

tively prime moduli. The first allows a global description of the shifting

of the sequence, the second allows global formulation (i.e., for the whole

sequence in a single congruence) of a condition on the individual elements

of the sequence. All known reductions of recognition of correct Turing

machine computation to Diophantine equations with a number of variables

independent of input size provide some means of reconciling these very

different kinds of operations on the sequence studied; doing so is the

fundamental problem of such reductions and the principal challenge in obtain

ing tight bounds on the complexity of Diophantine decision problems.

(2) If S e NPHNPC, i.e. S e NP and Sc e NP, then the reduction

algorithm described in the proof of Theorem 1 reduces the questions

x e S ?

x e Sc ?

to the question of the solvability of two very closely related Diophantine

equations. This fact might be of help in studying the class NPHNPC. As

an example, we suggest the

Open Problem 1. Is there a complete set in NPHNPC (i.e. a set in

NPONPc to which every set in NPONP0 can be reduced by a deterministic

polynomial time algorithm)?

As a candidate we suggest the set S

S = {<a,3>: a,Bew; 3z ew, 1<z<3 and z|a} .

19
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S is in NPHNPC and the problem of accepting S is computationally

deterministic polynomial time equivalent to prime factorization of numbers,

and hence probably not in P (see [13] for these assertions).

3. Nondeterministic Diophantine Machines

We introduce a class of nondeterministic Turing machines with restricted,

purely numerical, computational ability: Given a multivariable polynomial

p(x,,...,x ,y,,...,y ) with integer coefficients, the corresponding

nondeterministic Diophantine machine (NDDM) is a nondeterministic Turing

machine with the following algorithm:

"On input a,,...,a eu, guess b,,...,b eau If p(a^9...9a ,b^9... tbn)

= 0 then accept <a,,...,a >; otherwise halt without accepting."

For example, if p(x.j,y2) = x1 -y2, then the corresponding NDDM has

the algorithm

2
"On input a, e w; guess b, e w. If a, - b, = 0, accept a,."

It is easy to see that this NDDM accepts exactly the set of perfect squares,

and in polynomial time.

The question of major interest about NDDM's is whether computational

ability of NDTM's is lost in restricting the operations to those of NDDM's.

For clearly, the description of NDDM's and the relations on w which they

accept is more convenient and more directly number theoretical than is the

case for Turing machines. Thus much more direct applicability of number

theoretic techniques to computational theory (and vice versa, see for

example [1], [2]) might be possible, if in fact general Turing computation

is adequately represented by NDDM's.

The development of the theory of Diophantine definability in number

theory, in connection with Hilbert's 10 problem, has made it possible to
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answer our question; for the Diophantine relations are exactly those accepted

by an NDDM. Thus we have as a corollary to Matijasevic's theorem mentioned

in the introduction, that the relations accepted by NDDM's are exactly the

relations accepted by Turing machines.

Our question can how be sharpened: How does the efficiency of NDDM's

compare with that of NDTM's? We show in [1], [3] that the restriction

to the numerical operations of NDDM's causes at most an exponential loss

in efficiency: A relation accepted in time t on a NDTM is accepted in

lot
at most time 2 on a NDDM (for a large class of arbitrarily large or

small running time functions t). No lower bounds on the loss of efficiency

are known; we conjecture that essentially no efficiency is lost. This is

supported by evidence in [1], [3].

For close comparison of the efficiency of NDDM's and NDTM's we compare

the class D of relations accepted by NDDM's in polynomial time to NP and

P. The following definitions are useful:

(i) (alternative characterization of D): For all new, Dn is the

set of all numerical relations R definable by a formula of the form:

q(l(x1+x2+---+xj|)
<x1,x2,...,xm> eR o 3yr...,yn <2 » c m [P(xrx2,... |X|||,

yr...»yn) =0]

where q and p are polynomials, and, as throughout this section, '|x|'

denotes the length of x in binary.

Then we have:

D = u D1 .
i ew

(ii) For any m-ary numerical relation R and any Jl-ary numerical rela

tion S: R is D-reducible to S (notation: RcS) if and only if R is



definable by a formula of the form:

<Xl,...,xm>e R o 3ylf...,y£iyjl+r...fyn
q(|x1+---+xm|)

<2 ' m [P(x1,...,xjn,y1,...,yn) =0
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&<y1t.-.-.yJl> 6 s]

where q and p are polynomials.

(iii) For any numerical relation R in NP: R js D-complete if and

only if every other numerical relation in NP is D-reducible to R. Clearly

if R is D-complete then R e D <> NP = D.

There seems to be considerable symmetry between D and P as subclasses

of NP. For the complete problems in NP with respect to <g and <p

(deterministic polynomial time many-one reducibility), this can be illustrated

using the results of the previous section.

Theorem 3.

2
(a) There is an NP-complete problem in D (in fact even in D ).

(b) There is a D-complete problem in P.

Corollary

(a) D c p => p = NP

(b) P c D => D = NP

2
Proof, (a) Let p(x.|,x2,x3,y, ,yj = x,y1 +x2y2 -x3- Then the NDDM

corresponding to p(x,x2x3,y,y2) accepts the relation S:

2
S = {<a,B,y>: a,3,yea), Hy^ eu>[ay.j +By2 - y= 0]}

which is NP-complete as it is in deterministic polynomial-time 1-1 correspondence



23

with the set of Diophantine equations asserted to be NP-complete in Theorem 1;

and the NDDM runs in polynomial time.

(b) We must find a relation S e P and for any NDTM M accepting a

set in NP, a D-reducing Diophantine equation pM(*»-) = 0. We consider a

nondeterministic simulation of an arbitrary NDTM M (when Mew will

serve as the index of the NDTM) which will accept in nondeterministic poly

nomial time if M does. The computation involved in this simulation will

be "divided" into a deterministic part and a nondeterministic part; the

deterministic part will give us the definition of a relation S which will

be in P; the nondeterministic part will give us the definition of the

"reducing" NDDM, for it will be a Diophantine relation.

The Simulation Algorithm:

"For NDTM M, on input x e w: Guess a time tew (such that M

on input x may halt within z steps); By Cook's algorithm [5], compute

a propositional formula in disjunctive form with at most 3 literals per

clause, satisfiable if and only if M on input x halts within t steps;

By the reduction algorithm in the proof of Theorem 1, compute the appro-

priate a, 8, y e w; Guess x1, x2 (such that ax^ +3x2-y =0 may hold);
2

If ax1+3x2-y = 0, accept x; Halt."

S = {<M,x,t,a,3,y>- M,x,t,a,3,yew, and a,3,Y are as computed in

the simulation algorithm from M,x,t}

PM(x1,y1,...,y8) =(y4y7 +y5y8-y6)2 +(yrM)2 +(y2-x})2

Note that

y4y7+y5y8"y6 = °
PM(---) =0 o <yl = M

y2 = x1



Now assume that M is a NDTM accepting a set SM e NP, i.e. M has a

running-time function which is a polynomial in the length of the input.

Then the Simulation Algorithm will accept SM in polynomial time and needs

only to guess numbers bounded by

?qM(|x|)

for some polynomial qM(*) which could be determined from the running time

of M by an analysis of the reduction algorithm used in proving Theorem 1

above. Thus we have, for all x, e w:

%(lxll>x1 e SM o 3y.j,...,y8 e w; y-|,...,y8 < 2 such that

PM(xryr...,y8) =0

<y-j»...,y6> e s

so that M is indeed D-reducible (by PM) to S e P. As M was arbitrary

and S does not depend on M, S is D-complete. (End of proof.)

Theorem 3 answers an open problem in [2]: "Find a set A e D such

that for all B cw, if B e D, then B is polynomial reducible to A."

That any such set would be NP-complete (as Theorem 3 implies) was rather

unexpected. One would have expected the D1, i e w to be a hierarchy of

progressively harder problems (in the sense of P-reducibility); moreover,

it was suspected that number-theoretic problems obviously in NP would be

less than NP-complete: The deep structure of number theory should allow

development of nontrivial and efficient algorithms for such problems.

Theorem 3 indicates that all this is wrong.

The argument for Theorem 3(b) suggests that D and P are in a sense

complementary subclasses of NP; it shows how all nondeterministic polynomial

24



time computation can be decomposed into deterministic polynomial-time computa

tion and NDDM-polynomial time computation, by a fixed DTM and an essentially

fixed NDDM,

There are various natural subdivisions of the class D corresponding

to characteristics of the defining polynomials of NDDM's computing sets in

D: number of variables, degree in the variables, and the magnitude of the

time bound. These suggest many problems of classification of sets and

questions about whether the characteristics are significant for complexity

theory. We now list several of the possibilities.

9(U) 9
D v ' will denote the subclass of D where the relevant polynomial

P(x,,...,x ,y,,y2) is of degree < K in the variables y,, y2. Clearly,

the set S in the proof of Theorem 3(a) is in D ^ '. It then easily

follows from Theorem 3(a) that

Theorem 4. The following are equivalent.

(a) S e NP

(b) (D2(2))CSNP
(c) (NP)C = NP

where Ac denotes the set of complements of sets in A and A denotes

the complement of A.

Theorem 4 is, in many respects, as strong as possible: We can show

([3]) that

(i) (D2(1))c cp CNP

(ii) (D')c c Dnp c NP
2(2)

It is very interesting to consider the extent of D v '.

25
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Consider the following sets:

2 2
S, = {a| 3x,yew: y -ax =1}

52 = {a| a composite}

53 = ^tt'&H 3zew: 1<z<3 and z divides a}

54 = {<a,3»Y>l 3y,zew: ay +3z-y =0}

All of these are in D ' '. But also:

51 is in P (see [15]).

52 is in P, if the Extended Riemann Hypothesis is true.[see [13], [14]),

S3: As noted at the end of section 2, S3 eNPONPc; probably S3 $P.
S^ is NP-complete.

2(2)
These examples illustrate that D v ' is a microcosm of the principal

subclasses of NP. This suggests that a more detailed determination of the

2(2)
extent of D v ' would be valuable.

Open Problem 2.

(a) Show that D2^ f NP.

(b) Show that P£D2^2\
(Obviously, the second implies the first.)

(c) Does every degree in NP with respect to <p (deterministic

polynomial time reducibility) have a representative in D' '?

Open Problem 3. What is the relationship of DHDC to P? It is known

[3] that (D])C c D, so that D1 c DnDcnp.



27

Open Problem 4. What is the structure of NP under <* (D-reducibility)?

If D f NP, are there D-(reducibility) degrees between 0 (the degree

of sets in D) and the degree of the D-complete set of Theorem 3? See, for

the corresponding assertion about P-reducibility, Ladner [8].

Open Problem 5. D = NP ?

Open Problem 6. It can be shown by methods of algebraic topology that

the set of composite numbers S2, and its complement Pr, the set of primes,

are not in D1 ([17]). Hence D2^2) f D1.

(a) Can this or a different argument be generalized to show:

for all iew: D1 f D1+1 ?

(b) In the case of the composites and the primes, it follows [17] from

2 1
composites e D \D

primes = (composites)

that primes \ D . Is it always true for S c go that

SeD1+1\D1 =* Sc k D1 ?

Open Problem 7. (Further classification of the set Pr of prime

numbers). By Pratt [16], Pr e NP; hence in NPHNPC. We can now ask:

(a) Is Pr e D ?

(b) Is Pr D-complete?

Open Problem 8. (A different subdivision of D): For k^ 1, let

D(k) be the set of all numerical relations definable by a formula of the

form
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c(|x +...+x Ij*
<xr...,xm> eR + 3yi'..yn<2 ] m :P(Xl••-x^••-yn) =0

where c > 0 and P is a polynomial. If k > &, then D(£) CD(k); D(l)

is just the class where the definition can be chosen as

^ ••-y„ <*l*i••-\) •• p(x-, ••-\^ ••-yn) -o ,

p, q polynomials.

(a) The relation x = yz is in D(2) [2]. Is it in D(l)?

(b) Are any of the inclusions D(£) CD(k), for k > &, strict? An

affirmative answer would follow from D = NP, by use of diagonalization

over nondeterministic Turing machines running in time n . But this ques

tion could be independent of 'NP = D'.
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