
 

 

 

 

 

 

 

 

 

Copyright © 1976, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



A DISTRIBUTED DATA BASE

VERSION OF INGRES

by

Michael Stonebraker and Eric Neuhold

Memorandum No. ERL-M612

11 September 1976

ENGINEERING RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A DISTRIBUTED DATA BASE

VERSION OF INGRES

by

Michael Stonebraker

Electronics Research Laboratory
University of California, Berkeley

and

Eric Neuhold

University of Stuttgart

ABSTRACT

This paper sketches the extensions to the currently operational

INGRES data base systems which are required for it to manage a

data base distributed over multiple machines in a computer net

work. The machines are assumed homogeneous (or at least composed

of machines each running the UNIX operating system).

Three possible user views of a distributed relational data base

are presented. Each is readily seen to be a special case of the

subsequent one. The difficult extensions and/or modifications

to the code of the currently operational INGRES system are sug

gested. Lastly, the view being implemented and the reasoning

behind its choice are indicated.

This research was sponsored by the Army Research Office Grant DAAG29-76-G-0245
and the National Science Foundation Grant DCR75-03839.

-1-



I INTRODUCTION

INGRES is a relational data base management system [STON76,

HELD75] which operates as a collection of user processes on top

of the UNIX [RITC74] operating system. This DBMS is currently

being extended to operate on a collection of computer systems

each running UNIX. In this paper we indicate the extensions and

modifications which are required for the new environment.

Throughout the paper we assume the existence of the UNIX to UNIX

communication facility being constructed by the UNIX designers

[THOM76]. This facility allows a process on one machine to

"fork" slave processes on another machine and interchange data

with such processes. Consequently, a user can invoke INGRES at

one machine and interact with the INGRES processes running at

that site. Moreover, the INGRES initiation program can "fork" a

slave collection of INGRES processes at each site in the network.

These collections can communicate with each other through UNIX

network support code. This capability is illustrated in Figure

1.

-2-



I USERi ! INGRES

PROCESSES

v

INGRES

PROCESSES

v |

INGRES

PROCESSES

Site i

Site j

Site k

The Distributed INGRES Environment
Figure 1

It should be noted that each INGRES user will have such a collec

tion of processes on each machine. The processes on a single

machine share text segments so the core overhead of multiple col

lections of INGRES processes is only that of data segments.

Moreover, much of the time the processes will be inactive and

will reside on a secondary storage device.

The sketch presented can apply to any other distributed computer

support facility which has the above mentioned capabilities such

as the ARPANET [R0BE70, CHES75], TELENET [KARP76], etc.

This paper does not consider problems of placement of data in a

- 3 -



distributed computing environment [LEVI75, CASE72, WHIT70, CHU69]

nor does it consider physical design problems such as choice of

line speeds, etc. Only implementation issues are discussed.

II THE THREE VIEWS OF A DISTRIBUTED DATA BASE

On a single machine INGRES manages a collection of data bases

each with a given data base administration (DBA) who has powers

not available to normal users. Each data base consists of a col

lection of relations R1,...,Rn, plus system catalogs [STON76].

The computer network consists of sites S1,...,Sk interconnected

by communications links.

A user at a given site Si "logs into" INGRES and indicated which

data base, D, he wishes to interact with. The view of the net

work which he sees is the following. Suppose data base D exists

at a subcollection of the sites S1,...,Sm, at the j-th site Sj

are relations R1(Sj),...,Rn(Sj).

The user with view number 1 sees a collection of relations

C={Ri(Sh), h = 1,...,j, i = 1,...,m} with the following restric

tions:

1. Each relation is on a unique machine i.e. no two rela

tions in C have the same name

2. A user interaction with the data base can only span

relations at a single site

Note that the user presented with such a "view" need not neces

sarily know where a given relation is physically placed. In

- 4 -



fact, except for performance, he cannot tell that the collection

C is not all on the machine to which he "logged into".

In view 2 restriction number 2 above is dropped while in view 3»

both restrictions are absent. We illustrate each situation with

an example. Suppose EMP(NAME, SALARY, MANAGER, AGE, DEPT) and

DEPT(DNAME, FLOOR*, LOCATION, SALES) are two relations. First

suppose EMP is on machine 1 and DEPT is on machine 2. With view

1 a user logged onto either machine sees a data base consisting

of both relations; however he can interact only with the data at

a single site in one interaction. Consequently the interaction

"Find the names of employees on the first floor" i.e.

RANGE OF E IS EMP

RANGE OF D IS DEPT

RETRIEVE (E.NAME) WHERE E.DEPT

=D.DNAME AND D.FLOOR# = 1

would not be allowed. However, with the second view such a query

would be executed even though it spans more than one machine.

With the third view portions of DEPT and EMP could be on each

machine. For example machine 1 might have all tuples from DEPT

where LOCATION = 1 and machine 2 would have the remainder of the

relation. Moreover, an employees tuple could similarly be on the

machine having data for his location. With this view each rela

tion may be physically distributed.

Note that all three views differ fundamentally from the approach

taken by the data computer [MARI75] project. There a large cen

tralized facility is provided.

- 5 -



The consistency condition determining the correctness of an in

teraction, I, for each of the views is the following: Suppose

the collection of relations C is assembled on one machine; rela

tions with the same name being merged. The interaction, I, can

be processed against this data base and yields a result defined

in [HELD75]. This result must be the identical to one produced

by first applying the interaction to the distributed data base

then assembling the relations.

Regardless of which view is supported the need for copies of re

lations may arise. Two reasons are commonly given for the ex

istence of copies:

1) reliability

If a machine fails a backup copy of a relation on another machine

may be used.

2) performance

In environments where there is a large percentage of retrieve re

quests, higher performance may be obtained by directing such re

trievals to the "closest" copy.

In either case the copies must be kept current. In a later sec

tion we will see that how copies should be updated will depend on

whether they exist for reason 1 or reason 2.

Lastly, regardless of which view is supported and whether copies

of relations exist, the network can be run with varying amounts

of control centralized in a single machine. We shall refer to

- 6 -



this decision as whether "GOD" should exist and if so what powers

should he have. It will be seen that the existence of "GOD" is a

very fundamental question.

In the next four sections we examine implementation problems in a

network environment which are present for some or all of the

views. These problems are grouped into four categories:

1) New user commands needed

2) Problems with storage of system catalogs

3) Decomposition and query processing problems

4) Concurrency and consistency problems

We examine each in turn.

Ill NEW USER COMMANDS

For all three views the following user commands must be added to

the INGRES user language [ZOOK76].

1) The command language will be expanded to include a keyword

"LOCATION" by which a user can indicate his knowledge (or desire)

concerning the physical location of a relation.

For example, one RANGE declaration would be the following:

RANGE OF E IS EMPLOYEE (LOCATION =1)

In this case the user is only interested in the employee relation

if it is at site 1 (or the portion of it present at site 1).

Similarly,

- 7 -



CREATE NEW_EMPLOYEE (LOCATION =2) (NAME =C10, AGE = 12, SALARY

= 14)

indicates a desire to create a relation NEW_EMPLOYEE at site 2.

Other commands are similarly extended in a straightforward

manner.

2) It must be possible to move a relation from one site to anoth

er. This requires a command:

MOVE RELATION_NAME(LOCATION=X) TO RELATION_NAME(LOCATION=Y)

3) If view three is adopted there are three possible ways to form

a relation which spans more than one machine.

One sequence of operations might be:

RANGE OF R IS RELATION

RETRIEVE INTO W(R.ALL) WHERE QUALIFICATION

DELETE R WHERE QUALIFICATION

MOVE W TO RELATION (LOCATION = X)

This sequence of steps moves the tuples from RELATION which

satisfy QUALIFICATION from the machine they are currently on to

the machine at LOCATION X.

Alternately, CREATE can be applied at several sites and a bulk

load (using the COPY facility) done for each machine.

Both of the above mechanisms create a relation which is distri

buted according to a user defined criteria. A user who wishes to

utilize location information to speed processing must build it

- 8 -



into the transactions he writes. Moreover, he must guarantee

that the distribution criteria which he is using remains valid.

For example, if machine 1 has employees with salaries under 10000

and machine 2 has the remainder, the user must guarantee that

this condition remains true after updates. To do so, for exam

ple, it may be necessary to move a tuple from one machine to

another upon a raise or paycut.

The third mechanism is designed to allow the system to utilize

(and enforce automatically) a distribution criteria. This re

quires a new form of the CREATE command.

DIST_CREATE RELATION_NAME({DOMAIN_NAME = FORMAT})

({QUALIFICATION = LOCATION})

Here, QUALIFICATION is a valid QUEL qualification involving only

a single tuple variable ranging over RELATION_NAME, and LOCATION

is a valid location.

An example of this command is the following:

RANGE OF E IS EMPLOYEE

DIST_CREATE EMPLOYEE (NAME = C10, AGE = 12, SALARY = 14)

(E.SALARY <10000 = L0C1,

E.SALARY >=10000 = L0C2)

The effect of this command would be to create a distributed rela

tion. Moreover, the system would ensure on all updates that the

distribution criteria remained in force. In addition, it would

try to utilize the distribution criteria to limit any search for

- 9 -



information. The former is easily done by checking each modified

or added tuple against the distribution criteria and inserting it

in the local data base only if it meets the local distribution

criteria. Otherwise a message must be sent to the appropriate

machine. To achieve the latter effect requires the system to ex

amine the qualification presented by the user and direct his in

teraction only to those machines whose distribution criteria do

not have an empty intersection with the one of the user.

Although this step requires a theorem prover in the general case,

there are several simple cases that can be checked readily.

The reasoning behind suggesting that the distribution criteria

only have a single tuple variable is that the above two steps ap

pear reasonable for this special case and are much more difficult

otherwise. Also, it is felt that a more general criteria is not

needed.

3) To achieve backup copies, a backup command is required, for

example:

BACKUP OF RELATION_NAME(LOCATION = X) IS

RELATION_NAME(LOCATION = Y)

4) In section 6 it will be seen that there is a high overhead in

communication traffic assoicated with CREATE and DESTROY since

network consistency must be guaranteed. To help avoid this over

head two kinds of relations will be permitted:

a) regular relations. These are shared among the network.

- 10 -



b) local relations. These are only visible to a user logged

onto the machine where they reside.

A naming convention will be enforced to distinguish the two

cases. Of course, users must be aware of the convention. Local

relations involve substantially less overhead to manipulate as

will be presently indicated.

IV SYSTEM CATALOGS

Each machine should keep system catalogs for the relations which

reside physically on that machine. Since this condition must be

true for a network consisting of a single machine, it appears

useful to require this situation to be generally true. For pur

poses of this paper the INGRES system catalogs contain four types

of information.

1) the relation name

2) parsing information (domain names, format, etc.)

3) performance information (number of tuples, storage struc

ture , etc.)

4) consistency information (protection, integrity constraints,

etc.)

A distributed INGRES can exist with each machine maintaining only

its own system catalogs (subject to some consistency constraints

discussed in Section 6). However, an interaction which involves

a relation not on the originating machine may necessitate a

search of the complete network for appropriate catalog informa

tion before execution can take place. To potentially improve

- 11 -



performance, at least the following options for redundancy exist.

1) Designate one machine "GOD". Store a complete collection of

system cataglogs at that site. In this case unknown catalog in

formation can always be obtained by requesting it from "GOD".

2) Store item 1) above for each machine at every other machine.

3) Store 1) and 2) on every machine.

4) Store 1) - 4) as above.

5) Whenever items 1) - 4) are required by a machine, save them

but make no effort to correctly update them. Discard such infor

mation after a predetermined length of time.

The advantage of case 1 is that there would be no need to broad

cast commands to each machine, one could simply ask "GOD" where

desired data is located. Of course, the network fails completely

if "GOD" becomes inoperative. Improved reliability can only be

obtained by having a backup copy of "GOD". The performance tra

deoff concerning "GOD" is the communication traffic generated by

broadcasting requests when necessary versus the traffic generated

keeping "GOD" with an up to date collection of system catalogs.

Very crudely, let k be the number of sites and x the percentage

of INGRES commands which involve data at a remote site. Without

"GOD" there will be an average kx messages per interaction. With

"GOD" per interaction there will be x requests to "GOD" for loca

tions of data, x requests to these locations to satisfy the in

teraction and then y messages to update the catalogs at "GOD's"

- 12 -



location (where y is the percentage of commands which update the

system catalogs). Because INGRES currently maintains detailed

performance information y is not substantially less than 100?.

(However, y could be reduced substantially by less frequent

maintenance of this information.)

Hence, the "GOD" solution has lower traffic if

x(k-1) > 2x -i- y

If k = 8, x = 0.1 and y = 0.5, then both methods generate the

same traffic.

Case 2 assures that any machine knows where all relations in the

network are. Hence, a request for catalog information can be

sent to the correct machine and a broadcast of the request avoid

ed. The overhead of case 2) is that of keeping the information

current. That may or may not be greater than the overhead of

supplying "GOD" with much more detailed information.

Case 3 will allow an interaction to be completely parsed at the

site from which it originates with no requests for additional

information. However, for execution to begin items c) and d)

must be requested from remote sites.

Case 4 generates no network traffic in parsing and deciding on an

execution strategy for an interaction. However, the cost of

keeping such detailed information current may be very high except

in "RETRIEVE almost always" environments.

Case 5 appeals to a working set management strategy for system

- 13 -



catalogs. This technique is widely used in memory management for

operating systems [SHAW75]. Here, a machine might be required to

assemble catalog information about a relation residing at a re

mote site. However, once assembled, the information would be en

tered into local system catalogs. Then, if a particular relation

is referenced again, catalog information is at the local site and

need not be requested again. After a certain period of time ca

talog information so obtained would be declared "out of date" and

discarded. In this case one may obtain execution time errors and

optimization mistakes because of inaccurate information.

V DECOMPOSITION

Since INGRES decomposes a multivariable interaction into a se

quence of one variable interactions [WONG76, STON76], additional

steps must be taken when the relations involved are not on a sin

gle machine. Also, the optimization problem discussed in

[WONG76] must be restated.

If view 1) is used there is no problem. The interaction need

only be sent to the correct machine for processing according to

the currently implemented algorithms.

In view 2) or 3), one always has the option of reducing the prob

lem to the case of view 1) by a sequence of MOVE commands to as

semble all needed relations on a single machine. The other op

tion is to extend the decomposition algorithm.

The machine on which an interaction originates can parse the in

teraction and start the decomposition process. It can perform

- 14 -



the "one-variable overlap algorithm" to split the interaction

into components. Any of these components which involve only a

single tuple variable can be immediately sent to the appropriate

machine(s) and processed. The result is a temporary relation

formed on the appropriate machine(s) which must return a descrip

tor (summary of catalog information) to the originating machine.

The originating machine must now decide on a tuple variable on

which to perform tuple substitution. The required performance

information concerning each of the relations involved already

exists on the machine either because it was assembled before

parsing or returned as a result of a one variable clause.

After this decision, the entire interaction must be sent to the

machine(s) on which reside the relation to be substituted for. A

descriptor for all other relations involved must also be sent.

These machines then perform tuple substitution, forming in the

process, a sequence of interactions each with one less tuple

variable. Each such interaction is treated as if it were an in

coming interaction. The process terminates when only a single

tuple variable remains as noted in [WONG76].

Two notes will be made, then we will do an example.

1) If the command is a RETRIEVE INTO NEW_RELATION, the resulting

location of NEW_RELATION is the machine which has the only rela

tion for which tuple substitution is not performed. Moreover, if

that relation is distributed, NEW_RELATION will be distributed

also. This location(s) are not predetermined, since the process

ing strategy for interactions makes incremental decisions. If

- 15 -



the user wishes NEW_RELATION elsewhere, it must subsequently be

moved with a MOVE command. Alternately, the user can specify:

RETRIEVE INTO NEW_RELATION (LOCATION = X)

which will guarantee a specific location. In this case the

decomposition strategy can be invoked and a MOVE command generat

ed subsequently. Alternately, the algorithm in [WONG76] can be

modified to avoid substituting for a relation on the appropriate

machine (if that is possible). This will ensure that the rela

tion ends up on the correct machine.

2) The algorithm in [WONG76] does not consider a network en

vironment. In order to do optimaization in this case the follow

ing parameters could potentially be used in the optimization

equations of [WONG76].

a) speed of the secondary storage device on each machine

b) speed of each CPU

c) communication cost between each pair of machines

d) the location desired for the result relation (or the location

of the relation to be updated)

We now indicate an example of distributed decomposition at work.

Suppose EMP (NAME, SALARY, MANAGER, AGE, DEPT) is a relation dis

tributed on machines 1 and 2. Suppose on machine 1) the follow

ing interaction is received:

- 16 -



Find the employees under 35 who earn more than their managers,

i.e.

RANGE OF E IS EMP

RANGE OF M IS EMP

RETRIEVE (E.NAME) WHERE E.SALARY> M.SALARY

AND E.MANAGER = M.NAME

AND E.AGE < 35

The following steps are performed:

1) Machine 1) assembles (if it does not have already) a descrip

tor for the two pieces of the EMP relation and parses the in

teraction .

2) Machine 1) detaches the one variable clause (E.AGE < 35) and

issues the following interaction for processing on both machines

1) and 2).

RANGE OF E IS EMP

RETRIEVE INTO W(E.NAME, E. SALARY, E.MANAGER)

WHERE E.AGE< 35

As a result W will be created on both machines and a descriptor

returned to machine 1) containing catalog information on W.

3) The query which remains is

RANGE OF E IS W

RANGE OF M IS EMP

RETRIEVE (E.NAME) WHERE E.SALARY > M.SALARY

- 17 -



AND E.MANAGER = M.NAME

Machine 1) now decides whether to substitute for E or M. Since,

W is smaller than EMP, E is likely to be a good choice. Hence it

transmits the above interaction two both machines 1 and 2 with a

descriptor for W and EMP and an indication that W is to be sub

stituted for.

4) Each machine now substitues for W the first or next tuple in

W producing the query:

RANGE OF M IS EMP

RETRIEVE (name) WHERE salary > M.SALARY

AND name = M.NAME

This is a one variable query which must be processed by both

machines.

Hence, for each substituted tuple on either machine two queries

are generated, one for each machine.

5) After finishinging tuple substitution both machines report

back completion information to the calling process who reports

back to the user.

In this case qualifying tuples are sent directly to the users

terminal as they are discovered. However, if the query had

called for the construction of this information in a new rela

tion, it would have been distributed on both of the machines.

Note that a non local query is generated for each tuple which ex

ists in W, a sizeable traffic load on the network.

- 18 -



It should also be noted that a new invocation of the INGRES

processes must be invoked at each level of substitution. Hence,

a tree of processes is used to perform an interaction. This is

required or else deadlock could easily result. Note however,

that the overhead of these invocations is NOT trivial. As a

result, it may be more efficient to assemble W and EMP on a sin

gle machine which would then generate no traffic during process

ing at all. This option becomes more attractive as the interac

tions become more complex.

The situation is more complex for updates. Consider the follow

ing example whereby the salary of all employees who earn more

than their managers is to be changed to equal that of their

managers.

RANGE OF E IS EMP

RANGE OF M IS EMP

REPLACE E(SALARY = M.SALARY)

WHERE E.MANAGER = M.NAME AND E.SALARY > M.SALARY

As noted in [STON76] this command is turned into the following

RETRIEVE to isolate tuples to be charged

RANGE OF E IS EMP

RANGE OF M IS EMP

RETRIEVE (E.TID, M.SALARY) WHERE E.MANAGER = M.NAME

AND E.SALARY > M.SALARY

The result of this command is a "deferred update file" which is

then processed to alter the salary for the tuple with a tuple

identifier of (TID) to the value of M.SALARY.

- 19 -



Several problems arise:

1) The deferred update file will, in general, be distributed.

Moreover, the decomposition process can be carried out for this

example to show that the deferred update file for each machine

may end up with updates to be done by both machines.

Clearly TID must be expanded to be a unique network identifier by

inclusion of a machine location.

2) A synchronization problem exists. On a single machine the de

ferred update file can only be processed after the RETRIEVE which

created it has been completed. Otherwise, an inconsistent data

base could be generated as noted in [STON76]. Since a deferred

update file will be processed by perhaps more than one machine in

a network, all RETRIEVE's must be finished before ANY deferred

update file can be processed.

The approach needed appears to be the following: Each deferred

update file must be processed redirecting updates which are for

different machines. This may be done as the file is created

broadcasting one tuple at a time or more economically by process

ing the deferred update file as whole redirecting all changes to

each machine as a unit. Upon acknowledgement from all machines

of receipt, it can issue "DONE" to the process controlling the

interaction on the originating machine. When the originating

machine receives "DONE" from all machines involved in the in

teraction, it can then issue a message "do deferred update".

Upon a second "done" from each machine, it can send "done" to the

user and the interaction is finished.

- 20 -



VI CONCURRENCY CONTROL

The concurrency control algorithm given in [STON72*, STON76] will

no longer work without extension to a network. There appear to

be two choices:

1) Avoid deadlock by requesting all needed resources in advance.

For a single INGRES command, these are known and safety [STON74]

can be guaranteed by requesting an appropriate collection of

locks. If they cannot all be obtained from the appropriate lock

subsystem on the various machines, all locks held must be

released and a retry after some delay must be done. Note that

the overhead of obtaining such locks is equal to that of a non

distributed INGRES system, in the special case where all rela

tions reside on the originating machine. Also, note that imple

menting this scheme is a straightforward generalization to the

current INGRES concurrency scheme.

2) Deteck deadlock if it occurs and back out a chosen "victim".

This scheme is used in SYSTEM-R [GRAY75, ASTR76] for a single

machine. Detecting deadlock requires assembling the equivalent

of a "lock out graph" [MACR76] for the whole network and then

detecting cycles in it. Whatever machine performs this function

effectively must assemble ALL concurrency information for the

network and maintain its currency. It is more reasonable to sim

ply route all lock requests to this machine and have it resolve

conflicts. Hence, this machine effectively becomes "GOD".

Without such a "GOD" deadlock detection appears difficult and

- 21 -



costly.

Picking a victim and performing backout involves applying the

recovery scheme to the INGRES process which originated the tran

saction and all its slaves. This involves little additional com

plexity to the current recovery algorithm.

Note that the backout scheme just mentioned is required if one of

the machines which is involved in processing a transaction

crashes.

In addition to the concurrency problem, there are several con

sistency problems.

1) INGRES must guarantee that a data base D has a unique data

base administrator (i.e. D cannot exist at two sites with dif

ferent DBA's). Moreover, it must resolve the concurrency problem

which arises if two DBA's try to simultaneously create a data

base with the same name.

To solve this problem, CREATDB (CREATE DATA BASE) must time stamp

[LAMP76] its intention of creating a data base and send such a

time-stamped message to each other site. Then, it must wait for

an acknowledgement from all sites before actually executing the

command. If it receives a message from another site with the

same intention with an earlier time-stamp, it must issue an error

message to its user. Identical mesages with identical time

stamps are "ties" and can be broken by an arbitrary ordering of

the machines in the network. The time stamping mechanism is as

sumed to follow the rules in [LAMP76].

- 22 -



Again, the extension to the curent code is not difficult.

2) In views 1) and 2) INGRES must guarantee that a relation ex

ists at only one site; in view 3) it must guarantee that all re

lations of the same name have identical column names.

The same solution as above can be used. Note that each time a

CREATE is executed, all other machines must be informed. This

overhead must be tolerated for relations which are "non local" as

discussed in Section 3.

3) Crash recovery software must restore a consistent network.

On a single machine INGRES provides the facility that each INGRES

interaction is run to completion or its effects are undone (i.e.

the data base appears as if the command has never been run) the

recovery software is especially tedious when updates to the sys

tem catalogs are involved (such as for CREATE which creates a re

lation) .

In a network recovery becomes much harder. At any point in pro

cessing an interaction one of the involved machines may fail. We

assume that such a failure is always signaled by failure to ack-

nowlege a message or failure to respond "DONE". Within a system

alloted time any INGRES command is processed by a tree structure

of operations on various machines. If any operation fails the

entire tree must be backed out. This can be done by percolating

a "back-out" back to the root of the tree (i.e. the process com

municating with the user) who can then percolate "back out" to

all processes it calls. Recursively, every node will be notified

to reset. A similar process holds for nodes below the crashed

- 23 -



node.

Other problems exist if redundant system catalog information is

kept. When the down machine is restored, this information must

be updated to be consistent with the current state of the net

work. It appears feasible to do this by using the log on any

other machine. Special problems exist with back-up copies which

are discussed next.

4) Back-up copies must be kept consistent.

If "GOD" exists he can know where any redundant copies exist and

direct updates to the prime copy and any back up copies. Howev

er, if "GOD" does not exist, then someone else must know where

copies are. The only reasonable choice is to have such informa

tion both on the machine where the prime copy resides (so updates

can be redirected to other copies) and on each of the backup

machines so one can take over if the prime machine fails.

The problem arises concerning how to switch to a backup copy if

the prime machine fails, how to bring the prime machine "up to

date" after it resumes service and how to switch back to it as

the prime machine.

Suppose the backup machines are ordered and each periodically

sends "are you alive" to the prime machine. With no acknowledge

ment, the first backup machine can become the prime machine.

During the switch and the interval between the crash and the "are

you there" some updates may be lost. However, each backup

machine can obtain a relation consistent as of some point in the

- 24 -



past be running the recovery software (i.e. each INGRES interac

tions will be processed to completion or not run at all).

When the down machine resumes, the recovery software will restore

a data base consistent with that of the backup machine at the

time it took control. It must then request a copy of all updates

which occured while it was down. Finally it must send an "I am

alive" to all backup machines. Upon acknowledgement by the first

backup machine, it can resume normal operation.

In this manner, one copy is designated the prime copy and it must

be guaranteed to have current and consistent data. Hence, any

update must be directed first to this copy. Subsequently, it can

redirect updates to other copies. If this is done, only one copy

of the relation is guaranteed to be current; hence, user re

trieval requests can only be directed to this copy. Other copies

serve only to augment system reliability.

The other option concerning updates of copies is to direct an up

date to any of the copies and then have it redirect the update to

all other copies. In this case no copy is designated the

"current" copy. As a result, an update can only be committed

when a positive acknowledgement of update completion is received

from all other copies. As a result, each copy is synchronized on

each update. This entails substantially greater overhead than

the previous scheme. However, it allows a retrieval request to

be directed to the "closest" copy of a relation. This second op

tion would be desirable for augmented performance in "retrieve

mostly" situations.

- 25 -



VII INGRES IMPLEMENTATION

INGRES will be extended to present view 3) mentioned in Section

2). There are several reasons for this choice.

1) There appears only a marginal increase in complexity over im

plementing view 2). Decomposition control and concurrency are

the same complexity in either case. The optimization of decompo

sition is harder but not impossibly so. Hence, there appears to

be little cost in selecting view 3) over view 2). On the other

hand, view 1) appears to emasculate the network and is considered

unacceptable.

2) The system catalogs obey view 3) regardless of whether data

relations do. It appears useful not to distinguish the two types

of relations (i.e. it is useful to be able to query the system

catalogs using view 3)).

3) View 3) appears useful for many data relations.

Moreover, INGRES will not have a "GOD" even though concurrency

problems are eased by his presence. There are several reasons

for this choice:

1) "GOD" may be a performance bottleneck since all traffic must

be routed through him.

2) The network will have good performance only if network traffic

is moderate. If most requests are non-local, there will be huge

traffic and a better solution might be to create a large central-

- 26 -



ized system. Suppose then that ALMOST ALL REQUESTS are local.

Hence with a "GOD" each local interaction must involve communica

tion with him concerning concurrency control and updates to sys

tem catalogs. Moreover, a backup copy of "GOD's" system catalogs

and concurrency information must exist on some other machine in

case of a crash. Hence, all such communication will go to at

least two machines. Without "GOD", local interactions generate

no traffic. Hence, the "no GOD" solution should generate lower

traffic.

The system catalogs will be treated according to strategy 5)

discussed previously. This "working set" philosophy should cut

network traffic if "locality of reference" exists.

Moreover, strategy 2) will also be used. This is required for

reliability considerations. If a machine crashes and the network

continues with one less machine, then interactions can be pro

cessed which do not impact the down machine or which involve a

relation on the down machine which has a copy elsewhere. Unless

each machine knows what relations are on the down machine, it

cannot know whether or not its interaction can be processed.

Hence, unless strategy 2) is used in view 3), the crash of a

machine will effectively crash the whole network.

Copies will be allowed for reliability. Updating copies will be

accomplished by updating the prime copy first and then redirect

ing updates to any copies.

Safety for concurrent transactions will be guaranteed a-priori

- 27 -



for a transaction consisting of a single INGRES command. The de

cision to support this unit for a transaction is discussed in

[STON76]. Safety will be accomplished by requesting from each

lock subsystem on the appropriate machines all needed resources.

If all locks can be granted, the transaction can proceed; other

wise, it must release all its locks and try again at a later

time.

View 3) will be supported and distributed relations allowed in

two categories. Either the user can decide and enforce the dis

tribution criteria and inform the system of any knowledge he has

concerning the location of desired information. Alternately, the

user can declare a relation using DIST_CREATE and the system will

enforce the distribution criteria.

- 28 -



ASTR76

CASE72

CHES75

CHU 69.

GRAY75

HELD75

KARP76

REFERENCES

Astrahan, M. et. al "System-R, A Relational Data

Base System" ACM Transactions on Data Base Sys

tems Vol 1 No 2 June 1976

Casey, R., "Allocation of Copies of a File in an

Information Network", Proc 1972 SJCC, AFIPS

Press, 1972.

Chesson,G., "A Network UNIX", Proc 1975 ACM

SIGOPS Conference, Austin, Texas, November, 1975.

Chu, W., "Optimal File Allocation in a Multiple

Computer System", IEEE Transactions on Computers,

October, 1969.

Gray, J.N.,Lorie, R.A., and Putzolu, G.R. "Gran

ularity of Locks in a Shared Data Base", Proc.

1975 VLDB Conference, Framingham, Mass., Sept.,

1975.

Held, G., Stonebraker, M., and Wong, E., "INGRES

- A Relational Data Base System," Proc. 1975 Na

tional Computer Conference, Anaheim, Ca., June,

1975.

Karp, P., "TELENET," Proc. Berkeley Workshop on

Distributed Data Management and Computer Net

works, Berkeley, Ca., May 1976.

- 29 -



LAMP76

LEVT75

MACR76

MARI75

RITC74

Robe70

SHAW75

STON74

Lamport, L., "Time Clocks and the Ordering of

Events in a Distributed System," Massachusetts

Computer Associates, May, 1976.

Levin, K and Morgan, H., "Optimizing Distributed

Data Bases - A Framework for Research" Proc 1975

National Computer Conference, AFIPS Press, 1975.

Maori, P., "Deadlock Detection and Resolution in

a CODASYL Based Data Management System," Proc.

1976 ACM-SIGMOD Conference on Management of Data.

Marill, T and Stern, D. "The Datacomputer- A Net

work Data Utility", Proc 1975 National Computer

Conference, AFIPS Press, 1975.

Ritchie, D.M. and Thompson, K. "The UNIX Time-

Sharing System," CACM, Vol. 17, No. 3-, March,

1974.

Roberts, L. and Wessler, B., "Computer Network

Development to Achieve Resource Sharing," Proc.

SJCC, 1970, AFIPS Press.

Shaw, R., "The Logical Design of Operating Sys

tems," Adison Wesley, 1975.

Stonebraker, M., "High Level Integrity Assurance

in Relational Data Base Systems", University of

California, Electronics Research Laboratory,

Memo. ERL-M473, August, 1974.

30 -



STON76

1HOM76

WHIT70

WONG76

ZOOK76

Stonebraker, M. et al "The Design and Implementa

tion of INGRES", ACM Transactions on Data Base

Systems, Sept. 1976.

Thompson, K. (private communication)

Whitney, V., "A Study of Optimal File Assign

ment and Communication Network Configuration",

Ph.D dissertation, University of Michigan, 1970.

Wong, E., and Youssefi, K., "Decomposition- A

Strategy for Query Processing", ACM Transactions

on Data Base Systems, Sept. 1976.

Zook, W., Youseffi, K., Kreps, P., Held, G. and

Ford, J., "INGRES- Reference Manual", University

of California, Electronics Research Laboratory,

Memo. No. ERL-M585, April, 1976.

- 31 -


	Copyright notice 1976
	ERL-612

