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1. Introduction

The extension principle described by L. A. Zadeh [5] provides a

natural way for extending the domain of a mapping or a relation defined

on a set U to fuzzy subsets of U. It is particularly useful in connection

with the computation of linguistic variables [5], the calculus of

linguistic probabilities ([3], [5]), arithmetic of fuzzy numbers

(U]» [5]), and, more generally, in applications which call for an

extension of the domain of a relation. Furthermore, as shown in [1],

in the analysis of fuzzy numbers, the set-method (i.e. the use of a-level

sets of a fuzzy set) is simpler than the functional approach (i.e. the

use of the membership function of a fuzzy set.)

In this note, we examine the resolution of identity [5], i.e.

the set-representation of fuzzy sets, and we prove that the application

of the extension principle to a fuzzy set may be viewed as the application

of this principle to the a-level sets of the set in question. However,

in general, if

f : X x Y -»- Z

and A, B are fuzzy subsets of X and Y, respectively, we do not have:
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[f(A,B)]a = f(Aa,Bct) (ia)-

where Aa and Ba are the a-level sets of A and B, respectively, and

[f(A,B)]o is the a-level set of f(A,B). We shall give anecessary and

sufficient condition for obtaining this equality, and shall define a

class of fuzzy numbers in which this equality holds for all continuous f.

2. The Resolution of Identity

The collection of all fuzzy subsets of a set X is denoted by

P(x). If AeCp(x)> lts membership function is denoted by u :X•* [0,1].
We write 1A if A is nonfuzzy.

For ae [0,1], recall that the a-level set of Ais defined by

Aa = {x € X:uA(x) > a}

If, A, BG r(x), then by definition, A =B iff y (x) = y (x),
A B

V x £ X. It is easy to verify that

A = B~Aa = Ba, VaG (0,1],

It is also obvious that SA = U^ where ^ is the support of the
a e (0,1]

fuzzy set A, defined by

SA = {x: MA(x) > 0}'

On the other hand, we have

Vx e x, y (x) = sup [a 1 (x)] (2 1)
A a€[0,1] Aa { }

and thus A may be represented as in the following form, called the resolution of

identity [5]
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A-Jq aAo (2.2)

where I represents the union over a€ [0,1], and a A is the fuzzy set
Jo a

whose membership function is

fa if x G A
a

if x £ A
a

{a i:

0 1

Proposition 2.1. If A*, a e [0,1], is a family of subsets of x such that:

= f aA'
Jo a

A

then

a'

.1

(i) A^CAa, Vaqo.l]

(ii) U A = U A*
a a

a G ]o,l] a e ]0,1]

Proof

(i) Let x € A• , then an.l., (x) = art, and thus:
an 0 A 0

0 ao
y (x) = sup [a 1 , (x)] > a. =• x S A„
A ae [0,1] A a " ° a0

(ii) The equality in (ii) follows from the fact that the right

and left hand sides of (ii) are both equal to the support

SA of A.
A

3. The extension principle

Recall that if f : X-> Y, and AG <1P (X), then the fuzzy set f(A)

is defined, via the extension principle, by

f(A) €<P<Y), Uf(A)(y) = sup yA(x) (3.1)
xG f_1(y)

e> -3-



Remark

In order to apply this principle to fuzzy mapping, we rewrite (3.1)

under the following equivalent form:

Uf(A)(y) = S"P ^A(x) Alf(x)iy)] (3.2)
x ^ J\

where lf(x)(y) » 1or 0 according as y= f(x) or y^ f(x).

If f is a multi-valued mapping, i.e. f :X -><P(y), and A€ Q (x) ,

then (3.1) leads to:

Wf(A)(^ - ^P Mx) (3.3)
x fc: f*(y)

where

f* :Y +<P(x)

f*(y) = (xG X : y e f(x)}

It is easy to see that (3.3) is the same as:

Pf(A)(y) =^sup^ [yA(x) Mf(x)(y)J (3.4)

For B f $ and B C y, we have:

f*(B) = {x € x : f (x) flB^}

Now let X* be the domain of f, i.e.

X* = {x e x : f (x) ?t ^}

and

f* : ^(Y) +^(X) : f*(B) = {x e X* : f(x) CB}
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then

f*(B)Cf*(B), VB + 4

and

f*(B) - [f*(B')]\

where the prime stands for set-complement, thus

but

and hence

(x) = 1 - sup 1 .(y)
%(b)w xeB< f<x>

Note also that

x ^ u

If fis afuzzy mapping, i.e. f:X- q>(Y)f and Ae <£ (X), then
(3.2) leads to

Mf(A)(y) a sup [,ja(x) A^^(y)3
X ^— A

Define f*:Y•+ ^P (x) by:

yf*(y)(x) =yf(x)(y> (3.6)

f(A)w - S"P^AW A pf(x)WJ (3.5)
X ^— A
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For B £ Y, we have, by (3.5):

"f*(B)(x) = %\ [1B(y) A"f*(y)«l

-^ [lB(y) Apf(x)(y)]

%SEPB^«(y>
Proposition 3.1.

Let AG 9 (x), and f :X -»• Y, then:

f(A) =f af(A )
Jo a

Proof:

yf(A)(y) = sup uA(x)
Xe f'l(y)

= sup [ sup a 1 (x)] by (2.1)
xGf-1^) <*G [0,1] Aa

(3.7)

= sup [a 1A (x)] (3.8)

io € [0, 1]

•£On the other hand, let B = | af(A ), then:

Vy) = Tfnn 0l«(A)(y)a ^ [0,1] N a7
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sup [a sup 1 (x)]
a S [0,1] -i Aa

X t f (y)

SUP I sup a.l. (x)] since a > 0,
•e[0.1] x€f-l(y) Aa

sup tal (x)]=Mf(A)(y).
X € f (y)

a^ [0,1]{
Remark From the above it follows that

f1 r1f(A) = I o[f(A)l « I of (A )
Jo a Jo a

with f(Ao) C [f(A)]a, ? aS [0,1]

But in general,

f(Aa) * [f(A)]o

Proposition 3.2. Let f :X xY •* Z, and AG <P (X), B^ (P(Y); then

f(A,B) o of(A„,BJ (3.9)
Jo a a

Proof:

(i) yf(A,B)(z) = SUP _ ^A(x)AVy)]
(x,y) € f-1^)

sup [ sup a 1 (x) A sup a 1 (y)]

(x,y) € ^(z) aG f°»^ a aG t0>^ a
(3.10)
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(ii) Let T = I of(A ,B ), then:
Jo o' a'

yT(2) = !U?nilalf(A,B)(2)
a ^ [0,1] v a' a'

sup [ sup {a 1A (x) A a ln (y)}]
a € [0,1] , . - -1, , Aa Ba

(x,y) £f (z)

{
sup [a 1 (x) A a 1_ (y)] (3.11)

a € [0,1] Aa Ba

(x,y) E f"1^)

To prove that (3.10) and (3.11) are equivalent, it is sufficient to show that:

[ sup a 1 (x)] A [ sup a 1 (y)] = sup [a 1A (x) A a 1D (y)]
aG[0,l] Aa a€[0,l] Ba a6 [0,1] Aa Ba

(3.12)

To this end, let:

a0 = sup a 1A (x)

I' a € [0,1] a

BQ = sup a 1 (y)
^U aE [0,1] Ba

If aQ A BQ = 0, say aQ = 0, then a1A (x) =0for all ae [0,1], thus
a

(3.12) is verified.

Suppose now that a A $ > 0.

We have fx £ A for all a < a^
1 a 0

{x£ A for all a > an

Since if there exists a* such that:

{
a' < aQ

x G A f
a
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then x£ Aa for all a < a1 (this follows from the fact that

"i^A 3A..), thus:
a p

sup a 1 (x) < af < aA,
a € [0,1] Aa " °

which is a contradiction; and if there exists a" such that:

{
a" > aQ

xe Aa„

then sup a.l (x) _> an, which is also a contradiction.
a e [0,1] Aa °

In the same way, we have:

{
yG Ba> for all a < 3Q

y£ Ba, for all o > $ .

Thus: a 1A (x) Aa 1 (y) = a for a <a A {3 and = 0 for all a > an A 6
a a 0 0

and hence:

sup [a 1 (x) A a 1 (y)] - an A 0..
a € [0,1] Aa Ba ° °

Remark. We have then f(A^) C [f(A,B)]o, Va € [0,1] but in general,

f(W * £f(A»B>Ja-

Proposition 3.3. With the notation of Proposition 3.2, a necessary

and sufficient condition for the equality:

[f(A,B)]a « f(Aa»Ba), Va E [0,1]

is: Vz € Z, sup EuA(x) A un(y)] is attained,
(x,y) e f"1^)

_x V"' HB'
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Proof.

(i) Necessity: Let z € z and

sup [uA(x) A ufi(y)] = t.
(x,y) € f""1^)

i.e.,

Wf(A,B)(z) = t=*zG ff(A»B)]t

=>zG f(At,Bt).

i.e. 3 x^ At and yG Bfc such that f(x,y) =z

For (x,y) G f"1(z) and u(x) >t,
A

'B
uB(y) 1 t =*u (x) A pB(J) > t

But

SUP [yA(x) A uB(y)] >pA(x) Au (y)
(x,y) € ^(z)

and thus

u (x) A uR(y) = t.

(ii) Sufficiency By Proposition 3.2 and Proposition 2.1, we have:

f(W £ U(A,B)Ja, Va e [0,1].

Now let z€ [f(A,B)l , i.e.

yf(A,B)(2) = SUP foA<x) AyB(y)] >a.
(x,y) e f"1^)

-10-
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If wf(A B) ^ > a' tllen by definition of sup there exists

(x,y) € f (2) such that:

a<uA(i) AuB(?) 1yf(A>B)(z) -xGAa and yGB

Thus z = f(x,y) G f(A ,B ).

If yf(A B)^ =a then by hypothesis, there exists (xf,y') G f~1(z)
such that:

wA(x') A vB(y') = sup [yA(x) A uB(y)] =a
(x,y) G f""1^)

^x' G A and y' G B .
a a

Thus z = f(xf,yf) G f(A ,B ).

4. On convexity of fuzzy numbers

By a fuzzy number we mean a fuzzy subset of the real line 1R . Interval

Analysis [2] deals with closed bounded intervals (compact convex sets

of IR) as an extension of numbers. Fuzzy numbers can be regarded as

an extension of closed bounded intervals, thus the definition of a fuzzy

number seems too general [see Section 5 for a smaller class of fuzzy

numbers]. However, the arithmetic for fuzzy numbers can be defined

via the extension principle. Since the relation (1.1) is not satisfied

for general fuzzy numbers, the function method is the main tool of analysis.

To illustrate this point, we shall review in what follows the concept of

convexity and prove some properties of fuzzy numbers.

*

Many interesting results in the arithmetic of fuzzy numbers are contained
in a recent paper by M. Mizumoto and K. Tanaka [1], e.g. convexity,
algebraic structures, ordering of fuzzy numbers.
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Let X be the space 3R (or more generally a real linear space).

To define the convexity for fuzzy subsets of X, we start with the

following remark A subset A of X is convex iff

Va G m ,A^ = {x :lA(x) >_ a} is convex. This leads to

Definition 4.1 [5] a fuzzy subset A of X is convex if its membership

function uA is quasi-concave.

Remarks:

(i) A useful characterization of fuzzy convexity is the following:

A convex o rVx, y G x, V A G [0,1]

UAUx +(1-A).y] >uA(x) Aufi(y)

(ii) If A is convex, so is its support S .

Proposition 4.2. The following are equivalent:

(i) AGy(x) is convex.

(ii) Vx,y G X> the faction A•* u^Ax + (l-A)y] is quasi-co reave on [0,1]
Proof. Denote by <f> the function A + u [Ax + (l-A)y].

(i) => (ii), Let A', A" 6 [0,1] and AG [A1,A1]. (we suppose A'< A").

For x,y G x, let:

x « A'x + (l-A')y

y = A"x + (1-A")y{-
Then: A = aA1 + (l-a)A" for some a G [0,1]

and

ox + (l-a)y = [aAf + (l-a)A"]x + [a(l-Af) + (1-a) (1-A")]y

= [aA* + (l-a)A"]x + [1 - {aA1 + (l-a)A"}]y

= Ax + (l-A)y o Z.
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By quasi-concavity of u , we have then:

PA(2) -yA(x) APA(^}
i.e.

<KA) > <KA') A (f)(A").

(ii) =* (i) Let x,y G X and z = Ax + (l-A)y, AG [0,1]

♦(0) =uA(y), <J>(1) = uA(x)

since 0£ A <_ 1 => <j>(A) > <J>(0) A <|>(1) by quasi-convexity of <J> on [0,1], i.e.,

MAt^x + (l-A)y] > p (X) A u (y)
" " Q.E.D.

Definition 4.3 A fuzzy subset A of X is said to be strongly convex if

A is convex and its membership function u is pseudo-concave.

Remarks

(i) A function f : X -»- ffi is said to be pseudo-concave [4] if

C
'V x,y G X such that f(x) ? f(y)

.Vz z = Ax + (l-A)y, with A G (0,1)

we have

f(z) > f(x) A f(y).

(ii) This notion of convexity is useful for fuzzy mathematical

programming. Note that a local maximum of a quasi-concave function is

not necessarily a global one, but for pseudo-concave function, a local

maximum is also a global one.
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Proposition 4.4 A convex fuzzy subset A of X is strongly convex if

its membership function y is injective on {y < 1}.
A A

Proof. By quasi-convexity of y , we have:
A

Vx,y G x, VA e [0,1], z = Ax + (l-A)y

VZ) -yA(x) A PB(y)- (*.!>

We have to verify that strict inequality holds in (4.1) for (x,y) such

that yA(x) f PB(y), and for AG ]0,1[. Consider two cases:

(i) PA(x) =1 and yA(y) < 1.

a) If yA(2) =1=> yA(2) >yA(x) AyA(y)

b) If y (z) < 1, then by injectivity of yA on {y < 1}
A A

we have: yA(z) 4 uA(y), but yA(z) verifies (4.1),

i.e.

WA(z) - yA(x) AVy) = MA(y)#

Thus yA(z) > yA(y)

(ii) x,y G {yA < i}#

a) If zG{yA =1} => yA(z) >^(x) Av^y)
b) If yA(z) < 1, then from (4.1):

Vz) - yA(x) A yA(y)

but z$ x* y=> ryA(z) + u^M

Ipa(z) t yA(y)

and hence yA(z) > yA(x) Ay (y)

-14-
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Remark. It should be noted that quasi-convexity and pseudo-concavity are

two distinct notions. If f is pseudo-concave, then Vx,y such that

f(x) $ f(y), and A G (0,1[, we have

f[Aa + (l-A)y] > f(x) A f(y)

but for (x,y) such that f(x) = f(y), it can happen that

f[Ax + (l-A)y] < f(x) A f(y).

Fuzzy convex sets of 1R have most of the algebraic properties of

ordinary convex sets. The following proposition is an extension to

fuzzy sets in the case of a sum.

Proposition 4.5

If A,B G cP(]Rn) are convex, then so is A+B.

Proof: Note that A+B is a fuzzy subset of lRn defined via the

extension principle,

PA+B(Z) = *UPX [MA(X) AVy)]
(x,y)f(x,3

lx + y = z

(i) Denote <J>(x,y) = PA(x) A yg(y)

let (x',y'), (x",y") G ]Rn x mn, and \ G [0,1]

x = Ax' + (l-A)x"

y = Ay1 + (l-A)y"{
We have:

(J>(x,y) > [yA(x») AyA(x")] A[^(y1) AyB(y")].

thus <J> is quasi-concave on 3Rn x ]Rn.
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(ii) Let Z»,Z" G mn, AG [0,1], Z * AZ1 + (1-A)Z'\

Let e>0, and assume that there exists (x^y ) (depending of e)

such that x1 + y = z* and

<Kx, ,y..) _> sup <Kx,y) - e
'(x,y)f(x,3

Ix + = -7ty = Z

There also exists (x2,y2) such that

x2 + y2 = Z" and *(x2'y2^ - sup *(x,y) - e
»y)

x = Ax2 + (1-A)x2

y = Xyx + (1-A)y2.{

f(x.)

lx +oc + y = Z"

since Z = AZ* + (l-A)Z'*

•> Z =A(X]L + yj + (1-A) (x2 + y2) =x +y

with

We have sup 4>(x,y) >•♦<£,$) >, ^x^y^ A <|>(x ,y )
(x,y)

t.x + y = Z

by quasi-concavity of ((>.

Hence, by (4.2) and (4.3), we have:

{
sup .

(x,y)

x + y = Z

<Kx,y) >

{
sup

(x,y)

x + y = Zf

<f>(x,y) - £ sup

(x,y)

x + y = Z1{

(4.2)

(4.3)

<Kx,y) - e

sup

(x,y)J(x,:

lx +

<!>(x,y) A sup

y)f(x,:

lx +

<Kx,y) - e

y = Z _ FT"y = Z

-16-



and this holds for all e > 0, thus:

Vb'^W2'1 AWZ,,)
Q.E.D.

Remark. A fuzzy convex set A is said to be strongly convex on its support if

if the restriction of y to S is pseudo-concave. Thus, as a consequence

of the Proposition 4.5, a fuzzy convex set is strongly convex on its support

y is injective on S - {y. = 1}. Bounded convex sets of 1R are not

strongly convex on their support.

5. A class of fuzzy numbers

Let A^9 (]R) , the support of A is denoted by S . The topological

support of its membership function y is S = {x : V.(x) f 0}, i.e.,

the closure of S,.
A

We consider the following class of fuzzy numbers:

fAeCP(m)
" I (3R>o>(Jv) °< VA is upper semicontinuous (u.s.c,)

Is compact.

This class contains all singletons, as well as closed bounded intervals.

Proposition 5.1 If f : I x ]R + E is continuous, then

VA,B G ^(m.S^K), and we have:

[f(A,B)]a = f(Ao,Ba), Va G [0,1].

Proof: In virtue of Proposition 3.3, it is sufficient to prove that:

VzG m, Sup [yA(x) A yB(y)]
(x,y) G f"1^)

is attained.
-17-



Let <Kx,y) - yA(x) A yfi(y), then <f>(x,y) >_ 0, and <f> is u.s.c.

Thus, sup <f>(x,y) = sup <J>(x,y)

(x,y) Gr1^) (X,y) Gf_1(z) n(SA xSfi)

Since $ = 0 outside of S, x L,
A B

But SA X SB is comPact> and f (z) is closed by continuity of f; hence

f" (z) O (sA x S"B) is compact.

Thus <{>, being U.S.C, assumes its maximum on the compact set

f-1(z) n(SA xSB), Vz Gm.

Remark:

It should be observed that the following equalities (for A,B G^ (TR))

(A+B) = A + B
a a a

(AxB) = A x B
a a a

which appeared in [1], hold only under the additional assumptions noted above,
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