Copyright © 1964, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

COMPUTER GENERATION OF EQUIVALENT NETWORKS

by
D. A. Calahan
D. A. Calahan

Electronics Research Laboratory
University of California
Berkeley, California
on leave from
University of Illinois
Urbana, Illinois

Summary

The theory of continuously equivalent networks is extended to the state equations and to include a scaling option. The theory is then applied to the classical problem of the design of low- and band-pass filters with loss in inductors only. The alignment problem in active filters is also approached from an equivalence viewpoint.

Introduction

Although the subject of equivalent networks has long been recognized to be of academic interest, it is only recently that a conscious attempt has been made to utilize the theory in practical design problems. This paper extends some recent work in this subject and then considers some examples of use of the computer in generation of equivalent networks.

The Approach

A differential approach to the equivalent network problem was first proposed by Schoeffler ${ }^{1}$ and has been investigated by other authors. 2,3 It will be found useful to work with the A matrix rather than the nodal or branch admittance matrices, so that the development of Schoeffler must be altered.

Assume that the state equations of the circuit are of the form (with no mutual inductance, capacitor loops, etc.)

OI
(1)

$$
-[M] \quad[\dot{y}]=[A][y]-[B] v_{\text {in }}(2)
$$

Assume $V_{\text {in }}$ appears only in the $r^{\text {th }}$ equation as shown and further assume that one of the state variables (the $g^{\text {th }}$) is the output voltage. Both of these conditions can be satisfied by placing an inductor of zero-value in series with the source and a capacitor of zero value across any pair of nodes regarded as the output. Further, assume the equations are arranged so that $r=1$, $\mathbf{g}=\mathbf{p}=\mathbf{m}+\mathrm{n}$.

Taking the Laplace Transform of both sides yields (for zero initial conditions)

$$
\begin{equation*}
[\mathrm{B}] \mathrm{v}_{\mathrm{in}}=\{\mathrm{s}[\mathrm{M}]+[\mathrm{A}]\}[\mathrm{Y}] \tag{3}
\end{equation*}
$$

where

$$
[Y]=[Y(s)]=\left[\begin{array}{l}
y_{1} \tag{4}\\
\cdot \\
\cdot \\
\cdot \\
y_{p}
\end{array}\right] \quad \mathrm{V}_{\mathrm{in}}=\mathrm{v}_{\mathrm{in}}(s)
$$

Now consider the problem of adjustment of the network elements while maintaining constant the ratio of the output voltage to the input voltage. Letting each element be a function of some dummy variable x, then one may postulate a differential change in the element values that produce the new state variables

$$
\begin{equation*}
[\mathrm{Y}(\mathrm{x}+\Delta \mathrm{x})]=\frac{\{[\mathrm{U}]+\Delta \mathrm{x}[\mathrm{a}]\}[\mathrm{Y}(\mathrm{x})]}{1+\Delta \mathrm{x} \mathrm{a}_{\mathrm{pp}}} \tag{5}
\end{equation*}
$$

where

so that $y_{p}(x+\Delta x)=y_{p}(x)$ and equivalence is maintained. Eq. (3) then becomes

$$
\begin{align*}
& {[B] V_{\text {in }}=\{s[M(x+\Delta x)]+[A(x+\Delta x)]\}\{Y(x+\Delta x)\}} \\
& =\frac{\{\mathrm{s}[M(x+\Delta x)]+[A(x+\Delta x)]\}[U]+\Delta x[a]\}[Y(x)]}{1+\Delta x a_{p p}} \tag{8}
\end{align*}
$$

Taking note that

$$
\begin{aligned}
& \text { 1) }[B(x)] \text { has only one nonzero entry } \\
& \text { 2) } V_{\text {in }}(x+\Delta x)=V_{\text {in }}(x) \text { since } V_{\text {in }} \text { is a } \\
& \text { source. }
\end{aligned}
$$

then

$$
\begin{equation*}
[B(x+\Delta x)] v_{\text {in }}(x+\Delta x)=\frac{\{[0]+\Delta x[b]\}[B(x)] v_{i n}(x)}{1+\Delta x b_{11}} \tag{9}
\end{equation*}
$$

if

$$
[b]=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 p} \tag{10}\\
0 & b_{22} & \cdots & b_{2 p} \\
0 & \cdot & & \cdot \\
\cdot & & \cdots & \cdot \\
\dot{0} & b_{p 2} & \cdots & b_{p p}
\end{array}\right]
$$

Multiplying both sides of Eq. (8) by $\{[\mathrm{U}]+\Delta x[b]\} /\left(1+\Delta x b_{11}\right)$ gives
$[B] v_{\text {in }}=$

$$
\begin{gather*}
\frac{\{[u]+\Delta x[b]\}\{s[M(x+\Delta x)]+\Delta[(x+\Delta x)]\}}{\left(1+\Delta x a_{p p}\right)\left(1+\Delta x b_{11}\right)} \\
\{[U]+\Delta x[a]\}[Y(x)] \tag{11}
\end{gather*}
$$

$$
\begin{equation*}
=\{s[M(x)]+[A(x)]\}[Y(x)] \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d[A]}{d x}=[b][A]+[A][a]-a_{p p}[A] \tag{19}
\end{equation*}
$$

Further, Eq. (9) may be solved in part to yield

$$
\begin{equation*}
V_{\text {in }}(x+\Delta x)=\left(1+\Delta x b_{11}\right) \quad V_{\text {in }}(x) \tag{20}
\end{equation*}
$$

so that taking the limit as before gives

$$
\begin{equation*}
v_{i n}(x)=V_{i n}(0) \quad \exp \left\{b_{11} x\right\} \tag{21}
\end{equation*}
$$

Hence eliminating the term $1+\Delta x \quad b_{11}$ results in a scaling of the voltage transfer function by an amount $\exp \left\{-b_{11} \times\right\} .^{*}$ The scaling option will be found useful in the following examples:

Application 1: Nonuniformly Lossy Ladders
The object of the following examples will be to use the previous theory to generate lossy resistively terminated networks from lossless ones. Thus, the state equations are a natural approach to the problem since the lossless elements are contained in $[M$, whereas the loss components are contained in [A].

Example 1: Singly-terminated Ladders: Geffe ${ }^{4}$ has given exact formulae for design of singly-terminated ladders with lossy inductors. A simple example is the network of Fig. 1. As an exercise to test the mettle of this equivalence viewpoint, one could attempt to obtain similar design formulae for the simple case. The matrices of interest are

(23)
where $G_{3}=0$. Inserting the above in Eqs. (18) and (19) results (in part) in trivial constraints which require $[b]$ and $[a]$ to be of the form

[^0]\[

$$
\begin{gathered}
{[b]=\left[\begin{array}{lll}
{ }^{b}{ }_{11} & -a_{12}\left(C_{1} / L_{2} G_{1}\right) & -a_{13}\left(C_{1} / C_{2} G_{1}\right. \\
0 & -a_{11} & -a_{23}\left(L_{2} / C_{2}\right) \\
0 & 0 & -a_{22}
\end{array}\right]} \\
{[a]=\left[\begin{array}{lll}
{ }^{a_{11}} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$
\]

Further, since the voltage transfer function cannot be sealed by growing a resistor in series with $L_{1}, b_{11}=0$.

The remaining constraints generate the differential equations

$$
\begin{gather*}
\left(\frac{C_{1}}{G_{1}}\right)^{\prime}=a_{11} C_{1} / G_{1} \\
L_{1}^{\prime}=\left(a_{22}-a_{11}\right) L_{1} \tag{26}\\
C_{2}^{\prime}=\left(-a_{22} C_{2}\right) \tag{27}\\
R_{1}^{\prime}=a_{11} R_{2}+a_{12}+a_{13}\left(C_{1} / C_{2} G_{1}\right)+a_{22} R_{1} \tag{28}\\
R_{2}^{\prime}=\left(a_{11}-a_{22}\right) R_{2}-a_{12} \tag{29}\\
\text { where } a_{12}=-a_{11} L_{1}\left(G_{1} / C_{1}\right) a_{13}=-a_{11} \tag{30}
\end{gather*}
$$

These equations are readily solved to yield

$$
\begin{gather*}
C_{1} / G_{1}=C_{1}^{o} / G_{1}^{o} e^{a_{11}^{x}} \tag{31}\\
L_{1}=L_{1}^{o} e^{\left(a_{22}-a_{11}\right) x} \tag{32}\\
C_{2}=C_{2}^{o} e^{-a_{22} x} \tag{33}
\end{gather*}
$$

$$
R_{2}=\left(L_{1}^{o} G_{1}^{0} / C_{1}^{o}\right) \cdot \exp \left(a_{22}-a_{11}\right) x\left[1-\exp \left(\leftarrow_{11}\right) x\right]
$$

$$
\begin{equation*}
+R_{2}^{o} \exp \left(a_{22}-a_{11}\right) \tag{34}
\end{equation*}
$$

$$
\begin{array}{r}
R_{1}=-R_{2}+\left[R_{1}^{o}+R_{2}^{o}+\left(C_{1}^{0} / G_{1}^{o} C_{2}^{0}\right)\left(1-\exp a_{11} x\right)\right] \\
\exp \left\{a_{22} x\right\} \tag{35}
\end{array}
$$

thus achieving exact design formulae for any choice of a_{11} and $a_{22^{\prime \prime}}{ }^{\text {² }}$

It has not been found possible to extend the above analysis to include Geffe's general case; however, the correct matrix manipulation may yield a closed form result.

Example 2: Doubly-terminated Laddero:
An attempt has been made to find a closed form solution for the simplest doubly-terminated ladders (Fig. $2 a$ and 2 b). The matrices for the network of Fig. 2a are identical to those of Example 1, except that now $\mathrm{G}_{3} \neq 0, \mathrm{~b}_{11} \neq 0$, $G_{1}^{\prime}=0$, and $G_{3}=0$. If there is a closed-form solution, it is not apparent from the differential equations and so a computer solution was necessary. It may readily be shown that there are four remaining linear constraints on the five unknowns of Eq. (24), leaving one unknown to be selected arbitrarily. Selecting b_{11} to be this constant and letting $b_{11}=1$, ${ }^{+\cdots}$ then the voltage transfer function will be scaled down, as indeed it must if resistance is to be inserted in series with the inductors. Further, the flat loss introduced is readily shown to be $(20 x / 2.3) \mathrm{db}$. The flow chart is shown in Fig. 3.

In transforming the network of Fig. 2b, seven equations in eight unknowns are generated, so again selection of $b_{11}=1$ generates a unique set of constraints. It should be noted that, to keep, identical dissipation factors in each inductor, a constraint of the form

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{R_{1}}{L_{1}}\right)=\frac{d}{d x}\left(\frac{R_{2}}{L_{2}}\right) \tag{36}
\end{equation*}
$$

must be imposed as the integration proceeds. Element values for the fourth order Butterworth filter are given in Table 1. \dagger For $\mathbf{r}=1$ (equal termination), it was found impossible to generate any equivalent nonuniformly lossy networks. For $0<r<1$, either of two lossless realizations may be used as initial networks in the transformation process; the first is found in Ref. 5, the second is the dual and impedance scaled version of the first. The dual network was found to allow for significantly

[^1]more loss, except for $r=0$ when no dual exists. The maximum inductor loss was found in every case to strongly depend on the termination ratio, and the largest d is approximately twice that allowable for uniformly-lossy networks.

The nonuniformly lossy band-pass ladder (Fig. 4) may, of course, also be approached from the equivalence viewpoint. In this case, true equivalence cannot be maintained since any inductor loss will shift a transmission zero from the origin to the negative real axis. However, if one considers the output to be the inductor current of L_{2} rather than the capacitor (output) voltage C_{2}, then

$$
I_{L}(s)=\frac{V_{c}(s)}{R_{2}+s L_{2}}
$$

the bothersome transmission zero disappears, and only a small error is made in keeping the actual frequency response of the filter invariant. (if $\mathbf{d}=\mathbf{R}_{2} / L_{2}$ is small). * It now happens that the dual network allows less inductor loss (Table 2). Further the maximum value of d allowed for any value of Q was approximately twice the normalized real part of the pole closest to the imaginary axis and $s 0$ is again twice that expected from uniform predistortion arguments. Finally, calculation shows the filters with the largest inductor loss are overall somewhat less sensitive than the lossless variety. The price paid is the larger element value spread in the former.

Application 2: Active-RC Networks

One of the difficulties in the design of activeRC filters is the sensitivity problem. Classically, this has been approached from an a priori viewpoint, i. e. , how to minimize the effects of changes in the active element on the network response. Viewing a posteriori, the problem changes to that of alignment or "how to restore the original transfer function ${ }^{\prime \prime}$ or, formally, the equivalent network problem. We may therefore consider the application of the computer in establishing an alignment procedure for such networks.

Example 1: Consider the low-pass filter of Fig. 5, 6 but normalized to a source resistance of 1Ω. The matrices of interest are

The flat loss is now ($20 x / 2.3$) - $20 \log _{10} L_{2}(x) /$ $L_{2}(0)$; for the dual band-pass network, it happens bil must now be normalized to -1 to grow positive resistors.

There are six elements and five $a^{\prime} s$ and b's to be chosen. In solving for the elemental derivatives as in Eqs. (25)-(29), it happens that a_{11} and a_{22} appear only as the difference $a_{11}^{-a_{22}}$ so that only four $a^{\prime} s$ and $b^{\prime} s$ are distinct. Thus, constraining three elements to remain unchanged $\left(Y_{c}, C_{1}\right.$, and C_{2} being the most different to change in lumped circuits), b_{11} can be chosen to be the only arbitrary constant. Interpreting Y_{A}, Y_{B}, etc. in terms of transistor parameters, $R_{e}(x)$ and $R_{f}(x)$ may be obtained to maintain equivalence for a given change in $\beta(\beta(x)$ Fig. 6). It is noteworthy that

1. a minimum value of β exists below which the transfer function cannot be maintained (without a change in Y_{c}, C_{1}, or C_{2}).
2. a region ($3 \leq x \leq 7$) exists over which $\beta(x)$ is relatively constant. If the circuit should operate in the region then, a small change in β would have to be compensated by a large change in both R_{f} and R_{e} - this in spite of the low sensitivity in this region. There does exist a simple relationship between the sensitivity functions and the curves of Fig. 7: Taking the derivative of the transfer function $T(s)$, one has

$$
\begin{aligned}
& \frac{d T}{d x}=0 \\
& =\frac{\partial T}{\partial \beta} \frac{d \beta}{d x}+\frac{\partial T}{\partial R_{e}} \frac{d R_{e}}{d x}+\frac{\partial T}{\partial R_{f}} \frac{d R_{f}}{d x}
\end{aligned}
$$

so that the sensitivities ($\partial \mathrm{T} / \partial \beta, \partial T / \partial R_{\mathrm{e}}$, $\partial T / \partial R_{f}$) and the slopes of the curves of Fig. 7 ($\mathrm{d} \beta / \mathrm{dx}, \mathrm{dR}_{\mathrm{e}} / \mathrm{dx}, \mathrm{dR}_{\mathrm{f}} / \mathrm{dx}$) are orthogonal. Eq. (40), however, gives no hint to the relative magnitude of each set.

Conclusions

There are several means of extending the results given for nonuniformly lossy filters:

1. Generate tables of element values for all low-order Butterworth, Tchebycheff and maximally-flat time delay networks.
2. Explore the possibility of using the degrees of freedom available in the interaction process to obtain selected element values. For example, if the constraint of Eq. (36) is not imposed, one of the a's may be selected arbitrarily and the problem of using this freedom properly is posed.
3. Search for exact formulae for each element value, either using the classical approach of Takahasi 7 or, using Takahasi's results as initial conditions, generate, by means of matrix manipulation in Eqs. (18)-(19), elemental values as functions of x as in Eqs. (31)-(35).

Concerning active filter design, it would be of interest to

1. Develop design graphs for active filters (particularly band-pass) which permits a choice in the characteristics of the active element (similar to Fig. 7).
2. Investigate more thoroughly the possible degeneracies which arise in the constraint equations, so that one could predict if possible, the number of "alignment" elements he must be prepared to vary to accommodate for an uncontrolled variation in some other element. With the advent of integrated circuits, which can be designed with resistive elements that vary in a controlled fashion, such graphs could also be used to determine the variation required to maintain a response characteristic over wide environmental changes.

Acknowledgment

The use of the facilities of the Computing Center, University of California (Berkeley), is gratefully acknowledged. The research reported herein was supported in part by AFOSR Grant AF-177-63, University of Illinois.

Bibliography

1. J. D. Schoeffler, "Continuously equivalent networks and their application, " Tech. Rpt. No. 5, Case Inst. of Tech. ; December 2, 1962.
2. A. D. Waren, "Equivalence of nonreciprocal active and passive networks," Tech. Rpt.
No. 4, Case Inst. of Tech.; April 20, 1962.
3. D. A. Calahan, Modern Network Synthesis: N-ports, Active Networks and Related Topics, Vol. II, Chap. 5, Hayden Book Co.; 1964.
4. P. R. Geffe, "A note on predistortion," IRE Trans., Vol. CT-6, No. 9, p. 395; December 1959.
5. L. Weinberg, Network Analysis and Synthesis, McGraw-Hill; 1962.
6. I. M. Horowitz, "Optimum design of single stage gyrator-RC filters with prescribed sensitivity," Trans. IRE, Vol. CT-8, pp. 88-99; June 1961.
7. H. Takahasi, "On the ladder-type filter network with Tchebycheff response, " J. Inst.
Elec. Comm. Engrs., Japan, Vol. 34, No. 2, February 1951. (In Japanese.)

Fig. 1. Singly-terminated ladder.

Fig. 2. Doubly-terminated ladder.

Element Values for Fourth Order Nonuniformly Lossy Butterworth Lowpass Filter (Figure 2)

$r=0$ (not dual)					$\left(\mathrm{d}=\mathrm{R}_{\mathrm{i}} / L_{L_{i}}\right)$			$r=1 / 4$ (dual)			
d	L_{1}	C_{1}	L_{2}	C_{2}	Flat 1088 (db)	d	L_{1}	C_{1}	I_{2}	C_{2}	$\begin{aligned} & \text { Flat } \\ & \text { loss } \\ & \text { (db) } \end{aligned}$
0.00	1.531	1.577	1.082	0.3827	0.00	0.00	1.596	1.672	1.151	0.4072	0.00
0.05	1.641	1.518	1.150	0.3979	1.13	0.03	1.652	1.628	1.192	0.4165	0.574
0.1	1.757	1.458	1.225	0.4144	2.27	0.06	1.710	1.583	1.237	0.4262	1.15
0.15	1.877	1.390	1.310	0.4323	3.39	0.09	1.768	1.537	1.285	0.4365	1.72
0.2	2.002	1.322	1.407	0.4519	4.52	0.12	1.828	1.491	1.337	0.4473	2.31
0.25	2.128	1.251	1.517	0.4733	5.65	0.15	1.887	1.444	1.393	0.4587	2.88
0.3	2.254	1.178	1.645	0.4968	6.73	0.18	1.950	1.397	1.454	0.4708	3.47
0.35	2.375	1.104	1.794	0.5228	7.81	0.21	2.007	1. 349	1.520	0.4836	4.05
0.4	2.486	1.030	1.970	0.5516	8.91	0.24	2.066	1.302	1.592	0.4972	4.62
0.45	2.577	0.9575	2.181	0.5838	9.95	0.27	2.123	1.254	1.671	0.5116	5.20
0.5	2.633	0.8886	2.437	0.6200	11.0	0.30	2.176	1.206	1.758	0.5270	5.78
0.55	2.629	0.8271	2.758	0.6610	11.9	0.33	2.225	1.158	1.854	0.5435	6.35
. 0.6	2.525	0.7801	3.168	0.7077	12.9	0.36	2.266	1.112	1.961	0.5611	6.92
0.65	2.250	0.7656	3.720	0.7617	13.8	0.39	2.298	1.066	2.081	0.5802	7.49
0.68	1.955	0.7952	4.155	0.7982	14.3	0.42	2.315	1.023	2.217	0.6008	8.05
0.70	1.679	0.8545	4.507	0.8244	14.6	0.45	2.311	0.9819	2.375	0.6233	8.59
. 0.71	1.511	0.9082	4.706	0.8381	14.7	0.48	2.274	0.9459	2.561	0.6483	9.13
0.72	1.310	0.9970	4.936	0.8529	14.8	0.51	2.183	0.9191	2.790	0.6767	9.64
0.73	1.092	1.137	5.177	0.8674	14.9	0.53	2.064	0.9123	2.984	0.6987	9.95
0.736	0.945	1.272	5.335	0.8764	15.0	0.54	1.968	0.9173	3.107	0.7115	10.1
0.74	0.8373	1.403	5.449	0.8827	15.1	0.55	1.791	0.9432	3.284	0.7284	10.2
0.745	0.7000	1.632	5.593	0.8903	15.1						
0.748	0.6074	1.846	5.690	0.8952	15.1			$\mathbf{r}=1 / 2$	(dual)		
0.75	0.5449	2.032	5.754	0.8985	15.2						
0.753	0.4476	2.527	5.854	0.9033	15.2	0.00	2.593	1.765	1.226	0.4350	0.00
0.755	0.3807	2.818	5.922	0.9066	15.2	0.02	1.623	1.730	1.256	0.4416	0.328
0.757	0.3124	3.389	5.991	0.9099	15.2	0.04	1.654	1.694	1.288	0.4484	0.657
						0.06	1.684	1.659	1.321	0.4554	0.987
		$r=1 / 8$	(dual)			0.08	1.714	1.624	1.356	0.4628	1.32
						0.10	1.744	1.588	1.392	0.4704	1.65
0.00	1.571	1.626	1.116	0.3944	0.00	0.12	1.774	1.553	1.431	0.4783	1.98
0.03	1.632	1.586	1.157	0.4035	0.624	0.14	1.803	1.517	1.472	0.4866	2.32
0.06	1.695	1.545	1.200	0.4130	1.25	0.16	1.831	1.482	1.515	0.4952	2.65
0.09	1.759	1.503	1.247	0.4230	1.87	0.18	1.857	1.447	1.561	0.5042	2.98 3.32
0.12	1.825	1.461	1.297	0.4335	2.50	0.20	1.883	1.412	1.611	0.5136	3.32 3.66
0.15	1.891	1.418	1.351	0.4446	3.12	0.22	1.906	1.377	1.664	0.5235	3.66
0.18	1.959	1.374	1.409	0.4564	3.75	0.24	1.927	1.343	1.720	0.5339	4.00 4.33
0.21	2.027	1.329	1.472	0.4687	4.37	0.26	1.944	1.309	1.781	0.5449	4.33 4.66
0.24	2.094	1.283	1.541	0.4818	4.99	0.28	1.956	1.276	1.847	0.5565	4.66
0.27	2.161	1.238	1.616	0.4957	5.61	0.30	1.963	1.244	1.919	0.5689	4.99
0.30	2.227	1.191	1.699	0.5105	6.23	0.32	1.961	1.213	1.999	0.5822	5.32
0.33	2.289	1.145	1.790	0.5262	6.84	0.34	1.947	1.184	2.088	0.5967	5.65
0.36	2.348	1.096	1.890	0.5430	7.45	0.36	1.912	1.159	2.192	0.6131	5.96
0.39	2.399	1.054	2.002	0.5609	8.06	0.38	1.835	1.142	2.324	0.6328	6.25
0.42	2.442	1.010	2.127	0.5801	8.66	0.39	1.743	1.144	2.421	0.6469	6.38
0.45	2.472	0.9666	2.269	0.6008	9.25						
0.48	2.484	0.9258	2.430	0.6232	9.83						
0.51	2.470	0.8884	2.616	0.6475	10.4						
0.54	2.419	0.8565	2.836	0.6742	10.9						
0.57	2.311	0.8341	3.102	0.7038	11.5						
0.60	2.104	0.8327	3.445	0.7377	11.9						
0.61	1.995	0.8427	3.590	0.7505	12.1						
0.62	1.843	0.8664	3.767	0.7650	12.3						
0.6244	1.581	0.9340	4.020	0.7830	12.4						

(a) main program.

(b) derivative subroutine

Fig. 3. Flow chart.

Fig. 4. Band-pass filter.

Fig. 5. Active RC low pass filter.

Element Values for Nonuniformly Lossy Four-Pole Butterworth Bandpass Filters (Figure 4) $\left(Q=\omega_{0} / B W, \omega_{0}=1, d=R_{i} / L_{i}\right)$

$$
r=1 / 4, Q=5, \text { (not dual) } \quad r=1 / 2, Q=5, \text { (dual) }
$$

d	L_{1}	C_{1}	L_{2}	C_{2}	Flat loss (db)	d	L_{1}	C_{1}	L_{2}	C_{2}	Flat loss (db)
0.00	0.9960	1.004	0.03188	32.37	0.00	0.00	8.365	0.3195	0.2231	4.483	0.00
0.01	1.084	0.9208	0.03240	30.92	0.580	0.005	8.243	6.1214	0.2122	4.713	0.320
0.02	1.192	0.8364	0.03325	30.19	1.25	0.01	8.098	0.1238	0.2011	4.974	0.634
0.03	1.326	0.7502	0.03458	29.10	1.87	0.015	7.905	0.1269	0.1860	5.275	1.08
0.04	1.501	0.6613	0.03663	27.55	2.42	0.02	7.675	0.1308	0.1776	5.628	1.25
0.05	1.742	0.5678	0.03988	25.41	3.03	0.025	7.392	0.1361	0.1649	6.054	1.53
0.06	2.111	0.4654	0.04537	22.50	3.67	0.03	7.039	0.1432	0.1513	6.588	1.85
0.07	2.742	0.3507	0.05397	19.34	4.62	0.035	6.589	0.1536	0.1359	7.302	2.16
0.08	3.357	0.2761	0.05245	20.65	7.00	0.04	6.067	0.1686	0.1183	8.304	2.57
0.09	3.963	0.2282	0.04418	25.12	10.1	0.044	5.933	0.1753	0.1068	9.042	3.13
0.10	4.764	0.1867	0.03430	32.89	14.1						
0.105	5.290	0.1671	0.02908	39.03	16.4	$r=1 / 2, Q=10,($ not dual)					
0.11	5.943	0.1479	0.02374	48.04	19.2						
0.115	6.776	0.1292	0.01830	62.56	22.6	0.00	4.483	0.2231	0.02989	33.96	0.00
0.12	7.876	0.1108	0.01279	89.78	27.1	0.005	4.974	0.2009	0.03092	32.36	0.639
0.125	9.395	0.09261	0.00721	159.5	33.6	0.01	5.630	0.1775	0.03264	30.68	1.22
0.13	11.63	0.07468	0.00159	725.5	48.6	0.015	6.597	0.1513	0.03571	28.07	1.87
$r=1 / 2, Q=5,($ not dual)						0.02	8.540	0.1163	0.04318	23.33	2.51
						0.025 0.03	10.31 11.53	0.09421 0.08318	0.04424 0.03973	23.29 26.26	4.10 6.11
0.00	2.2415	0.4461	0.05977	16.73	0.00	0.035	13.04	0.07296	0.03481	30.23	8.43
0.01	2.487	0.4014	0.06194	16.18	0.621	0.04	15.00	0.06315	0.02973	35.61	11.0
0.02	2.814	0.3539	0.06550	15.35	1.19	0.045	17.65	0.05331	0.02457	43.30	14.2
0.03	3.294	0.3012	0.07176	14.08	1.86	0.05	21.46	0.04369	0.01934	55.21	18.0
0.04	4.151	0.2355	0.08457	12.14	2.62	0.055	27.37	0.03416	0.01408	76.04	23.1
0.05	4.879	0.1929	0.08574	12.44	4.24	0.06	37.78	0.02470	0.00878	122.2	29.7
0.06	5.436	0.1691	0.07743	14.11	6.22	0.065	60.93	0.01530	0.00345	311.3	42.1
0.07	6.100	0.1482	0.06762	16.43	8.49						
0.08	6.495	0.1383	0.06247	17.90	11.2						
0.09	8.076	0.1095	0.04645	24.44	14.5						
0.10	9.651	0.09100	0.03546	32.23	18.4						
0.105	10.70	0.08186	0.02989	38.33	20.8						
0.110	12.00	0.07280	0.02430	47.26	23.6						
0.115	13.66	0.06380	0.01867	61.61	27.2						
0.120	15.86	0.05487	0.01301	88.47	31.5						

Fig. 6. Element Values For Alignment of Active Butterworth Filter

[^0]: * similar statement applies if $1+\Delta \times a_{p p}$ is
 eliminated in Eq. (5).

[^1]: *The network could be normalized to unit source resistance by using the expression for R_{1} as an impedance scaling fact or.
 **Note that the a's and b's may be scal ed arbitrarily, since this is equivalent to scaling x.
 $\dagger_{\text {Typical computing time was two minutes on an }}$ IBM 7090.

