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Summary

The theory of continuously equivalent net
works is extended to the state equations and to
include a scaling option. The theory is then
applied to the classical problem of the design of
low- and band-pass filters with loss in inductors
only. The alignment problem in active filters is
also approached from an equivalence viewpoint.

Introduction

Although the subject of equivalent networks
has long been recognized to be of academic
interest, it is only recently that a conscious
attempt has been made to utilize the theory in
practical design problems. This paper extends
some recent work in this subject and then con
siders some examples of use of the computer in
generation of equivalent networks.

The Approach

A differential approach to the equivalent net
work problem was first proposed by Schoeffler^
and has been investigated by other authors. 2» 3
It will be found useful to work with the A matrix

rather than the nodal or branch admittance ma

trices, so that the development of Schoeffler
must be altered.

Assume that the state equations of the cir
cuit are of the form (with no mutual inductance,
capacitor loops, etc.)
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Assume vjn appears only in the r equation as
shown and further assume that one of the state

variables (the g**1) is the output voltage. Both of
these conditions can be satisfied by placing an
inductor of zero-value in series with the source

and a capacitor of zero value across any pair of
nodes regarded as the output. Further, assume
the equations are arranged so that r = 1,
g = p = m + n.

Taking the Laplace Transform of both sides
yields (for zero initial conditions)

H vm = (sM + HI M (3)
where

[Y] =[Y,a>] = V. = V. (s) (4)
in in* ' * '

Now consider the problem of adjustment of the
network elements while maintaining constant the
ratio of the output voltage to the input voltage.
Letting each element be a function of some dum
my variable x, then one may postulate a differ
ential change in the element values that produce
the new state variables

[y(x +Ax)l = {[V] + Ax [a] } [y(x)]
1 + Ax a

(5)

where
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so that yp(x + Ax) = yp(x) and equivalence is
maintained. Eq. (3) then becomes

[b] Vin =\s [M(x +Ax)| +fA (x +Ax)] UY(x +Axtt

={a [M(x +AxJ +[a(x-1-AxJ}{[u| +Ax[a|} [y(x)J
1 + Ax a

PP (8)

Taking note that

1) (B(x)] has only one nonzero entry
2) V. (x + Ax) = V. (x) since V. is a
'in1 ' inx ' in

source.

then

[B(x+Axl V.n(x+Ax) ={fu]+Ax[b]}[B(xjvin{X)
1 + Ax b.
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Multiplying both sides of Eq. (8) by
{[u] + Ax [bj} /(l +Ax bn) gives

ISK

{HO + Ax[b]| {s[M(x +AxJ +Aftx +Ax)]}

Thus

(1 + Ax a ) (1 + Ax b„)
pp' x 11'

{[U] +Ax [a]} [Y(x)]
(11)

={s[M(x| + [A(x)]} [Y(x)] (12)

L[M(xjJ +[A(xj| =
{[u] +Ax[b]}{s[M(x +Ax)] +[A(x +Axj)}{lu]+ Ax [j)

(1 + Ax a ) (1 + Ax bn)
pp 11

Separating powers of s yields

[M(x +Ax)j - [m(x)]
Ax

(13)

[b][M(x +Ax)] +[m(x+Ax)] [a] - (bn +app)[M(x+Axj
+ 0(Ax,

[A(x •>• AxQ - fA(x)1
Ax

(14)

b][A(x +Ax)] +[A(x +Ax)][a] - (bn +app) [a(x +Ax)]
+ 0{Ax)

which in the limit become

(15)

• (bn+ v H (16)

tl =[b][A]+ [A][a]
- (bn+ aPP> W • <n>

d x

d x

pp

The form of this equation is somewhat more
general than Schoeffler's. 1

If the right-hand side of Eq. (9) is not
divided by 1 + Ax b... then Eqs. (16)and (17)
become

W--WW ♦[*][.].. w «.9,

(18)



Further, Eq. (9) may be solved in part to yield

V. (x + Ax) = (1 + Ax b„) V. (x) (20)
in 11 in

so that taking the limit as before gives

Vin(x) =Vin(0) exp fbllX) (21)

Hence eliminating the term 1 + Ax b.. results
function by

t tion will
following example
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in a scaling of the voltage transfer functio
an amount expf-bi^x}. The scaling opti<
be found useful in the following examples:

Application 1: Nonuniformly Lossy Ladders

The object of the following examples will be
to use the previous theory to generate lossy
resistively terminated networks from lossless
ones. Thus, the state equations are a natural
approach to the problem since the lossless ele
ments are contained in [Mj , whereas the loss
components are contained in [a].

Example 1: Singly-terminated Ladders:
Geffe* has given exact formulae for design of
singly-terminated ladders with lossy inductors.
A simple example is the network of Fig. 1. As
an exercise to test the mettle of this equivalence
viewpoint, one could attempt to obtain similar
design formulae for the simple case. The
matrices of interest are
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where G, = 0. Inserting the above in Eqs. (18)
and (19) results (in part) in trivial constraints
which require fbl and fa] to be of the form

A similar statement applies if 1 + A x a is
PPeliminated in Eq. (5).
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Further, since the voltage transfer function can
not be sealed by growing a resistor in series with
Lr bu =0 .

The remaining constraints generate the
differential equations

= all Cl/Gl

Ll =(a22 " *Yl> Ll

C2 = (-a22 C2)

(25)

(26)

(27)

R,' =i =an R2 +a12 +a13 (C1/C2 Gl> +a22 Rl

R2 =(all " a22) R2 " *12

(28)

(29)

where a12 =-au L^Gj/Cj) a13 =-au . (30)

These equations are readily solved to yield

anx

Cl/Gl =C?/Gl e

° „(a22 " all)x

22 x

L1 = L1 e

C2 = C2 e

(31)

(32)

(33)

R2 =(L° G°/C°).exp(a22 - a^x [l - expCfe^x]

+ R2 exp (a22 - an) (34)



Rx =-R2 +[r° +R^ +(C°/G° C°)(l -exp ^ xj]

exp|a22 xjr (35)

thus achieving exact design formulae for any
choice of a., and a.

It has not been found possible to extend the
above analysis to include Geffe's general case;
however, the correct matrix manipulation may
yield a closed form result.

Example 2; Doubly-terminated Laddero:

An attempt has been made to find a closed
form solution for the simplest doubly-terminated
ladders (Fig. 2a and 2b). The matrices for the
network of Fig. 2a are identical to those of
Example 1, except that now G3 £ 0, b^ 4 0,
C[ =0, and G3= 0. If there is a closed-form
solution, it is not apparent from the differential
equations and so a computer solution was neces
sary. It may readily be shown that there are
four remaining linear constraints on the five un
knowns of Eq. (24), leaving one unknown to be
selected arbitrarily. Selecting b^ to be this
constant and letting bn =1,**then the voltage
transfer function will be scaled down, as indeed
it must if resistance is to be inserted in series
with the inductors. Further, the flat loss intro
duced is readily shown to be (20x/2. 3) db. The
flow chart is shown in Fig. 3.

In transforming the network of Fig. 2b,
seven equations in eight unknowns are generated,
so again selection of bji =1 generates a unique
set of constraints. It snould be noted that, to
keep,identical dissipation factors in each induc
tor, a constraint of the form

t22'

must be imposed as the integration proceeds.
Element value s for the fourth order.

Butterworth filter are given in Table 1. ' For
r = 1 (equal termination), it was found impossi
ble to generate any equivalent nonuniformly
lossy networks.~T*or 0 < r < 1, either of two
lossless realizations may be used as initial
networks in the transformation process; the
first is found in Ref. 5, the second is the dual
and impedance scaled version of the first. The
dual network was found to allow for significantly

*The network could be normalized to unit source
resistance by using the expression for Rj as an
impedance scaling fact or.

Note that the a's and b's may be seal ed arbi
trarily, since this is equivalentlo scaling x.
+

Typical computing, time was two minutes .on an
IBM 7090.

more loss, except for r = 0 when no dual exists.
The maximum inductor loss was found in every
case to strongly depend on the termination ratio,
and the largest d is approximately twice that
allowable for uniformly-lossy networks.

The nonuniformly lossy band-pass ladder (Fig.
4) may, of course, also be approached from the
equivalence viewpoint. In this case, true equi
valence cannot be maintained since any inductor
loss will shift a transmission zero from the
origin to the negative real axis. However, if one
considers the output to be the inductor current of
L? rather than the capacitor (output) voltage C^,
then v (s)

IL(s) = R2 + s L2

the bothersome transmission zero disappears, and
only a small error is made in keeping the actual
frequency response of the filter invariant (if
d =R2/L2 is small). * It now happens that the
dual network allows less inductor loss (Table 2).
Further the maximum value of d allowed for
any value of Q was approximately twice the
normalized real part of the pole closest to the
imaginary axis and so is again twice that expected
from uniform predistortion arguments. Finally,
calculation shows the filters with the largest in
ductor loss are overall somewhat less sensitive
than the lossless variety. The price paid is the
larger element value spread in the former.

Application 2: Active-RC Networks

One of the difficulties in the design of active-
RC filters is the sensitivity problem. Classically,
this has been approached from an a priori view
point, i. e. , how to minimize the effects of
changes in the active element on the network re
sponse. Viewing a posteriori, the problem
changes to that of alignment or "how to restore the
original transfer function" or, formally, the equi
valent network problem. We may therefore consi
der the application of the computer in establishing
an alignment procedure for such networks.

Example 1; Consider the low-pass filter of
Fig. 5, b but normalized to a source resistance
of 1R. The matrices of interest are

M = A =

YA + YB + 1

Y - Y
L.M B

Jll
-a12(Cl/C2)

all + a12
b =

U22-J 22

(39)

The flat loss is now (20x/2. 3) - 20 log^Q L-,(x)/
L2(0); for the dual band-pass network, it happens
bil must now be normalized to -1 to grow positive
resistors.



There are six elements and five a's and
b's to be chosen. In solving for the elemental
derivatives as in Eqs. (25)-(29), it happens that
ajj and a22 appear only as the difference
all " a22* 3° tnat only four a's and b's are dis
tinct, xhus, constraining three elements to
remain unchanged (Yc, Ci, and C? being the
most different to change in lumpedcircuits),
bn can be chosen to be the only arbitrary con
stant. Interpreting Yy^, Yg, etc. in terms of
transistor parameters, Re(x) and Rf(x) may
be obtained to maintain equivalence for a given
change in p* ((J(x) Fig. 6 ). It is noteworthy
that

1. a minimum value of p" exists below
which the transfer function cannot be maintained

(without a change in Yc, C^, or C2).
2. a region (3 < x < 7) exists over which

j3(x) is relatively constant. If the circuit
should operate in the region then, a small
change in p* would have to be compensated by
a large change in both Rf and Re— this in
spite of the low sensitivity in this region.
There does exist a simple relationship between
the sensitivity functions and the curves of Fig.
7: Taking the derivative of the transfer func
tion T(s), one has

dT

d x

_ 8T dp + 8T
dR

e

8 p dx 3Re dx

8T ^f
8Rr dx

(40)

so that the sensitivities (8T/8p, 8T/8Re,
8T/8Rf) and the slopes of the curves of Fig. 7
(dp/dx, dRe/dx, dRf/dx) are orthogonal. Eq.
(40), however, .gives no hint to the relative
magnitude of each set.

Conclusions

There are several means of extending the
results given for nonuniformly lossy filters:

1. Generate tables of element values for all
low-order Butterworth, Tchebycheff and
maximally-flat time delay networks.

2. Explore the possibility of using the de
grees of freedom available in the interaction
process to obtain selected element values. For
example, if the constraint of Eq. (36) is not
imposed, one of the a's may be selected arbi
trarily and the problem of using this freedom
properly is posed.

3. Search for exact formulae for each ele

ment value, either using the classical approach
of Takahasi? or, using Takahasi's results as
initial conditions, generate, by means of ma
trix manipulation in Eqs. (18)-(19), elemental
values as functions of x as in Eqs. (31)-(35).

Concerning active filter design, it would be
of interest to

1. Develop design graphs for active filters
(particularly band-pass) which permits a choice
in the characteristics of the active element

(similar to Fig. 7).
2. Investigate more thoroughly the possible

degeneracies which arise in the constraint equa
tions, so that one could predict if possible, the
number of "alignment" elements he must be
prepared to vary to accommodate for an uncon
trolled variation in some other element. With
the advent of integrated circuits, which can be
designed with resistive elements that vary in a
controlled fashion, such graphs could also be
used to determine the variation required to
maintain a response characteristic over wide
environmental changes.
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Element Values for Fourth Order Nonuniformly Lossy Butterworth Lowpass Filter (Figure 2)
(d =R^L.)

r = 0 (not dual) * = lA (dual)

0.00

0.05
0.1

0.15
0.2

0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.68
0.70

.0.71
0.72

0.73
0.736
0.74
0.745
0.748
0.75
0.753
0.755
0.757

1.531
1.641

1.757
1.877
2.002

2.128
2.254
2.375
2.486

2.577
2.633
2.629
2.525
2.250

1.955
1.679
1.5H
1.310
I.092

0.945
0.8373
0.7000
0.6074
0.5449
O.4476
0.3807
0.3124

0.00

0.03
0.06
0.09
0.12

0.15
0.18
0.21

0.24
0.27
0.30
0.33
0.36
0.39
0.42
0.45
0.48

0.51
0.54
0.57
0.60
0.61
0.62
0.6244

1.571
1.632
1.695
1.759
1.825
1.891
1.959
2.027
2.094
2.161
2.227
2.289
2.348
2.399
2.442
2.472
2.484
2.470
2.419
2.311
2.104

1.995
1.843
I.581

1.577
1.518
1.458
1.390
1.322

1.251
I.178
1.104
1.030

0.9575
0.8886
0.8271
0.7801
0.7656
0.7952
0.8545
O.9082
0.9970
1.137
1.272
1.403
1.632
1.846
2.032

2.527
2.818

3.389

1.082
1.150

1.225
1.310
1.407
1.517
1.645
1.794
1.970
2.181

2.437
2.758
3.168
3.720
4.155
4.507
4.706
4.936
5.177
5.335
5.449
5.593
5.690
5.754
5.854
5.922

5.991

r = 1/8 (dual)

1.626
1.586
1.545
1.503
1.461
1.418
1.374
1.329
1.283
1.238
1.191
1.145
I.096
1.054
1.010

O.9666
0.9258
0.8884
O.8565
0.8341
0.8327
0.8427
0.8664
0.9340

1.116
1.157
1.200

1.247
1.297
1.351
1.409
I.472
1.541
1.616
1.699
1.790
I.890
2.002

2.127
2.269
2.430
2.616
2.836
3.102
3.445
3.590
3.767
4.020

0.3827
0.3979
0.4l44

0.4323
O.4519
0.4733
0.4968
0.5228
0.5516
O.5838
0.6200
0.6610

0.7077
O.7617
0.7982
0.8244
O.8381
0.8529
0.8674
0.8764
0.8827
0.8903
O.8952
O.8985
0.9033
O.9066
0.9099

0.39^
0.4035
0.4130
0.4230
0.4335
0.4446
0.4564
0.4687
0.4818

0.4957
0.5105
O.5262
0.5430
O.5609
O.5801
0.6008
O.6232
0.6475
0.6742
0.7038
0.7377
0.7505
0.7650
0.7830

Flat

loss

(db)

0.00

1.13
2.27
3.39
4.52
5.65
6.73
7.81
8.91
9.95

11.0

11.9
12.9
13.8
14.3
14.6
14.7
14.8
14.9
15.0

15.1
15.1
15.1
15.2
15.2
15.2
15.2

0.00

0.624
1.25
I.87
2.50
3.12

3.75
4.37
4.99
5.61
6.23
6.84

7.45
8.06
8.66
9.25
9.83

10.4

10.9
11.5
11.9
12.1

12.3
12.4

0.00

0.03
0.06
0.09
0.12

0.15
0.18
0.21
0.24
0.27
0.30

0.33
0.36
0.39
0.42
0.45
0.48
0.51
0.53
0.54
0.55

0.00
0.02
0.04
0.06
0.08
0.10

0.12

0.14
0.16
0.18
0.20

0.22

0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.39

h
1.596
1.652
1.710
1.768
1.828
I.887
1.950
2.007
2.066
2.123
2.176
2.225
2.266
2.298
2.315
2.311
2.274
2.183
2.064
1.968
1.791

1.593
1.623
1.654
1.684
1.714
1.744
1.774
1.803
I.831
1.857
I.883
1.906
1.927
1.944
1.956
1.963
I.961
1.947
1.912
1.835
1.743

I.672
1.628
1.583
1.537
I.491
1.444

1.397
1.349
1.302
1.254
1.206
1.158
1.112

1.066
1.023
O.9819
0.9459
0.9191
0.9123
0.9173
0.9432

1.151
1.192

1.237
1.285
1.337
1.393
1.454
1.520
1.592
1.671
1.758
1.854
I.961
2.081
2.217
2.375
2.561
2.790
2.984
3.107
3.284

r » 1/2 (dual)

1.765
1.730
1.694
1.659
1.624
1.588
1.553
1.517
1.482
1.447
1.412

1.377
1.343
1.309
1.276
1.244

1.213
1.184
1.159
1.142
1.144

1.226
I.256
1.288
1.321
1.356
1.392
1.431
1.472
1.515
I.561
1.611
1.664
1.720
1.781
1.847
1.919
1.999
2.088
2.192
2.324
2.421

0.4072
0.4l65
0.4262
0.4365
0.4473
O.4587
0.4708
0.4836
0.4972
0.5116
0.5270

0.5435
0.5611
0.5802
0.6008
0.6233
0.6483
0.6767
0.6987
0.7H5
0.7284

0.4350
0.44i6
0.4484
0.4554
0.4628
0.4704
0.4783
0.4866
O.4952
0.5042
0.5136
0.5235
0.5339
0.5449
0.5565
0.5689
0.5822
0.5967
0.6131
0.6328
0.6469

Flat

loss

(db)

0.00

0.57*»
1.15
1.72
2.31
2.88
3.47
4.05
4.62
5.20
5.78
6.35
6.92
7.49
8.05
8.59
9.13
9.64
9-95
10.1

10.2

0.00
0.328
0.657
0.987
1.32
1.65
1.98
2.32
2.65
2.98
3.32
3.66
4.00

4.33
4.66
4.99
5.32
5.65
5.96
6.25
6.38



(a) main program.

Fig. 3. Flow chart.
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Element Values for Nonuniformly Lossy Four-Pole Butterworth Bandpass Filters (Figure 4)
(Q ="0/BW. o>0 =1, d =R:/L.)

r = 1/4, Q = 5, (not dual) r = 1/2, Q = 5, (dual)

Flat Flat

loss loss

d h cl \ °2 (db) d h cl h C2 (db)

0.00 0.9960 l.oo4 0.03188 31.37 0.00 0.00 8.365 0.1195 0.2231 4.483 0.00

0.01 1.084 0.9208 0.03240 30.92 0.580 0.005 8.243 6.1214 0.2122 4.713 0.320

0.02 1.192 0.8364 0.03325 30.19 1.25 0.01 . 8.092 0.1238 0.2011 4.974 0.634
0.03 1.326 0.7502 0.03458 29.10 I.87 0.015 7.905 0.1269 0.1860 5.275 1.08
0.04 1.501 0.6613 0.03663 27.55 2.42 0.02 7.675 0.1308 0.1776 5.628 1.25
0.05 1.742 0.5678 0.03988 25.41 3.03 0.025 7.392 0.1361 0.1649 6.054 1-53
0.06 2.111 0.4654 O.04537 22.50 3.67 0.03 7-039 0.1432 0.1513 6.588 1.85
0.07 2.742 0.3507 0.05397 19.34 4.62 0.035 6.589 0.1536 0.1359 7.302 2.16
0.08 3.357 0.2761 0.05245 20.65 7.00 0.04 6.067 0.1686 0.1183 8.304 2.57

0.09 3.963 0.2282 o.o44i8 25.12 10.1 0.044 5.933 0.1753 0.1068 9.042 3-13
0.10 4.764 0.1867 0.03430 32.89 14.1

0.105 5.290 0.1671 0.02908 39-03 16.4 r = 1/2, Q = 10, (not dual)
0.11 5.943 0.1479 0.02374 48.04 19.2

0.115 6.776 0.1292 0.01830 62.56 22.6 0.00 4.483 0.2231 0.02989 33.96 0.00

0.12 7.876 0.1108 0.01279 89.78 27.1 0.005 4.974 0.2009 O.O3092 32.36 0.639
0.125 9.395 0.09261 0.00721 159.5 33.6 0.01 5.630 0.1775 0.03264 30.68 1.22

0.13 11.63 0.07468 0.00159 725.5 48.6 0.015 6.597 0.1513 0.03571 28.07 I.87
0.02 8.540 0.1163 0.04318 23.33 2.51

r = 1/2, Q = 5, (not dual) 0.025 10.31 0.09421 0.04424 23.29 4.10

0.03 11.53 0.08318 0.03973 26.26 6.11

0.00 2.2415 0.4461 0.05977 16.73 0.00 0.035 13.04 0.07296 0.03481 30.23 8.43
0.01 2.487 0.4014 0.06194 16.18 0.621 0.04 15.00 0.06315 0.02973 35.61 11.0

0.02 2.814 0.3539 0.06550 15.35 1.19 0.045 17.65 0.05331 0.02457 43.30 14.2

0.03 3.294 0.3012 0.07176 14.08 1.86 0.05 21.46 O.04369 0.01934 55.21 18.0

o.o4 4.151 0.2355 0.08457 12.14 2.62 0.055 27.37 0.03416 0.01408 76.04 23.1

0.05 4.879 0.1929 O.O8574 12.44 4.24 0.06 37.78 0.02470 O.OO8781 122.2 29-7

0.06 5.436 0.1691 0.07743 l4.il 6.22 0.065 60.93 0.01530 0.00345 311.3 42.1

0.07 6.100 0.1482 O.06762 16.43 8.49
0.08 6.495 0.1383 0.06247 17.90 11.2

0.09 8.076 0.1095 0.04645 24.44 14.5
0.10 9.651 0.09100 0.03546 32.23 18.4
0.105 10.70 0.08186 O.02989 38.33 20.8

0.110 12.00 0.07280 0.02430 47.26 23.6
0.115 13.66 0.06380 O.OI867 61.61 27.2

0.120 15.86 0.05487 0.01301 88.47 31.5
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Fig. 6. Element Values For Alignment of Active Butterworth Filter

Element Values For Alignment Of Active
Butterworth Filter (Figure 5)
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