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ABSTRACT

Several canonical structures of lumped dynamical systems having

prescribed qualitative behaviors are presented. In particular, two

canonical models are presented for simulating the transient and steady

state response of nonlinear devices or systems driven by step inputs

of arbitrary amplitudes. Another canonical model is presented for

simulating the steady-state response of nonlinear devices or systems

driven by a dc-superimposed sinusoidal inputs of arbitrary amplitude

and frequency. Finally a canonical model is presented for simulating

the steady state response of nonlinear devices or systems driven by

periodic input signals of fixed frequency but arbitrary waveforms.

Explicit methods for identifying the model parameters are given in

each case.
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I. INTRODUCTION

In recent years many papers have considered various aspects of

device and system modeling. A recent paper by Astrom and Eykhoff [1]

summarizes the state of the art in this field. The task of model making

generally involves two steps: (1) the determination of the circuit or

system structure of the model, and (2) the identification of the asso

ciated model parameters. The first step is essentially a synthesis

problem where the resulting structure may take the form of a circuit

diagram or a black box with an input-output mathematical structure.

Circuit models can usually be synthesized for electronic devices having

well-understood physical operating principles [2-3]. For more exotic

devices, such as TRAPPAT diodes [4], or complex systems, such as bio

logical systems [5], the internal operating mechanism may be so poorly

understood that a black-box model may be the only recourse.

A general black-box representation for single-input single-output

lumped systems is given by

State Equation: x. = f(x, u; a) (1-a)

Output Equation: y = g(x, u; §) (1-b)

where x is an n-dimensional state vector characterizing the internal dy

namics, u is a scalar representing the input and y is a scalar repre-

senting the output. The vectors a= [a ,a^,... aD^ and ?~ ^1* ^'""'^q^

are parameter vectors which are identified through input-output measure

ments. Equation (1) is often referred to as a dynamical system [6].
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The structure of the above black-box model is therefore specified by

the functional form of f(x, u;a ) and g(x, u; g). Once the model struc

ture is synthesized, we can determine an optimum set of model parameters

so that the error relative to certain criteria between the predicted

and measured data is minimized. This second task is often referred to

as the parameter identification problem. Most papers on modeling are

addressed to this problem and many parameter identification techniques

are now available. On the other hand, very few results concerning the

synthesis of model structures i.e., the functional forms of f(?, u, a)

and g(x, u, 6 ) are presently known. This problem is much more

difficult and it is unlikely that a completely general and practical

solution can ever be found [7].

A more modest and realistic approach to the structural modeling

problem is to derive various classes of canonical structures which possess

certain general properties of practical interest. For example, a simple

canonical structure can be synthesized for simulating the steady state

behavior of hysteretic systems driven by sinusoidal inputs [8-9]. An

other canonical structure can be synthesized for simulating the class of

dissipative systems having memory; namely, memristive systems [10]. Our

objective in this paper is to derive even more general canonical structures

for simulating the response of nonlinear systems driven by various classes

of testing signals. In particular, the following classes will be considered:

ClassTjL : Step Signals of Arbitrary Amplitudes

^ ={u(t) = 0, t <0: A e1R }
A, t > 0

where 1Rdenotes the set of all real numbers.
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ClassTL: DC-Superimposed Sinusoidal Signals of Arbitrary Amplitudes and

Frequencies

1L =(u(t) = A + A cos ot: (A ,A, a) c]R x IR" x 1R0. }
2 o o + t

where TR+° A (0,«).

Class U.: Periodic Signals with Arbitrary Series Coefficients
3 n

1JL ={u(t) =A +X* ^ cos kat + Bfc sin ku>t: (Aq, Afc, Afe) e1R

Our choice of these three signals are motivated by the fact that they repre

sent the most common deterministic signals used in practice. We will assume

throughout this paper that the systems being modeled either have unique steady-

state response independent of the initial conditions, or are known to be

initially relaxed. In the case of periodic inputs, we assume that the steady-

state response has the same frequency as that of the input [11].

Several canonical model structures will be presented in the following

sections. In particular, two canonical models will be presented in Section

II for simulating the complete transient and steady state zero -

state response of nonlinear systems driven by any number "M" of inputs sig

nals belonging toTL and^L, respectively. Since our models in Sections

III and IV are designed only for simulating the steady state response,

they are more suitable for modeling devices and systems operating under

periodic inputs. We emphasize that our models are guaranteed to simulate

exactly only the measured set of input-output waveforms. However, it

follows from continuity arguments that the larger the number M of such

waveforms used to determine the model parameters, the more realistic it

will be in simulating other signals.

II. MODELING THE TRANSIENT AND STEADY-STATE RESPONSE OF NONLINEAR

SYSTEMS DRIVEN BY STEP INPUTS

Let y(t; A^ ,y(t;A2>,... .yCt^) denote a family of "M" measured

-3-

3



zero-state responses of a nonlinear device or system to a family of step

inputs u(t)e l\ with amplitudes A ,A ,...,A . Let each response be

decomposed into

y(t; A.) =yo(A.) + yac(t;A ) (2)

where y (A ) and y (t;A.) denote respectively the "dc" and the "ac"
o j ac j J

components. We assume that each "ac" component belongs to the function

2
space L (O,00) [12] and is therefore square integrable over the time inter

val (0,°°). Our problem is to synthesize a canonical model which is cap

able of simulating the "M" measured input-output pairs to within any de

sired degree of accuracy. Two canonical models which satisfy this require

ment will be presented in this section. The two models differ from each

other in that the dynamics is linear in one model but nonlinear in the

other.

2.1 Step-Input Canonical Model 1

Consider the following dynamical system:

State Equation:

r • ->

Xll

\>l

2 0 0 .

i i o.

1 1 ± 0
2

0

0

0 ! ! x

I xl:

x2

' ' X

1 ~

2

3

2

5 '

2 :

2W-1 !

(3-a)

1 By zero-state response we mean the output waveform for t> 0 due to an
input applied for t>0 when the system is at rest at t=0; i.eT, assuming zero initial

states [6]. The zero-state response would in general consists of a tran
sient and a steady-state component. For step inputs, the steady-state
component is just the dc average value. For periodic inputs, the steady-
state component is assumed to be the periodic component of the output wave
form.

-4-



where

Output Equation:

N

y =g (u) +£ gk(u) ^
k=l

N

g0(u) A hQ (u) +£ h^u)
k=l

gk(u) 4 \M/u

(3-b)

(4-a)

(4-b)

The function h.(u) is obtained by passing a smooth curve through the set

of "M" points y (A.) associated with the dc component of the output wave-
o j

form, i.e., h (A.) = y (A.). The function h. (u) is similarly determined by the
o j o j K

"ac" components y (t;A ) and hk(A.) is defined by

h^) Lj Wyac(t; Aj) 4>k(t) dt, (5-a)

.k-1

where
0

-l/2t*k(t) 4 e
(k-1)!

t dK-x /k-1 -t\

^*[t ° } (5-b)

denotes the kth Laguerre function [13-14]. Observe that oar standing

2
assumption "y (t;A.) belongs to L (0,*)" guarantees that h. (A.) in (5-a)

ac j k 3

is integrable and is therefore well-defined. The following theorem shows

that the canonical model 1 can simulate the input-putput pairs to within

any desired degree of accuracy by increasing the number "N" of state

varaibles.

Theorem 1. For each step input of amplitude A , the zero-state response

y(t) given by (3) converges to the measured output waveform y(t;A.) in

the mean-square sense as N »°°

Proof. Let us define a new state variable

z (t) 4 x^t) +u(t), k=l,2 N (6)
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and transform (3) into the following equivalent system:

L
'N

-=•0 0

* o

1 *

111

y-h (u) +V, gk(u) zk

z2 1

*3 + X

z I 1
»j L J

u(t) (7-a)

(7-b)

Since u(t) is a step input of amplitude A , ti(t) = A 6(t) is a delta

function with area equal to A . By transforming (7-a) into the s-domain

via Laplace transform, it is easily shown that the zero-state response

z (t) of (7-a) due to a step input of amplitude A is given by [15]:

^(t) = A.. *k(t) (8)

Substituting (5-a), (8), and (4-b) into (7-b) and assuming u = A., we

obtain
00

y(t) =h,^) +g |i j yac(t;Aj) ^(t) dtj Aj ^(t)

'J +£l{£ yac(t;Aj) *k(t> "'I *k(t>

where

= y0<*<
N

y0<V +£ VV *k(t)

a. (A.) 4 / y „(t;A.) 4>.(t) dtk j JQ ac j k

(9)

(10)

Now observe that the family (^ (t), <J>2(t),..., <t>N(t) ) of zero-state
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solutions z. (t) of (7-a) can be identified as the first N members of the

well-known orthonormal set of Laguerre functions [13-14]. Hence °^(A^)

is just the kth Fourier coefficient of the expansion of y _(t;A.) in terms
ac 3

of Laguerre functions. Moreover, since the infinite family of Laguerre

functions is complete [12-13] we have

r00 f N 1 2
j jy^teAj) - E VV Vt} j dt~*° as N"^°° (11)

It follows from (9) and (11) that

y(t) •y (AJ + y (t;A.) - y(t;A4) as N •-«> (12)
o j ac 3 3

Hence the response of the preceding step input model 1 converges to the

measured response y(t;A.) in the mean-square sense as N—+*».

Observe that since the family of Laguerre functions is weighted in

such a way that only the'Immediate past" of the signal y (t;A ) is empha-
ac 3

sized, it is clear that the preceding model can be truncated with a finite

"N" only for systems having a "fading" memory [14]. For such systems, the

Fourier series often converges rapidly so that only a few Laguerre functions

are sufficient. A physical realization of the "step-input canonical model 1"

is shown in Fig. 1.

Example.

Consider the celebrated Hodgkin-Huxley model of the nerve membrane [16].

The experimental data obtained by Hodgkin and Huxley consists of a family

of step inputs u(t) in "membrane potential" of varying amplitudes while

the output y(t) of interest here is the "conductance" of the potassium

2
channel of the nerve membrane. The ac component y (t;A.) of the potassium

ac 3

2 For many biological systems, the step input of varying amplitudes is the
most convenient testing signals. Note that since the physical mechanism of
the nerve membrane is still unknown, the Hodgkin-Huxley model is, by necessity,
a black-box model.
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channel conductance is easily verified to be L2(0,co) and hence our pre

ceding model is applicable. The resonse of the Hodgkin-Huxley model

corresponding to 5different amplitudes (Aj =-20, -40, -60, -80, -100 mV)
of "membrane potential" step inputs are plotted in Figs. 2(a) and (b)

(solid curves) and will be taken as the "measured" response for this example

The response predicted by our model 1 using only 2 Laguerre functions

(N = 2) is shown in Fig. 2(a) (dotted curves). Observe that the approx

imation is already quite acceptable. The predicted response using 4

Laguerre functions (N = 4) as shown in Fig. 2(b) (dotted curves) is vir

tually identical to the measured response.

2-2 Step-Input Canonical Model 2

Another model for simulating the response of nonlinear systems due

to step inputs of arbitrary amplitudes has been given in the form of an

integral equation [17]. By introducing appropriate state variables, this

model can be shown to be equivalent to the following dynamical system:

State Equation:

!X2

i*»j

10 0

0 2 0

0 0 0

Output Equation:

N

- h(u) +£ v
k=l

N

N

Vu) + E Wu) +X
k=l

N

k=l

r
1 !

X2

! I

N

fNl(u)

2fM2(«)

NfNN(u>
J

(13-a)

(13-b)

Where hQ(u) is as defined in Model 1; i.e., hQ(A.) =y (A.), and f (u) is

-8-



obtained by passing a smooth curve through the set of points

wv *£ ^{jf'.cfc'V [£6*e_kt]*} <"-a>
for each amplitude u = A , where

JJI-1

(-l)k(2£)1/2 * (k +m)
B,k 4 —j -f± (14-b)

(k-m)

m=l

m^k

A comparison between the step-input canonical models 1 and 2 shows

that the state equations for model 1 is a linear function of both x and u,

whereas that for model 2 is a nonlinear function of u. On the other hand,

the output equation for model 1 is a nonlinear function in both x and u,

whereas that for model 2 is a linear function of x. In other words, model

1 has a linear memory whereas model 2 has a nonlinear memory. Both models

expand the "ac" component y (t;A.) as a Fourier series of complete ortho-
ac 3

normal functions Laguerre functions for model 1 and a weighted sum of

exponentials for model 2. Consequently the choice of one model over the

other will depend mainly on the nature of y (t;A.): Given a family of
ac 3

y (t;A,), the Fourier series which results in a fewer terms would lead to
ac 3

the simpler model. For digital computer simulation, the sensitivity of

the model 1 toperturbations in the model parameters is not an important

consideration. However, for physical realizations, model 1 is expected

to be more sensitive because it is known that networks for realizing

Laguerre functions are quite sensitive to parameter variations.

III. MODELING THE STEADY-STATE RESPONSE OF NONLINEAR SYSTEMS DRIVEN BY

DC-SUPERIMPOSED SINUSOIDAL INPUTS.

Let y (t; A , A , w ), y (t; A , A , w ),..., y (t; A , A^, w )
S O. 118 0«Z2 S. O-. M M
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denote a family of "M" measured steady-state responses of a nonlinear

device or system to a family of sinusoidal inputs u(t) e'"JjL having ampli

tudes A., A„,...,A , frequencies w., u> ,..., w , and superimposed on top

of a dc bias A , A ,... ,A . By steady-state measurement, we mean that
°1 °2 °M

the response y(t) is recorded only after its transient component has

settled down. Hence, each of the "M" measured steady-state response is

periodic and we assume that it can be approximated by a truncated Fourier

series with N frequency components; namely,
N

vc(t;A« »A ,o) )=a (A ,A ,(•))+ / Ja, (A ,A, ,a> )cos kui.t + b, (A ,A.,a>,)sin k u> t>
s Oj J J 00.33 ^-^l KOjj 3 ko. 33 3 J

(15)
j ~ 1»2,...,M,

where the (2N+1) Fourier coefficients <a ,a,a,....a^, b_, L b i

are identified by the parameters A , A., and w. of the corresponding in-
°j j J

put signal u(t) = A + A cos u t. Our problem is to synthesize a canon-

°j
ical model which is capable of simulating the "M" measured steady-state

responses to within any desired degree of accuracy.

Our first step in synthesizing a model to simulate (15) is to rep

resent the (2N+1) Fourier coefficients a (A , A., ui ), a. (A » A., u).)» ando 0^ j j k o. 3 J
b, (A , A , a) ) by suitable functions passing through the set of M data

points corresponding to the M measurements. This step is strictly a

memoryless operation involving the approximation of a scalar function of

several variables. One could approximate these functions by polynomials [18],

splines [19], or other appropriate functions. The state-of-the-art in the

approximation of functions of several variables is unfortunately still

quite unsatisfactory because the amount of computations and the number of

terms needed in the approximation often turn out to be excessive. However,
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a recent result using section-wise piecewise-linear functions [20] seems

rather promising and an example illustrating this new approximation

approach will be given in Section IV. Regardless of the method chosen,

we will assume in the following discussion that the (2N+1) "Fourier-

coefficinet Functions" a (A ,A, a>), ol (A , A, <o), and 3. (A , A, to), where
o o k O K . o

k=l,2,...,N, have already been found which accurately approximated the

exact Fourier coefficients at the set of M data points; i.e.,

a (A. ,A4, u> ) z, a (A ,A ,u> ) , j « 1,2,...,M
o o. j j 00.33

afc(Ao ,A , a) ) ^ ak(AQ ,A ,toj) , j = 1,2,...,M

3k(aQ ,A , w) ^ bfc(Ao .A^wj) , j =1,2,...,M

(16-a)

(16-b)

(16-c)

The following canonical model will be formulated in terms of these

Fourier-Coefficient Functions.

Sinusoidal-Input Canonical Model

State Equation:

X1 = X2

Ve/i-V »0<£1<< 1

x3 ="§) x3 +(xj U
x, = sgn (u - x^)

*5 ° 2e~ {(1 +e22>[r(x4) " X51 +̂ -e22>'lr(x/.)-x
*6 "2s {(1 +^2)[*<«3)-*61 +(1 -£22)' |r(

(17-a)

(17-b)

(17-c)

(17-d)

4' 5
|},o< y<1 (17-e)

u-x3)-x6|j ,0<e2« 1(17-f)

)

7 2x5 "8

> IT

8 2x5 x7
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Output Equation:

y=ao(VV2x7)+ f^VVVlx^VV* VVVlx^ Uk-l(x8}} (1j-i}
where E and e are small parameters for controlling the rate of transient

decay, sgn(«) denotes the sigmum function,

sgn(x) = 1, x > 0

= 0, x = 0

= -1, x < 0

r(«) denotes the unit ramp function

r(x) = x, x 21 0

= 0, x < 0

and where T (•) and U,(0 denote the kth Chebyshev polynomials of the

first and second kind, respectively [21].

Theorem 2

For each sinusoidal input u(t)=A + A, cos u t, with dc component
o j j

A , amplitude A^, and frequency «., j=l,2,...,M, the solution y(t) of
°J j j 3
the sinusoidal-input canonical model under the initial state

[X]L(0), x2(0),...,x8(0)]T =[e1,0,0,0,p,0,0,l]T
tends to a steady-state response which differs from the measured response

3
y (t; A ,A_,, u) ) by at most a phase shift 6 as t-**» and e_—*-Q .
s o. j j *

Proof. Let us first observe that (17-a) and (17-b) are uncoupled from the

remaining equations and can therefore be solved separately; namely,

xx(t) =t+ex e"t/£l (18-a)

3 The initial condition e for x is assigned equal to the parameter de
fined in (17-b), whereas the initial condition p for x can be assigned
any positive constant. Observe that since our objective is to model the
steady state behavior of the system, the presence of a phase-shift 6 is
of no concern to us.
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x2(t) -1-e"t/el (18-b)

Substituting (18-a) and (18-b) into (17-c), we obtain a linear time-

varying equation

x3=-{Tt1^xix3+{^^ru(t)} (19)
whose zero-state solution is given by

X3Ht777^}{/u(T)dt}
Now observe that (20) implies

x3(t)- ^u(t) ,as t—• » (21)

where u(t) denotes the average value of u(t). Now for u(t) = A + A.

°j J
cos co.t, (21) implies

x0(t) >-A , as t—-•» (22)

3 • °J
and hence

u(t) - x3(t)- »-A cos to t, as t ••«> (23)

Substituting (23) into (17-d), we found that the zero-state response x,(t)

tends to a triangular waveform having the same fundamental frequency ^,

IT

and a peak value equal to -r-p ; i.e.,
j

max x4(t) —• j^- ,as t—•« (24)

Now (17-e) can be recast into the simplified form

x5 = f(r(x4) - x5) (25)

j

4 Equations (17-a), (17-b), and (17-c) play the role here of a dynamical
system which is capable of extracting the average value u(t) = x (t) of
the input signal u(t), as t—*-<*>. Any other system having a similar
capability can therefore be substituted in place of (17-a), (17-b) and
(17-c).
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where

f(z) 4 27" {(1 +e22) z+(1 "e22) '*'} (26)
and 0 < e < 1. Observe that the time function r(x,(t)) represents a

IT
rectified waveform having the same peak value -z— as x,(t). It

follows from Proposition 2 of [17] that

x5(t) *^~ ,as t—•» and e2 >-0 (27)
j

Next observe that (17-f) can be recast as

x6 = f(r(u - x3) - x6) (28)

where f(«) is as defined in (26). It follows from (23) and Proposition 2

of [17] that the zero-state response

x,(t) ^A. , as t—+*> and e • O (29)
03 I

Finally, if we substitute the solution x_(t) from (17-e) into (17-g)

and (17-h), we would obtain a pair of linear time-varying equations whose

solution under the initial state x (0) = 0 and xQ(0) = 1 is readily seen to
7 o

be given by

x?(t) -sinjy 2k",„s dx J, (30a)

x8(t)-cos<r 0„ /TA dx^ (30b)

"0

Equations (30a) and (30b) can be recast into the following equivalent form:

5 Observe that (17-d) and (17-d) play the role here of a dynamical system
which is capable of extracting the frequency to = ir/2x5(t) of the
input signal u(t), as t—•-«. Any other system having a similar capability
can therefore be substituted in place of (17-d) and (17-e). The ramp
function r(.) introduced in (25) has the desirable effect of speeding
up the transient decay and represents therefore an improvement over
the "frequency detector" given in [17]. Observe that since the expression
tt/2x_ occurs as one of the arguments in (17-i), we must assume the
initial condition x (o) = P >0.
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x?(t) =sin juKt - 6 - f [«. - 2x7r(T) ]dx L (31-a)
fcl ' 5'

x8(t) -cos jy -e-f l«.- 2^y ]dT } (31"b)
where

9 i / >, - „ ". x V dx (32)r ^-^)}
and where t. is chosen sufficiently large so that the integrand in (31-a)

and (31-b) are negligible for all t >_t.. Given any allowable error,

such a t. can always be found in view of (27). Substituting (27) into

(31) and (32), we obtain

x (t) fc-sin (to t - 6), as t •«> and e *-0 (33-a)

xQ(t) *-cos (<o,t - 6), as t •» and e0 K) (33-b)
o 3 2

Substituting (22), (27), (29), (33-a) and (33-b) into (17-i), and

making use of the trigonometric identity T (cos tot) = cos k tot and sin

tot U ..(cos tot) = sin k tot [21], we obtain

y(t)=aQ(Ao »A ,to )+jp \\^A0 »A4» "J cos k(Wjt-e) +6k(AQ ,A ,to )sin k(to t-6)L

as t *-°° and e •O (34)

With the exception of the phase-shift 6, (34) can now be identified with the

measured steady state response y (t;A »A.,to) defined in (15).

IV. MODELING THE STEADY-STATE RESPONSE OF NONLINEAR SYSTEMS DRIVEN

BY PERIODIC INPUTS.

Let y (t; A ,A. ,...,A B ,...,B ) , j - 1,2,...,M denote a
s o. l. n., l. n.

j 3 j J 3
family of "M" measured steady-state response of a nonlinear device or

system to a family of periodic inputs u(t) e (JL characterized by (2n+l)
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Fourier coefficients A , A ,...,A , B „..,B and a fixed frequency
3 j nj li nj

to . Let the corresponding steady-state response be represented by a trun

cated Fourier series with N frequency components; namely,

yR(t;Ao »Ai ••••»A„ »Bi >-->K ) = aJK »Ai >-"K »Bi K >s o. 1 n. i n. o o. 1. n. 1. n.
3 3 j j j jj 3j J

N

ML lk °J X3 nj *j nj
tot I ,

where the (2N +1) "output" Fourier coefficients JA , A ,...,A^, B , B ,....
B > are identified by the corresponding "input" Fourier coefficients

{A ,A ,...,A^ ,B ,...,B I of the periodic input signal
°j j j j NjJ
u(t£ =A + y» \ \ cos k to t +B sin k to t \ , j =1,2,... ,M (36)

Our problem in this section is to synthesize a canonical model which

is capable of simulating the "M" measured steady-state responses to within

any desired degree of accuracy. Just as in the sinusoidal input case, our

first step is to approximate the (2N+1) "output" Fourier coefficients as

(2N+1) functions <*_(.)» a.(.),..., a„(.), R (•),..., B__(.) of the (2n+l)
0 1 N 1 N

+ 2rf i a (a ,A. ,... ,A ,B_ , ... ,B ) cos k wt + b, (A ,A, ,..., A ,B_ ,...,
ML lk °j Xj nj Xj nj k °j Xj nj Xj

Bn ) sin ktotj. , j =1,2,...,M. (35)

"4-._..*-"input Fourier coefficients; namely,

a (A ,A >---»A ,B ,...,B ) ^ a (A ,A ,..,A ,B ,...,B ) , j=l,2,...,M0 0j Ij nd lj nj 0 Qj lj n5 ld nj

a-(A ,A A ,B ,...,B ) ^ a (A ,A ,.. ,A ,B ,... ,B ) , j=l,2,...,M
1 o. 1. n. l n. 1 o. 1. n. 1. n.

jj Jj J jj jj J

: : : (37)

a (A ,A ,...,A ,B ,...,B ) ^ ^(^ »Ai >«»'»A »Bi >-«*»B )» j=l,2,...,M

3, (A ,A , ...,A ,B B ) z. t>-(A ,A. ,... ,A ,B ,... ,B ), j=l,2,...,M
1 o. 1. n. 1. n. — 1 1. 1. n. 1. n.

jj jj j JJ jj J
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Vao ,A1 An ,B1 "••»Bj } 4 bN(Ao ,A1 ,,,,,An ,B1 ,,,,,Bn )y JBl»2f->M
jj JJ n jj jj j

Again, these "functions of several variables" may be represented by various

basis functions [18-20] and we will simply assume here that this has been

done. The following canonical model will therefore be formulated in terms

of these "output" Fourier-coefficient functions:

Periodic Input Canonical Model

State Equation:

xx = x2 (38-a)

*2 «7 (1 - x2), 0< e« i (38-b)

x3 = wxA (38-c)

x^ = -co x (38-d)

P0 = -(x2/xi>P0 + <1/x1>u (38-e)

Px•- -(x2/x1)p1 + (2x4/X]L)u (38-f)

P2 = -(x2/X;L)p2 + (2T2(x4)/Xl)u (38-g)

PN = -(x2/xl)pN + (2TN(x4)/xl)j (38"h)
q± » l(x2/Xl) q± + (2 x3/X;L)u (38-i)

q2 - ~(x2/xl)q2 + (2 x3 U^x^/x^u (38-j)

qN « l(x2/x1)qH + (2x3 U^Cx^/x^u (38-k)

Output Equation:

v = ao^po,pi*' *' ,pN,ql V

+£ {Vw••••VV '••'V Tk(x4} o8-1)
k=l

+ ek<Po»pi"--'pN'qi,,*,,qN) X3 "k-l^Vj

-17-



where ^ is the fixed frequency of the periodic input signals, e is a

small parameter for controlling the rate of transient decays, and Tk(*)

and U ,(•) denote as before the kth Chebyshev polynomials of the first

and second kind, respectively.

Theorem 3

For each oeriodic input u(t) =a + y <a cos ktot + b sin ktot I,
f°J k=l l J 1j „ Jwith "input" Fourier coefficients <a ,a. ,...,a ,b. ,...,b > , j-1,2,...,

M, the solution y(t) of the periodic input canonical model under the initial

6
state

x(0) = [e ,0, 0, 1]T, p(0) =0 , q(0) =0

tends to the measured steady-state response

y„(t; A ,A. ,...,A ,B ,...,B ), as t—^» .
°j ^j nj Xj ^

Proof. Let us first observe that the solution of (38-a) and (38-b) have

already been found earlier in (18-a) and (18-b). The solutions of (38-c)

and (38-d) with initial state x«(0) = 0 and x,(0) = 1 are given respectively

by

x (t) = sin to t (39-a)

x,(t) = cos to t (39-b)

Substituting (18-a) and (18-b) for x and x in (38-c), we obtain the same

"average-value detection" dynamical system as given in (17-c) and hence

pft(t) •A , as t—•*« (40)0 Qj

Now observe that each of the remaining equations (38-c) and (38-k) are also

6 The initial condition e for x is assigned equal to the parameter de
fined in (38-a). Observe that unlike in Theorem 2, no phase-shift in
the steady-state response is involved here because the frequency to is
fixed in this model. The phase shift occuring in Theorem 2 comes directly
from the "frequency detection" state equations (17-d) and (17-e).
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identical in form as (17-c) provided we replace u(t) by a new input

up(t) 4 2T±(x4(t))u(t) ,i=l,2,...,N (41-a)

for (38-e) - (38-h), where T.,(x,) A x#,
1 4 — 4

and another input

uq(t) 4 2x3(t) U±_1(x4(t))u(t) ,i- 1,2,...,N (41-b)

for (38-i) - (38-k), where UQ(x4) 4 1.

Substituting (36), (39-a), and (39-b) for u(t), x3(t) and x4(t) in (41-a)
and (41-b), respectively, we obtain

up(t) =2(cos i to t) jAq +£ [\ cos k a) t +Ak sin k wt] 1
^ j k=i J J J

cos iwt +A ta [cos(k+i)o)t+cos(k-i)o)t]+Bk [sin(k+i)tot+sin (k-i)tot] I (42-a)
j k=1 I J j J

uq(t) =2(sin i tot) 1Aq +j* [A^ cos kto t +B sin k(ot]|
j k=l J J

itot +y ) A^ [sin(k+i)tot-sin(k-i)tot] +Bk [cos(k-i)tot-cos(kfi)tot]l
k=1 I j j J

«2A
o

= 2A sin

°j

Taking the time average of u (t) and u (t), we obtain
P q

u (t) =» A , i = 1,2,...,N (43-a)
P j
u (t) « B± ,i= 1,2,...,N (43-b)

j

It follows that each of the average-value detection dynamical systems given

by (38-f) - (38-k) settles to a constant equal to the corresponding Fourier

coefficients as t >«; namely;

p.(t) ^A , as t —^oo, i = 1,2,...,N (44-a)
j

q±(t) ^B± ,as t •«, i= 1,2,... ,N (44-b)

-19-
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Substituting (39), (40) and (44) into the output equation (38-1), we

obtain

y(t) =a0(Ao,A1 ,...,AN ,B1 ,...,BN )
j j J J J

+£{vvv--VY''',VC0Skut
k=i J J

+8V(A ,A. ,...,A^ ,B ,...,B )sin ktotj as t— ~
K °j Xj 3 3.3 j

(45)

The periodic-input canonical model can be represented in a block

diagram form consisting of a memory and a memoryless subsystem as shown

in Fig.3(a). The memory subsystem is characterized by state equations

(38-a) - (38-b) and can be realized by the circuit diagram shown in

Fig.3(b), where the boxes denoted by 2T.(-) and 2 U (•) are single-input

single-output memoryless systems characterized by appropriate Chebyshev

nonlinear transfer functions. The box in the lower left-hand corner is

a sinusoidal oscillator for simulating (38-c) and (38-d).

To illustrate the application of the periodic-input canonical model,

we will present next an example using a hypothetical system in order to

avoid the time-consuming process of taking actual measurements. In other

words, our "measured" data will be generated by simply solving the system

equations using a computer.

Example.

Consider a 4th order dynamical system characterized as follows:

State Equation:

x = -2x + 2x2 u (46-a)

x = -x + u (46-b)

x = -4x + 2x u2 (46-c)
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x. = -2x. + u
4 4

Output Equation:

2 2y = x1 + x2 + x3 + x4

For our input testing signals, we choose

u(t) « c sin t + c sin 3 t

(46-d)

(46-e)

(47)

where c^ and c3 each ranges over the integers 1,2,...,5. Using our no

tation in (36), we have M=25, A, = 0 and B = 0 for all k except when
j j

k = 1 or 3; i.e., (B1 ,B3 )= (I,J), I,J = 1,2,...,5. The corresponding
j j

25 steady-state responses as simulated by the computer (with initial state

x(o) = 0) are found to be relatively smooth and can be represented in a

truncated Fourier series with N = 12; i.e.,

12

ys(t;Bl 'B3 )=a
S j Jj

= aQ(I,J)

0(B1/B3.> +£K(B1.'B3.)C°S kttt +bk.(Bl/B3.)sin kwt)
j J k=1l j J J 3 5 3 )

+ V i3^ <I»J> Cos kut +b, (I,J) sin kwtl , (48]
k=l l^J ^ J

where I,J = 1,2,...,5.

The 25 sets of "output" Fourier coefficients are tabulated in Table 1

where each block of data is arranged as follows:

aQ (I,J)

ax (I,J) bjtt.J)
•

•

a12 (I,J)

•

•

b12 (I,J)

Each Fourier coefficient is a function of two variables, namely

B and B . To approximate these functions, we have chosen the section-
j Jj

-21-



wise piecewise-linear representation [20], This representation is chosen

because, unlike other methods of representation such as polynomial

or splines , the coefficients associated with this new representation

can be easily computed via explicit formulas requiring no derivative

information. Using this representation, the output Fourier coefficient

functions a (q ,q ), ai/ql,q3^' and \^ql,q3^ assume the following

explicit section-wise piecewise-linear form:

ao(vq3) =E £ Yo(i>J> ♦J(v*i(q3) (49~a)
i=i j=a
5 5

«k(q1,q3) =2 S Vi,j) Vql} *i (q3}' k=s1'2"--'12 (49"b)
1=1 j=l
5 5

6k(q1,q3) =J] S V±,j) *J (ql} *i (q3}' k=1»2"-"12 <49~c)
i=l j=l

where ^(x) 4 1, <|>2(x) 4 x, 4>3(x) 4 Ix-21 ,4>4(x) 4 Ix-31 ,and 4>5(x) 4

|x—4 |. Observe that each Fourier coefficient function in (49) is in

turn characterized by 25 coefficients denoted by Y0(i,j) for (49-a),

Yk(i,j) for (49-b), and 6 (i,j) for (49-c). These coefficients have been

computed using the explicit formulas given in [20] and are tabulated in

Table 2. The first block k = 0 gives the coefficients YQ(i,j) as i

and j each ranges over 1,2,...,5. Hence YQ(l»j) Is located at the ith

row and jth column in the k = 0 block. Each of the remaining 12 blocks

is divided into two parts, the left side gives the coefficients Y,(i,j)

while the right side gives the coefficients 6, (i,j).

The periodic-input canonical model for this hypothetical example

can now be expressed in terms of the output Fourier coefficient functions

given in (49) as follow:
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State Equation;

*± = x2 (50-a)

x2 =| (l-x2) (50-b)
x3 = x4 (50-c)

x4 = -x3 (50-d)

4X = -(x2/x1) qx + (2x3/x1)u (50-e)

q3 = -(x2/Xl)q3 + (2x3 U2(x4)/Xl)u (50-f)

Output Equation:

*=VV^ +E{vvV W +VvV x3uk-i(v} (]°-*>
k«l

The preceding model guarantees that the steady-state response y(t)

will tend to the "computer simulated" measured response so long as the

input u(t) coincides with one of the 25 testing signals. By continuity

argument, however, we can expect the steady state response to other inputs

u(t) should also be close to the measured response so long as the Fourier

coefficients of u(t) do not differ significantly from those characterizing

the 25 testing signals. To verify this prediction, we simulated (50) on

a computer with the initial state

[Xl(0), x2<0), x3(0), x4(0), qi(0), q3(0)]T =[e,0,0,l,0,0]T
for the two input signals u.(t) = 3 sin t + 2 sin 3t and u (t) =1.5 sin t

+3.5 sin 3t, respectively. The solutions in both cases settled quickly

into the steady state and the corresponding waveforms recorded during the

10th cycle are shown as dotted curves in Figs.4(a) and (b), respectively.

The corresponding steady-state response simulated from the actual system

given by (4b) is also shown (solid curves) in Fig.4 for comparison purposes.

Observe that the agreement is excellent in Fig.4(a) since the input is a
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member of the original testing signal (B ,B ) = (3,2). On the other hand,

the input signal (B-,*^) = (1-5, 3.5) used in Fig.4(b) is not one of the

original testing signals but the predicted response remains close to the

actual response since the Fourier coefficients (1.5, 3.5) of the input is

still relatively close to the four coefficients (1.0, 3.0), (1.0, 4.0),

(2.0, 3.0), and (2.0, 4.0) belonging to the original set of testing

signals.

V. CONCLUDING REMARKS

In contrast to the sinusoidal input in Section III where we vary both

the amplitude and frequency, only the Fourier coefficients of the periodic

input waveform are varied in Section IV; i.e., only the shape of the input

waveform is changed while the frequency to remains fixed. Our main reason

for considering non-sinusoidal periodic testing signals is that there exist

many low-impedance devices wherein the input voltage source cannot be con

nected directly across the device without destroying or damaging it. For

example, the operation of most arc-discharge devices, such as fluorescent

lamps, requires that a ballast be connected in series with any input vol

tage source [22]. On such occasions, even if the input voltage waveform

is sinusoidal, the associated voltage waveform across the device being

modeled is still far from being sinusoidal, and in fact will change its

shape as we vary either the amplitude or the frequency of the input sinu

soidal voltage source. Hence even though the input waveform is sinusoidal,

the actual input across the device is not.

To simplify our problem, we have assumed apriori in Section IV that

the frequency m of the input waveform is fixed. If we also vary the fre

quency, then to must be added as an extra parameter as in Section III.
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In this case, it would be necessary to conceive a dynamical system which

is capable of detecting the frequency to of any periodic input u(t) as

t ••*. We have not been able to devise such a system without at least

restricting u(t) to some more tractable albeit still fairly general sub

classes of periodic signals.
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FIGURE CAPTIONS

Fig. 1. A physical realization of the step-input canonical model 1.

Fig. 2. The predicted potassium conductance (in dotted curves) due to

5 "membrane-potential" step inputs of amplitudes -20, -40, -60,

-80, and -100 mV is shown in (a) for n = 2 and in (b) for n = 4.

The solid curves in each case give the corresponding "measured"

response obtained by simulating the Hodgin-Huxley model.

Fig. 3. The Periodic-Input Canonical Model; (a) block diagram (b) circuit

realization of the memory subsystem. The circle ® denotes multi

plication and the box labelled <Jk denotes a time-averaging system.

Fig. 4. The steady-state response predicted by the model (dotted curve)

and the corresponding response (solid curve) simulated from the

actual system due to two periodic inputs: (a) u(t) = 3 sin t +

2 sin 3t and (b) u(t) = 1.5 sin t + 3.5 sin 3t.
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TABLF' 1. Output Fourier Coofticien t:i for the Hypothetic! 1 Exampl e.

J» 1 J" 2 .. J« 3 J- 4 J- 5

1 = 1 0.12E 01 CO 0.466 01 0.0 CUE 02 0.0 0.426 02 0.0 0.9SE 02 0.0

C95E-02 -C.20E-02 0.26E-01 0.546-•03 0.56E-C1 C65E--02 0.14E 00 0.19E-•01 0.16c 00 0.42E-02

0.61E 00 -0.71E-01 0.25E 01 0.17E 01 0.72E 01 0.61E 01 0.16E 02 0.1SE 02 0.326 02 0.296 02
-0.36E-02 -C.13E-01 -0.35E-01 -0.72E-•01 -0.13E 00 -0.23E OC -0.34E 00 -0.54E 00 -0.71E 00 -O.llE 01
-0.16E-01 -C.78E 00 -0.876 00 -0.27E 01 -C35E CI -C71F 01 -0.37E 01 -0.16E 02 -0.18E 02 -0.29E 02

0.126-02 0.986-02 O.UE-Ol -0.49E-•02 C19E-01 -0.88E--01 -0.30E--C2 -0.33E 00 -O.IOE 00 -0.85E 00

0.60E-01 -0.27E 00 0.17E-OI -0.226 01 -C.97E CO -0.84E 01 -0.43E 01 -0.23E 02 -0.12E 02 -0.54E 02
-C24E-02 0.16E-01 0.15E-02 0.80E-•01 0.40E-CI C28E 00 0.16E 00 0.74E 00 0.41E 00 0.17E CI
-C19E-01 C24E-01 0.326-01 -0.88E-•01 C.32F 00 -0.58c 00 0.10E 01 -0.17E 01 0.22E 01 -0.36E 01
-0.5SE-03 C77E-02 -0.83E-02 0.48E-•01 -C29E-01 0.18E 00 -0.65E--01 0.47E 00 -0.12E 00 O.IOE 01
-0.256-01 C.30E-01 -0.216 00 0.22E 00 -0.70E 00 0.76E 00 -0.16E 01 0.18E 01 -0.32E 01 0.386 01

0.15E-02 C39E-01 0.83E-02 0.186-•01 C23F-01 0.68E-•01 0.46E-C1 0.20F 00 0.666--01 0.48F 00

-C40E-02 C.72E-02 -0.756-01 0.73E--01 -C.39E 00 0.346 00 -0.12E 01 O.llfc 01 -0.31E 01 0.26E 01

1 = 2 0.S4E 01 CO 0.12E 02 0.0 C.28E C2 0.0 0.63E 02 0.0 0.13E 03 0.0

0.976-02 -C.156-01 0.40E-01 -0.866-•02 0.136 CO 0.856--02 0.21E 00 0.45E-•01 0.33E 00 0.80F-01
0.88E 00 -C.16E 01 0.49E 01 0.256 01 0.14E 02 O.UE 02 0.30E 02 0.28E 02 0.S8E 02 0.55C 02

-0.18E-01 -C27E-01 -0.90E-01 -0.17E 00 -0.28E 00 -0.46E 00 -0.O5E 00 -O.IOE 01 -0.13E 01 -0.19c 01

-0.57E 00 -C28E 01 -0.27E 01 -0.78E 01 -C.83E 01 -0.17E 02 -0.19E 02 -0.34E 02 -0.37E 02 -0.60E 02
0.706-02 0.56E-01 C33E-01 0.60E-•01 C86E-C1 -0.58E--02 0.15E 00 -0.21E 00 0.18E 00 -0.68E 00

-0.34E-01 -C40E 00 0.39E-02 -0.38E 01 -C.72E CO -0.13E 02 -C36E 01 -0.32E 02 -O.llE 02 -0.68E 02

-0.71E-04 C45E-01 -0.33E-02 0.18E 00 0.28E-C1 0.50E 00 0.15E 00 0.11E 01 0.426 00 0.236 01

-0.12E 00 C.19E 00 -0.29E 00 0.34E 00 -C17E CO -C54E-•01 0.566 00 -0.156 01 0.236 01 -0.47E 01

C58E-02 C.18E-01 0.95E-03 C83E-•01 -C30E-01 0.286 00 -0.10E 00 0.69E 00 -0.22E 00 O.ISE 01

-0.46E-01 C64E-01 -0.40E 00 0.44E 00 -0.14E 01 0.15E 01 -0.33E 01 0.35E 01 -0.65E 01 0.72E 01

0.67E-02 0.12E-O1 0.27E-01 0.336-•01 C72E-01 0.91E-•01 O.ISE 00 0.23E 00 0.2SE 00 O.SOE 00

0.61E-04 C.156-01 -0.626-01 0.906-•01 -0.36E CO 0.38E 00 -0.12E 01 O.llE 01 -0.32E 01 0.27E 01

1 = 3 0.18E 02 0.0 0.28E 02 0.0 0.53E 02 o:o 0.10E 03 0.0 0.18E 03 0.0

-0.12E-01 -0.49E-01 0.636-01 -0.33E-•01 C.14E CO -0.41E-•02 0.2SE 00 0.44E--01 0.39E 00 0.86E-01

-0.18E 01 -C74E 01 0.67E 01 0.126 01 0.20E 02 0.16E 02 0.44E 02 0.41E 02 0.84E 02 0.81E 02

-C34E-01 -0.22E-01 -0.19E 00 -0.32E 00 -C50E CO '-0.81E 00 -0.10E 01 -0.16E 01 -0.20E 01 -0.30E 01

-0.22E 01 -0.696 01 -0.67E 01 -0.18E 02 -0.16E 02 -0.35E 02 -0.33E 02 -0.62E 02 -0.62E 02 -O.IOE 03

C3CE-01 C.18E 00 0.806-01 0.24E 00 0.18E 00 0.21E 00 0.34E 00 0.38E--01 0.S2E 00 -0.43E 00

-0.37E 00 -0.33E-01 -0.406 00 -0.53E 01 -C.886 CO -0.18E 02 -0.34E 01 -0.44E 02 -O.llE 02 -0.B9E 02

0.15E-01 0.94E-01 0.30E-02 0.3SE 00 0.166-01 0.86E OC CUE 00 0.18E 01 0.40E 00 0.336 01

-0.3CE 00 0.49E 00 -0.946 00 0.13E 01 -C14E 01 0.17E 01 -0.13E 01 0.82E 00 0.12E 00 -0.23E CI

0.23E-01 C38E-01 C.35E-01 0.13E 00 0.146-01 0.39E 00 -0.73E--01 0.94E 00 -0.22E 00 0.19E 01

-C59E-01 CUE 00 -0.53S 00 0.68E 00 -C.20E CI 0.22E 01 -0.49E 01 0.54E 01 -0.98E 01 O.llE 02

0.19E-01 0.30E-01 0.58E-01 0.63E-•01 0.14E CO 0.14E OC 0.2SE 00 0.30E 00 0.49E 00 0.S8E 00

0.1CE-01 C.33E-01 -0.40E-01 0.12E 00 -0.31E 00 0.43E 00 -0.12E 01 0.12E 01 -0.32E 01 0.28E 01

1 = <» C.47E 02 CO 0.61E 02 0.0 C.96E C2 0.0 0.16E 03 0.0 0.26E 03 0.0

-0.15E 00 -O.ISE 00 -0.39E-01 -0.12E 00 C78E-CI -0.73E--01 0.24E 00 -0.32E--01 0.40E OC 0.37E-01

-C.13F C2 -C.24E 02 0.426 01 -0.64E 01 0.26E 02 0.17E 02 0.59E 02 0.54E 02 O.llE 03 O.llE T3

-C.2tE-Cl C.66E-01 -C.34E 00 -0.50E 00 -C.81E CO -0.13E 01 -0.16E 01 -C25E 01 -0.28E 01 -0.443 :i :

-0.56E 01 -C.13E 02 -0.14E 02 -0.35E 02 -0.296 02 -0.64E 02 -0.54E 02 -O.llE 03 -0.95E 02 -0.17E 03

C.87E-01 0.41E 00 0.17E 00 0.63E 00 0.33E CO 0.70c OC 0.5*6 00 0.59E 00 0.96E 00 C.28E 00

-CUE 01 0.13E 01 -0.156 01 -0.58E 01 -0.20E CI -0.246 02 -0.43E 01 -0.S8E 02 -CUE 02 -0.12E 03

C57E-QI C17E 00 C39E-01 0.57E 00 C.29E-C1 0.146 01 0.856--01 0.27E 01 0.29E 00 0.47E 01

-0.S5E 00 0.95E 00 -C19E 01 0.29E 01 -0.35E CI C47E 01 -C45E CI 0.53E 01 -0.43c 01 0.40E 01

0.59E-01 C76E-01 0.10E 00 0.19E 00 CUE CO 0.51E OC 0.48E--01 0.12c 01 -0.80E--01 0.246 CI

-C5eE-01 C.17E 00 -0.74E 00 0.94E 00 -0.266 CI 0.30E 01 -C67E 01 0.73E 01 -0.13E 0< 0.15E 02

C42E-01 C.666-01 0.11E 00 0.12E 00 C.24E CO 0.22E OC 0.47E 00 0.41E 00 0.82E 00 0.75E 00

0.3CE-01 C67E-01 -0.17E-02 0.18E 00 -C.246 CO 0.546 OC -0.11E 01 0.14E 01 -0.28E 01 0.29E 01

1 = 5 0.1CE 03 0.0 0.126 03 0.0 0.176 03 0.0 0.25E 03 0.0 0.39E 03 0.0

-0.52E 00 -C.37E 00 -0.296 00 -0.30E 00 -C83E-01 -0.22E OC -0.28E -01 -O.llE 00 O.IOE 01 0.38E-01

-0.416 02 -C.59E 02 -0.91E 01 -0.28c 02 C25c C2 ClCe C2 0.73E C2 0.62E 02 0.14E 03 0.136 03

0.63E-01 0.3SE 00 -0.48E 00 -0.66E 00 -C12E 01 -0.19E 01 -0.24E 01 -0.36E 01 -0.42E 01 -0.62c 01

-0.116 02 -C.20E 02 -0.26E 02 -0.61E 02 -C.406 C2 -O.llfc C3 -C.85E C2 -0.176 03 -0.14E 03 -0.26F C3

0.20E 0C C.79E 00 0.33E 00 0.13E 01 0.566 CO 0.16E 01 0.98E 00 0.16E 01 0.15E 01 0.13E 01

-0.24E 01 C.40E 01 -0.36E 01 -0.44E 01 -C.46E CI -0.286 02 -0.72E 01 -0.72E 02 -0.14E 02 -0.14E 03

C14E CO C.27E 00 0.13E 00 0.866 00 C87C-C1 0.2CE 01 0.15E 00 0.39E CI 0.28E 00 0.66F o;

-0.86E 00 C.16E 01 -0.32E 01 0.50E 01 -C63E CI 0.916 01 -0.90E 01 0.13E 02 -O.llE 02 0.146 02

0.12E 00 0.146 00 0.21E 00 0.28E 00 0.27E CO 0.68E CC 0.20E 00 0.15E 01 0.16E 00 0.29E 01

-0.35S-01 0.26E 00 -0.86E 00 0.126 01 -C.33E 01 0.406 CI -0.84E 01 0.936 01 -0.16E 02 0.18E 02

C.83E-01 C.13E 00 0.186 00 0.20E 00 C.386 CO 0.34E OC 0.64E CO 0.58c CO 0.12E 01 O.llE 01

0.666-01 0.13E 00 0.61E-01 0.27E 00 -C59E-C1 C77E 00 -0.81E 00 0.17E 01 -0.25E 01 0.346 01
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TABl.r ?. Co.-Tridents Character i-.iiiR the Outout !"ouri*r Coefficient Function*).

*

k = 0

Y0(i,3>
0.12E 01
C54E CI

0.18E C2
0.47E 02

0.10E 03

0.466 01

0.12E 02

0.286 02
C61E 02

0.12E 03

0.166 02

0.28E 02

0.53E 02

0.96E 02

0.17E 03

0.426 02

0.63E 02
0.1CE 03

CUE 03
0.2SE 03

0.95E 02
0.13E 03

C18E 03
0.26E 03
0.396 03

vl(i

k = 1 0.43E 01
-0.98E OC

0.17E-01
0.24E 00

-O.llE 01

-0.12E 01
0.296 00

C49E-02
-0.656-01

C.28E 00

C54E-01
-CllE-Ol
-0.266-01

0.266-01

-0.266-01

-C26E-01
-C45E-02

0.16E-01

-0.94E-02

-0.92E-02

-O.IOE 01
0.25E 00

-C7OE-02
-0.52E-01

0.27E 00

0.606 00
-O.llE 00
0.826-02

-0.45E-01
-0.12E-01

-C21E 00
0.436-01

-0.466-04

0.146-01

0.78E-02

0.28E-01
-0.90E-02
-C12E-02

-0.37E-02
-0.68E-02

-o.ssr-oi

0.64E-02

-0.15E-02

-C48E-02
0.896-02

-0.90E-01
0.19E-01

-0.71E-0J
0.16E-01

-0.66E-02

Y 2^i
k = 2

.3>»*2Ci,j)
0.45E 02

-0.126 02
0.33E 01

0.21E 01
0.316 01

-0.336 02
O.llE 02

-C22E-01

O.llE 01
0.18E 01

-0.696 00

0.<t<«c 00
-0.28E 00

-0.286 00

-0.12E 00

-0.43E 01
0.1«.E 01

-0.30E 00

-0.24E 00

-0.17E 00

-0.68E 01
0.22E 01

-0.32E 00

-0.78E-01

-0.46E 00

0.60C 02

-0.14E 02
0.19E 01

0.20E 01
0.23C 01

-0.39E 0?
0.12E 02

0.48E 00
0.12E 01

0.19E 01

-0.17E 01

0.60E 00

-0.17E 00
-0.19E 00

-0.16E 00

-0.45E 01
0.12E 01

-0.19E 00

-0.13E 00
-0.46E 00

-O.llE 02
0.236 01

-0.16E 00

-C22E 00
-0.92E-01

T3(i

k = 3

.J).*3<iO>
-0.32E OC
0.306 00

-0.21E-01
O.ISE OC

-0.146 CO

0.54E 00

-C26E 00
-C18E-01

-C74E-01

-0.27E-01

C4CE-01
-0.24E-01

0.42E-02

C17E-02
-0.80E-02

0.30E-01
-C25E-01

0.39E-02

O.lOE-01
-C59E-02

0.86E-01

-0.55E-01

-0.17E-02
-0.51E-01

C37E-01

-0.666 00
0.456 00

-0.43E-01

-0.47E-CI

-0.62E-01

0.826 00

-0.39E 00

-0.21E-01
-C40E-01

-0.66E-01

C88E-01
-C4SE-01
0.41E-02

0.48E-02

-0.16E-01

0.63E-01

-C47E-01
0.41E-02

0.14E-02

0.63E-02

0.16E 00
-0.78E-01

0.17E-02

-0.40E-03

C39E-02

1 „<i

k = 1 0.26E CI
0.8CE CI

0.13E 00

0.77E CO
-C12E 01

0.13E 02
-C77E 01

-0.85E 00
-0.15E 01
-0.16E 01

0.36E 00
-0.605 00

0.266-01

-C60E-02

-O.llE 00

-0.22E 00
-0.77E 00

0.13E-01

-0.69E-01
0.87E-01

-0.58E 00
-0.105 01

-C70E-01
-0.16E 00

0.28E 00

-0.31E 01

0.22E C2
-0.16E 01
-0.52E 00
-0.22E 01

0.19E 02
-O.ISE 02

-C53E 00
-0.15E 01
-0.19E 01

-0.23E 00

-0.13E 01

0.14E 00

O.ISE 00

0.80E-02

0.12E 01

-0.24E 01
0.14E 00
O.llE 00

-0.77E-01

0.746 00

-0.29E 01
O.ISE 00

-O.llE 00
0.531 00

Y s(i
k = 5

,j),«5(i,j)
0.74E-CI

-0.13E 00
-C81E-02
-C93E-C1

C22E-C1

-0.12E 00

0.83E-O1
C13E-01

C35E-01
C50E-02

-CllE-Ol

C69E-02
0.26E-03

-C21E-02

0.55E-02

-0.60E-02
0.94E-02
0.54E-03
0.23E-02
0.286-02

0.886-01

-C73E-02

-0.22E-02
C14E-01

-C26E-01

-0.336 CO

-0.41E 00
0.356-01

-0.67E-C1

o.seE-oi

0.31E 00

C77E-01
-0.23E-01

-C13E-02
-C49E-01

0.92E-01

-0.11E-02
-0.67E-02

-0.47E-02

-C13E-01

-0.75E-01

0.62E-01

-0.70E-02
-0.61E-02

0.29E-01

0.32E 00

-0.19E-01
-0.84E-02

0.24E-02

-0.75E-01

T6Ci

k = 6

(j),«6(i,j)
C17E 02

-0.33E 01
-0.60E 00
-0.136 01
-0.28E CI

-0.13E 01
-C37E-01

0.12E 00
C93E-01
0.12E 00

0.14E 00

-O.IOE 00

0.28E-01

-C99EJ03

-C61E-01

-0.22E 00
-C94E-01

C19E-01

0.12E-01
0.24E-01

-0.58E 00
-O.IOE 00

-C18E-01

C16E-02
0.14E 00

0.19E 02
-0.69E 01

0.566 CO

-0.12E 01
-0.52E 01

0.166 02

-0.57E 01
-0.13E 01

-0.15E 01
-CUE 01

0.29E 01
-O.IOE 01
-0.22E 00

-0.25E 00
-0.32E 00

0.236 01

-0.63E 00
-0.21E 00
-0.35E 00

-0.88E-01

0.24E 01
-0.42E 00

-0.24E 00

-0.26E 00

-0.17E 00

Y7(i
k = 7

j),«7(i,j)
-0.76E CC

0.176 CC

C44E-C1
-ClOE-02

0.14E 00

0.786-01
-C12E-01
-0.826-02
C.106-01

-0.126-01

0.37E-02
-C21E-02
-0.23E-02

-C38E-02

0.50F-02

0.12E 00

-C27E-01
-0.20E-02

-C.73E-C1

-0.266-01

0.61E-02
0.806-02

-0.396-02
0.12E-01

-0.42E-C2

-0.74E CO

-0.83E-02
-0.42E-01

-0.39E-01
C.25E CO

-0.46E 00
0.27E 00

C51E-01
0.686-01

0.226-01

-O.llE 00
0.536-01

0.856-02

O.lOE-01
0.13E-01

-0.15E 00
0.62E-01

0.89E-02

0.77E-02
0.26E-01

C25E-01
0.21E-01

0.106-01

0.26E-01

-0.31E-01

Y8Ci
k = 9

J)»68(io)
-0.47E CI

0.276 CI

0.S8E CO

0.29E OC

0.426 CC

C.22E 03
-0.626 00

-0.13E 00

C24E-01
C.92E-01

O.S06 00

-0.27E 00

-0.44E-01

-C48E-01
-G.<.5£-01

0.68E 00

-0.30E 00
-0.SIE-01
-C19E-01
-O.llE 00

0.226 00

-0.196 OC
-0.62E-01

-0.71E-02
0.516-0?

0.64E 01

-C41E CI
-o.e>F CO

-C88E CO

-0.17E 00

0.34E 00

C75E 00
0.15E 00

0.19E-01
-0.30E 00

-0.76E 00

0.41E 00

C67E-01

0.73E-01
C70E-01

-0.13E 01

0.55E 00

C77E-01
0.46E-01

0.226 00

-0.63E-01

0.276 CO

0.96E-01

0.13E 00
-0.16E 00

Y gfi
k = 9 0.31E 00

-0.15E CC
-0.13E-CI

0.43E-C1
-O.llE CC

C14E-01

C17E-01

-C18E-02

-C.21E-01

0.16E-01

-0.266-01

C14E-C1
C17E-02
0.2C6-04

0.536-02

-C21E-01

C15E-01
C21E-02

C31E-C2

0.22E-02

-0.576-01

0.216-01
0.335-03

-0.126-01

C25E-01

-0.49E 00

0.14E CO
0.14E-01

0.67E-01
0.37E-CI

-0.34E 00

0.13E 00

0.22E-01

C27E-01

0.566-01

0.45E-02

C76E-03
-C52E-03

C31E-02

-0.21E-02

0.42E-01

-0.34E-02

-C26E-03

-C26E-02

-0.646-02

-0.60E-01

C18E-01

0.29E-02

-C37E-02

0.2CE-01

*10(i

k = 10

,j),51Q(i,j)
0.13E CI

-C3tE CC
C.326-C1

-0.72E-01
-C32E 00

0.216 01

-C8C6 00
-Cl7c 00

-0.236 00
-0.236 OC

-O.llE 00

0.266-01
0.69E-03

-C21E-01
0.42E-01

-0.14E 00

0.316-01

-0.67E-03
-0.346-01

0.626-01

-0.226 00

0.66=-01

-0.216-01

C54E-01
0.?6E-01

-0.14E 01
0.296 CO

-0.12E CO

0.22E 00
0.22F .CO

-0.24E 01

0.92E OC

0.196 00

0.21E 00

0.326 00

-O.lOE-01

0.12E-01

0.49E-03

0.24E-01

-C15E-01

0.60E-01

-0.46F-02

0.866-02

0.52E-02

-C22E-01

0.236 OC

-0.51E-01

0.27E-01
-0.62E-01
-0.21E-01

ynCi

k = 11

,3>,4u<i,3>
0.30E CC

-O.llE OC
-0.26E-C1

0.656-C1
-0.12E CC

-C18E 00
0.74E-01
C14E-01

-C45E-02

C42E-01

-0.176-01

C71E-02

0.55E-03

-0.616-03

0.456-02

-0.136-01

C94E-02

0.116-02

0.706-02
-0.206-0?

-0.316-01
0.806-O2

0.446-02

-0.236-01

0.256-01

0.71E-01
-0.51E-CI

0.21E-01
0.43E-01

-0.626-01

-CHE 00

0.61E-01

-0.4CE-02

-0.226-03

0.33E-01

C20E-01

-C51E-02

0.91E-02
C27E-02

-C24E-02

-0.41E-01

C.15E-01

C28E-03

-C64E-03

C12E-01

-O.IOE CO
0.31E-C1
0.30E-02

-0.17E-02
0.28E-01

T„(i
k = 1?

.3>.4,/•',*)

0.296 CI

-f^.lOc CI

-'•..2CE CC
-r-.ilt CC
-r>.»<»6 CC

0.14«= 00

-CA /f^-02

C.24E-01

C46E-02
-C.516-01

-0.186 00

>;.43l;-ji
0.41E-03

-0.146-01
i;.55 =-0l

-C.21E 00

r.Wfc-Gl
0.26E-02

-0.136-03

o.-,/c-ii

0.2',c 00

-C.'.t£-Jl
0.16F-01

0.176-01 1

-o.2ir oi

0.64*. CC

0.73E-C2

-C.62H-01

0.5CE-01
0.28E-O1

-•••. •->• -o?

. . L - U

0.67F-01

-0.126-01

0.51E-03
0.<.?6-O2

-C.2Vt-01

0.<.3t-<*7

0.426-O^f
0.72E-02

-0.12E-01

0.53E-c2

-0.1A£ Oi

0.47E-01
0.176-01

-0.13F-0I
0.386-01
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