

Copyright © 1976, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

THE ENTROPY OF ADDRESS FIELDS IN PASCAL PROGRAMS

by

James Jatczynski

Memorandum No. ERL-M601

September 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Processors offering very compact program and data represen
tation can make the support of extremely large applications
G°"^f Jfeasible because of their relatively Imaller memory

requirements. Here we examine the address fields of several PAS
CAL programs to determine a lower bound on the effectiveness of
compact address field encoding. We find reductions in program
size ranging from 6 to 12 per cent under the most efficient en-
codings*

The Entropy of Address Fields in PASCAL Programs (1)

1 Summary

Considerable effort has been invested in tailoring processor

hardware to specific programming languages [1, 2, 3, 8, 9]. In

particular, recent interest in LISP-language [see 6] processors

has embraced the goals of economical provision of sufficient pro

cessing capacity to support very large applications [1, 2, 3].

This interest is prompted largely by the needs of the artificial

intelligence community, but many disciplines could benefit from

inexpensive large-scale processors. The requirement of high

capacity implies a need for fast hardware supporting a large ad

dress space whereas the need for economy implies extremely effi

cient hardware architecture.

Since primary memory contributes significantly to processor

cost and size, architectural techniques which allow compact pro

gram and data coding offer a way to limit processor cost. Some

work on compact representations has been done, particularly for

the LISP language [3, 4, 6].

Here we examine the address fields in PASCAL programs in

order to identify addressing characteristics which imply effec

tive means of program (particularly address field) compaction.

Our main goal is to determine a lower bound for the size of com

pact address field encodings. CDC 6400 PASCAL was chosen because

(1) This work was supported in part by Office of
Naval Research Contract N000U-76-C-0013.

-2-

of the expectation that its addressing behavior approximates that

of many other languages (including compiled LISP) and the availa

bility of a variety of PASCAL programs.

we find here that the large address field size and address

ing architecture of many machines is not justified by empirically

observed addressing characteristics. For example, in a compiler

requiring 20064 words of storage and containing 16963 addressing

instances, the address field entropy was only 9.02 bits.

Thus, it is clear that efficient program storage utilization

requires hardware that more closely mirrors the structure of the

languages that are used on the machine.

2 Introduction

2. 1 Background

Many findings and proposals related to compact data and pro

gram representation are found in the papers of Clark and Green

L4] and Deutsch L3]*

Clark and Green examine the list structure data present at

the end of execution of five large LISP programs. Their measure

ments reveal considerable regularity in the usage of pointers,

particularly pointers to lists as opposed to pointers to atoms.

For example, about 70% of all CDRs point to lists and 25% are

ML. More significantly, of all pointers to lists, over 80%

point to storage locations less than 128 cells distant from the

-3-

cell containing the pointer; in addition, they find that certain

list linearization techniques improve this locality of reference.

They state that "the regularity of LISP list structures . . .

suggests that compact encodings of pointers might greatly reduce

tne bit requirements of a list cell," and go on to determine a

lower bound on the efficiency of these encodings for the given

programs by computing the average information content or entropy

of the pointer fields. The maximum CAR plus CDR entropy they

find is 15.46 bits—this when 36 bits are actually used to hold

these pointers in the given implementation. A clear case for the

desirability of compact data representation in LISP is made, and

several practical techniques are presented, particularly the hash

link scheme of Eobrow [7].

Deutsch outlines the design of a LISP machine with compact

representation of compiled LISP programs. The techniques he

presents are based on the structure of the LISP language (and

many other high level languages) and apparently are sound

although he presents no a priori theory or measurements of LISP

programs which would suggest them. His main ideas are 1) to use

a local and a global name table to control all data accessing and

thereby allow address fields (which then refer indirectly to data

through these tables) to be short and 2) to closely mirror the

language structure in the hardware. Deutsch claims that programs

for his machine are consistently one-third to one-fourth the size

of equivalent INTER-LISP compiled programs. Deutsch's design

does not take complete advantage of knowledge of the language

-4-

structure; even greater compaction could oe achieved by taking

this structure into account.

The combination of these findings lead us to believe that

compaction of LISP programs and data by a factor of at least two

over other "good" implementations is feasible. It is also clear

that program compaction is possible for most languages although

data compaction potential is not as clear for languages with

pointer data due to the irregularity of their data structures

which use pointers when compared to those of LISP.

2.2 The Entropy Concept

From now on we will be concerned only with ttvj collections

of all address fields found in the code produced by the PASCAL

6000-3*4 compiler for particular programs. Our goal is to obtain

a lower bound on the size of all possible address field encodings

for each given program. This information can allow us to judge

the effectiveness of compaction techniques that we may consider

and can also point out possible compaction techniques. However,

these topics will only be briefly discussed in this paper.

Consider each address field as a message drawn from the set

of all possible address fields

A = {a^, ap> ♦ . • , a }

Let

F * <fV f2 V

-5-

be a list of all address fields which occur in a given program.

Clearly all members of F are drawn from A, and members of F need

not be distinct. With |A| the number of elements in A and |Fj

the number of elements in sequence F, let

?t = n./jF! , 1 < i < |A|

where n. is the number of occurrences of a. in F.

we now define the average information content or entropy of

messages in the sequence F as

H (F) =-2Li pi log2Pi
Thus, for example, the entropy of a set of eight equally probable

messages is 8.

For a given sequence F, R , = H(F)*|Fj gives the minimal

number of bits required to encode the sequence. An important

point should be noted: R . is the minimal number of bits needed

to unambiguously encode exactly the set of addresses F found in

the given program; architectural alterations which affect the set

of addresses F obviously affect R . . Here we consider only
min

changes in address encoding, not addressing architecture. Also,

to achieve the minimal encoding, the processor would, in a sense,

have to understand the meaning of each encoded address (i.e. be

able to translate it into a machine address). This is possible,

but the overhead needed to achieve it clearly precludes the prac

tical attainment of the minimal encoding.

-6-

2.3 Scope and Limitations

we examine a small number of programs although there is a

considerable variety in program size. The primary intent here is

to describe the observational results and very briefly consider

the determinants of these results. Details about methods of pro

gram compaction will not be discussed; some such discussion is

found in [1, 2, 31.

Since the object programs we examine are all produced by the

same compiler, it is not clear that the results are universal.

However, it is believed that similar results would be found for a

variety of languages, particularly procedure oriented algebraic

languages.

3 Discussion

5*} Experiments

A program was written which accepts as input load modules

produced by a CDC 6400 loader from object modules produced by the

PASCAL 6000-3»4 compiler. It locates all address fields in the

given program text and computes certain relevant statistics. For

some purposes, the set of address fields is divided into three

classes—jump targets, constants, and load/store (data) ad

dresses. In other cases, the address set is considered as a

whole.

-7-

Overall and for each of the three address classes a count is

kept of the number of address fields found. Also, the number of

occurrences of each specific address value is recorded. These

figures allow us to compute entropy values for each address class

and for the set of all addresses taken together.

Jump addresses are handled in a slightly different way than

constant and data address fields. The latter are taken as is to

form the message sequence F. However, jump addresses are first

converted to program counter relative values before being added

to F. This is done because relative addressing appears to be an

attractive way of keeping jump addresses small, and it is there

fore more interesting to know the address set entropy under the

relative addressing condition. In a sense, this is also done im

plicitly for data addresses most of which are offsets relative to

an index register which serves as the runtime stack pointer.

Only addresses in the PASCAL produced code are analyzed.

Addresses within system routines are not examined.

3*2 Programs Analyzed

Six PASCAL-proouced load modules were examined. These are

listed in Table 1 along with their sizes in 60-bit words. The

primary reason for the choice of this set of programs was the

wide range of program size. Programs 1 and 2 differ from the

rest slightly in that they use few system routines while the oth

ers use system routines heavily and therefore have many jump ad-

-8-

Table 1

List of Analyzed Programs

Name (and Abbreviation) Size

(words)

1 PASCAL 6000-3.4 Compiler (PASCAL) 20084

2 PASCAL-S Translator/Interpreter
(PASCALS)

11600

3 Basic Minicomputer Assembler (ASSM) 4224

4 Wirewrap Aid (WIRE) 2624

5 Hashing Technique Demonstration (HASH) 1728

6 Tower of Hanoi Solver (TOWER) 164

dresses directed toward these routines,

4 hesults

Table 2 gives the number of occurrences of each type of ad

dress field in each program. Also given is the percentage of ad

dress occurrences of each type. The percentage of addresses fal

ling into each category is seen to be relatively constant over

programs.

Table 3 gives the entropy values corresponding to the sets

represented by each entry in Table 2. Many entropy values are

quite small compared to the corresponding number of address oc

currences. For example, for the 16963 address fields in PASCAL,

the entropy of 9.02 accounts for only 16963*9.02 r 153006.26 bits

whereas the CDC 6400 actually uses 16963*18 r 305334 bits or ap

proximately twice the minimal bit requirement to represent the

address fields. This computation is performed for all programs

and address classes and appears in Table 4.

Figures 1a-1e show the distribution of occurrences of rela

tive jump addresses for each program (except TOWER). A logarithm

ic scale, is used for jump distances with a minus sign appended to

the logarithms of negative relative addresses. These data eluci

date address clustering and the potential for program compaction

via long and short instructions.

-9-

Table 2

Address Field Occurrences in Analyzed Programs

Program Number of Address Occurrences and (per cent)

Jump Constants Data All
Addresses Addresses Addresses

PASCAL 5505

(33)
5139
(30)

6319
(37)

16963
(100)

PASCALS 1808

(35)
1426
(27)

2014

(38)
5248

(100)

ASSM 911

(3D
726

(25)
1305
(44)

2942
(100)

WIRE 335

(23)
453

(32)
652

(45)
1440

(100)

HASH 162

(29)
137

(24)
268

(47)
567

(100)

TOWER 2\
(27)

21
(27)

35
(46)

77

(100)

Table 3
Entropy Values of Address Sets

Program Address Set Entropy

Jump
Addresses

Constants Data

Addresses
All

Addresses

PASCAL 9.61 6.13 8.67 . 9.02

PASCALS 8.71 5.35 7.84 8.39

ASSM 8.68 5.58 7.32 8.31

WIRE 7.87 4.05 6.31 6.92

HASH 7.05 2.87 6.10 6.69

TOWER 4.20 2.89 4.38 5.12

Table 4

Minimal vs. Actual Bit Requirements for Address Fields

Program Minimal bit requirements divided
by actual usage on the CDC 6400

Per cent

reduction

in program

size using
minimal

encoding

Jump
Addresses

Constants Data

Addresses

All

Addresses

PASCAL .53 .34 .48 .50 13

PASCALS .48 .30 .44 .47 7

ASSM .48 .31 .41 .46 11

WIRE .44 .23 .35 .38 10

HASH .39 .16 .34 .37 6

TOWER .23 .16 .24 .28 10

3
o
o
o

<H
O

3
O
O
o

o

20

15

10

-15

20

15

10

-15

Figure la. Jump Address Distribution of PASCAL

•10 , -5 0 5 1
log2 of relative adjdress ;

(*(-) indicates forward (backward) jump)

tfct* •m.
10

Figure lb. Jump Address jDistributiqrv of .PASCALS

-10 . -5 0 ; • 5
log2 of relatiive adjdress j ,

(Hf(-) indicated forwjard (backward) jumjp)
P3

r*~i

10

14

14

r^

o
o
o

o

20

15

10

5

0

-15

30

25

0)
20

o
c
Q)

3
1$

o
o 1 •

O!

ol • 10

*s

5

'• Figurje lc. • Jump (Address Distribution of ^SSH

•10 i -5 jo . :
I ljogg !oil jrelatiiv^ ad|dress, ; ;

..(t.(fe")- ind{ic-ait®JSl forwaird (backward!) jump)

^T+i

m
. . . ,

--•• 1

Figurje Id. Jwjip jAddresjs Distjrlbutijon;of ^IRE

•4i:-,|

-f-

"1 •;-t-*-r-f-i-;-^

•:-r--- !~U

4,10 j' i-5-:i:;.i:o . ,
; j log2 of] relative address ,

j -£+()•?); indicates; iforWajrd (babkwardj) jump)

10 14.

•h-

w
<u
o

<D

U
u

o
o
o

<H
o

20

15

10

5

0

Figure! le. Jump Address Distribution of HASH

-9 -C

ELi rzu
-> I • ;o _ j5 ••

i Xog2 oi- relative address ; j
(+d-). indicate^ forward (backward) jumij)

10

5 Conclusions and Recommendations

Several important implications are noted here.

First a clear case is made for the potential effectiveness

of address field compaction in certain programs. For example in

PASCAL address fields account for 25$ of the program's storage

requirement* Minimal encoding of address fields would reduce the

total program size by about 12$, and simple practical techniques

promise at least half this reduction. For example, consider Fig

ure 1a which shows that kb% of the jump targets in PASCAL are

within 126 cells of tne jump instruction. The use of a short in

struction (8-bit address field) in each of these cases would

reduce program size by about 2.5% (the CDC 6400 has no such short

instructions). Similar short instructions for constant and data

references would provide comparable reductions. Unfortunately,

for the program HASH, a minimal address field encoding would

reduce program size by only 6$. Thus it is also clear that com

paction of address fields alone may not significantly reduce pro

gram size and that other organizational techniques relating to

addressing may be necessary. Table 4 shows the reduction in pro

gram size which would result from a minimal address field encod

ing.

Second, the observation that entropy values are small with

respect to the number of addressing occurrences indicates consid

erable duplication in the occurrence of address values. For ex

ample, in PASCAL there are 16963 address fields; but, whereas

-10-

log2l6963 = 14.05, the entropy value is only 9.02. In fact, the

number of distinct addresses is about half the total number of

address fields. This suggests that reference to a table of ad

dress values by using small offset fields in instructions may

offer a means of address field compaction. Under reasonable as

sumptions it is easy to see that such a table of addresses along

with small offset fields in instructions takes no more space than

the original CDC 6400 implementation; but with judicious ordering

of addresses in the table and concomitant choice of short in

structions where possible, the potential for compaction is con

siderable. It is also apparent from data not given here expli

citly that the use of global and local address tables similar to

those proposed by Deutsch would be an effective address compac

tion tool.

Third, the distributions of relative jump addresses seen in

Figures 1a-1e indicate that variable length address fields may be

useful in achieving compaction. For the given programs, between

36$ and 48$ of all jump targets are within 127 cells of the jump

instruction itself. Thus up to 48$ of all jumps could be handled

by an 8-bit address field.

Acknowledgement. I would like to thank R. J. Fateman for

his helpful criticism.

-11-

6 heferences

11] h. Greenblatt, The LISP machine, Massachusetts Institute of

Technology, Artificial Intelligence Laboratory, Working paper

79, November 1974.

[2] Tom Knight, CONS, Massachusetts Institute of Technology,

Artificial Intelligence Laboratory, Working paper 80,

November 1974.

[3] L* P. Deutsch, A LISP machine with very compact programs,

Third International Joint Conference on Artificial Intelligence,

Stanford, California, 19?3, pp. 697-703.

[4] D. W. Clark and C. C. Green, An empirical study of list

structure in LISP, Xerox Palo Alto Research Center working

paper, December 1974, To appear in Coram. ACM.

[5] J* Moses, The function of FUNCTION in LISP or why the FUNARG

problem should be called the environment problem, ACM SIGSAM

Bulletin No. 15 (July 19?0), pp. 13-27.

[6] J. Allen, The Anatomy of LISP, To be published by McGraw-

Hill.

[7] D. G. Bobrow, A note on hash linking, Coram. ACM 18, 7

(July 1975), 413-415.

[8] H. Weber, A microprogrammed implementation of EULER on IBM

System/360 Model 30, Coram. ACM 10, 9 (Sept. 1967), pp. 549-558.

-12-

[9 3 W. Lonergan and P. King, Design of the B 5000 system, Datamation

7, 5 (May 1961), pp. 28-32.

-13-

	Copyright notice 1976
	ERL-601

