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SUMMARY

The principal result of this report is a method of constructing all

possible maximal length shift register sequences. The proposed construction

is inductive in the sense that from a maximal length sequence of degree n-1,

a family of maximal length sequences of degree n is constructed. This
2

construction is a generalization of Golomb's and Welch's method.
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INTRODUCTION

Let S be a set consisting of m objects and let S be the

set of all n-tuples of members of S. The elements of S will be denoted

by Roman letters, a, b, c,.. . , and the members of Sn by Greek letters

a, P,. . . , or sometimes, more explicitly, by n-tuples such as (a.,a0,. . . ,a ).
1 2 n

A function defined on S with values in S, f:Sn >S, and a member of Sn

can be used to define a sequence in the following way: If a=(a,, a~,. .. , a )
n 1 2 n

is a member of S let the first n elements of the sequence be a , a ,.. . ,
J. C*

an* If the first n+k elements of the sequence have been defined, k= 0,1, 2,... ,

let an+k+l =f(ak+r ak+2' *'' • ak+n) be the n+k+1 st element.
A sequence generated in this manner will be called a shift register

sequence of degree n. In keeping with this physically motivated termino

logy, the members of S and Sn will be called output symbols and states,
respectively. The function f will be called a feedback function, and a is the
initial state.

PART I

A feedback function f defines a function T on Sn into Sn by
taking

T(a1.a2,...,an) =(a2, a.y .. . ,a^, f^, a^ .. . ,aj).

Conversely, a function T:Sn—> Sn with the property

T(a , a ,. .. ,a ) = (a , a ,... ,a ,a ,,)
1 c n d 3 n n+1

defines a feedback function f by the relation f(alS. . . , a )=a . T is
1 n n+1

called the state transition function. The reason for introducing T is
that it simplifies the discussion of some aspects of shift register sequences.
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Associated with each sequence generated by a feedback function

is

.1

2
f and initial state a is a sequence of states, namely, a, Ta, T a,... .

Let A = {pc S | P=T a, 0<i <p-l}, p =0»l,2, ... . Clearly the num-

ber of elements in A is at most p and A C A ... Since S has
n P P P+l n

exactly m elements, it follows that there exists an integer N < m

such that A = A .. We have the following proposition:

Proposition 1: Let L be the least integer such that A. =A_ .. Then
T , L L+l

(a). T a = TJa for some j < L but
t\i ^ TJa for i < j < L.

(b). AT = A. for all k > L.
L k —

Proof: Statement (a) just expresses the fact that L is the least integer

such that A =A . To prove (a), it suffices to prove A_ 0CAT ..
•L» -Li+J- j ,, _ L+2; L+l

This is equivalent to showing T a € A . Since T a = TJa for some
T Xl T * 4.1-1 XiTl . .

j <L, T a=T(T a) =T(TJa) =TJ a. But T^ a€AL+1 since j<L,
which proves (b).

Let j and L satisfy condition (a) of Proposition 1. Then

if j equals zero, the sequence of states is periodic with period L.

If j is greater than zero, the sequence obtained by deleting a, Ta,.. . 3TJ a

from the original sequence is periodic with period L-j. Tke states

a, Ta,..., T a are called transient states; they appear only in the

first part of the sequence.

It follows from the periodicity of the sequence of states associated

with a shift register sequence that the s. r. sequence itself is periodic

and in fact, it has the same period as the former. The first L+n-1 terms

of a shift register sequence will be called the initial segment of the sequence.

When j=0 and L=m t the corresponding sequence is said to be of

maximal length. Obviously, no shift register can have a longer period.

Such a sequence, evidently, has the property that every member of Sn

occurs as n consecutive symbols in the initial segment of the sequence.
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Proposition 2 gives equivalent formulations of the condition j=0.

Proposition 2: Let L satisfy condition (a) of Proposition 1. Then the

following four statements are equivalent:

(a). No transient states exist, i. e. , j=0.

(b). Every state in A has a predecessor in A_ , i. e. , if a€ A_ ,
-Lf L L

then a= Tp for some p€ A .
L

(c). The restriction of T to A is a one-to-one function.
L

(d). f(x, a2,. . . ,aj ± f(y, a ,. .. ,a ) if x^y for all states in A .

Proof:

1. a=J>b: If j=0 then a=TLa =TfT1^). Since A.^plp^a,
L

0 <l < L-l}, it follows that every member of AT has a predecessor in
L

2. b=S>c: Let T(AL> ={a| a=Tp for some p€ A }. Assuming b,
every member of A is a Tp for some P« A , so T(A Q A .

•*-• JLi L L

But T(A^) cannot contain more members than A , since T is single
valued. Hence, Afc = T(Ak), which implies T is a one-to-one function
on A^ onto Ay .

3. c =» d: If T is one-to-one, then f(x,a ....,a ) j£f(ys a .... , a )
£ n 2 n

if xjty, for otherwise (x,a ,...,a ) and (y,a_,...,a ) would have the
£ n 2 n

same image under T.

4* d*=^ a: If jjtO, then T a=TJa for some 0<j<JL. By choice
f T T» J. rpj ""I T joi L, T a F T a. Hence, T'a has two distinct predecessors:

T "a and Tj~ a. Let (x,a ,... ,a )= T^a and (y,a0,... ,& )=Tjola.
en 2 n

Then f(x,a ,... ,a ) = f(y,a ,... , a ) but xpy. Hence, d=>a.

Given a shift register sequence {a.} , we can associate a

sequence of n-tuples i\}^=l by taking cy^, ak+r .. . ,*y^ ).
A member of S is said to appear or occur in the s. r. sequence if

it appears in the associated sequence of n-tuples. The s. r. sequence
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defines the set of all feedback functions which can generate it by

restricting their values on those n-tuples which appear in the sequence.

If the sequence has maximal length, it uniquely determines one feed

back function as every n-tuple occurs in the sequence. Such sequences

will be the principal object of interest in the sequel.

PART II

In this section a method for constructing all possible maximal

length s. r. sequences will be developed. Because such sequences

are periodic, it suffices to construct only the first m +n-l terms

of it (technically only the first m terms need be constructed but it

is convenient to consider m +n-l terms). The basic tool which will be

used in the construction is called a preference function.
n —1

Let S be the set of all (n-1)-tuples of elements of S and

let ff be the set of all permutations of elements of S. A preference
function is a mapping on Sn" to |T • Equivalently, p is an

_ i

m-tuple, (p^p.** • • »p ) of functions p. on S to S with the
i £ m i

property that P.^, a2>. . . ,^^tPxfay •••»a _j) for iFJ for any point
in S . If n=l, S is empty. In this case, by convention, a pre

ference function is taken as a permutation, i. e. , a member of"ff.
n 1

A preference function and a member of S can be used to

define a segment of a sequence by the following rules:

1. If (a1,a2,... »an-1) is a member of S " , let the first n-1
elements of the segment be a,, a„,... , a ,.

1 2 n-1

2. If the first n+k-1 terms of the segment have been defined,

determine the n+k-th term by the rule an+k =p.(ak+r ak+2>... ,^ )
where i is the smallest integer such that the word (a, ,,... ,a )

k+1 k+n

does not occur as n consecutive symbols twice in the first n+k terms

of the segment.
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3. If no such i exists, the segment is terminated. Let L denote

the value of k such that this condition is fulfilled.

The following three lemmas, which in somewhat different form

may be found in ref. 1, give the connection between the segments generated

by preference functions and shift register sequences .

Lemma 1: Given a segment generated by a preference function, it is

extendable to m distinct register sequences, i. e. , the segment is the

initial segment of m shift register sequences.

Proof: It suffices to exhibit m feedback functions which generate

sequences having the given segment as an initial segment. Let a , a ,... ,

a . be the segment. Bythewayit is constructed, no state appears

twice in it. Therefore, f can be defined (single valuedly) by the relation

l(Wl"",ap+n-l)SSap+n f°r 1lP<L- For P=L> define f<aL+i"'"
a .) arbitrarily (this gives m different functions). Note that because

(a.. ,, •.. , a ) terminates the segment, it must have occurred m+1

times in the segment. Hence, (a ,.,..., a_ _,f(a_ ,.,... ,aT , J)
L+l L+n-1 L+l L+n~l

must appear in the segment, so k=L satisfies (a) of Proposition 1.

It follows that the f so defined are the required functions.

Lemma 2: With the same notation of Lemma 1 if f(aT ,,. .. ,a )=a ,
————• L+l L+n-1 n

the period of the resulting s. r. sequence equals L.

Proof: It suffices to show (a,a ,... ,aJ=(a_ ,a_ ,,,. .. ,aT ^ _,a).
12 n L+l L+2 L+n-1 n

Recall that (aL+1, ••• , a ) appears m+1 times in the segment.
If (a^,.. . , a^)?* (aL+1» •••»a, ,, a ) then m+1 states of the form
(x, a_ .,. . . , a ) of which at least two are the. same appear in the

segment, which is impossible.

-5-



Lemma 3: Every shift register sequence is the extension of a segment

defined by a preference function. If the sequence is maximal, the

corresponding preference function is unique.

Proof: Let {a.} be any shift register sequence and let L be the largest

integer such that in the segment a., a_,. .. , a_ any state occurs at most
1 2 L+n-1

once. If (x , x , ...,x .) are any n-1 consecutive symbols in the seg

ment, define p.(x.,x_,. .. ,x .) to be the successor to the r-th occurrence
l 1 2 n-1

of (x.,x ,...,x .) in {a.}. , . If there are fewer than i occurrences,
i <& n-i i l =i

define the remaining components of p arbitrarily but subject to the restric

tion that the components are all distinct. The p so defined is the required

function. When {a.} . is maximal L=m in which case every point in
n t» —l

S appears once which implies every point of S occurs m times, each

time with a successor. Hence, p is uniquely determined in this case.

In view of Lemmas 1-3, to construct all maximal length shift

register sequences, it suffices to construct all preference functions which

define segments of length m +n-l. Before proceeding further, it is necessary

to introduce some notation. Let b , D2» •••»bN be the initial segment of a
shift register sequence of degree n-1 and let x,,x„...,x , be any

2 3 n-1 '

n-2 consecutive symbols in it. If there are r occurrences of (x ,x ,...,x )
^ 2 3 n-1

in the segment, the notation (x_,x0,... ,x ,), 1 <i < r will mean each
^ 12 n-1 — —

^XX»X2* ••" ,xn-l^ occurs as n~l consecutive symbols in the segment and
(xj, x2,. .. ,xn x) appears "before" (x^, x ,... ,x ) iff i<j.

If b^, b2,. .. , b is the initial segment of a maximal length sequence
of degree n-1, then every member of S ° occurs as n-1 consecutive symbols
in it. Thus the initial segment of a maximal sequence defines a partial ordering
of S by the rule (x^,x , ...,x .) precedes (x^,x^,...,x ,) iff

i c n-l l 2 n-1

i < j. With this notation, the following theorem shows how to construct a

family of maximal length sequences of degree n from a maximal length
sequence of degree n-1.
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f "\ ooTheorem 1: Let \o1_/t_1 °e a maximal length sequence of degree

n-1 and let S be partially ordered as. defined above. Let x
. n

be the term which follows (x,,x„,... ,x ,) in {b, }, ,. Define a
1. 2 n-1 k k=l

family P of preference functions i>=(p,, P-, • • • , p ) by the rule
1 2 m

pc P iff:

(a) p (b , b ,... , b ) = b
lie n-l n

m

(b) ?«(4x2'---'Xn-l)€^.{xn}'k = j

(c)

or equivalently,

j"X k.
k=l

P, for 1 < j < m is arbitrary except for (a) and the require

ment that p be a preference function.

Then, if p e P, the segment defined by it and (b,, b„,..., b ,) has
n 12 n-1 .

length m +n-l. •

Proof: Let p€ P and let {a.} denote the initial segment defined by

p and (bj, b2>... , b j). Then {a.} has length m +n-l iff every member
n n«.!

of S occurs in it, and this is so iff each member of S * occurs m

times, (as n-1 consecutive symbols) in {a.}, each time with a successor.

Since {bk)k=1 has degree n-1 and is maximal, every element of Sn~
occurs in the segment b.,b.,...,b n-lj_^ r) and, moreover,

i £> m +n-i

(b.,b_,...,b .) = (b n-1* *' *»D n-lj. ♦ i)* Hence, it suffices^to show
i c n-i 'm m +n-i .---'

^N+r^N+2'" " ' ^N+n-1^ occurs m times in {a.}, each time with a
successor, for 1^ N < m " . The proof \b by induction on N.

n-1 "~
1. If N = m , from the proof of Lemma 2 (b,, b„,... , b ,)

12 n-1'
occurs m+1 times in {a.}, m of these times with a successor

since (b^, b^,.... , bn„i)=(bN+i» •••»bN+ i)> the induction hypothesis
is true for N=m " .
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2. Assume the hypothesis for all N> r +1 > 2. We have to

show (b .,,..., b ,) occurs m times in {a.}. Consider the
x r +1. r +n-l . l

m words (x.,x., ...,x ,,x ) in S with (x_, x,,. .. ,x .) =
1 2 n-1 n . c 5 n«l

(b ^,... , b , ,), and suppose x:=b ,,. Consider the identities,
r +2 r +n-l l r +1

o o o

(4X2 Xn-l'4 =(br +l'br +2 br +n-l'br +n>
o o o o

(x* ,x, ...,x , x^ ) =(b , b ,,»••• >b , .,b )
1 2 n-1 n r,+l r,+2 r,+n-l r.+n

m m.
(x^ ,x , ...,x , x ) = (b . ,.,b l0,..«. ,b , _,b , )

1 2 n-1 n r .+1 r .+2 r . +n-l r .+n
m-j m-j m-j m-j

Clearly r . > r .>...> r . By hypothesis, the (b , „,... , b ,,m-j m-j-1 o J 3tr x rk rk
b ), 0 < k <m-j, appear m times from which it follows that

^ n k(x:, x2»...,x , x ) occurs in {a.} for k=j, j+1,... ,m, for otherwise
the m occurrence of some (b ,_,..., b ,,b ) would be succeeded

V rk+n'1 rk+n
by at most m-1 different symbols and hence at least two identical states

would appear in {a.} which is impossible.
i m ,

1 k
ForanypcP, p (x:,x,, ...,x .) € \u {x }. To be specific,

m 1 2 n-1 . . n r
k=j

suppose p (x~,x,,...,x ) =x . As a consequence p. (x^,x^,... ,x ,)^xJ
m l l n-l n k 1 2 n-1 n

for 1 < k < m. Then this last remark together with.the fact that

(x~,x ,...,x ,,xJ )occurs in {a.} imply that (x^,x, ...,x )=
^r+l'^r+2* **" »D+ .1) occurs m times in {a.}, each time with a

o © o |

successor.For p (x,,x_,. .. ,x .) chosen otherwise the argument is
m i c n-l

analogous. This completes the proof of Theorem 1.
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The preceding theorem indicates how to construct a family

of maximal length sequences of degree n given a maximal length

sequence of degree n*-l. If instead of using a single sequence of degree

n-1 in this construction, we use the set of all maximal length sequences

of degree n-1, we can obtain a collection of families of maximal

length sequences. The following theorem implies that this collection

is, in fact, the set of all maximal.length sequences.

Theorem 2: Let {a.} be a maximal length s. r. sequence of

degree n. Then, there exists at least one maximal length s. r.

sequence of degree n-1, {b,},_., such that {a.}°° can be
^^ 1C .K—1 1 J_i—1

constructed from {b. }, . via the method of Theorem 1.
k k=l

Proof: We have to show there exists a {b, }, , which is maximal
k k=l

»ooand such that the preference function associated with {a.} .

(see Lemma 3) belongs to the family of functions generated by

{bk},_j and the method of Theorem 1. It suffices to consider
only the initial segments of the sequences.

Let p be the m-tn component of the preference function

associated with {a.} . . Using the notation described in the paragraphs
copreceding Theorem 1, we construct the initial segment of {b }

K JK~1

according to the following rules:

1. a., = b. for 1 < i < n.
11 — —

2. Suppose bi» b2» ••• >b,. ,» k. >0, have been defined. Let
(x2.,x3,...,xn^) =(bk+2,...,bk+n-1) and suppose (x.,, x^ .. . ,x^)
has occurred* j times in b.,b,, ...,b, ,. Denote by xj and^ 12 +n-l 7 1
x , respectively, the successor and predecessor of the i-th

occurrence of (x,,x-,... ,x .). Then let the choice of b,
2 3 n-1' k+n

satisfy the rule:
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j-1

b, , = xJ 4 1 J {p (x_,x_, ...,x .)} <J I J {x1}
k+n n y^-s . *m 1 2 n-1 V-/ nJ

x. ^ o» x i =1
i=l

3. If no such b, exists, the segment is terminated.

Condition 2 on b, allows p to satisfy condition (b)

of Theorem 1. To see this note that

Xi 4 IJ {pm(xl' X2 Xn-1)} VJ => Pm<4V •' •'Jtn-1)

^ 1=1 X n

j j_1 i=> p (x , x ,. . . , x ) 4 w {x } => condition (b) of
m 1 2 n-1 , n x '

=1 Theorem 1l

Condition (a) of Theorem 1 is satisfied because a =p,(a,, a^5. . . , a ,)=b .
n 1 1 2 n-1 n"

and condition (c) is trivially satisfied.

Thus, it remains to show that the segment so defined is the

initial segment of a maximal length s. r. sequence .

The condition, xJ4 W {x j , guarantees that no
n i=l n

n-1 symbol word occurs twice; hence the desired result will follow

if we can show every n-1 symbol word occurs in the segment. Suppose ,

on the contrary, that some n-1 symbol word does not occur. Consider

V V &~2k- i» the initial segment of {a.} . .. Then there exists
m+n-l l i=l

a greatest integer N<mn-l such that (a__ _, a__, .,. . . , a^ ) occurs
— N+2 N+3 N+n

in the segment but a = (a..,., a , ...5aXTi .) does not.
jN+1 Is+Z N+n-1

(The existence of such an N follows from the occurrence of

(a2, a3,...., an)=(aN+2, aN+3,... ,aN+n) for N=mn-l.) It is clear
from the definition of N that .(a.-,,,... ,aM1 ,) is the m-th

N+1 N+n-1

(i? e. , last) occurrence of a in the initial segment of {a.}?°
i i=l

• • i
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Hence p (a„T ,,..., a„. ,) = a^T1 . To conform with the notation
rm N+1 N+n-1 N+n

of condition 2, let (x_,x_,...,x .) = (a ,... , a .) and
c. 5 n-l JN+Z JN+n-1

assume a„Tl =ar for some j. Since a does not occur in the segment,
N+n n

j

*N+l' y, {X1} fora"yJ- Hence' aN+n =< *Pm<aN+l' aN+2'' ••' N+n-l'
.1 =1

= a^Ti which is a contradiction. This completes the proof of Theorem 2.
N+n r r

Theorems 1 and 2 indicate how, in principle, one can construct

every maximal length shift register sequence for arbitrary degree, n,

and number of output symbols, m. J. van Ardenne-Ehrenfest and
3

N. G. de Bruijn have shown by a combinatorial argument that the
~n m11"1

number of such sequences is m (mJ)m . For even modest values

of m and n this number becomes astronomically large. It is also

possible to arrive at this number, at least for small values of m,

by making use of Theorems! and 2 and some simple computations.
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