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ABSTRACT

It is proved that under specific condition (so called condition

G9) on the transition probability operator of a stationary Markov process,

a recursive Kernel estimate of the initial density is convergent

in quadratic mean.

Assumptions on the differential stochastic equations driven by

Brownian motion are derived under which the stationary solution

satisfy condition G«.

The above results are applied to solve a class of nonlinear

identification problems.
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0) Introduction

An important problem in control engineering is the identification

of dynamical systems. In this paper we focus our interest on systems

represented by stochastic differential equations. Thus far, primary

emphasis has been on solving the identification problem for linear

systems, and many techniques have been proposed (see e.g., [Kalman and

Bucy 1961], [Banon 1971], [Aguilar-Martin 1974],

[Alengrin 1974], [Salut 1976]). In contrast, our interest is to

develop an approach for the identification of a class of non-linear

systems. More precisely, let {X ,t£[0,°°)} be a stochastic process

defined on a probability space (£2,a,^P) and satisfying the following

stochastic differential equation:

dXt = m(Xt) dt+o(Xt)dWt, (0-la)

with initial condition

XQ=X (0-lb)

In (0-la) W represents a Brownian motion defined on the same

probability space (ft,a, P).

Hence forth we shall make the following assumptions relative

to the problem (0-1):

A1: The initial random variable X is defined on (ft,a,*-p) and
2

is of second order:EX <°°.

A„: m(«) and a(«) are Borel measurable function on R satisfying,

for x, y€=R, the uniform Lipschitz condition:
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|m(x)-m(y) I<_ K|x-y|
(0-2)

|o(x)-a(y)|< K|x-y|

and the linear growth condition:

|m(x)|<K v4+x
(0-3)

|a(x) |<K /l+x

where K is a positive constant.

Under A- and A_ we know (see [Wong 1971] p. 150, prop. 4.1, P5

and P,) that the X process, solution of problem (0-1) is unique with
6 t

probability one and is a Markov process.

Under some additional conditions the unique solution of problem (0-1)

must have a stationary transition density, say p . (•) satisfying
Xt'V

the forward equation of Kolmogorov and p . _ (•) must tend to aXt|X0-a

limiting density, say p(«) as t goes to infinity.

2
A class of such X process for which m(*) and a (•) are polynomials

has been constructed and some specific processes of this class are given

in [Wong 1964] (see examples B and E). In this paper, we propose

a procedure to estimate point by point the function m(-) when the

function a(«) is known or when a(«) is unknown but takes a constant

value.

Considering the properties of the transition density of the Xfc

process, its limiting density p(») can be explicitly related to the pair

(m(-),a(0).
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So the techniques of non-parametric estimation used here to estimate

point by point the density function p(«) appears to be a powerful tool

in solving our initial problem of non-linear identification.

For the case of a stationary Markov process having a initial density

p(*)» in section 1, we give a local (or point by point) recursive

estimate of p(0 and its derivative ?'(•)> for which we show the

quadratic mean convergence under a specific assumption on the process

itself. For the case of stochastic processes defined by problem (0-1)

in section 2, we derive sufficient conditions on the pair (m(» )»<?(•))

which imply the assumptions made in the previous section.

Independently of the estimation of the density we give in section

2
3 a quadratic mean convergent recursive estimate of o (assuming that

the function a(») is constant). This is done using the quadratic variation

properties of the stochastic processes defined by (0-1). Finally,

in section 4 applying the previous results, we give the solution to a

class of non-linear identification problems by suggesting a local

estimate of the function m(')«

1) Estimation of p(xn) and p'(x_) for Markov processes

In the case of a sequence X., X?,...,X of independent and identically

distributed random variables whose distribution is absolutely continuous,

many non-parametric estimates of the density function have been proposed

in the past. We may recall the Rosenblatt-Parzen estimate (see

[Rosenblatt 1956] and [Parzen 1962]), the Yamato estimate (see [Yamato

1972]) and the Deheuvels estimate (see [Deheuvels 1973]). As far as

we know, in the case of a dependent sequence, relatively few results

have been obtained. Under specific conditions on the nature of the
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sequence it has been shown that the Rosenblatt-Parzen estimate is still

convergent (see [Roussas 1969] and [Rosenblatt 1970]).

In this paper, instead of a sequence of random variables, we

have to deal with a stochastic process {X ,t^[0,°°)}. In this section

we assume that the X process is a stationary Markov process which

has a initial density pv(#) or simply p(*)» and we introduce an estimate

of p(xn), where xn is any point of R, which has the same structure

as the Deheuvels estimate. Such structure is "recursive" and seems

to be well adapted to our problem of estimating the function m(#)

(see section 4). In order to prove the convergence to zero of the

variance of our estimate (see theorem 1-1) we have to impose a specific

condition on the transition density of the stationary Markov process.

For each t£[0,«>), we define the transition probability operator

H of a stationary process X by:

(Ht'f) (a) =E(f(Xt) |XQ=a) a€R

where f(') is any Borel measurable bounded function on R.

The transition probability operator is said to satisfy the condition

G«(see [Rosenblatt 1970] p. 202 for the case of a sequence of random

variables): if there is some s>0 such that

gup E1/2(Hsf)2(X)
1^2 ={f:Ef(X)=0} El/2f2(x) -a<1'

The H operator is in fact a contraction (for any t£[0,«>): |H L £ 1).

For stationary Markov processes, the transition probability operator

verifies the semigroup property, i.e. for s,t>0:H =H H =H H (see
Stl St t S

[Wong 1971] p. 183). As a consequence of the semigroup and contraction

properties, the condition G« implies, for t£[0,»):
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|H L <&- with 3=a1/2 <1. (1-1)
1 t' 2 a

Theorem 1-1 (quadratic mean convergence of p (xfi))

Let {X ,t£[0,°°)} be a stationary Markov process having a continuous

and bounded initial density p(#) on R and satisfying condition G .

Let K(») be a probability density function (i.e., non negative,

Borel measurable function such that J K(y)dy=l) and be bounded on R,

R +
and let h. be a strictly positive function on R such that,

tG[0,«>):

t —>«

b = ( h ds < «>, (l-2b)• = I h ds <
* Jo S

and b
t

t > 00

.t /x -X.

d-2a)

(1-3)

For
-Til" T •

t>0,let pt(x0) =l/bt ( K^-g—^ ds, (1-4)

then pt(x0) ^r*P(x0) •

Proof

To prove the convergence in quadratic mean it is necessary and

sufficient to show that:

E pt(xo} Tzr"> p(xo} (1"5)

and Var Pt(xQ) t^ > 0. (1-6)
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Because we may write:

t / x —X \EPt(x0)-p(x0)=i- Jo hs ^E i- K(-y -p(Vj ds,
and because b -*» as t-*», a sufficient condition to show the asymptotic

i /xo"xo\
unbiased (1-5) is that E t— Kl— 1 - P(x_) converges to zero as s

s * s '
goes to infinity..

Using the same procedure as in [Bochner 1955] (see Theorem 1.1.1.

p. 2) or [Rosenblatt 1971] (see p. 1816) we have:

^x^—X„\ /• -J /Xrt—X1

R s

2 sup

"R '" 'yi>e
ip p(x) f

91 jhJyl>,

<| K(y)|p(x0-hsy)-p(x0)|dy,
'R

We now split the region of integration in two:

** • K(y)d^

+ sup|p(x0-hgy)-p(x0) |. (1-7)
ns|y|<e

Because. p(#) is bounded, the first term in (1-7) converges to zero as

s-*» (under condition (l-2a)), then by letting e-K) the last term in

(1-7) converges to zero since p(*) is continuous. Now we show

the convergence to zero of the variance (statement (1-6)).

Denoting by:

fs(x) =K(^") -EK (^\-^) for x€R (1-8)
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and C(Sl,s0) =Ef tt )f (X ) for s , s ^[0,-) (1-9)
12 sl sl s2 2

we may write the variance of Pfc(x0) as:

Var pt(x0) =-± f fQ C(Sl,s2)dSi d^ (1-10)
t

Using the stationarity property of the Xt process, (1-9) becomes:

c(Sl,s2) =EfSi(yfS2(X|Si_S2|) . a-")

In order to use later on condition G we introduce in (1-11) the

transition probability operator:

C(Sl,s2)=E(fSi(X0)(H|si_S2|fS2)(X0)).

By using Schwarz inequality we get:

C(s1,s2)<E1/2f2Si(X0)E1/2(H|si.S2|fS2)2(X0). (1-12)

Because X is a Markov process and E f (Xn) = 0, and more specifically
t s2

from (1-1), (1-12) becomes

C(Sl,s2) <J12 E1/2f2i(X0)E1/2f22(X0). d-13)
By construction of f (•)» expression (1-8), we have for any

J s

se[0,«):

'X -X

s s v s

=J K2(y)p(x0-hsy)dy
R

l^p(x) fK2(y)dy(
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which is bounded since K(*) and | K(y)dy are bounded.
•'r

Denoting C=^P(x) f K2(y)dy, (1-13) becomes:

C(s.,s0) <- /h h 3
12 a >J sn s0

and (1-10) becomes:

Var Pf.(xn) <-% f f |h h 3
fc ° ab? Jo Jovl Sl s2

rR

lsrs2

'1 "2

which may be written:

t J: Is -s |
x z d d ,

-.. - - Sl S2
t x *

2c f' f n—r- 0(srs2> d d ,
— sl s2r io L J\\6. ab,.

t L

because h is a decreasing function:

,t _t (s--s.)

ds '
^ _- ^2

t " ~ "2 * z

<-^f- f h r * * 2 ds
ab2 Jo S2 Js« Sl

by changing of variable

2C ft- ft"\%d ,
•>0 2 Joab2 Jo S2 JO S s2

which can be bounded by:

2C 'Vds
- abt Jo

2C

Oto | bt

Since 3<1 (see (1-1)), we must have Jin — > 0 and therefore the variance
p

of p (xn) must tend to zero as b goes to infinity, which completes

the proof of the theorem. #

We now study the properties of p '(xQ) as an estimate of p'(x ):
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Theorem 1-2 (quadratic mean convergence of p'(xn))

Let {X ,t£[0,»)} be a stationary Markov process having a continuous

and bounded initial density p(«) on R and satisfying condition G_. Let

K(«) be a continuous probability density function of bounded variation on R

and such that K'(«) is bounded on R. Let h. be a positive function on R

such that condition (1-2) is verified and so is:

ht bt "E^ "• (1"14)

For t>0,let

*W=f £rK'(¥^)d8 • (1'15)
t •'O s x s '

If pf(*) is continuous and bounded on R then:

p't<V ti^* p,(V-

Proof

As in the proof of Theorem 1-1 we first show the asymptotic

unbiasedness of p'(xn), a sufficient condition is that:

x„-X

«V(F)-p^
hs * s

converges to zero as s goes to infinity. To show that point we use

similar argument as in [Bhattacharya, 1967] or [Shuster 1969]. Because

K(») is of bounded variation, i | K(y) exist (see [Natanson 1955]

p. 239) and these limits must be zero since I K(y)dy=l, therefore
•Jr

integrating by parts we get:

•^•fift-U'(¥)'•«•"•
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From (1-16), the above needed convergence to zero follows by the same

argument as in the proof of theorem 1-1 (see inequality 1-7).

The convergence to zero of Var p'(x~) as t-*» follows in the

same way as we have proved the convergence of Var p (x«) but now

under the stronger condition (1-14)

2
h b > »
t t

-> o> .

f 2
The only point which remains to be shown is that I K' (y)dy is

•'r
bounded.

This property follows from the fact that K'(«) is bounded

and K(") is of bounded variation which imply (see [Natanson 1955] p. 259)

f |Kt(y)|dy <«.
#

Remark 1-1

Both estimates p (x_.) and p1 (x.) defined in theorem 1-1 and 1-2

respectively are recursive, i.e. solutions to (t>0):

d P^(xn) h - /xn-X

and

t'V nt , , . 1 v /VAt\
dT—= "b;Pt(xo) +b;K1^7~)

W ht ,, , . i _, /vxt\

The initial conditions of these two differential equations can be

arbitrary (when no apriori information is available), they do not

affect the final value of both estimates.
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2) Estimation of p^^and p'(x0) for Diffusion Processes

In the previous section we have shown the quadratic mean

convergence of Pfc(xQ) and p!(xq) under the assumptions that the Xfc

Markov process is stationary and satisfies condition G .

Indeed, the stationarity assumption is not essential here, since

we are dealing with asymptotic properties. A sufficient condition

should be the existence of the limit of pv (•) as t goes to infinity.
Xt

We now assume that the X process to be estimated is defined by

problem (0-1) under A.-A2 and has a transition density px |x =a(')

which converges, for all a^R, to a limiting density p(«)

as t goes to infinity.

As we have seen in the introduction, such process is a Markov

process. More, the limit of px (•) must be equal to p(«) since we

have for all x^R:

^Px.t«=£ LXIX^V^

"JR-\lVa«Px0<*>-

= I P(x) pY (a)da = p(x).
Jr X0

Hence, to have the stationarity of the X process defined by (0-1)

under A..-A2 and the condition that the limiting density p(«) exists,

it is necessary and sufficient to choose the initial density py (•)
0

equal to p(•).

For the sake of simplicity, from now on we assume that the above

X process is stationary.
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In this section we derive sufficient conditions on the pair

(m(«),o(«)) to have the transition density convergence and condition

G2 satisfied.

Let us denote P(x,t|a,s) = °P(X <x|x =a) the transition function
t s

of the unique Xfc process solution of problem (0-1) where a,xQt and t>s.

Under A]L,A2 (see section 0) and the additional condition:

A3:xGR c(x)>o >0,

we know (see [Wong 1971] p. 173 prop. 7.1,(a) and (e)) that P(x,t|«,«)

is the unique solution of the backward equation of Kolmogorov:

1a2(a) 52p(^t|a,s) + 9P(x,tja,s) =_aP(x,t|a,s)
2 3a2 9a 3s

(2-la)

with the terminal condition: 1*m P(x,t|a,s) = |i x>a (2-lb)
stt ' (0 x<a

and is absolutely continuous, that is P(x,t|a,s) can be written as:

P(x,t|a,s) = I p(y,t|a,s)dy a,x^R t>s.
J —00

Because the functions m(») and a(») do not depend on time, we see from

(2-la) that p(x,t|a,s) depends only on t-s and not on t and s separately.

Denote by Pa(*»0 a^R, the transition density on RxR of the X process

satisfying (0-1) (we will use the shorter notation p (x,t) instead
ci

of PX lx =a^; we can drop the s because of the stationarity of the
t+s' s

transition density).

If in addition to A_, A« and A„, we assume that:
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A -m1 (•), o-f(0 and o"(«) satisfy the conditions of type (0-2) and (0-3),

then (see [Wong 1971] p. 173, prop. 7.1, (d)) p (•»•) is the unique

fundamental solution of the forward equation of Kolmogorov

(Fokker-Planck equation):

2

\ ^ (a2(x)pa(x,t)) -|^ (m(x)pa(x,t)) =f^ Pa(x,t) (2-2a)
3x

with the initial condition ^.m p (x,t) = 6(x-a). (2-2b)
t+u a

We now want to show that under sufficient conditions on the functions

m(») and a(»)> P (•»•)» the unique solution of problem (2-2), converges

to a limiting density as t goes to infinity. In other words we want

to find stability conditions of problem (2-2). To find out these

conditions we need the following lemma:

Lemma 2-1 - (expansion formula)

Let p (•,•) be the unique solution of problem (2-2), then Pa(*>*)

can be written in the form for a,x£=R, t£[0,«>)

2

p(x,t) =tt(x) f e"Xt f) <f> (x,A) <J>k(a,\) dp (A)
a h j,k=l 3 J

(2-3)

Where ir(-) is any positive solution of the equation:

^i-(a2(x)Tr(x)) =m(x)ir(x) x^R , (2-4)
z ax

<J> (»,A) and 4>«(,,A) are solutions of the Sturm-Liouville equation:

Ite pW^W ^(x)) +Xtt(x)u(x)=0 ASr, xSr, (2-5a)
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and satisfying the conditions:

^(0,A)=l ♦J(0,A)-0 ,

<J»2(0,A)=0 ♦•(0fA)-l ,

(p.. (A)) is the limiting matrix of the spectral matrix (p .. (A)) associated
J K- Y, J K

with equation (2-5a) together with the boundary conditions (corresponding

to the reflecting barriers in the regular case of problem (2-2)):

u'(-y) = u'(y)=0 Y^R (2-5b)

once $,(•, A) and <J>9(#, A) are chosen as basis for the solutions of

(2-5a) , as y goes to ro. ..

Proof

We shall give a proof by constructing a solution (see also

solution of problem 9, Chapter 4, p. 178 in [Wong 1971]). We can

verify that any function f (*,t) of the form
a

2

tt(') e V (}> (-jA)^. (a,A) d p., (A) is a solution of
h j,k=i 3 k Jk

equation (2-5a) where tt(-), «J>.(*,A) j= 1,2 and (p., (A)) are defined in
3 3*-

the same way as in lemma 2-1, and i|/.(-,A) j= 1,2 are any function of the

same class as the 4>'s.

By setting t=0 in the above expression and using the expansion

theorem (see [Coddington and Levinson 1955] p. 251 Theorem 5.2) the

lfi's may be regarded as the transform of f (x,0) by the means of the
a

<J>' s i.e.:
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^.(a,A) = I fo(x,0) <j>.(x,A)dx j=l,2 a^R
J Jp a 3

'R

If we now assume that f (x,0) must be taken as 6(x-a) (i.e. f (•,•)
a a

satisfy the initial condition of problem (2-2)) then we get

^.(•jA) = <J>.(*,A), j=l,2 which completes the proof of the lemma.

Remark 2-1

We know (see [Coddington and Levinson 1955] p. 251 theorem 5.1)

that the limiting matrix (p., (A)) defined in lemma 2-1 always exists

but could be non-unique (in the so called limit-circle case), actually

we are not going to introduce more conditions to have the uniqueness,

because we only need here the existence property.
#

Let A be the set of non-constancy points of (p., (A)).

The set A is called the spectrum of the problem (2-5) with Y-*°.

Despite the fact that the spectrum could not be completely defined (since

p could be non-unique) we can say something about the nature of the

spectrum.

We know that there exists an increasing sequence of eigenvalues

{A } and a complete orthonormal set of corresponding eigenfunctions
Y>n

{8 (•)} associated with the Sturm-Liouville problem (2-5) n=0,l,2,... .
Y,nv

Using the boundary conditions (2-5b) we have:

\,n • j_Y-t- *<z> \r*r-),dz'
which shows, since the integrant is non-negative, that

A > 0 n=0,l,2... .
Y,n -

Letting Y"**0* we see that the spectrum A cannot lie on the
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negative part of the real line.

Further, we can verify directly that for every y^R A 0=0

and 6^ n(#) is a constant, say 0 , such that:
Y»" Y

Y

f G2 ir(z)dz=l.
J-Y Y

To say something about A n as y goes to infinity, we must consider

the integrability of tt(»)» If w(«) is not integrable on R then zero

cannot remain an eigenvalue as y-*" since the square integrability with

respect to ir(#) of the corresponding solution of problem (2-5) cannot

be maintained any more.

We can now state the following assumption under which we shall

show the convergence of the transition density to a limiting

density:

Afi: The pair (m(») »<*(*)) is such that ir(')> the solution of

equation (2-4), is integrable on R.

For example, m(x) = Ax together with a(x)=B, where A and B are

two constants such that A<0 and B^O, satisfy A,..

Lemma 2-2 (convergence to a limiting density)

Let {X ,t£[0,°°)} be the process defined by problem (0-1) under

A,-A,, then under the additional assumption A., the transition density

p (*,t) of the X process converges for all a*=R to a continuous
a t

limiting density p(#) on R solution of equation (2-4) as t goes to

infinity. „

Proof

From the above results concerning the spectrum and using lemma

2-1, we may conclude that p (•»•), the unique solution of problem (2-2)
a
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converges identically to zero if tt(«) is not integrable and to a

density p(0 if A_ is satisfied. This can be seen more explicitly

in letting t-*» in expression (2-3).

If zero is not an eigenvalue then there are no jumps in the matrix

(p. (0)) and the right hand side of (2-3) must vanish as t-*». If
J ,k

zero is an eigenvalue (A^ n=0), then we have for all a, x^R.

^ Pa(x,t) =p(x) /E ^(x,0) ^(a.Or^))

where r.r, is the jump of p., (0). By construction the corresponding
3 k jk

eigenfunction 8^ Q(») can be written for x^r:

8oo>0(x) = r^Cx.O) + r2(|>2(x,0).

Because of the conditions on the fs at x=0 and the fact that

8 ' (x)=l, we have r =1 and r =0 which proves that p (x,t) = p(x)
to. u j_ Z r-*00 a

under A_.

Finally, since the limiting density p(-) is solution of equation

(2-4), p(#) must be continuous on R under A0.
1 #

Indeed, under specific assumptions on m(») and a(») we can say more

about the nature of the spectrum.

Lemma 2-3 (nature of the spectrum)

Let, for x£R:

2, , _,,.._* ...,__x _,,__* «2t\ m (x) , m'(x) m(x)af(x) o (x) o(x)o (x)
uW = . 2, * 2 " a(x) 8 4

2a (x)

(2-6)
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. / lim / N lim
If mm (x_^ -oo y(x), x->oo u(x)) = u for some uG(-«>,«>J, then

A can only be discrete in the interval (-«,y).

Proof

We shall give an outline of the proof. By using the

standard transformation (see [Birkhoff and Rota 1969] p. 296 or [Titchmarch

1946] p. 22) the equation (2-5a) can be rewritten in the form of the

Schroedinger equation:

d2 ( \
~ T + tt-q(y)) v(y)=0 (2-7)
dy~

with

Y(X) = \ V(z) dZ ^R ' (2"8)

v(y(x)) .(£lsilixI\l/2 u(x)>

and

q(y(x)) = X d2/a(x)ir(x)
/a(x)ir(x) dy

The spectrum being unchanged in the transformation, we may study the nature

of the spectrum from equation (2-7). We know (see [Coddington and

Levinson 1955] problem 2 p. 255, [Titchmarch 1946] p. 113 or

[Schiff 1955] Ch. II, sec. 8) that if the potential function q(y)

is bounded from below say by p, as y tends to either end points of

its domain then the spectrum is discrete in the interval bounded

above by \i.

More precisely, if min( ^ q(y(x)), ^ q(y(x))) =p

for some ue[-°°,«>), then A can only be discrete in the interval
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(-«>,y). Using (2-4), (2-7) and (2-8) we obtain q(y(x)) = y(x)

xQt, where y(x) is given by (2-6) which completes the proof of the

lemma. n

We now state the last assumption on m(*) and a(*).

kc\ the pair(m(»),a(»)) is such that y of the lemma 2-3 is
o

strictly positive.

As an example of functions m(0 and o(») satisfying assumption

ct

A, we can mention the class of functions such that m(x)~Ax and
6

o(x)~Bxe as |x|-x» with a,3=0,1, A<0 and B#). For this class of

functions we may simplify the study of y(x) at the infinity by

noting from (2-6) that:

if a-0,1; 3=0

then

y(X) ~AL x2"
2B

if a=3=l

then

y(x) --L. (A -f-)
2B

if a=0, 3=1

then

i, b2

We notice that the exponent in the first expression is even and

the coefficients in the three cases are always strictly positive

so is y of lemma 2-3.
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Assumption A&, as it can be seen from lemma 2-3, implies that the

spectrum A can only be discrete at the beginning of the interval

[0,»). Such result will allow us to prove the following lemma:

Lemma 2-4 (the condition G )

Let {Xt,t£[0,«>)} be the process defined by problem (0-1) under

A ~A5» then under the additional assumption A,, the X process

satisfies condition G? (see section 1).

Proof

Using expression (2-3) of lemma 2-1 we may write, for any

function f(») on R which is Borel measurable, bounded and such

that Ef(X)=0, and any s>0:

(Hf)(a) = f £ cj) (a,A)e"Xs f f(x) <K(x,A) p(x)dx dp.. (A),
JRj,k=l K JR J Jk

where Hg is the transition probability operator defined in section 1.

Using the Parseval equality we get:

2

z
'R j,k=l

with

E(Hsf)2(X) =f e"2As 2 gj(A) gk(A) dPjfc(A)

^ - IR f(x) cf) (x,A) p(x)dx j=l,2. (2-9)

Since, under A,., zero is an eigenvalue and the corresponding jumps

of P-k(A) are 1 for j=k=l and zero otherwise, we have:

E(H f
s

)2(X) =(f f(x)p(x)dx) + f e"2Xs V g.(A)
VJR } JR-{0} j,k=l J

gk(X) dp (A).
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Since Ef(X)=0, we have:

2

e"2Xs £ 8,(A) g (A) dp (A).
R-{0} j,k=lj k Jk

Let A be the lower bound of A-{0}, then

-2A s r 2
E(H f)Z(X) < e U I £ g.(A) g, U) dp., (A).
s " JRj,k=l j k 3k

Recalling expression (2-9) and using once more the Parseval equality

we get the following bound:

2 "2X0S f 2 "2V 2E(H f) (X) <e U f (x) p(x)dx = e U Ef (X). (2-10)
S JK

Inequality (2-10) implies:

-Ans (2-11)
|Hsl2±e ?

Under A6, we have seen that the spectrum A can only be discrete at

the beginning of [0,°°), therefore the lower bound Afi of A-{0} must be

strictly positive, so that from (2-11) condition G» is certainly

satisfied. ji

Finally, using lemma 2-4, we may rewrite theorem 1-1 and 1-2

of section 1, for the special case of the X Markov process defined

by problem (0-1).

Theorem 2-1 (quadratic mean convergence of p (xfi))

Let {X ,t£[0,»)} be the process defined by problem (0-1)

under A..-A,.
1 6

Let K(») and h. be the functions defined in theorem 1-1.

Let Pt(xQ) be the estimate defined by (1-4). If p(») is bounded

on R then:
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W ~Wr—* p(V-

Theorem 2-2 (quadratic mean convergence of p'(xn))

Let {Xt,tG[0,oo)> be the process defined by problem (0-1)

under A.-A,.
1 o

Let K(«) and h. be the function defined in theorem 1-2.

Let Pl(x0) be the estimate defined by (1-15).

If p(») and p'(«) are bounded on R then:

In the statement of theorem 2-2, we may forget the condition that

p'(*) is continuous because we are now under assumptions A9 and A_.

Remark 2-2

Assumptions A2~A6 are only sufficient conditions. The case

m(x)= -sgn(x), and a(x)=l for example which does not satisfy the A_

condition still works on (see solution of problem 12, Chapter 4, p. 179

in [Wong 1971]).

From the above results (more specifically from lemma 2-4) we may

draw figure 2-1.

2
3) Estimation of a

We now assume that the function a(«) in (0-la) takes a constant

value a. By using a property of the quadratic variation of the X

process defined by problem (0-1) we suggest and prove the convergence

2
of a recursive estimate of a .
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2
Theorem 3-1 (quadratic mean convergence of a )

Let (X ,tS[0,»)} be the solution to the stochastic differential

equation (0-la) where m(») satisfy (0-2) and (0-3), and o(x)=a

Vx€=R. Let the initial condition satisfy EX «».

00

Let {t } be a bounded sequence of positive numbers such that:

T. -*• 0 •

1 (3-1)
i -*• »

00

and {t.}. - a sequence such that 0<t, and t., and t.+r. < t.,,
l 1=1 — 1 l i x — l+l

J."" JLJ mC • • • •

Let, n=l,2,...

a2 =- Y, —(x«_ . -X^ )2 (3-2)
n n r-' t . t .+x t. v

i=l 1111

^, 2 q.m. ^ 2
then: a J > a . ,.

n n-*» #

Proof (here, we follow closely the same arguments as those given in

[Wong and Zakai 1965]).

2 2 2
Let Q be equal to a -o , we have to prove that EQ tends to

ti n n n

zero as n goes to infinity.

* 2
By construction of a :
' n

n - 2 2
) .- ° >n n r-; t. t.+x. t.

1 1=1 i ill

writing equation (0-la) in its integral form, we get:

.t.+T, -t_.+T_. v 2 2n n .. /^.-j+t. -t.-t-r. v
- a .
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Denoting by

and

2 *-» 1 / r i i ,„ \ _2^ = o E ~ / i dW_ I - no (3-3)

"Tl U±. s

.t.+T. \2
B = y. - [ ^1 Xm(Xs)ds) ,' (3-4)

n . / -t.H

•»• st (:
x i

we may rewrite Q as:

t.+T. J:.+x

Q =^ (A+B +2 £ ^- fX 1m(Xc)ds f1 XdW )^n n \n n £ x. J s J s)
l i

2
By using Schwarz inequality in the expression of Q we get:

n , , -t.+T

<4 ^s"(t;'-) )•
introducing A in the last sum:

n

=~ (A2+B2+4na2B +4A B ).
2 n n n n n

n

Taking the expectation of both sides in the last expression and

using the Schwart inequality we get:

EQ 2<\(EA2+EB2+4na2E1/2B2+4E1/2A2E1/2B2)
- n — 2 n n n n n

n

2
To prove the convergence to zero of EQ we only have to show

12 12
that —r EA and —=• EB converge to zero.

2 n 2 n
n n '

From (3-3) we may rewrite A as:

0 n _ A-t.+T. .2 -t.+T. \

1=1 1 \vt, ' •'t.
1 1

-26-



Using a property of the stochastic integral (see [Ito 1951], or

[Wong and Zakai 1965] expression 4, p. 104) Ar becomes:

n n -t.+T. -s

=2a2Ef f1 * f dW
i=l i Jt. Jt. u

dW
s

i

2
Taking the expectation of A and using properties of the Brownian

motion:

2

EA2 = 4a4 y -^r | *' xE( | dW. ) ds
n t -t.+x. / -s \

n ' -t.+T.

=4a4 £ -^ fi '(s-t.)ds
i=l t. Jt.

Therefore

** EA2 -2a'
2 n n

n

and the right hand side converges to zero as n goes to

From (3-4) and using Schwarz inequality:

.t.+T.

B°1 nS. t2 (£ *m(x*)ds)
n J:.+t .

1n£ x f* *m4(Xs)ds
i=l Jt.

l

2
Taking the expectation of B

n

n «

EB < nEm (Xn) £ t.
n — 0 ,i i

i=l

4 4Since EX.. is bounded and m(«) satisfy (0-3), Em (XQ) is bounded,

say by C. Therefore
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1 ^ 2 C ^ 2
-teb < - y t.
2 n — n r-* i

n i=l

and the right hand side converges to zero and n goes to °° under

t -*• 0
the condition (3-1) i because of a property of the sequence

i -*- oo

of arithmetic means.

Remark 3-1

2
The estimate a defined in theorem 3-1 is recursive, i.e.

n

solution to:

02 =S=l a2 + _L. (x _x }2
n n n-1 ut t +t t

ti n n n

with n=l,2...

The choice of the sequence {t.} can be determined by practical

consideration (e.g. t. _-t. equals to computational time of the

above difference equation).

4) Estimation of m(x^)

In section 2 we have seen that the limiting density p(•), when

it exists, must verify equation (2-4). So, since p(*) is strictly

positive on R, we are able to express the function m(#) in term of

p(-). At any point x^ of R we have:

1 2! 2m(x0) = 2(a (xQ)+a (x0)q(xQ)), (4-la)

where

P'(x0)
"<v - ?o^r (4"lb)

Using the results of section 2, we may find a procedure to estimate

q(xQ).
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Theorem 4-1 (convergence in probability of q (xn))

Let {X ,t<=[0,«)} be the process defined by problem (0-1)

under A,-A,,
i o

Let e>0.

Let K.(») and K (•) be the functions K(«) defined in Theorem 1-1

and 1-2 respectively. Let h. be a positive function on R

satisfying conditions (1-2) and (1-14).

For t>0, let

x -X

-)ds
JO s

W - A x.-X " <4~2>

r. -a -)ds+e
s

If p(') and p'(*) are bounded on R, then

W ~^~> q(x0}

Proof

Multiplying numerator and denominator of (4-2) by — t>0
t

and using the estimates given by (1-4) and (1-15) we get:

W =
W

Pt<x0> +tt
Because the mean square convergence implies the convergence in

probability, we may apply the property of the latter relative to

continuous functions (here to the quotient), see [Lukacs 1975], p. 43.

Therefore using the results of theorems 2-1 and 2-2 we have:
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which completes the proof by considering (4-lb).

Finally we can state our last result which is relative to

a local estimate of the function ra(»):

Corollary 4-1 (convergence in probability of m (xn))

Let o(0 be the function defined in section 0 (which we assume

known).

Let, for t>0

mt(x0) =I^2'(x0)+a2(x0)qt(x0)) (4-3)

where q (x_) is given by (4-2), then under the conditions of theorem 4-1:

mt(xo} fer"> ra(xo}- #

Proof

The convergence in probability of m (x ) follows from Theorem

4-1 and considering expressions (4-la) and (4-3). „

In the case when the function (?(•) is unknown but takes a

constant value a, we may use the result of the previous section.

Corollary 4-2 (convergence in probability of m (x/0)
L)Il U

Let o(x) =aVx^R, (but a unknown). Let EX,<», and let

2
c be the estimate defined by (3.2).
n

Let, for t>0 and n=l,2...

nt,n<K0) =I°l qt(x0> (4"4)

where q (xJ is given by (4-2), then under the conditions of

theorem 4-1:
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m (x.) ^- •"> m(xn). jl
t,nv O7 t,n-x» 0' if

Proof

The convergence in probability of m (xn) follows by using the

theorems3-1 and 4-1 and considering expressions (4-la) and (4-4).
//

Remark 4-1

The previous results are true under the specific condition

that p(») and p'(0 are bounded (see theorem 4-1). Actually we

should introduce a last assumption, say A_, on the pair (m(,),a(*))

such that the above condition is satisfied.

When a(») takes a constant value on R we can verify that under

the following condition:

. /lim , n lim , NN.~
min( _ m(x), - ^_ m(x))>0

assumptions As and A. are satisfied and p(*) and p'(') are bounded

on R.

This can be seen in writing explicitly the solutions of equation

(2-4):

ir(x) =Ce f* ^£1 dzf 2m
J0 a2 "* #

Many functions K(«) satisfying conditions of Theorem 1-1 and

1-2 have been proposed in the past (see [Parzen 1962] and [Rosenblatt

1971]). Perhaps the simplest choices for K..(«) and K„(») in (4-1)

would be for y€=R:
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Ki(y> =l Vi,i](y)

and

• K2(y) = (i-|y|)i(_1}1](y)

i.e. K2(y) =sgn(y)l(_lj;L] (7) = 2sgn(y)K1(y)

where

IA(y) = 1 if y€=A

= 0 otherwise

and. sgn('y) = 1 if y>0

= -1 otherwise.

5) Conclusion

In Table 5-1 we give a summary of the main results obtained in

this paper. Actually, many questions remain unanswered. Among

them, how the identification procedure proposed here could be

extended to multidimensional stochastic processes?

Could assumption A- and Afi be related to one another?

Under which additional assumptions can we prove the convergence

to zero of the integrated mean square error or the convergence with

probability one of our estimates? Can we say something about the rate

of convergence to zero of the mean square error?
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Figure 2-1 (consequence of lemma 2-4)

Markov processes

processes satisfying
condition 60

Stochastic processes

Y////A Processes defined by (0-1)
V, under A, -A~



S
e
c
t
i
o
n

T
a
b
l
e
5
-
1
(
S
u
m
m
a
r
y
o
f
t
h
e
m
a
i
n
r
e
s
u
l
t
s
)

X
d
e
f
i
n
e
d

b
y

(
O
-
l
)

Al"A2
}

X
i
s

s
t
a
t
i
o
n
a
r
y

M
a
r
k
o
v

X
has

an
initial

density
^

-
«

p
(
»
)

a
n
d
s
a
t
i
s
f
i
e
s

G

X
i
s

u
n
i
q
u
e

a
n
d

M
a
r
k
o
v

T
h
.

1
-
1

{
Pt(x0W(x0)
P'(x0)-p'(x0)

X
d
e
f
i
n
e
d

fX.
h
a
s

a
t
r
a
n
s
i
t
i
o
n
]

Lned
by
1

j
X

has
a
transi

&1~A3
J

[density
Pa(*,#)

^Pa(«,«)
is

the

(
0
-
1
)

A

X
d
e
f
i
n
e
d

b
y

(
0
-
1
)

*
I

Th.

4
E
X
<
»

X
d

e
fin

e
d

b
y

(0
-1

)

V
A

6

3-1
f

2
2

=
>

Irs
->

o
Vqt(xQ)-q

(x0)j
^

K(x0)-Hn(x0)
a(#)

know
n

J

W
^
1

<xo>
\

a
-*

a
n

J
unique

s
o
l
u
t
i
o
n

l
o
f

(
2
-
2
)

A
.

p
(
.
,
•
)

i
s

t
h
e

3
.

u
n
i
q
u
e

s
o
l
u
t
i
o
n

o
f

(
2
-
2
)

V
A
6

C
o

r
.

4
-
1

C
o

r
.

4
-2

J

{m
t,n(x0>

^(x0>

l
e
m

2
-
1

)
2
-
3

2
-
4

=
>

p
(
-
,
t
)
-
>
p
(
0

t
h
.

2
-
1

2
-
2

W
-

$
Pt(x0)^p(x0)

x0)^>'(x0)



S
e
c
t
i
o
n

T
a
b
l
e
5
-
1
(
S
u
m
m
a
r
y
o
f
t
h
e
m
a
i
n

r
e
s
u
l
t
s
)

X
d
e
f
i
n
e
d
b
y

(
0
-
1
)

Al
"A
2

}
*

{*<

X
i
s

s
t
a
t
i
o
n
a
r
y

M
a
r
k
o
v

X
h
a
s

a
n

i
n
i
t
i
a
l

d
e
n
s
i
t
y

p
(
0

a
n
d

s
a
t
i
s
f
i
e
s

G
_

i
s
u
n
i
q
u
e

a
n
d
M
a
r
k
o
v

{pt
(x
0)
^>
(x
0)

p'
(x
0)
V(
x0
)

X
d
e
f
i
n
e
d

b
y

(0
-1
)

Ax
-A
3

}
f
X

h
a
s

a
t
r
a
n
s
i
t
i
o
n

^d
en
si
ty
p

(•
>•
)

/»
P

(•
»'
)

is
th
e
"^

le
m.

a
2-
1

u
n
i
q
u
e

s
o
l
u
t
i
o
n
I

„
,

X
d

e
fi

n
e
d

b
y

(0
-1

)

o
(x

)=
o

E
X

<
«

Xt
de
fi
ne
d

by
(0
-1
)

Al
"A
6

=
>

< V
.
o
f

(
2
-
2
)

A
„

N

p
(
.
,
•
)

i
s

t
h
e

c
l

u
n
i
q
u
e

s
o
l
u
t
i
o
n
o
f

(
2
-
2
)

V
A

6

T
h

.

3
-
1

f
2

2

T
h

.

4
-
1

qt
(x

0)
-H

i
(xQ

)
\

a
(#

)
kn

o
w

n
J

C
o

r
.

4
-
1

"
M

V
^

(xQ
)

\
C

o
r
.

4
-2

=
>

J

|m
t(
x0
)-
>m
(x
0)

{m
t,
n(
x0
>^
(x
0)

2
-
2

=
>

•

le
m

2
-
1

)
2

-3
2

-
4

p
(
-
,
t
)
+
p
(
-
)

a

t
h

.

2
-
1

2
-
2

l2
J

\P
;(

x0
w

(x
0)


	Copyright notice 1976
	ERL-599

