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STUDIES IN OPTIMAL SYSTEM THEORY

R. E. Mortensen

Consider the very simple problem of optimal control with

fixed time and fixed endpoints of a scalar linear system in the

continuous time deterministic case subject to a quadratic cost

functional. The plant is

x = ax + bu (1)

where a, b are constants. The cost is

T

J = 1/2 P u2(t) dt (2)1/2 r u

Jo0

(this is sometimes called the minimum energy problem).

There is no constraint on u(t). The object is to transfer (1)

from the given initial state x(0) = xQ to the given final state x(T) = X
such that (2) is minimized.

Using the conventions of Ref. 1, the Hamiltonian is

H (x, p) = max [p(ax + bu) - u / 2 ] • (3)
u

In this case the maximum may be found by setting the partial

derivative of (3) equal to zero. This gives

u(t) = bp(t) . (4)

Substituting (4) into (3) gives

H(x, p) = b2p2/2 +pax . (5)

* This research was supported by the Air Force Office of Scien
tific Research Contract AF-AFOSR 230-63.
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The Hamilton-Jacobi equation is

£♦ ±»z (H)2 +--H - °-
Here S = S(x, X,t), where we choose the given final state X

as a canonical constant of integration. The solution to (6) is then

r a(T-t) a(t-T) ~| 2
^, axe -Xe _l /7\S(x, X,t) = C - -^= • W>

2b2 sinh a(T - t)

Here C is an arbitrary additive constant whose value is unimportant.

One readily verifies by direct substitution that (7) satisfies (6). To
complete the solution to the problem we have

= 8S(x,X,t) 9 (8)
" 9 x

Using (7), (8), and (4) the optimal control is

a csch a(t - T) f ea(T-t) _x~|
u = (9)

In the special case when the desired final state is the origin,

we set X = 0 and have

u = JjL [coth a(t - T) - l] x . (10)

Thus we have the familiar result that the control u may be

realized from the current state x simply by multiplication by a

time-varying gain. This completes the essential part of the so

lution of the optimal control problem.
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We continue to explore the ramifications of this example,

looking for possible embellishments. The trajectory x(t) actually

followed by the system (1) when driven by the control (9) may be

found explicitly, as follows:

As explained in Ref. 1 the constant of integration canonically

conjugate to X is given by

P = . »%**»'> . <ii)

Using (7), this is explicitly

_ a

~ 2
csch a(T-t) |x -X£a(t"T^l (12)

Now, in a particular problem the numerical value of the

desired final state X will be part of the given data. However, the

numerical value of the constant P will not be given. Rather, the

other appropriate part of the given data is the numerical value of

the initial state x . Since P is constant, Eq. (12) holds for all

0 < t < T, so that we may insert t = 0 and x = x into (12) to

evaluate P. We need never actually even calculate P itself, though,

because equating the right-hand sides of (12) for t = 0 and for current

t provides what we want:

„ a(t-T) x - Xj2"aT
sinh a(T-t) "smh (aT) * l '

Solving (13) for x(t) explicitly yields

x(t) = x csch (aT) sinh a(T-t) + X [cosh a(T-t) - coth (aT) sinh a(T-t)]

(14)
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We see that x(t) as given by (14) does indeed satisfy the boundary

conditions x(0) = x , x(T) = X. The explicit form of the correspond

ing control u(t), as a function of time only, may be examined by

substituting (14) into (9). This gives

u(t)= *CSCM*T> (x-xojeaTVat =u(0)*~at . (15)

We note that, even though the "gain" in (9) or (10) becomes infinite

at t = T, the actual control u(t) as an explicit function of time is bounded

for all 0 < t < T.

The physical significance of (15) is that if we drove the system

fl) with the explicit time function (15), i. e. , "open loop" control

via a function generator, it would still necessarily execute the tra

jectory given by (14) and would still transfer from state x to state

X such that J in (2) is minimized. In contrast, (10) gives a "feed

back" or "closed-loop" method of realizing the same result.

Let us return now to (12), and explore a different idea. Solving

(12) explicitly for x(t) gives

2

x(t) = X£a(t>T) + ~— P sinh a(t-T) . (16)
a

Using (£), or alternatively now (4) and (9)»

p(t)= acscha(t-T) [x(t)je-a(t-T) _x] (n)
Substituting (16) into (17) reduces it to

p(t) =P(2"a(t"T) . (18)

Thus, we do have p(T) = P, as required from the definition of

P. Equations (16) and (18) together maybe written in matrix form:
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r~x(t)i
a(t-T) (1> /a) sinh a(t-T)

-a(t-T)
X

P.

The determinant of this matrix is unity, which is consistent with

the fact that this must be a contact transformation.

Instead of using the Hamilton-Jacobi parital differential

equation, when wereachedEq. (5) we could have employed Ham
ilton's canonical equations of motion:

x =
3H .
a p '

p = -
3H
a x

Using (5) in (20) and writing the result in matrix form, we have

^a b2^

0 -a

One readily verifies that (19) satisfies (21) with the boundary

condition

x(T) X

P(T)

(19)

(20)

(21)

(22)

We remark that (19) represents the form of the solution usually

obtained when one employs Pontryagin's Maximum Principle and

(20). At that point, it is necessary to "turn (19) inside out" in

order to obtain (12). Once (12) is found, then use of (4) and (18)

readily yields (9). Although in the linear case it is always relatively

straightforward to turn (19) or its equivalent "inside out, " in the non

linear case this may be an impossible task. That is why one finds

so few actual nonlinear problems which have been completely solved

using Pontryagin's principle. In contrast, if the H. J. Eq. (6)
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or its equivalent can be solved explicitly, e. g. , as (7), then (9)

or its equivalent follows at once via (8). Therefore, what is

needed is a slick way of solving the H. J. equation.

Unfortunately, the ideas to be presented below apply only to

the linear case, so that we have a possible breakthrough only on

the one front where we do not really need it. However, it contains

philosophical implications which may be significant.

We start by returning to the H. J. Eq. (6). If we did not

already know the solution is (7), the most effective way of finding

it is to assume a quadratic form:

S(x,X,t) = [XX]
^(t) ir12(t)

ir12(t) ir22(t)_ X

(23)

Substitution of (23) into (6) yields a Ricatti equation for ir^ (t) .
When iru{t) is found, ^12(t) is obtained as a solution of a linear
differential equation, and ir22(t) simply by a quadrature. The per
plexing part of the process is putting the proper boundary conditions
on iru, it.-, and tt -. Using the benefits of hindsight, we find that
for t = T, the known correct solution (7) behaves like

S (x, X, t)
(x - X)

2b*" (t - T)
(24)

It is hard to see how one should arrive at the conclusion a priori

that (24) is the appropriate boundary condition for (6). There seems

to be no suggestive interpretation for (24).

Let us now introduce the function

S(x,X,t)
R (x, X, t) = $ (t) e (25)
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Here <|>(t) is a function to be determined below. One finds that

8J^ =_J_ R+ -|S_ R (26)

as

a x
R (27)

82SR JB8\* . (28)

a t

8R

a x

a2R
« 2 n 2 l 9 x .ax a x \ /

Let us still assume that the form (23) is valid for S(x, X, t). Then

9 S = irn(t), (29)a 2 "11
8x

i. e., a function of t only.

Multiply through Eq. (6) by R :

R-tr +-rb2(-|f)2 R+—§4rR =°- <30)
Suppose now that we require R to satisfy

8R + 4- b2 -M£- + ax 4^- = 0. (31)a t 2 8 x2 8x

Using (26) through (29)» we have

|R +r||+ J>L ^ R+J>L ^r +ax||R=0 (32)
We now arbitrarily impose a condition in the form of a differential

equation relating <J>(t)to ir,, (t):

cj,(t) + ±j- 'u^)*^) = ° • <33)
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The solution to (33) is, of course,

<|>(t) = A exp \_-j4- -n <« dt] (34)

where A is an arbitrary constant.

Thus, provided (29) and (34) hold, it appears that (30) and

(31) are equivalent. In, other words, the transformation (25) provides

a way of transforming the nonlinear H. J. Eq. (6) into the linear

diffusion-type Eq. (31).

Inserting the functions S(x, X, t) from (7) and cj>(t) from (34)

into (25) yields R(x, X, t) which is a solution to (31). In this con

nection (7) may be conveniently rewritten as

a(T-t)

S(x,X, t) = -
2b sinh a(T-t)

[x X]
-1

-1

a(t-T)
X

.(35)

The additive constant C in (7) is dropped since it can be absorbed

by the multiplicative constant A in (34), as far as R is concerned.

Comparing (23) and (35),

a(T-t) , 2

-2a(T-t)*U(t) =,2
-ajE . (36)

b sinh a(T-t)

Then (34) gives

<J> (t) = A exp a dt

, _ jE2a(t-T)

1 - fi

[+/TfV]= A exp

where £ = 2a(t-T). Since A is arbitrary we take the indefinite

integral.

8-
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Then

* = Aexp ŷ log
1 - e

Thus we have

R(x,X,t) =
Aea<*-T)

V- 2a(t-T)
exp -

Vl-e2a(t"T)

a(T-t)

xe

a(t-T)
2

- Xe

2b sinh a(T - t)

(38)

Let us see whether R satisfies a more meaningful boundary condition

than the somewhat perplexing condition (24) on S. For t»T we have

R(x,X,t)

t«T
V2a(T - t)

exp

i
(x - X)

2b" (T - t)

Recall the known result concerning a limiting approximation to the

delta distribution:

lim

a > oo

-ax

Comparing with (40), we see that

= 6 (x) .

lim R(x,X,t) = Ab-W— 6 (x - X)
t * T V a

We are thus motivated to set

A = b"

Throughout this development we are assuming a > 0 for conven

ience. If a < 0, the procedure works out similarly, after making

the obvious necessary modifications.

-9-
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Inspecting (39), we see that for all t < T

CO oo

XRdx < oo; r

oo J-

As a matter of fact, with A given by (43) it is not hard to show that

oo

R(x, X, t) dX = 1 (45)

oo oo

RdX < oo . (44)

oo ^-oo

s.-oo

for all t < T, where the integral is taken in the sense of the

theory of distributions for t = T.

One of the features that we are claiming for the transfor

mation from Eq. (6) to Eq. (31) is thus that the boundary condition

lim R(x,X, t) = 6(x-X) (46)
t > T

seems very natural for the optimal control problem of Eqs. (1) and

(2) in which the desired final state is x(T) = X.

Digressing now momentarily, some confusion may be present

concerning the negative sign in (7), in view of the well-known sig

nificance of the function S(x, X, t) (see Ref. 1) and the fact that the

cost J in Eq. (2) must evidently always be non-negative. There is

no contradiction, however, as we would like to show. The correct

relation between S and J is

S [x(t), X, t ] -S[x(t), X, t]

t = T

= J° (47)
t = 0

where J is the optimum cost. To evaluate this, we must insert

the solution x(t) given by (14) into S(x, X, t) given by (7). The most
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straightforward way to proceed is to rewrite (7) as

^^^[x-X,^-^2
S(x, X, t) = C -

2b* sinh a(T-t)
(48)

Now square both sides of (13) to obtain the bracketed quantity in (48).

Making this substitution yields

"aT^ sinha(T-t)a(T-fc)(xo.- X*
S[x(t),X,t] = C -

a#

2b2 sinh2 a(T - t)

Then from (49)

S[x(t), X, t] = C

S[x(t), X, t]

so that (47) gives

J° =

t = T

= C -

t = 0

apaT(xo - Xg-*"1)
2b sinh. aT

(«o - X^"aT) > 0

2b sinh aT

(49)

(50)

(52)

as advertised. We assume throughout that T > 0, of course, as

well as 0 < t < T .

Let us now consider an entirely different problem, belonging

to the realm of noise theory and stochastic processes rather than

control theory. We will presently relate the following material to

the preceding. Suppose white noise is passed through a first-order

linear filter. The situation maybe described by

x (t) = ax (t) + bv (fc) (53)

-11.
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where v(t) is a sample function from a gaussian white completely
random process and x(t) is the output of the filter. It is well known
that x(t) will be a sample function from a scalar Markov process.

Let X be a random variable denoting the value of the filter

output at some fixed time T > 0. We wish to determine the condi
tional or transition probability density p (X;T | x;t) of X, given
the observed value of the filter output x at any previous time t < T.

It is well known that p (X; T | x; t) satisfies the backward Fokker-
3 4Planck or Kolmogorov equation ' which in this case is

aj(X;T|x;t) = ^ 8p(X; T|x;t) +_bf_ 82p(X;T|x;t) (54)
at a x 2 ax

where we have assumed that the covariance of the noise v(t) is

E[v(t) v(t)] = 6(t - t) . (55)

The appropriate boundary condition on (54) is

lim p (X;T|x;t) = 6(X - x) . (56)
t > T

Comparing (54) and (56) with (31) and (46) respectively, we see that

p (X;T | x;t) = R (x, X, t) (57)

or explicitly we may write

p(X;T|x;t) = - exp -J lX " ** J
V2^"o-(t» T) I 2cr^(t, T)

in which

2 #,. T\ b2 f2a(T-t) 7]
°" (t,T) = "2a" [f J " (59)

•12-



Thus the solutions of both the open-loop stochastic filtering

problem (53) and the deterministic optimal control problem (1),

(2) have been shown to hinge on the partial differential equation (31).

We suspect that this represents a more basic aspect of the duality
5

between the two classes of problems noted by Kalman and Bucy.

We propose that this duality can be exploited to solve problems

in optimal control. Let the noise filtering problem (53) be simulated

on a computer, either an analog computer using a gaussian noise

generator or a digital computer using tables of random digits. Since

we want all trajectories (sample functions) to pass through the point

X at time T, probably the best way to do this is to put t = T - t

and rewrite (53) as

d^T) = -ax(T) - bv(r) . (60)

Then, always start the system in the "initial" state

x(T) = X (61)

t = 0

and solve for t > 0. By repeating the solution a myriad of times,

a function equivalent for our purposes to the density function

p (X;T | x;t) could be generated experimentally. We thus also have
the function R(x, X, t).

In order to calculate the optimal control function u(t) for the

problem (1), (2), we wish to proceed as in (8) and (9). By (27), this

is easy, and (9) can equally well be obtained from

„ - b__ 8 R(x, X, t) ,, .
u - R(x,X,t) 51c * (62)

All of the above generalizes readily to the vector-valued case.

In order to solve the deterministic optimal control problem we
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simulate the dual stochastic filtering problem and generate the function

R (x, X, t) essentially by a Monte Carlo technique. From a knowledge
of the value of this function and its gradient we at once obtain the

control function u.

It unfortunately appears at present that this duality only exists

between the class of control problems involving linear plants with

quadratic cost functions and the class of stochastic filtering prob
lems in which the transition probability density is gaussian. A

plausibility argument as to the underlying reason for the duality

follows.

Consider two random variables (not processes now) y, z.

Let them have a joint probability density which is gaussian:

p2(y,z) =Ae-<«y2+ ^Z+ ^ZV (63)
Then the marginal density function Pj (y) can of course be

found by marginal integration

J oo

P2(y,z)dz. (64)
-co

Evaluating the integral by completing the square yields explicitly

Pl(y) =Bexp ["- (a - (32/4v) y2J . (65)

We are not concerned here with the multiplicative constants A, B in

(63) and (65), but only with the form of the exponential. What we
want to point out is that P-,(y) can be obtained from p2(y, z) not only
by marginal integration but also by a maximization procedure. To
carry it out, it is required that for any given value of y, determine the
value of z = z(y) such that the function P2[y» z(yf| is maximized.
The function p, (y) is then proportional to this maximal value of p^.
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Pvn= Cl «P{-T Si X) (69)

Now let the number of observations become infinite (n > oo).

Then the discrete index k (or t) maybe replaced by a continuous

index t, and the sum in (69) becomes an integral:

Pv m[v(t>] =C2 exp {--TT T v2<'> dt }• <70)

For convenience, assume t, = 0, t = T. Then

T

Pvoo[v(t)] = C7 exp ^- -£- f v2<t)dtf. (71)
r T

The quantity p maybe considered either as a function of an

infinite number of variables v , v. , . . . , or as a functional of^ c2

the single function v(t).

Suppose similarly that observations were made at times L,

t~, . . . , t on both the value of the output of the filter sample function
2 n

x(t) and on its derivative x (t) to give a set of observations

{xt1,3V""xt ;xt.,xt'••*,xt }•
12 n 1 2 n

We can conceive of a joint density function p • (x , x , . . . , x ;
x, x, n t| ") »%

x , x , . . . , x ) on all these variates. Again let n > oo, and put
12 n

t. = 0, t = T. Then by (53), since v = (x - ax)/b we conjecture

that, using (70)

x,x, oo L~w' ~X"/J ~3 w ^ I N Jo
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Now what it is desired to do is to obtain the joint bivariate density

function p~ (X, x ) on the initial observation x and the final obser-
*2 * .o o

vation xT = X only. This seems to require some sort of marginal
integration in an infinite number of dimensions over all the x and

all the x except x and X. If marginal integration and a maximum
K.

procedure are equivalent for gaussian distributions, however, we

propose that

p (X,xo).= r^ max Px ^ ^ [x(t);x(t)] (73)
x(t)

where only those x(t) are admissible which satisfy x(0) = x , x(T) = X.

Now inspecting (71), (72), and (73), we assert that our desired

joint density function p? (X, x ) can be found from the minimization

problem min f v^(t) dt subject to the constraints that
J0

x = ax + bv and x(0) = x , x(T) = X.

Clearly since

P2<Xl'xo> = Pc<X|xo) Pl<xo> <74)

our procedure is tantamount to finding the transition probability

density p (X |x ), which in turn is really our function p (X;T|x;t)

lurking in disguise.

Therefore, heuristically it appears that p(X;T|x;t) maybe
found either by solving the Fokker-Planck or Kolmogorov Eq. (54);

by carrying put an infinite dimensional marginal integration on the

infinite dimensional joint density (72); or by noting that the latter

can be accomplished via an equivalent extremization procedure.
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It is apparent, of course, that the minimization problem at which
we finally arrived is exactly the same as the statement of the original
optimal control problem in Eqs. (1) and (2).

We submit that the underlying reason for the apparent duality

between stochastic filtering problems and deterministic control

problems lies in a generalization of the relation (66) for the gaussian

density functions.

Let us terminate by making two final bold proposals. The first

proposal concerns the so-called stochastic optimal control problem

in which rather wide interest has recently been manifested. A good

summary of these developments is contained in the report by

Wonham. Consideration of this problem leads to the so-called

stochastic Hamilton-Jacobi equation. Suppose that our plant is now

x(t) = ax + bxu(t) + b2v(t) (75)

where u(t) is the control and v(t) is white noise. Let it now be

required to minimize the expected value of the cost of control E [J],

where

T

J = -~ f u2(t)dt . (76)

Without going into the details regarding the observations on x(t) or

the specific form of the stochastic Hamilton-Jacobi equation for this

problem, we say that by means of a series of manipulations similar

to those embodied in Eqs. (25 - 34) above, the stochastic Hamilton-

Jacobi equation can likewise be transformed into a linear diffusion

equation of the form (31).

Consequently, we propose that rather than considering two

distinct categories of problems, namely stochastic filtering problems

on the one hand and deterministic optimal control problems on the

other, at least in the very restrictive "linear" cases considered in

-18-



this note the correct point of view is to consider a whole continuum

of problems. This continuum consists of problems of the stochastic

optimal control variety discussed by Wonham. The two categories

above simply lie at opposite extremes of this continuum.

Our second, and final proposal concerns the fact that the

transformation of (6) into (31) is applicable to any similar problem in

the calculus of variations, whether or not it originates in the theory

of optimal control.

Thus, in classical mechanics the Hamiltonian for a harmonic
6

oscillator is

H(x,p) = -JL- +-£. x2 . (77)
The Hamilton-Jacobi equation is

a t

By introducing the function

R(x,X,t) = <Mt)/z(i/*)S(x'X,t) (79)

where S(x, X, t) is assumed to have the form (23), and by using

a series of manipulations similar to those discussed previously,

Eq. (79) maybe transformed into

«*-It- = " tts: -^-t- + -V x2r • <80>3 t 2m g x<£ 2

Now, Eq. (80) is precisely the Schroedinger equation for a quantum

l / as V
"2m I 8 x J

as + i / asr + JsL x2 = o . (78)
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7
mechanical harmonic oscillator. Our final proposal, therefore,

is that the philosophical implication of the above equivalence is that

all of the information obtained from the solution to the quantum

mechanical harmonic oscillator problem must be implicitly contained

in the solution to the classical mechanical harmonic oscillator

problem found via Hamilton-Jacobi theory.
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