

Copyright © 1976, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN EDGE-ORIENTED ADJACENCY LIST FOR UNDIRECTED GRAPHS

by

L. K. Chen, B. S. Ting and A. Sangiovanni-Vincentelli

Memorandum No. ERL-M589

18 May 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN EDGE-ORIENTED ADJACENCY LIST

FOR UNDIRECTED GRAPHS*

t
L. K. Chen, B. S. Ting and A. Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

A new data structure, called the Edge-Oriented Adjacency List

(EOAL), for representing undirected graphs is presented. It provides

more information on the edges and requires less storage space than the

conventional adjacency list. Furthermore, it is superior than the con

ventional adjacency list in both insertion and deletion operations.

On leave from Instituto di Elettrotecnica ed Elettronica, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
*

Research sponsored by the National Science Foundation Grant ENG74-06651-
A01 and the Joint Services Electronics Program Contract F44620-71-C-0087

1. Introduction

One of the most commonly used data structures for representing

graphs is a list structure—the adjacency list [1]. It is particularly

suited for graph manipulations where searchings and sortings are involved

[2]. It has been incorporated in depth - first-search algorithms [3,4],

breadth- first-search algorithms [5] and maximum flow problems [6].

It is also implemented in some graph programming language like

GEA [7]. However, there are two major disadvantages—the duplication

of data and the lack of edge identificiation property—associated

with this conventional adjacency list when used in conjunction with

undirected graphs. We shall propose a modified version of this con

ventional adjacency list, called the Edge-Oriented Adjacency List

and denoted by EOAL, which not only takes care of the above disadvantages

but also proves to be superior in graph modification where insertions

and deletions are needed.

In Sec. 2, we shall review the conventional adjacency list briefly

and discuss its disadvantages. In Sec. 3, we shall introduce the EOAL

structure and discuss its advantages. Throughout this paper, we shall

use the same example to illustrate the differences between the conven

tional adjacency list and EOAL.

2. Conventional Adjacency List

The conventional adjacency list is defined as follows [1]:

Let G = (V,E) denote an undirected graph; for each vertex u e V,

we provide a list containing all the vertices v e V such that {u,v} G E

(i.e., there is an edge connecting vertices u and v). Observe that each

{u,v} denotes an unordered pair of vertices u and v whereas (u,v) denotes
an ordered pair of vertices u and v.

-2-

edge {u,v} is represented twice in the lists, i.e., in the lists asso

ciated with vertices u and v.

Let us assume that all vertices are numbered from 1 to |v|2, i.e.,

V={v^,v2,...,v.vj}. In the most common programming languages (e.g.,

FORTRAN, ALGOL), the implementation of the conventional adjacency list

requires |v| +4|e| cells.3 For example, the adjacency list for the

graph shown in Fig. 1 is represented in Fig. 2 where row 1 of Fig. 2 states

that the vertex v± is adjacent to vertices v£ and v^ Atotal of
|V| + 4|E| =4+4x5= 24 cells are needed.

One disadvantage of this adjacency list is that if there are k

data (e.g., name, cost, capacity, etc.) associated with each edge of
G, an additional 2k|E| cells are needed as shown in Fig. 3. Observe

that we have represented each of the k|E| data twice.

Another disadvantage of this adjacency list is its lack of the

"edge identification" property. We shall discuss briefly this property
now. During the execution of an edge (u,v) in an undirected graph, we
want to devise some scheme that enables us to avoid any future execution

of the same edge (v,u). This is the so-called edge identification problem.
There are in general three approaches for solving this problem.

The first approach is to modify the adjacency lists associated with

vertices uand vright after the execution of edge (u,v). This requires
sequential search through the adjacency list of v. The second approach
is to devise some simple test criterion (as in [3]) such that, once
(u,v) is executed, (v,u) will fail n,0 ♦.«„- uY~ l'' l tai1 the test hence avoiding the execution
|S| denotes the cardinality of the set S.

i^s ^rrv:rroTa:p:dcgeecoftins either anumb~ - *—

-3-

of (v,u) at a later stage. It has to be noted, however, that very often

such a test criterion is hard to find or it may be computationally in

volved. The last approach is to add 3|E| additional cells as shown in

Fig. 4. The LABEL array in Fig. 4 is then the simple test criterion described

earlier. Before the execution of a particular edge, the corresponding space in

LABEL is checked to see whether it has been "marked." After the execu

tion of an "unmarked" edge, the corresponding spacein LABEL is then "marked."

If we need both the k data associated with each edge and the edge

identification property, a total of |v| +4|e| + 2k|E| -4- 31E| = |v| +

(2k+7)|E| cells are needed. The number of cells can be partially re

duced by using the edge identification scheme along with a table of size

(k+1) x |E| as shown in Fig. 5 where a total of |v| +4|e| +2|e| +

(k+l)|E| = |V| + (k+7)|E| cells are needed.

3» Edge-Oriented Adjacency List

Now, we shall propose a modified version of the conventional

adjacency list, called the Edge-Oriented Adjacency List (i.e., EOAL),

to further reduce the number of needed cells. We shall first discuss

EOAL without any data associated with edges. Then, edge data will be

added to EOAL structure.

Let EOAL denote a 1-dimensional array of |v| + 4|e| cells (see Fig.

6(a)). Let the first |v| cells be denoted by VA (i.e., Vertex Array)

and let the remaining 4|e| cells be denoted by EA (i.e., Edge Array).

The ith cell of VA, denoted by VA., contains the pointer associated with

vertex v..

Each consecutive four cells in EA corresponds to an edge e and is
J

denoted by EA ,j = 1,2,...,|e|. The first cell in EA. is denoted by

EF , containing one of the two end vertices associated with edge e . The
J j

-4-

second cell in EA is denoted by EFP., containing the pointer for the

vertex in EF.. The third cell in EA is denoted by ET., containing the

remaining end vertex associated with e . The fourth and last cell in

EA is denoted by ETP , containing the pointer for the vertex in ET..
j j j

The entries of VA., EF., EFP., ET. and ETP. can be found through

the following construction algorithm. Let V = {v ,v ,... ,v, .}, E =

^el,e2'*" ,elEl^ and ^"et ^vf ,v^ ^ denote the two end vertices associated

with edge e.. Let CA denote a 1-dimensional storage array of size |V|

where each of its components, denoted by CA(i), contains the Current

Address of the end-of-list sign for the adjacency list of the corresponding

vertex v^. We can then summarize the construction of EOAL by the flow

chart shown in Fig. 7. For our example in Fig. 1, the step by step con

struction of the EOAL appears in Figs. 8(a)-(f). Observe that in EOAL

pointers are stored in VA±, EFP. and ETP . We can extract the list

structure stored in Fig. 8(f) as shown in Fig. 8(g) which is identical

to the conventional adjacency list shown in Fig. 2.

Let us recall that in Fig. 4 the edge identification implementation

requires 3|E| additional cells. In EOAL we need only |e| cells for the

LABEL array. Because the edge number "j" is inherently built in and can

be calculated by

i - t-^ /EOAL address-lv 1+3,j - Integer(- *—'—) ^

In the case we want to associate k data with each edge, only k|E|

additional cells are needed (see Fig. 6(b)). EOAL now becomes an array

of |V| + (k+4)|E| cells. The first |V| cells still form the VA subarray

while the remaining (k+4)|E| cells form the EA subarray. Each consecutive

(k+4) cells of EA correspond to the edge e. and are denoted respectively by

•5-

EF , EFP., ET , ETP., d.,d.,...,d. where d? denotes the qth data of edge
j J j J J J J J

e.. The formula for finding the edge number "j" for this case becomes

t ^ ,EOAL address-|v[+3+kx ,0,j = Integer(^—L—J) (2)

Let us now briefly discuss how to fetch the stored data in EOAL.

Let us assume that we are at one of the end vertices (i.e. either vf
j

or v) of edge e. in EOAL and we want to fetch the qth data of e.
t, & J J

q
(i.e., d.). We can use the EOAL address of this vertex to find the

EOAL address of d. as follows:
J

EOAL address of d? = |v| + (4+k) (j-1) + q + 4 (3)

where j is the edge number obtained through (2). The reason that we

have to go through rather lengthy computation in fetching data is that

we do not know whether we are at v_ or v . To overcome this difficulty,

we can associate a negative sign with the first data d. of every edge.

Using the positive nature of ET , d? can then be fetched efficiently

through the flowchart shown in Fig. 9.

Since EOAL basically contains the conventional adjacency list as

shown in Fig. 8(g), insertion and/or deletion of any vertex and/or edge

for BOAL requires the same operations as that of the conventional ad

jacency list. However, during the updating of the availability list [1]

(i.e., a list of available storage spaces), in the case of deletion of

edges, EOAL is faster in the sense that every deleted edge requires one

modification in the availability list as compared to two modifications

for the conventional adjacency list. Besides, when there are multi-edges

in the graph, EOAL is clearly superior in distinguishing one edge from

another. Finally, it should be pointed out that, for directed graphs,

-6-

EF and EFP. are no longer needed and EOAL simply reduces to the
3 3

conventional adjacency list.

4. Conclusion

A modification for the conventional adjacency list, called the

Edge-Oriented Adjacency List, is introduced for representing undirected

graphs. It is shown that EOAL is superior to the conventional adjacency

list. Not only does it require less storage space but also it is more

efficient in graph modification operations.

-7-

References

[1] D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental

Algorithms* Addison-Wesley, 1969. Chap. 2.

[2] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching. Addison-Wesley, 1973.

[3] R. E. Tarjan, "Depth-First Search and Linear Graph Algorithms,"

SIAM Journal on Computing, Vol. 1, No. 2, June 1972, pp. 146-160.

[4] R. E. Tarjan, "Finding Minimum Spanning Trees," University of

California, Berkeley, Electronics Research Laboratory, Memorandum

No. ERL-M501, February 1975.

[5] D. J. Rose and R. E. Tarjan, "Algorithmic Aspects of Vertex Elimina

tion on Graphs," University of California, Berkeley, Electronics

Research Laboratory, Memorandum No. ERL-M483 , November 1974.

[6] N. Deo, Graph Theory with Applications to Engineering and Computer

Science. Prentice-Hall, 1974. Chap. 14.

f7] S. Crespi-Reghizzi and R. Morpurgo, "A Language for Treating Graphs,"

Comm. of ACM, Vol. 13, No. 5, May 1970, pp. 319-323.

-8-

Figure Captions

Fig. 1 Graph G = (V,E) with |v| = 4 and |E| = 5

Fig. 2 The conventional adjacency list for G in Fig. 1 with "*."

denoting the end-of-list sign associated with vertex v.

(a) standard form

(b) modified form utilizing the assumption that vertices are numbered

from 1 to |V|

Fig. 3 The conventional adjacency list having k data associated with

each edge.

Fig. 4 The conventional adjacency list with edge identification

Fig. 5 A modified adjacency list containing both edge data and edge

identification

Fig. 6 EOAL structure

(a) without edge data

(b) with edge data

Fig. 7 Flow-chart for constructing BOAL

Fig. 8 EOAL for example in Fig. 1

(a) partial array

(b) after inclusion of edge e..

(c) after inclusion of edge e?

(d) after inclusion of edge e~

(e) after inclusion of edge e.
4

(f) after inclusion of edge e,-, this is also the complete EOAL structure

(g) adjacency list extracted from EOAL

Fig. 9 Flow-chart for fetching data

Fig. 1.

v
e
r
t
e
x

n
u
m
b
e
r

(
a
)

F
i
g
.

2

2
4

*1
1 2

1
3

4
*

2
w

3
2

4
*

3

/,
3

a
.

1
m

2
*4

*

(
b
)

cd
T3

cm
* *

,*5 m

cm m

T3
cm m

tH m
13

r-i m

T3

<f CM

<• CO
*

< r

T3
M CM ^5 CO

T3 t3

•

•

• •

cm sr
T3

CM CM CM CO
T3

CM <f

r-4 <J" •H CM
13

rH CO rH •*

<f co sf rH

J I I i JI Ji

<> i > (• 1>

T3
X rH M CM

T3
J«J CO

• • ;
•

CM <H CM rH

T3
CM CM

-a
CM CO

T3

rH «H
"0

rH r-\
T3

rH CM

T3
rH CO
T3

CM rH CM CO

iI ii i i i I

(> 1• <> <>

CO

00
•H

edge i

<

number

2 1 4 4
*

11

2 1 1 3 2 4 5
*

2

3 2 2 4 3
*

2

/. 3 3 1 /. 2 5
*

4

Fig. 4

edge
number

LABEL

1

2

3

4

5

A
_

2
1

4
4

* .-
L

_

1
1

3
2

4
5

*

?.

2
i L

.
4

3
* ™

3
u

3
3

1
4

2
5

*

4

F
i
g
.

5

e
d
g
e

n
u
m
b
e
r

L
A
B
E
L

dl
dl

'-
dl

d2
d2

-
d2

d3
d3

"
d3

d4
d4

"
d4

d
d

.
.

d

Address EOAL

1

2

+4

+4

+4

+4

+4

+4

+4

|V

|v|+i

|v|+2

|v|+3

|v|+4

|v|+5

v|+6

v|+7

vl+8

E|-7

E|-6

E|-5

E|-4

E|-3

E|-2

El-1

v|+4|e|

VA.

VA,

VA

EF.

EFP,

ET,

ETP.

EF.

EFP.

ET,

ETP.

EF,
E -1

EFP
E -1

ET,
E -1

ETP ElH.
EF

EFP|El
ET

ETP

(a)

}ea1

EA.

^lEl-l

|v

|v

|v

|V

|v

|v
EA,>*

Fig. 6

Address EOAL

|v

V +1

V +2

V +3

V +4

V +5

V +6

VA.

VA,

VAi

EF.

EFP.

ET,

ETP.

V +k+4

|+(k+4)(|E

|+(k+4)(|E

|+(k+4)(|E

|+(k+4)(|E

|+(k+4)(|E

|+(k+4)(|E

-l)+i efIe|
-l)+2 efpIeI
-D+3 ET|El
-D+4 ETP|E|
-D+5 d|E|
-l)+6

d!E!
•

4)|E| d|H|
(b)

)EA1

\

EAi

START

u

CA(i) = i for i = l,2,...,|v|;

address = |v| + 1; j = 1

I
EOAL (address) = f. where vf is one of the end

J J
vertices of e.;

3

EOAL (CA(f•)) = address + 2

CA(f.) = address +3

Address = address +2

EOAL (address) = t. where v

J j
is the other end

vertex of
ej!

EOAL (CA(tj)) = address -2

CA(t.) = address -1

I
j = E ?

YES
STOP

NO

Address = address +2; j = j+1

Fig. 7.

CA Address EOAL

1

2

3

4

A<

CA

idress

1

2

3

•v / 4

A/ 5

\ 7
^8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

EOAL

1

2

3

4

CA

1

2

3

4

/ 5
/ 6

-N. / 7

\N» 8

]l 9
-/M*H>10

\ u
* 12

13

14

15

16

17

18

19

20

21

22

23

u

EOAL

1 1 *

1
7 7

* o2 2 *

2
5 5

3 *

3

*

3
93 * 3

4 4 *

4
8 A

4

*

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24.

6 1 1

3 *

2
11

4 2 8 2

*

1 12 *

1

10 2

4 *

3

•

3

*

2

(a) (b) (c)

Fig. 8

CA

Address

1

2

3

4

5

6

7

-8

/ 9
/ 10

y ii

EOAL

1

2

3

4

i

7

5

9

13

1

11

2

*

1

2

15

1 8 3

12 *

2
2 *12

\ 133 16 3

4 14 *4

\ 15
M6

17

18

19

20

21

22

23

24

CA

4 18

*

3
12

16

20

(d)

1 7

2 5

3 9

4 13

5 1

6 11

7 2

8 17

9 2

10 15

11 3

12 *

2

13 3

14 19

15 4

16
3

17 4

18 *1

19 1

20 *

4

21

22

23

24

(e)

Fig. 8

Address

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

EOAL

13

11

17

15

21

19

23

(O

pointer

/address?

7 17*

1 *2 *4*

5 t _U o 21 ..
2 "1 *3 *4*2

3—-*2
15

4*.

13 19 - 13 0.
4 *3 -1 "^2 4

Fig. 8 (g)

START

1 f

add.. = address of vf or v

I

YES

add = add +2

I
EOAL (add2) < 0?

add = add + q + 1

d? = EOAL (add0)
J 3

I
STOP

Fig. 9.

NO

add, = add + q + 3

	Copyright notice 1976
	ERL-589

