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ABSTRACT

A new algorithm for updating shortest paths from all vertices to

a set of vertices following a decreasing-length-modification of some

arcs, is presented. The algorithm is based on a formula for inverting

algebraic analogy with the well-known Householder's formula for inverting

modified matrices. The number of operations (i.e., additions and

comparisons) required for solving the modified shortest path is
2

estimated as 0(n ), where n is the overall number of vertices.

The algorithm proposed here is particularly powerful for solving

the large-scale networks with sparse structure.
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I. Introduction

The shortest path problem is one of the fundamental problems

in the area of network programming. In some application it is necessary

to compute shortest paths in many networks each different from the other

only for some slight changes in costs or for the addition (or deletion)

of a few vertices and arcs. While the shortest path problem has been

n~6i
very deeply investigated and many algorithms have been proposed ,

a little attention has been devoted to the updating of shortest paths

when some changes occur in the original networks. The key in devising

an efficient updating algorithm is to take into account as much as

possible the results of the original shortest path computation. Spira

and Pan gave lower bounds of the computation needed to update

shortest paths from one specified vertex to all the other vertices.

T81
Hsieh and Kershenbaum proposed an algorithm based on Bellman's

method. In this paper, an algorithm for updating shortest paths is

proposed. Its structure has been derived by looking at the formal

analogy between the shortest path problem and the problem of solving

linear algebraic equations introduced by Carre and Iri-Nakamori .

In particular, the algorithm is based on a theorem which can be considered

[91
the analogies of the well-known Householder's formula for inverting

modified matrices. Its structure is essentially the same of an

algorithm for computing the solution of a modified system of linear

algebraic equations given in [10]. It assumes that the original

shortest paths have been computed by means of a shortest path algorithm

[61
analogous to the Crout method for solving the linear algebraic

equations. This characteristics allows the effective application
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to the case of sparse structure. The complexity of computation is very

close to the lower bound given in [7]. Its restriction consists in

the fact that only decreasing-length-modification can be taken into

account. However, some important applications [11] are characterized

just by decreasing-length-modifications.

The paper is organized as follows: in Section II some preliminary

remarks and definitions are given. In Section III, the main theorem and

the modification algorithm are presented and the complexity of computation

is evaluated. In Section IV an example is described and in Section V

some concluding remarks are given.
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II Preliminalies

A diagraph G = (V,E) consists of a set V of n elements, together

with a subset E of ordered pairs (u,v) of elements taken from V. The

elements of V are called vertices and the members of E are called arcs.

Let R be the set of real numbers and w: E •> R be a function called

cost function which associates a real number called cost or length.

A network G = (V,E,oj) consists of a graph and a cost function ta. We

assume that V v € v, (v,v) |e, i.e., the network does not admit any

selfloops.

A finite order sequence P = {v1»v2,...,v } of distinct vertices

is called a path from v1 to v£ if (v^v^) GE for i= 1,2,...,£-1, and

£-1

w(P) = E *»(e±) ;e± =(v^v^) (1)

is called the length of P. For an ordered pair (s,t), the set of

paths from s to t is denoted by P(s,t). If

V P' e P(s,t), u>(P) < u)(P') (2)

the P and <d(P) are called the shortest path and the distance (i.e., the

length of the shortest path) from s to t, respectively.

Let V = {v1,v ,...,v } be the set of vertices of G = (V,E), then

the lengths of arcs, are represented by an adjaceny n x n matrix

A = {a..}, called measure matrix whose entries are defined as follows:

ru>(e ) ; i j j and e = (v ,v ) e E
a = 1 1J ij i J (3)

3 I - ;i=jor (v±,v )iE
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Let x.„ be the distance from vertex v. to v. for each
ij i J

i, j = l,2,...,n. Then the n x n matrix X = tx..} is called the

distance matrix of the network, where the diagonal elements x..;

i = l,2,...,n, are considered to be 0 in a natural sense.

The problem of determining X or a part of it has been solved in many

ways. " One of these approaches is based on an analogy between

the shortest path problem and the problem of solving a set of linear

algebraic equations. In order to state this analogy Carre introduced

a particular algebra. He considered a semiring (S, © , ® ), i.e.,

a set S with two binary operations, ©: generalized additions and

® : generalized multiplications, closed on S and obeying the commutative,

associative, and distributive laws. In the shortest path problem,

S is given by R U {«} and © and ® are defined as follows:

Vx, yG S

x © y = min{x,y} (4)

x ® y = x + y (5)

The unit element in the algebra is 0 and the null element is °°.

Moreoever, we define a generalized addition and a generalized multiplication

of matrices with elements in S as follows. Given two n x m matrices

X = (x. ,} and Y = {y..}, Z = X © Y is the n x m matrix with elements
ij ij

z . = x.. © y... Given an n x p matrix X = {x, .} and a p x m
ij ij ij r ij

matrix, z = X ® Y isannxm matrix with elements Z..-52 x-il- ® ^n»

where symbol^denotes generalized summation.
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Since the distance x^ from v± to v satisfies the relation
min

...,n lxik +V ' ** J
(6)

k=l,2 „ {xlk +akj} * **i
X

o ; i-j

According to Eq. (4), (5) and to the definition of generalized

addition and multiplication of matrices, Eq. (6) can be written in

a matrix form.

X = A ® X © I (7)

where 1^ is a square matrix of order n with o's in the main diagonal

positions and with »'s in the off-diagonal positions. It is considered

to be the unit matrix in the shortest path problem.

If the network G does not admit any cycles with negative length,

the solution X of Eq. (7) can be obtained as

X = A* 9 In (8)

where A* is an n x n matrix obtained via the following equation:

A* =In © A © AZ © .... © A11"1 (9)

Generalizing Eq. (8), in [4] it is shown that any equation of the form

Y = A ® Y © Z (10)

where A is an n x n matrix with elements in S, Z is any n x p matrix with

elements in S and Y is an n x p unknown matrix, has the solution

Y = A* ® Z (11)
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Carre has shown that the solution of Eq. (8) and (10) can be also obtained

by algorithms formally identical to the algorithm used in the solution

of a system of linear algebraic equations. In particular, one of the

most efficient method is the analogous one to the reduced Crout algorithm. ^
[121As in linear algebraic equation case,1 J this algorithm is quite efficient

when large scale shortest path problems have to be solved, being the

measure matrix A sparse. The Crout algorithm for the shortest path

problem has the following procedure. Let L = {H } be an n x n lower

triangular matrix and U = {» } an n x n upper triangular matrix

with elements

*±i =0 (i = l,2,...,n)

*il = ail (1 = 2»3 ""^

Ulj = aij (j = 2»3»--->n-l)

j'1 (12)
'ij "aij ® £ *ik ® \j

(i = j+1, j+2,...,n; j=2,3,...,n-l)

i-1

Uij =Sij ® £ *ik • \j

(j = i + 1, i + 2,...,n; j = 2, 3,...,n-l)

(k)
Let L (k = 2,3,...,n) be a lower triangular matrix defined as

follows:

I (k)*ii
= 0

V00kj
=

kj

o (k)
ij

=
00

(i = 1,2,...,n)

(j = l,2,...,k-l) (13)

(i = k, j =k + l,...,norifk)
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(k)
and U (k = l,2,...,n-l) a upper triangular matrix defined as follows:

(k)
ii

ukJ(k)"\j (j =k+ 1, k+2,...,n) (14)
(k)

uij = °° (i = k, j = l,...,k - 1 or i t k)

u--'~" =0 (i = l,2,...,n)

Then,

or

i-"> ® Ti>"k+1> 9 i a5)
k=l k=l n

f-"n1 u« ®^ L(n-m) 9 z
k=l k=l

n-1

where n is intended as a generalized product of n - 1 matrices.
k=l

Let x and b (h = l,2,...,n) be the h-th column of X and I ,
n

respectively. Then, by Eq. (15), each column of X is given by

I<W -V u*> © t<W (17)
k=l

where

,00 „"n1 L(n-k+i) @ b(h)
k=l

"~(P) (p}Let y and 5V (P = l,2,...,m) be the p-th column of Y and Z,

respectively. Then, by Eq. (16), each column of. Y is given by

k=l
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where

$(p). n;x L(n-k+D 9 z(p) (20)
k=l

In analogy with the linear algebraic equations, the procedures

for L and U through Eq. (12) may be called Triangular Factorization,

the procedures for evaluating t in Eq. (18) and t ' in Eq. (20)

—(h} — (P)
Forward Substitution and the procedures for x in Eq. (17) and y

in Eq. (19) Backward Substitution.

The expression Eq. (15) can be viewed as a shortest path version of

[121
the eliminate form of inverse.

The complexity of the algorithm has to be evaluated by taking into

account of both generalized additions (comparisons) and generalized

multiplications (additions), since for most of the available computers

both of them require the same amount of computation time. When A is a

full matrix, i.e., when all the off-diagonal elements are non-infinity,

the number of operations (comparisons and additions) required to evaluate

— (h} n
x in Eq. (17) is estimated by -r- in Triangular Factorization which is

2 2
performed once, (n-h) /2 in Forward Substitution for each h and n /2 in

Backward Substitution for each h; this results in the total value

3 2 3

3 T^ 6

_ 2
where q is the number of the specified columns of X to be evaluated.

3
Particularly, we need n operations for q = n (all shortest path problem),

The Crout type algorithm mentioned above enables us to estimate

the number of operations in terms of network structure (independent

of numerical values of arc-lengths). Furthermore, it should be noted

that when A is sparse, computation time can be saved to a great amount
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if the program is implemented so as to execute only non-trivial operations.3

III. A modification algorithm

In some applications, a shortest path problem has to be solved with

very slight modifications of the involved network G. A modification

may occur when some vertices or arcs are deleted or added or when some

arc-lengths are decreased or increased.

In this case, it is expected that less computation should be

required to evaluate shortest paths in the modified networks by

using the previous shortest paths. Recently, Spira and Pan^ showed

the lower bound for updating shortest paths on particular cases. While

efficient algorithms are well-known and often used for inverting
[9]modified matrices or solving a system of linear algebraic equations

with modified coefficient.^10,13,1^

In this section, the analogy between shortest path problem and

linear algebraic equation problem presented in Section II is explored

in order to devise a new updating algorithm.

. In the linear algebraic case, if B is the modified coefficient

matrix, it is always possible to decompose B as

B = A + C (21)

where C is the modification matrix. Moreover if C is a rank m

(m < n) matrix, it is possible to decompose C as

C=HKT (22)
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where H and K are (n x m) matrices and superscript T denotes the

transposition of a matrix. Then,

B = A + H KT (23)

and Eq. (23) plays an important role in the development of modification

algorithms. In order to apply the analogy, we have to represent the

modification to the measure matrix A in the same way.

Let B be the measure matrix of the modified network, B can be

decomposed as in Eq. (21) if and only if

V. . , b,. < a,. (24)
i,j ij - ±3

since the generalized addition in the shortest path problem is a min

operation. Then, it is possible to write

B = A © C (25)

where C is defined as follows:

b,, if b, . < a,.
C±1 =< 1J ij ij (26)>•{
Then, we have to assume that only decreasing-length-modifications

are performed on a given network if we want to apply the analogy with

4
the linear algebraic equation case. We can pick up some of the columns

and rows which together contain all the finite elements of C. Let

al,a2****'aa an(* ^i^o*•••>bg be the column and row numbers which are

taken, respectively. Let m be the sum of a and $ and

H = {h .} and K = {k..} be two (n x m) matrices defined as follows:
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for 1 <^ j <^ a

h.. = C.
ij ia.

J

(0 ; i = a
k±. =j 3

ip° ; i ^ a.

(i = 1,2,...,n)

for a + 1 _< j £ m

fO ; i = b.

3 U ; i ^ b.
j-a

k4. = C,
±3 b. i

j-a

(i = 1,2,...,n)

where, m = a + 3

According to Eq. (27) ~ (30), H and K can be decomposed as

H = [C :i 0]
na n3

K = [I ^C J
na n3

where

na

CU Cla, • ' Cla
12 a

C23i C2ao • * C2
12 a

n3l
V

na.. na
a-

-J

~\

J

-12-
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n3

na

n3

Cb2 Cb2
1 2

b n b n

v_

V-._

n

V
V

VnJ
&

n

-\

a J
a

0

00

J -I

bl) »

J

Therefore, the following Lemma holds.

Lemma 1.

The matrix C can be decomposed as

C = H ® K

wherei superscript T denotes the transposition of a matrix.

-13-
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<Proof)

(H ® KT)ij = £ (h ® k )
Z=l 1J6 *J

a

E (h ® k^) © £ (h ® k)

= E (cia ® k )© £ (h ® c. .)

=Cij ® CiJ

Q.E.D.

Then, the equation of the shortest path for the modified networks

can be written as

X= (A © H © KT) ® X © I (36)

Now, we can relate A* to (A © H ® KT)* with a formula which is

the exact analogous to the well-known Householder's formula.6

Theorem 1

(A © H ® KT)* =A* © A*H(KTaV KTA* (37)

<Proof)

According to Eq. (8), the solution of Eq. (36), X, is equal to

the left hand side of Eq. (37). Then, in order to state that Eq. (37)

holds, it is sufficient to prove that the right hand side of Eq. (37)

is a solution for Eq. (36).
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(A © HKT) © X © I
n

T 4c 4c T 4c 4c T 4c
= (A © H K1) (A © A H(KXA H) ITA ) © I

n

= A A* © I
n

© A A H(K A H)K A

© H K A © H K A H(K A H) K A

= A © A A H(K A H)K A

^•x x ^ T*,T**T*© H(In © ITA H(KXA H) )ITA

<k A TATA T * * T *
= A © A A H(ITA H)rA © H(1TA H) ITA

4c A T 4c 4c T ik
= A © (A A © I )H(KiA H) K A

n

* ^ * . T * *T*
= A © A H(K A H) K A

= X

Q.E.D.

Theorem 1 suggests an efficient algorithm to compute the solution
^ — 4c 4c
X of Eq. (7), i.e., X or A . We assume that A has been computed by

means of Triangular Factorization, Forward and Backward Substitutions.

-15-



Modification algorithm MOD

STEPJ.: Compute the solution X' of X1 =A ® X' © H

by evaluating A © H.

STEP 2: Compute KT © x

STEP 3: Compute KT © xf

STEP_4: Perform Triangular Factorization of the matrix KT © x»

STEP_5: Compute the solution W by Forward and Backward Substitutions

for W=(KT © X1) © W © (KT © X)

STEPJ: Compute X = X © (X1 © W)

Theorem 2

X given by MOD is the solution of Eq. (36).

<Proof)

The solution X' of X' =A ® X' © H is represented by A* © H.

The solution Wof W=(KT © X') <g) W © KT ® Xis given by
T * t _

(K © Xf) © K © X. Substituting the solutions X, X» and

W into X © X' © W, we have A* © A*H(KTA*H)Va*. Theorem 1

guarantees that this expression is the solution of Eq. (36).

Q.E.D.

The complexity of MOD is now evaluated. When A is a full matrix,

by taking account of the particular structure of H = TC -I 1
1 na neJ»

STEP 1 requires

(38)
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non-trivial additions and comparisons and STEP 2

3n2 (39)

non-trivial additions and comparisons by considering the particular

structure of K = [I «C J
na n3

STEP 3 requires obviously

3 m n (40)

non-trivial additions and comparisons and STEP 4 and 5 requires

1/3 m (41)

2
m n (42)

non-trivial operations, respectively and STEP 6 requires

2
m n (43)

additions and

2
(m+l)n (44)

comparisons.

If not all the modified shortest paths are required, but only the shortest

paths from all the vertices to some specified vertices (whose number is

denoted by q) , then only q columns corresponding to those specified

vertices have to be computed. Then, STEP 2 requires

q 3 n (45)
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non-trivial additions and comparisons by performing the operations for

only q specified columns of X but not for all columns. STEP 5requires

q^ (46)

non-trivial additons and comparisons and STEP 6 requires

m q n (47)

additions and

(m+l)q n (48)

comparisons.

Then, the total number of non-trivial operations required to update

the shortest paths from each vertex to q specified vertices is estimated

as

2 2 "\
additions: a n + ((q+3)m + q3)n + qm + 1/3 m (49)

2
* a n + ((q+3)m + q3)n (n » q,m) (50)

comparisons: an + ((q+3)m + q(3+l))n+qm2 + 1/3 m3 (51)

2
* a n + ((q+3)m + q(3+l))n (n » q,m) (52)

Note

4c

[1] Here, we assume that-the solution X(A ) of Eq. (7) is given.

If Triangular Factorization of A (i.e., L = U..} and U = {U })

is assumed to be given instead of A ,m n2 non-trivial additions and
o

comparisons are required instead of a n to carry out Forward and

Backward Substitutions. This assumption is considered to be a reasonable
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one in the case of updating some specified shortest paths but not

all shortest paths.

[2] In almost all cases, A is very sparse. In this case, STEP 1 can

be more conveniently carried out. Let y and C. be the number

of non infinity elements in the i-th row of L and the i-th column

of U except for the main diagonal, to carry out Forward and

Backward Substitutions in STEP 1,

n-1

m Z) (Yj + CJ (53)
1=1

non-trivial additions and comparisons are required.

Spira and Pan showed that if a new vertex is added at least 1/2(n-1)(n-2)

comparisons are required to updata shortest paths from one specified

vertex to all the vertices. According to the Modification algorithm

2 *
proposed here, we need exactly (n + 6n + 4) comparisons if A is

2
given and (2n + 6n + 4) comparisons if Triangular Factorization of A

is given. (q = 1, a = 3 = 1, m = 2). Anyhow, if shortest paths from

q specified vertices to all the vertices have to be obtained in modified

networks, MOD requires a number of operations whose leading term (n )

is independent of q but only depends on modified elements A, i.e.,

a or m.

ry oi
Updating algorithms1 * based on a Dijkstrafs procedure or

Bellman's procedure may require q as the coefficient of the leading term

2\ 3(n ). Therefore, it requires 0(n ) operations for updating all shortest
2

paths, however, MOD requires 0(n ) operations.
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The main features of MOD are then:

a) the capability of exploiting sparsity

b) its complexity measure very close to the lower bound computed

in [7] and independent of the number of specified vertices

in the leading term.

VI. EXAMPLE

We shall show an example of updating shortest path based on Modification

Algorithm.

In the network shown in Fig. 1, the measure matrix is given by

A =

'"• 9 2 5"
8 » 7 «

8 6 co 12

l__ 4 °° <» oo _

By Triangular Factorization, we have the following two matrices

L= U±j} and U={u }, according to the procedure in Eq. (12).

0

L =

U =

00

8 0

8 6 0

L4 13 6 0_

0 9 2 5~
0 7 13

oo 0 12

0

(54)

(55)

(56)

The distance matrix calculated by performing Forward and Backward

Substitions in the following way results in

-20-



X =

9 2 5." ^0 00 00 00 0 00
—1

00 00

0 00 00

©
0 7 13

©
0 00 00

00 0 00 00 0 00 00 0 12

o._
-

0_ 0„

~0 ~0 ~i
~0

^

~0

)
00

00

0
00

00

0 ©
00

8

0

6

00

0
©

8
00

0
00

oo

0 ©

0 °°

00 0
L4 13 6 OJ _« 00 00 0-J ^.00 00 oo 0- J o„.

©

(57)

Thus, we have

X =

0 8 2 5

8 0 7 13

8 6 0 12

4 12 6 0 -

(58)

Let the lengths of arcs be changed, as shown in Fig. 2. The new measure

matrix is given by

B =

'• 3 2 5'
2 » 7 oo

3 4 oo 5

1 00 00 00

and may be written in the form:

B = A © C

where,

00 3 o° oo

2 00 00 00

3 4 oo 5

1 00 00 00

-21-
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Matrix C is decomposed into:

C « H © KJ
(62)

where,

H =

K =

"oo 3 00

2 oo 00

3 4 0

1 00 00

0 00 3
00 0 4
00 00 00

00 00 5.

(63)

(64)

The steps of Modification Algorithm are performed in the following
way:

STEP 1:

X' =

"0 9 2 5 ' f~o 00 00 00 0 00 00 00

0
00

00

0

00

00

0- •L-°
7

0

13
00

0„

©
0

00

00

0

00

12

0

-o ~0 0 ~0 3 00

©
00

00

0
00

00

0 ©
00

8

0

6

00

0 ©
8
00

0
00

00

0
©

2

3

0

4

00

0
<-4 13 6 OL L °° 00 00 0- 00 00 oo 0 — _ 1 00 oo. .

"""0 3 2 ~
2 0 7

3 4 0

_1 7 6.- (as. \
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STEP 2:

K © X =

STEP 3:

K © X1 =

STEP 4:

L_

00 00 00

0 °°

4 0 5

0 8 2 5"
8 0 7 13

3 4 0 5 J

0 00 00 00

oo 0 °° °°

L3 4 0 5

0 3 2'1

2 0 7

L3 4 0-

©

L

0 8 2 5

8 0 7 13

8 6 0 12

4 12 6 0 _

©

0 3 2'

2 0 7

3 4 0

17 6.

(66)

(67)

Triangular Factorization of K © Xf is shown by

[}
3 2~

0 4

4 OJ

STEP 5:

W =

fO 3
0

00

2

00

0-

®

0 oo

. 0

00

k

00

4

0_

©

~0

00

^3

CO

0

4 OJ

=

~0 3

2 0

-3 4

2

4

0

5^

7

5-

-23-
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STEP 6;

X «

'0 8 2 5 "
8 0 7 13

8 6 0 12
4 12 6 0~

©

'""O 3 2

2 0 7

3 4 0

LI 7 6,

-24-
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0 3 2 5
2 0 4 7

3 4 0 5J
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V. CONCLUDING REMARKS

The problem of updating shortest paths from all vertices to a set

of vertices following decreasing-length-modificatlon has been discussed.

In order to solve the problem effectively, the analogy between shortest

path problem and the problem of finding the solution of a system of

linear algebraic equations has been exploited. The analogy has been

used to derive a formula which bears formal analogy with the well-known

Householder's formula for inverting modified matrices.

An efficient algorithm based on this formula has been proposed and

its complexity of computation is evaluated. The complexity has been

2
estimated as 0(n ) and is very close to the lower bound computed in

[7]. Furthermore, the complexity in its leading term is independent

of the number of specified vertices (number of end vertices to get the

shortest paths), though other algorithms based on Dijkstra and Bellman

method depent on it. Moreover, since its structure is mainly based on

the reduced Crout algorithm for shortest path problems, it can be

very efficient when the given network is sparse.

The problem of updating the shortest paths for the cases when some

of arc -lengths could have increased, is not dealt with in this paper.

Further investigation is required to cover the remaining alternatives.

As a final remark, it has to be noted that efficient decomposition

algorithms analogous to the tearing algorithms developed in the linear

algebraic system problem can be devised by exploiting the modification

algorithms proposed in this paper. The decomposition algorithms will

be thoroughly discussed in a forthcoming paper.
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FOOTNOTES

1. A is defined as A ® A © ... © A

2. Here, the first q columns of X are assumed to be evaluated.

3. The term 'non-trivial operations1 here refer to operations of the

form a © b or a © b with a, b ^ 0 or oo.

4. When some new arcs or vertices are added to network G, the analogy

can be applied. Since, the corresponding entries in B are finite

while those were °°fs in A.

5. The number m depends on what column numbers or row numbers are chosen

to contain all finite elements of C. Finding the minimum number of

m is reduced to calculating the term rank of the matrix, where changed

elements are represented as "1" and unchanged ones are as "0".
5

Hopcroft and Karp proposed an 0(n2) algorithm to find the term rank. 5^

[916. The Householder's formula1 J in inverting modified matrices can be

written as

(a + hkV = a1 - kha + kVh)1 kV
n

where, the superscript I indicates inverse.

7. In order to evaluate the shortest paths from some specified vertices

to all vertices, consider the transpased matrix of A and apply the

same technique.
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Fig. 1 Network

(i) : vertex

(±) : weight of

CAPTIONS

arc

Fig. 2. Network with decreasing-length-modifications

(£) : vertex

(i) : length of arc

* denotes the arc-length which is different from one in

Fig. 1.
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