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ABSTRACT — The traveling-salesman problem, the set covering
problem and the vertex coloring and maximum independent set
problems for graphs are examples of combinatorial optimiza
tion problems that cannot be solved in polynomial time unless
P = MP. Polynomial-time algorithms guaranteed to yield
approximately optimal solutions to these problems are not
known, and possibly do not exist. This paper gives a survey
of a probabilistic approach, in which we assume that instances
of these problems are drawn from specified probability distri
butions, and show that certain polynomial-time algorithms
almost surely find near-optimal solutions.

1. THE LIMITATIONS OF WORST-CASE ANALYSIS

Many of the chief problems in the field of combinatorial
algorithms appear intractable, in the sense that every known
solution method experiences a combinatorial explosion in its
worst-case running time as a function of the size of the

input. Among these apparently intractable problems are the
traveling-salesman problem, the problem of finding the chro
matic number of a graph, the problem of finding a maximum
number of mutually nonadjacent vertices in a graph, and the
problem of testing whether a formula in the propositional
calculus is satisfiable.

These problems, as well as many others, are equivalent,
in the sense that the existence of an algorithm for solving
any one of them within a polynomial time bound would imply
that each of them is solvable within polynomial time. Such
equivalences are established using the concepts of polynomial-
time reducibility and WP-completeness [Cook (71), Karp (72),
Karp (75a), Levin (73)]. It appears likely that none of
these equivalent problems can be solved in polynomial time.
t
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distributions and examining whether the simplex method, trun
cated to run within polynomial time, yields optimal solutions
almost everywhere. Such an investigation remains to be car
ried out.

In the present paper we survey some results about the
"almost everywhere" behavior of algorithms for finding tra
veling-salesman tours, Hamilton circuits, graph colorings,
independent sets of vertices in graphs, and set coverings.
Many of the results are new, and will be proved in forthcom
ing papers by the author. In each case we have made the sim
plest probability assumptions that lead to nontrivial ques
tions. The algorithms we have chosen to analyze are also
very simple. In every instance heuristics will occur to the
reader that would undoubtedly improve the performance of the
algorithms; unfortunately, the introduction of complex heu
ristics introduces probabilistic dependencies that are ex
tremely difficult to analyze.

3. THE EUCLIDEAN TRAVELING-SALESMAN PROBLEM

An instance of the euclidean traveling-salesman problem
is specified by a finite set of points in the plane; the solu
tion consists of a polygon of minimum perimeter having the
given points as its vertices. The problem is WP-hard [Garey,
Graham and Johnson (76)]. The strongest known worst-case
approximation result concerning the problem is due to
N. Christofides, who gives an algorithm that runs in time
0(n3), and solves the problem within r = 3/2. On the other
hand, it has often been observed that persons can usually
write down nearly optimum solutions to random euclidean tra
veling-salesman problems by inspection. We show here that
such human behavior can be emulated by a simple algorithm.

We assume that a problem instance of size n is chosen by
drawing n point's independently from a uniform distribution
over the unit square. We present an approximate solution
algorithm based on partitioning the unit square into subre-
gions within which optimum tours can be found exactly; the
subtours are then joined to form a near-optimal tour through
all the points.

Some preliminary remarks are needed. First, there is a
dynamic programming algorithm capable of solving x-city tra
veling-salesman problems in 0(x»2x) steps [Bellman (60), Held
and Karp (72)]. Second, the traveling-salesman problem is
not changed if we allow as feasible solutions arbitrary closed
walks through the vertices, including those with crossing
edges, and those in which certain vertices are repeatedly



Fig, 1. A closed walk through
seven points

traversed. It is easy to transform any such closed walk into
a simple polygon with a smaller perimeter.

In specifying the algorithm, we mention a function t(n);
t is any function that maps the positive integers into the
positive rationals such that

is a perfect square.

(a) * ^ log2log2n and

(b) for all n, — is

Algorithm A

1. Subdivide the unit square into a regular grid of , N
/tin) t{JL'

subsquares, each of side / .
n

2. Using dynamic programming, construct an optimum tour
through the set of points in each subsquare.

3. Regard each of the . . subtours as a point, with the

distance between subtours P^ and ?2 equal to the short
est distance between a point on P^ and a point on P2.
Construct a minimum-length spanning tree joining the
subtours.

4. Construct a closed walk W that traverses each subtour
once, and each tree edge twice. W represents the desired
solution.

Theorem 1. Algorithm A runs within time O(nlogn) (a.e.).
For every 6 > 0, Algorithm A solves the euclidean traveling-
salesman problem within 1 + 6 (a.e.).

Theorem 1 is based on the following result, which is
given in [Beardwood, Halton and Hammersley (59)]. Let the
random variable X^ denote the minimum perimeter of a polygon
through n points drawn at random from a uniform distribution
over the unit square.

Theorem 2. There is a constant 3 such that, for every 6 > 0,

X
n

Jn

X,
3-e < — < $ + e a.e.



Fig. 2. Walk constructed by Algorithm A

Let Yn be a random variable equal to the sum of the
lengths of the n/t subtours constructed by the algorithm; let
Zn be the length of the minimum spanning tree joining the
subtours. From Theorem 1 it follows that, for every 6 > 0,

(3-e)

We can also show that there exists, a constant y such that

(a.e.)

Y

< -2. < ($+e)
)/n

n tin)

a.e.

Theorem 2 follows readily from these remarks.
Algorithms based on similar partitioning principles, and

with similar properties, apply to Steiner tree problems as



well as traveling-salesman problems, and to cases where the
points are in n-space instead of the plane, or where the dis
tribution from which the points are drawn is non-uniform, or
where distances are determined by the L^ metric instead of
the euclidean metric.

4. THE CONSTRUCTION OF HAMILTON CIRCUITS, INDEPENDENT SETS
AND COLORINGS IN RANDOM GRAPHS

RANDOM GRAPHS

Let p(n) be a function from the positive integers into
[0,1]. Relative to this function, we can define a random
n-vertex graph as one in which the vertex set is {l,2,...,n},
and in which the edge set is constructed according to the
following sampling experiment: for each pair i, j, include
{i,j} as an edge with probability p(n), independent of what,
other edges are included. We speak of the constant density
model when p(n) is a constant p, and of the constant average
degree model when p(n) = c/n-1, for some constant c, and all
n > c.

The theory of random graphs goes back to [Erdos and
Renyi (59)]. The subject is rich in remarkable theorems to
the effect that certain properties of a random graph can be
predicted with great certainty, simply from the knowledge of
p(n). For example, the following theorem tells us when we
can expect a random graph to be connected.

Theorem 3 [Erdos and Renyi (59)]. Let p(n) = In n + c. Then
the probability that a random n-vertex graph is connected is

-2c
asymptotic to e~e

Corollary 1. If p(n) 'V a In n, a < 1, then a random n-vertex
graph is not connected (a.e.). If p(n) % a Inn, a > 1, then
a random n-vertex graph is connected (a.e.).

HAMILTON CIRCUITS

A Hamilton circuit is a cycle passing through each ver
tex of a graph exactly once. The problem of deciding whether
a graph has a Hamilton circuit is WP-complete. Nevertheless,
Posa has given a polynomial-time algorithm that almost surely
finds a Hamilton circuit when one exists [Posa (75)].

Theorem 4 (Posa). Suppose p(n) ^ a In n.



Case 1. a < 1. In this case, a random graph does not have a
Hamilton circuit (a.e.).

Case 2. a > 1. Then there is a polynomial-time algorithm
that finds a Hamilton circuit (a.e.)

The first case in Theorem 4 is immediate from the work

of Erdos and Renyi, since a graph must be connected in order
to have a Hamilton circuit. More interesting is the algorithm
referred to in Case 2. The algorithm fixes a vertex (call it
vertex 1) and proceeds to construct longer and longer paths
starting at vertex 1. Let P be a simple path from vertex 1
to vertex k; k is called the free end point of P. Let
e = {k,£} be an edge incident with k. Then any of three
operations may be possible, each yielding either a Hamilton
circuit or a new path.

(a) closure — If I = 1 and P contains all the vertices,
then PU{e} is a Hamilton circuit;

(b) extension — If %does not occur in P, then e may be
adjoined to P to form a longer path, with JI as its end point;

(c) rotation—If I f 1 and £ occurs in P, then there
is a unique edge e1 in P such that PU{e} - {ef} is a path.

(JT • —-*®

(a) Closure

® -<&'
(b) Extension

(J) • *W\AA»« • (k)
e'

(c) Rotation

Fig. 3. Operations used in Rosa's algorithm

Given a path of length i the algorithm repeatedly per
forms the rotation operation to obtain new paths of length i,
continuing until extension to a path of length i+1 or (when
i=n) closure to a Hamilton circuit becomes possible. The
algorithm is constrained so that it will not form two paths
of length i with the same free end point. This constraint
ensures that the algorithm will run in polynomial time, but
enhances the likelihood that the algorithm will stall because



permissible rotations become exhausted before extension or

closure can occur. Nevertheless, Posa shows that the algo
rithm almost surely finds a Hamilton circuit when
p(n) ^ a In n, a > 1.

Experiments conducted by R. MacGregor at Berkeley indi
cate that the Posa algorithm is effective for practical values
of n, as well as having favorable asymptotic properties.
MacGregor's program generates n-vertex graphs by starting
with n isolated vertices and adding edges until the graph is
connected and each vertex has degree at least 2. Until that
point no Hamilton circuit can exist. In each of sixty cases,
with n = 500, the program found a Hamilton circuit at that
point. On fifty-seven of the graphs the Posa algorithm suc
ceeded immediately. In the other three cases the vertices
had to be randomly renumbered, and the Posa algorithm rerun,
before a Hamilton circuit was found.

INDEPENDENT SETS

A set S of vertices in a graph is independent if no two
vertices in S are adjacent. The problem of finding a maxi
mum-cardinality independent set in a graph is WP-hard. No
polynomial-time algorithm is known for solving this maximiza
tion problem within a fixed ratio r. In [Garey and Johnson
(76a)] it is proven that the following statements are equi
valent:

(a) for some r, there is a polynomial-time algorithm
to solve the maximum independent set problem within the
ratio r;

(b) for every r > 1, there is a polynomial-time algo
rithm for solving the maximum independent set problem within
r.

We present a simple algorithm for finding independent
sets, and analyze its typical behavior on random graphs.
Given a graph G and a set of vertices S, define m(S) as the
smallest-numbered vertex not in S, and not adjacent to any
vertex in S; m(S) is undefined if no such vertex exists.

Sequential Algorithm for Finding Independent Sets

S «- <f>
begin while m(S) defined do

S <- SU{m(S)}
end

It is easy to construct graphs with n vertices for which
the sequential algorithm delivers an independent set of size
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1, although the largest independent set is of size n-1. By
contrast, we shall show that, on random graphs, the sequen
tial algorithm solves the maximum independent set problem
within a small ratio (almost everywhere).

We analyze the behavior of the algorithm using two
models of random graphs: the constant density model and the
constant average degree model.

Theorem 5. Let Y(n,p(n)) be a random variable equal to the
size of the independent set produced by the sequential algo
rithm applied to a random n-vertex graph.

(1) Constant-density model [Grimmett and McDiarmid (75)]
For every 6 > 0

(l-e)log ± n < y(rt,p) < (l+e)log n (a.e.)

HP l1?
(2) Constant average degree model. For every € > 0

(l-e)^ <y(».^> <(l+e)M£til„
(a.e.)

To determine how close the sequential algorithm comes to
producing maximum independent sets, we examine the random
variable 3(n,p(n)), which is defined as the size of a largest
independent set in a random n-vertex graph. When p(n) = p
and n is large, the value of the largest independent set can
be pinpointed with amazing precision.

Theorem 6 [Matula (76)]. Let

s(w,p) = 2log 1 n - 2log log n
T^p T=p l=p

+2log 1 | +1.
l=p

Then

\z(n,p) +3(n,p) |£1 a.e.

We can also estimate the size of the largest independent
set when the constant average degree model is used. Let
H(a) denote the entropy function:

#(a) = -a In a - (l-a)ln(l-a) .

Theorem 7. For every 6 > 0

3(n,^j-) < (l+e)an a.e. ,
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where a is determined by the relation

2g(g)
—2"-- c .

a

Combining Theorems 5, 6 and 7, we may make the following
claims about the sequential algorithm for finding independent
sets.

Theorem 8.

(a) constant density model (p(n)=p). For every 6 > 0,
the sequential algorithm solves the maximum independent set
problem within 2+e (a.e.)

(b) constant average degree model (p(n) =——-). For
every e > 0, the sequential algorithm solves the maximum inde
pendent set problem within

U+eMc) (a.e.) ,

where r(c) is a monotone increasing function which is less
than 1.6 when c < 1100.

COLORINGS

A coloring of the graph G is a partition of the vertices
of G into independent sets (called color classes). The
coloring problem is to find a coloring with a minimum number
of color classes; this minimum number is called the chromatic
number of G, denoted x(G)*

The coloring problem is WP-hard. In [Garey and Johnson
(76a)] it is shown that it is WP-hard to solve the coloring
problem within a ratio r < 2. Moreover, no polynomial-time
algorithm is known which solves the coloring problem within
any fixed ratio r.

In [Johnson (74)] a sequential algorithm for graph
coloring is considered. This algorithm simply examines the
vertices in order, and places each one in the least color
class that can legitimately accept it. A family of graphs is
presented on which the performance of the algorithm is disas
trous. A typical graph in the family has the vertex set
{l,2,...,n}U{l',2,,...,n1} and the edge set {{i,j '} |i ^j}.
The chromatic number of the graph is 2, but the sequential
algorithm will require n colors if the vertices are considered
in the order 1,1',2,2',...,n,n'.

In [Grimmett and McDiarmid (75)] an analysis is made of
the performance of the sequential algorithm on random graphs
generated according to the constant density model (p(n)=p).
Define two random variables: x(n»P)» the chromatic number of



12

a random n-vertex graph and 0(n,p), the number of colors re
quired by the sequential algorithm to color a random n-vertex
graph. The following theorem summarizes their results.

Theorem -8. For every e > 0,

(a) xCn.p) > d-e)2 lQ° n (a.e.)

(b) 9<n,p) <(1+e)^^^ (a.e.)
and

It follows that the sequential algorithm solves the
coloring problem within 2+e (a.e.).

5. PROBABILISTIC ANALYSIS OF A TREE SEARCH ALGORITHM
FOR THE SET COVERING PROBLEM

TREE SEARCH

Our set cohering algorithm is based on a general strategy
for structuring the solution of a combinatorial minimization
problem as a search through a finite tree. The technique,
known as implicit enumeration, is simply to break the problem
recursively into cases, until all the cases become manageable.

Any instance of a combinatorial minimization problem can,
in principle, be expressed as: minimize f(x) subject to
x e X, where X, the set of feasible solutions, is a finite
collection of objects such as tours, colorings or independent
sets. For any Y C X, let c(Y) denote min{f(x) |x eY}.. Given
ix.±i> a collection of sets whose union is X, we have
c(X) = min{c(Xi)}.

Thus the original problem may be solved by splitting up
the set of feasible solutions according to some criterion,
and then solving the resulting subproblems, each of which'has
more constraints on its feasible solutions than the original
problem has.

The same idea may be applied recursively to the subpro
blems. Thus, if X± =X^UX^U... UXV we may replace X±
°y (Xil,Xi2,...,Xife}. This process is called branching or
expanding a node. Repeated branching creates a tree of sub-
problems. Each path down the tree corresponds to a sequence
of more and more severely constrained subproblems.
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Repeated branching causes the number of subproblems to
grow exponentially; thus, implicit enumeration methods for
the exact solution of combinatorial optimization problems
typically require exponential time. Here we explore a proba
bilistic approach to searching through an implicit enumera
tion tree. Roughly, the idea is to examine the subproblems
(tree nodes) to determine their likelihood of yielding a near-
optimal solution, and to avoid branching from unpromising
nodes. In this way the number of nodes generated grows
linearly, rather than exponentially, with problem size.
Despite this severe pruning of the search tree, we show, under
suitable probabilistic assumptions, that near-optimal solu
tions are obtained almost everywhere.

SET COVERING

We will use the set covering problem as a vehicle for
exploring a probabilistic approach to implicit enumeration.
An instance of the set covering problem is specified by a
collection {S!^,... ,SM) of finite sets, each drawn from the
set {l,2,...,N}. We seek a set H of minimum cardinality sub
ject to

nnsj + <j> , J = 1,2 Af .

The set-covering problem is WP-hard, and no known polynomial-
time algorithm is guaranteed to solve the problem within a
fixed ratio r.

The choice of a suitable probabilistic model for set
covering problems is delicate. In [Gimpel (67)], a "constant
density" model is proposed. The model involves two para
meters: a probability p and a positive real number X. A
problem of size N has N elements, [\N] sets, and a fixed pro
bability p that a given set contains any given element. It
is then shown that random solutions are nearly optimal (a.e.).

Random Covering Algorithm

(1) H <- a?
(2) While there exists J such that HOSt ^ cj> Do

Begin Choose a random element x $ H
H i- HU{X}

End

Theorem 9 [Gimpel (67)]. For every e > 0, the random cover
ing algorithm solves the set covering problem within l+€
(a.e.).
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We shall work with a different model, in which the con
struction of near-optimum solutions appears more difficult.
The model involves as parameters a positive integer b and a
positive real number X. A problem of size N is specified as
a [XN]-tuple of b-element sets drawn from {l,2,...,N}$ all
such tuples are regarded as equally likely. The case b = 2
corresponds to the problem of finding a minimum number of
vertices to cover all the edges of a random graph with N ver
tices and [XN] edges.

An implicit enumeration scheme for the covering problem
may be constructed as follows. Given a covering problem (or
subproblem) {S1,S2,...,Sm>, choose an index j 6 {l,2,...,m}
at random. Let Sj = {X-^^,... ,Xb>. Since any feasible
solution H must contain some element of S^, we may replace
the problem by b subproblems. In the i-tn subproblem, it is
assumed that x^ e H; accordingly, x^, along with all sets
covered by Xi, is dropped from consideration.

Repeated branching creates a b-ary tree of subproblems.
The terminal nodes of the tree correspond to cases in which
all the sets have been eliminated. Solving the set covering
problem amounts to finding a terminal node at a minimum dis
tance from the root of the tree.

Define a (m3n) subproblem as one consisting of m b-ele
ment sets, and corresponding to a node at distance N-n from
the root of the search tree (so that the sets are drawn from
an n-element population). In analyzing tree search strate
gies we postulate that, whenever a (m,n) subproblem is first
generated, it may be assumed to consist of a random m-tuple
of b-element sets from an n-element population. This assump
tion would be exactly correct if the b subproblems generated
by branching from any given subproblem were independent; we
believe that the conditioning effects omitted by this assump
tion are of minor importance.

A strategy 5 for solving the covering problem is a rule
for determining which node to expand in a partially formed
tree; a strategy may take into account the pair (m,n) asso
ciated with each unexpanded node.

Theorem 10. Let S be any strategy that finds an optimal
solution (a.e.). Then there is a c > 1 such that S expands
at least cN nodes (a.e.).

In view of this negative result, we concentrate on stra
tegies that seek near-optimal solutions. One such strategy,
called the dovetailing strategy V, has remarkable properties.
It is based on the concept of dominance. Let J?± be an
(mf,nf) subproblem, and Po, an (m,n) subproblem. Then
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?1 dominates P2 if m1 < m, n' J> n and (mf,n') $ (m,n). In
such a case it is intuitively clear that P-, is a more promis
ing subproblem than P , and should be expanded before P« is
expanded.

The dovetailing strategy sweeps down the search tree,
expanding undominated nodes. Each sweep proceeds as follows.

h +• N

hmin «- the least n associated with an undominated
unexpanded node

While h ^> hmin and there is an undominated unexpanded node
(m,n) with n < h Do

Begin Among undominated unexpanded nodes (m,n) with
n £ h, choose one for which n is maximum; let it
be P = (m*,n*)
Expand P
h •*• n*-l

End

In each sweep, the dovetailing strategy expands at most
N nodes. Also, if Q = (m,n) is an unexpanded node at the
beginning of a sweep then, during the sweep, some node
P - (m'jn1) is expanded such that either P dominates Q or
(m',n') = (m,n).

Theorem 11. Let S be any strategy. Let c and t be any posi
tive integers. Then

Pr{S finds a solution of cost <. c within
t node expansions}

£ Pr{P finds a solution of cost <_c within
t sweeps} .

Thus, up to a factor of N in running time, V is an opti
mal tree search strategy.

We present next a strategy B for which the number of
nodes expanded is linear in N (a.e.), and which yields a
nearly optimal solution (a.e.). The strategy B combines two
aspects: bounded look-ahead and partial backtrack. The
strategy involves two parameters: a positive integer L called
the look-ahead depth and a real number u > 1 called the
selectivity.

Given any node P in the search tree, call node Q a L-th
level descendant of P if there is a path in the tree of length
L from P to Q. Let f(m,n,m") denote the expected number of
(m",n-L) subproblems arising as L-th level descendants of a
random (m,n)-subproblem. Define
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m*(m,n) = min{mf | £ f(m,n,m")) J>y}.
m'^m1

If P is a (m,n) subproblem, Q is a (m*,n-L) subproblem,
and Q is a L-th level descendant of P, call Q a good descen
dant if m? £ m*(m,n). In that case the path from P to Q is
called a good transition. A path which is a concatenation
of good transitions is called a good path. Note that the
expected number of good descendants of P is > y.

Algorithm B conducts a depth-first search for a good
path from the root of the search tree to a terminal node.
If such a path is found then the algorithm terminates, and
gives as output the feasible solution corresponding to that
path. If no such path exists, let P be the end point of a
longest good path. Let Q be a "best" L-th level descendant
of P; i.e., Q is a (m*,n-L) subproblem, where m1 > m*(m,n),
but each L-th level descendant of P corresponds to a (m",n-L)
subproblem with m" >_ m1. Then Q is taken as a new root, and
the search is resumed. Eventually a terminal node is reached,
and the corresponding feasible solution is the output of the
algorithm.

Theorem 12.

(a) Algorithm B, with parameters L and y, runs in linear
time (a.e.);

(b) There is a function r(X,b,L,y) such that Algorithm B,
with parameters L and y, solves the set covering problem
within r(X,b,L,y) (a.e.);

(c) lim r(X,b,L,y) = r*(X,b), where r*(X,b) is "small";
L-*°°

for example, r*(X,5) _< 1.08, and is extremely close to 1
unless X is huge.

Thus, Algorithm B is an efficient method of finding near
ly optimal solutions to large random set covering problems in
which each set has b elements. It is hoped that the "bounded
look-ahead plus partial backtrack" approach will prove simi
larly successful in the solution of other tree search pro
blems.

6. OPEN PROBLEMS

In this section we outline some next steps to be taken
in the probabilistic analysis of combinatorial search methods.

1. Conduct empirical studies leading to more realistic
models of the probability distributions from which real-
life instances of combinatorial search problems are drawn.
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2. Develop a reasonable probabilistic model of linear pro
gramming problems, and determine whether some variant of
the simplex method yields optimal solutions in polynomial
time (a.e.). Consider in particular a variant suggested
by Weinberger and Yuval, in which a pivot column is cho
sen at random among those with negative reduced costs.

3. For some particular WP-complete problem, and some rea
sonable probability assumptions, prove that no polyno
mial-time algorithm solves the problem exactly (a.e.)
unless P = WP.

4. Formulate a probabilistic model of directed traveling-
salesman problems, and construct a polynomial-time algo
rithm to solve such problems (a.e.).

5. Formulate a probabilistic model of euclidean traveling-
salesman problems in which the points are clustered,
rather than being drawn independently from some distri
bution. Construct an adaptive partitioning algorithm
that solves such problems within 1+e (a.e.), even with
out knowledge of the underlying distribution.

6. Prove or disprove: for every function p(n) from the
positive integers into [0,1], the following is true
(a.e.) of a random graph G:
either (a) G is disconnected

or (b) G has a vertex of degree 1
or (c) The Posa algorithm finds a Hamilton circuit

in G.

7. Develop results like Posa's for the Hamilton circuit
problem in digraphs.

8. For the constant-density model, find polynomial-time
algorithms that solve the maximum independent set and
vertex coloring problems within r < 2 (a.e.).

9. Give a polynomial-time algorithm that finds a nearly
maximum independent set in a random cubic graph (a.e.).

10. For the constant average degree model, determine how
the chromatic number of a random graph is distributed.
Give a polynomial-time algorithm to solve the coloring
problem within some r (a.e.).

11. Analyze the behavior of Algorithm B for the model of
set covering problems considered in this paper, without
the use of a simplifying independence assumption.

12. Apply algorithms like our dovetailing algorithm and
"bounded look-ahead with partial backtrack" algorithm
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to other combinatorial optimization problems, and to
heuristic search problems arising in artificial intelli
gence applications such as speech processing and scene
analysis.

13. Consider the problem of partitioning the vertices of a
2n-vertex graph into two sets of size n, so as to mini
mize the number of edges running between the two sets.
For the constant density or constant average degree
model of random graphs, devise a polynomial-time algo
rithm to solve the problem within some r (a.e.).
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