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ERRATA

Page 21

((n-l)a) g-^y) + g£(y) + ... + g^Cy) ^° whenever vk =°

((n-l)b) g-^y) + g2(y) + ... + g^Cy) £0whenever vfc < 0

for all k = l,2,...,n-l

Page 34

(b) If the input terminal 0 and output terminal © are connected

together, and it is assumed that there are no internal connections to

either 0 or © , then the bounding region of Fig. 8(b) shrinks

to that shown in Fig. 8(c).

17This somewhat specialized condition will turn out to be relevant to

the proof of Property 17. The connection shown is one that would

seldom be encountered, in a network used for obtaining TC plots.
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QUALITATIVE PROPERTIES OF RESISTIVE NETWORKS

CONTAINING MULTI-TERMINAL NONLINEAR ELEMENTS1"

tt
L.O. Chua, Y-F Lam, and K.A. Stromsmoe

ABSTRACT

This paper is concerned with the qualitative properties of nonlinear multi-

terminal resistors and nonlinear resistive networks—properties which give results

that require neither computation nor equation formulation. The basic circuit

theoretic concepts of passivity, local passivity, monotonicity, activity and local

activity are defined and properties are developed that relate these fundamental

concepts. The notion of "no-power gain" and that of "no-voltage gain" or "no

current gain" are shown to be in general distinct from one another. The concept

of no-gain elements is generalized to include multi-terminal elements. The main

result obtained is that an n-terminal element possesses the no-gain property if,

and only if, at each operating point, a connected network of n-1 positive linear

two-terminal resistors exists which has the same operating point. This general

ization serves as a basic tool for the derivation of bounds on the two most useful

characterizations for nonlinear resistive networks; namely, the driving point (DP)

and the transfer characteristic (TC) plots. The sharpest possible bounding regions

are obtained for a large class of nonlinear networks—including networks which use

operational amplifiers as one of the main elements.

The concepts of symmetric and complementary symmetric networks are introduced

and used to show that various classes of networks have either odd or even symmetric

DP and- TC plots. Again when operational amplifiers are used as a basic circuit

element, it is shown that many operational amplifier circuits exhibit odd symmetric

DP and TC plots.

Finally, the concepts of locally no-gain n-ports and locally no-gain networks

are introduced and it is shown that these concepts are related to the classical

n-port resistor synthesis problem.
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I. INTRODUCTION

Much research has been directed to the study of resistive nonlinear networks

over the last decade. Most of these research activities can be grouped under the

category of "existence and uniqueness results" [1], or under the category of

"computational techniques" [2]. Very little research has been devoted to deriving

results of a more qualitative nature — i.e. results which do not involve any

computation or equation formulation—until the recent work by Willson on the no-

gain property for networks containing three-terminal elements [3]. Our objective

in this paper is to derive qualitative properties for the two most useful and

commonly specified characterizations of resistive nonlinear networks; namely,

the associated driving-point and transfer characteristic plots — henceforth

abbreviated simply as DP and TC plots [4]. In particular, we will show in Section

IV that the DP and TC plots of various classes of resistive nonlinear networks

must necessarily lie within some bounding regions. These bounding regions are

the best possible that can be found and they can be determined by inspection of

the network topology and the element constitutive relations.

Another important qualitative property that will be derived in this paper

is the conditions which guarantee that the DP plot or TC plot of various classes

of networks will exhibit some form of symmetry. For example, it is generally

known—though never explicitly pointed out—that the DP plot and TC plot of any

circuit made up exclusively of operational amplifiers and bilateral two-terminal

resistors (characterized by odd-symmetric v-i curves) are always odd symmetric

regardless of the network topology [5]. It turns out that this is due to the fact

that an operational amplifier satisfies a more subtle form of symmetry called

"complementary symmetry" to be presented in Section V, This new concept does

not require the network to display any topological symmetry and is therefore

applicable to a very large class of practical networks.

For complete generality, we will allow our networks to contain not

only two-terminal or three-terminal elements, but also multi-terminal elements

such as operational amplifiers and analog multipliers [6], having more than

three terminals. Since the key to our derivation of the bounding regions

in Section IV is precisely the "no-gain property" of many solid state

We use the term "plot" and not "function" as normally found in linear network
literatures because the driving-point and transfer characteristics for nonlinear
networks could be multivalued and are therefore not functions.
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devices, it is essential to generalize Willson's results in [3] to allow n-terminal

elements. This turns out to be a non-trivial task because the formulation and

methods of proof given in [3] are not suited for generalization to the multi-

terminal cases. Hence, a completely different approach has been developed and is

presented in Section III. Even though the results in this section are used only

as a tool for deriving the bounding regions in Section IV, they are of a rather

basic nature and will no doubt find other applications in future works.

Willson has shown that passivity is only a necessary condition for 3-terminal

no-gain elements. This observation is also true for n-terminal elements when n >_ 3.

It is not surprising that this is the case since the concept of passivity is

more germane to a study of power gain, and not voltage gain, or current gain.

Indeed, it follows from Tellegen's theorem that to obtain power gain in a network

N, it is necessary that at least one element of N be active. Hence passivity is

synonymous to "no-power gain"; i.e., the power gain is not greater than unity.

It has very little to do with voltage gain or current gain as aptly demonstrated

by the ideal transformer which is passive but is capable of either a voltage gain,

or a current gain greater than unity. Since all realistic models of real multi-

terminal devices must be passive, the more important notion is really that of

local activity in so far as obtaining greater-than-unity local power gain is

concerned. From a circuit-theoretic point of view, it is important that concepts

which are relevant to power gain be clearly separated from those which are

relevant to voltage gain or current gain. Hence it is appropriate that we first

present a study of power-gain related concepts in Section II. In particular, we

will present a careful study of the relationships between passivity and local

passivity; as well as between monotonicity and local passivity for multi-terminal

elements. The results in this section are relevant for a firm understanding of

the results in section III.

Finally, since this paper is addressed exclusively to networks containing

only dc independent voltage and current sources as well as multi-terminal

resistors [4] defined by

fi(v1,v2,...vn,i1,i2,...in) * 0, i= l,2,...n

we will use the word "elements" and "resistors" interchangeably.

II CONCEPTS AND PROPERTIES RELATED TO POWER GAIN

Our objective in this section is to study the relationship between a number
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of circuit-theoretic concepts which are relevant to the study of power gain of

multi-port nonlinear resistive networks.

Definition 1 Passive and Locally Passive Resistors

An n-port resistor^ is said to be passive if, and only if, the scalar
product

A n<v,i > = £. v i. > 0 (1)
j=l J 3

for all admissible signal pairs (y,i). It is said to be locally passive if,

and only if

<6y,6i > >_ 0 (2)

for all admissible incremental signal pairs (6v,6i) about each operating point

Q of K. It is said to be strictly passive if the strict inequality sign holds

in (1) whenever y £ 0 and i £ 0, and strictly locally passive if the strict

inequality sign holds in (2) whenever 6y $ 0 and 61^0. The element Sc is said
to be active if it is not passive and locally active if it is not locally passive.

Definition 2 Monotone-Increasing Resistors

An n-port resistor ^-Q. is said to be monotone increasing if, and only if,

(y'-y",!1-!" > >_ 0 (3)

for any two admissible signal pairs (vf,if) and (v",i"). It is said to be strictly

monotone increasing if the strict inequality holds in (3) for any two distinct

admissible signal pairs.

For simplicity, we will assume throughout this section that our n-port

resistor ^Q is characterized by a C -hybrid representation

i = h (v ,i, )
~a -a ~a ~b

yb = ^b (vU
t

where y = [y y, ] and i = [i i, ].
a ~b - ~a ~b"

2
For a more general parametrizable case, see [7].
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A simple characterization of monotone-increasing resistors was given in [8] and

is reproduced here since it will be needed in the proof of Property 2.

Property 1 Monotone Increasing Criteria

An n-port resistor <~Q is monotone-increasing if, and only if, its incremental

hybrid matrix

KW =

dh dh
~a -a

3v 3iu
~a ~b

a

3*b 3^b
av
~a *h>J

H H .
~aa ~ab

§ba \b

(5)

is positive semi-definite for all (v ,i,). Moreover, if H(v ,i.) is positive

definite then ^l< is strictly monotone-increasing.

The next property shows that the circuit theoretic concept of local passivity

and the mathematical concept of monotonicity are equivalent to each other.

Property 2. Equivalent Local Passivity Criteria

An n-port resistor ^R is locally passive {resp., strictly locally passive} if,
and only if, it is monotone increasing {resp., strictly monotone increasing}.

Proof.

<6v,6i > = <6v ,6i >+ <6vv,6t >
- - ~a ~a ~b *b

= <«Ya,Haa«ya + Bab41b Y+<Hba«ya +H^,6^ >

=[«]H(va,ib) [JiJlJjViO

Hence <6y, 6i > is non-negative {resp., positive} if, and only if, H(y ,i.) is
positive semi-definite {resp., positive definite} and the conclusion follows

from Property 1. n

Property 3 Necessary Condition for Passivity

An n-terminal resistor <-|5 characterized by a continuous hybrid representation

A not necessarily symmetric nxn matrix ^ is said to be positive semi-definite if,
and only if, x* M x >_ 0 for any x € ]Rn. it is said to be positive definite if,
and only if, x** M x > 0 for any x ^ 0. It is easy to prove that M is positive
semi-definite or positive definite if, and only if, its symmetrical part M + Mfc is
positive semi-definite or positive definite, respectively.
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of (4) is passive only if its constitutive relation passes through the origin.

Proof. Suppose (1^) « 0^(0,0),!^(0,0)) * (0,0). Then at least one component
°f ^~a*~b^ is nonzero« Without loss of generality, let I $ 0.

Assume first I± > 0. Since ha(0,0) is continuous, there exists an open ball
B defined by

B£ ={(Ya,ib) €]Rn: HvaII2 +O^ll2 <2e >0} (6)

such that ±± =h1(ya,ib) >0for all (ya»ib) in B£. Consider apoint (ya»i£) =
<-e,0,0,...,0) in B . Let i» = h (y'i') and y/ - h, (v',!/). Then

e ~a ~a a b ~b ~b ~a ~b

<y',if >=-eh^,^) <0 (7)

Similarly if ^ < 0, then there exists an open ball B- as defined in (6) with
e replaced by e, such that i- = h- (v ,i, ) < 0 for all (v ,i, ) in B-. In

1 i -a ~b -a ~b e

particular, let us consider the point (v",i£) = (e,0,0,...,0) in B-. Let i" =

V*ib> and ?b = 5b^ib>- Then

<y",i" >=eh1(ya,ib) <0 (8)

Together (7) and (8) imply that if ^ i 0, then^ is not passive. Since^P
is passive by hypothesis, 1=0. By repeating the above procedure for all

components of (I ,EJ, we conclude that (I ,E.) = (0,0).-a ~b ~a ~b ^~»~' n

A locally passive n-terminal resistor need not be passive, and vice-versa.

The precise relationship between the two is given by the next property.

Corollary 3.1 Passivity and Local Passivity Relationship

A locally passive n-terminal resistor H^ characterized by a C -hybrid
representation of (4) is passive if, and only if, its constitutive relation passes

through its origin.

Proof. A. Sufficiency : It follows from Property 2 that ^-Q. is locally passive

if, and only if, {y'-v",!1-!" ) >.0 for any two admissible pairs (y',!') and

(y",i"). Now choose (y",i") = (0,0). Thus by hypothesis, this implies that

(i",y") = (0,0) and we have <v,-y",i,-i" > = <y\i* > >_ 0 for any admissible

pair (y*,!*). Hence SQ is passive.
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B. Necessity: This follows directly from Property 3. n

Corollary 3.2 Strict Passivity and Strict-Local Passivity Relationship

A strictly locally passive n-terminal resistor^ characterized by a C -hybrid
representation of (4) is strictly passive if, and only if, its constitutive

relationship passes through the origin.

In the study of active networks, it is usually desirable to have some simple

criteria for ascertaining whether an n-terminal resistor is active, or locally

active. The following properties provide convenient sufficient conditions for

this purpose.

Property 4 Activity Criteria

Let k be an n-terminal resistor having a terminal voltage v, {resp.; terminal
current ifc} which does not depend upon its associated terminal current i, {resp.;

IV

terminal voltage vfc}, and is not identically zero; i.e.,

vk -fk(X;L,x2,... ,xk-l»xkfl'"'*'xn} *fk(x) (9)

{resp.; 1^ =g^x^,.. ••*k_1.*fc|:1»••->\) = gfc(x)} (10)

where x denotes either v or i for each j 4 k = 1,2,...,n, and x = [x.,x0,...,

Xk-l*xk,xkfl,,,,,Xn^ with *k = Sc ^resp,; \ ° \}• Let v4 be the complementary
variable, i.e., y = v if x = i and y = i if x. = v.. If y., does not depend

upon ifc {resp.; vfc} for all j 4 k, then ^Kis active.

Proof. We will prove the case corresponding to f,(x) of (9) only.
IV

Since ffc(x) is not identically zero by hypothesis, there exist x such that

ffc(x) 4 0. Choose

ik =ik >0 if f (i) Avk <0
(11)

=ik <0 if ffc(i) Avk >0

Then

<Y>i>'"£ Vj+Vk (12)
j^k

Since x is an independent variable and y. does not depend on i, by hypothesis, and
J J K.
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since v. ifc <0, we can always choose 1. sufficiently large such that <y,£. ) < 0.
Hence ^ is active. n

Property 5. Local Activity Criteria

An n-terminal resistor -Q. is locally active if there exists an operating-point
Q having an incremental voltage fiv, {resp.; an incremental current <Si,} about Q,

which does not depend upon its associated incremental current 61, {resp.;

incremental voltage fiv, }, and is not identically zero; i.e.,

6vk " fk(<5xl' 6x2'*"'»6xk-l»6V1* *' *' 6xn} " fk(6x) (13)

{resp.; 6ifc = g^fix^fix^... ,6*^, <Sxid.i» *' *»6xn> = 8k(6?)> <14>

where fix denotes either fiv. or fii. fix = [6x-,6x2, •• *,fix, .jfiXj.fix^., •••,fix ]

with 6x. = fii, {resp.; fixj^ = fiv,}, and if the complementary variable 6y, of fix

does not depend upon fii, {resp.; fiv, } for all j^ k= l,2,***,n, then ^ is
locally active.

Proof. The proof of Property 5 is similar to that of Property 4 and is therefore

omitted. n

Observe that in order for these properties to hold, both fk(0 {resp.; gi-C*)}
and the remaining dependent variables y must not depend upon i, or fii. {resp.,

v, or fiv, }. For example, an ideal grounded two-port transformer characterized by

v« = nv. and i-= - ni. satisfies the first condition (v« is independent of i«)

but not the second condition (i. depends on i«). Indeed, this element is non-

energic and is therfore passive. It follows immediately from Property 4 that the

ideal linear operational amplifier (characterized by i. =0, i„ = 0, and v„ =

A(v2-v-)) and the ideal analog multiplier (characterized by i- = 0, i„ = 0, and
v« = kv v ) are both active 4-terminal elements. Similarly, all controlled sources

are active. It also follows from Property 5 that any 3-terminal element having an

incremental circuit model characterized by a transfer conductance function i„ = f(v.)

and i- = 0, or by a transfer resistance function v„ = f(i.,) and v.. = 0, must be

locally active. It is interesting to observe that this property is shared by the

ideal incremental circuit models of most 3-terminal devices—including vacuum

tubes, transistors, and FET's—capable of local power gain.
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Ill CONCEPTS AND PROPERTIES RELATED TO VOLTAGE AND CURRENT GAIN

In this section we consider various aspects of no-gain circuits [3,9,10].

Necessary and sufficient conditions are given to establish the relationship

between a multi-terminal resistor and a no-gain element. The implications of these

conditions on the representation of a multi-terminal resistor are examined. In

particular, the constraints Imposed upon "locally no-gain elements" are derived.

These constraints turn out to be extremely strong, thereby implying the rather

surprising observation that most multi-terminal elements (n >_ 3) should be capable

of incremental voltage or current gain.

Finally to investigate the no-gain property of circuits containing elements

such as ideal diodes whose constitutive relations fall right on the passivity

boundary, we introduce the concept of "weakly no-gain elements" and derive their

properties.

A. No-Gain Elements

Definition 3 Q-loop and ©-cutset

An c> -loop {resp.; (0-cutset} is a loop {resp.; cutset} consisting of short

{resp.; open} circuit elements only. An aligned loop {resp.; cutset} is a loop

{resp.; cutset} for which the reference directions of all elements composing it

have the same orientation.

To provide an important tool for the derivation of the main theorem in this
ti 4

section, "criteria for no-gain n-terminal resistors ", we need to generalize the

results of Wolaver in [10] to include both short circuit and open circuit elements.

This generalization requires the use of the following two special cases of Minty's

color arc Theorem [11]:

Learnna 1^

(a) Let^B be the set of all branches in a network containing only two-terminal

elements, and let b be an element of^B. Let St and C be any two subsets of ^§
such that 4* - bU §£ U Q and st. n C is an empty set. Then b forms a loop
exclusively with elements in SgL or a cutset exclusively with elements in C» but

not both.

4
For brevity, a multi-terminal element is simply called an n-terminal element,

where "n" is used in the generic sense, and n > 2.
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(b) In a network with the associated reference directions assigned to the elements

each branch lies in either an aligned loop or an aligned cutset, but not both.

Property J5 No Gain Property for Networks Containing Two-Terminal Elements

Given a network containing independent voltage and current sources, positive

linear two-terminal resistors, short circuit elements which do not form Q-loops
and open circuit elements which do not form ©-cutsets, then

Q

1) the current magnitude through any element is not greater than the sum of

the current magnitudes through all independent voltage and current sources.

Q

2) the voltage magnitude across any element is not greater than the sum of the

voltage magnitudes across all independent voltage and current sources.

Proof* We will prove the current magnitude case only. The voltage magnitude

case can be proven in a dual manner.

The current magnitude through any independent source or open circuit element

satisfies the conclusion trivially. Hence, we only have to consider the current

magnitude through any short circuit element or any positive linear resistor.

To consider the current magnitude through any positive resistor R, we can

coalesce any two nodes connected by a short circuit element, and delete all

open circuit elements. The resulting circuit contains only independent sources

and positive linear two-terminal resistors. Hence, the result of Wolaver's

Theorem [10] applies—the current magnitude through any positive linear resistor

is not greater than the sum of the current magnitudes through the sources.

It remains to consider the current magnitude through a short circuit element

s. Without loss of generality, let us delete all open circuit elements. Since

the network contains no 2-loops, it follows from the color arc Lemma 1(a) that

The reference current of each branch enters the positive terminal of the
referenced voltage of the same branch.

A two-terminal positive linear resistor has a resistance R restricted by 0 < R < «>.

Clearly, if there is an o-loop in a circuit N, then a circulating current of
arbitrary magnitude can be sustained by the short circuit elements forming this
CJ-loop. In a dual manner, if there is an©-cutset, then the voltages across
the open circuit elements forming this ©-cutset can be raised by an arbitrary
level, without affecting the branch voltages of other circuit elements inside
N. Hence, any network containing an 2-loop or ©-cutset can not exhibit the
no-gain property.

o

This includes open and short circuit elements.
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the short circuit element s must form a cutset exclusively with positive linear

resistors and independent sources. (Choose b=s, ^£=set of all short circuit
elements, and (^remaining elements.) Hence, as far as the current through s is
concerned, there is no loss of information to coalesce any two nodes connected by

a short circuit with the exception of s. The resulting circuit contains positive

linear resistors, independent sources and the short circuit element s. We now use

this simplified circuit to investigate the current i through the short circuit
element s.

If s forms a cutset exclusively with independent sources, then i is given

by an alegbraic sum of currents through the independent sources in the cutset.

In this case, the conclusion follows trivially.

Suppose the short circuit element s does not form a cutset exclusively

with independent sources. In this case, we let the associated reference

directions of all positive linear resistors and independent sources be chosen

such that all voltages across them are positive. It is clear that no matter

which reference direction is assigned to s, there can be no aligned loop that

contains s. (Otherwise there will be a loop containing positive-voltage branches
and a zero-voltage branch thereby violating KVL.) It follows from Lemma 1(b) that

there is a cutset (Js containing ssuch that the reference directions of all elements
in Cs» except s, have the same orientation. The associated reference direction
of s can be selected to coincide with those associated with the other elements

in Cs« Hence, (Jg is then an aligned cut set. Let Abe the set of all positive
linear resistors in Cg and let Bbe the set of all independent sources in C •
It then follows from KCL that,

is + E ik + E i, =0 (15)

Since all positive linear resistors have positive voltages, i >_ 0 for all
k £ A. Hence, (15) implies that

Ii8l£- gijiL UJ (16)
j€B J j€B J

The term on the right of (16) is no greater than the sum of the current magnitudes
of all independent sources, the conclusion of Property 6 follows.

This completes the proof of Property 6. n
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Definition 4 No-Gain Networks

A resistive network is said to possess the no-gain property if each solution

at any time is such that, (a) the magnitude of the voltage between any pair of

nodes in the network is less than or equal to the sum of the magnitudes of the

voltages appearing across the independent voltage and current sources, and

(b) the magnitude of the current flowing into each terminal of every element

is less than or equal to the sum of the magnitudes of the currents flowing

through the independent voltage and current sources.

Definition 5 No-Gain Resistor

An n-terminal (n ^ 2) resistor ^-R is said to be a no-gain resistor if each
connected network containing H2, positive linear two-terminal resistors, short

and open circuit elements which do not form S-loops and ©-cutsets respectively,

and nonzero independent voltage and current sources, possesses the no-gain
. 9

property.

Reference Directions

Unless specified otherwise, an n-terminal element has the reference directions

shown in Fig. 1, where all voltages are assumed to be node-to-datum voltages and

all terminal currents are assumed to enter the n-terminal element.

Theorem 1^ The No-Gain Resistor Criteria

An n-terminal resistor ^(c is a no-gain resistor if, and only if, at each dc

operating point Q of ^Q, there exists a connected n-terminal network NQ containing
n-1 linear positive two-terminal resistors which has the same operating point.

Proof

A. Sufficiency: Let H^ be imbedded in any connected network N containing only

positive linear two-terminal resistors, short and open circuit elements which

do not form S-loops and ©-cutsets respectively, and nonzero independent voltage

and current sources. Let Q be an operating point of the network and let Q be the

q

Observe that the definition of a no-gain n-terminal resistor here differs from
that given in [3]. One could argue that Willson had actually used the present
definition in his proof of Theorem 2^ when he connected terminals 2 and 3
together in Fig. 13(a) in [3] for the case where v2 = 0. This is because a short
circuit element must be physically connected across terminals 2 and 3 in order
to maintain the desired potential difference for v2. Moreover, the identity
of v„ would be lost if nodes 2 and 3 were coalesed into one node.
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corresponding operating point of H^. By hypothesis, there exists an n-terminal
network N containing n-1 two-terminal positive linear resistors, which, when

imbedded in N will result in the same operating point Q. Since the resulting

network (i.e. with N replacing^) satisfies all conditions of Property 6, it
follows that the voltage between any two nodes and the current through any two-

terminal element possesses the no-gain property. Hence, we only need to prove

that the current through any terminal of N also possesses the no-gain property.

Without loss of generality, let us choose any terminal @ of Nn and suppose
that there are M <_ n-1 positive linear two-terminal resistors inside Nn connected
to node © . Partition these resistors into three sets S-, S0, and S-, where

A • 1 z 3
S! B {Ri>R2»•••»Rj} denotes the set of resistors having actual current flowing
away from node © ,or jL <0for k- 1, 2, ..., J; S2 = {RJ+1»RJ+2»••-»V
denotes the set of resistors having actual current flowing into node © , or

ip >0 for k= J+l, J+2 L; and S3 = ^RL+i»RL+2> ••*»V" denotes the set of

resistors having zero current. The partitioning scheme is shown in Fig. 2. The

terminal current i is given by,

-*.•- \+V"+ V+ (S+i+ \+2 +-+ V (17)

where :L < 0 for k = 1, 2, ..., J and i > 0 for k = J + 1, J + 2, ..., L.

Using the method indicated by Willson [3], we can take any two resistors in

S^ {resp.; S2}, say R and R,, and replace them by an equivalent subnetwork
containing three positive linear resistors, as shown in Fig. 3, without effecting

the operating point. Observe that the current flowing through the third linear

resistor Rc is given by iR = iR + i . Clearly iR possesses the no-gain
can c

property since the resulting network satisfies the conditions of Property 6.

This procedure can obviously be repeated until all currents flowing through all

resistors in S1 {resp.; S2} is equal to a single current actually flowing away
from {resp.; toward} node © through a single two-terminal positive linear
resistor, as shown in Fig. 4, where

J L

iA e £ V <0and ifi = £ ip >0 (18)
k=l \ B k«J+l \

If we replace the subnetwork of Fig. 2 by the equivalent subnetwork of Fig. 4 in
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the overall imbedded network N, the resulting network still satisfies all

hypotheses of Property 6. Hence •! and i possess the no-gain property. Since

i. and i have opposite signs,

K\ = K+ 41 i-^^l^l.lsU (19)

Hence i also possesses the no-gain property.

B. Necessity; Consider any imbedding network N as in the sufficiency proof,

and let Q be an operating point of the no-gain resistor ^ in the network.

Without loss of generality, let us choose the terminal of H2 having the lowest

potential as the datum node, and relabel the remaining n-1 nodes of <-Q so that

the operating point voltages of ^R satisfy the inequality

V(1)iV(2)1... >V(k) > ••• >V(n_1}>0 (20)

Let I/i\> I/„y..., I- -v be the corresponding operating point currents with

the usual reference direction—current entering the no-gain n-terminal resistor

^K* Using this notation, let us now pause to consider two lemmas, whose proofs

are given in the Appendix:

Lgmma 2

(a) If

V(l) >V(2)> •" >V(k) * '" >V(n-l)>V(n) (21)

then the operating point currents of the no-gain resistorSR must satisfy the

following system of strict inequalities

I(1) >0 (22a)

I(1) + I >0 (22b)

I<l) + I(2) + -+I<k> >0 (22C)

Note that VQ\{resp.; V(2) »V(3) ... } is the voltage between the highest {resp.;
second highest, third highest,...} and the lowest operating-point potential nodes
of the no-gain n-terminal resistor (-R. Observe that the datum node may be
different for different operating points.

-14-



Ici) + I(2) + - + I(k) + '- +Vi)>0 (22d)

(b) If

V(l) >V(2) >'"* V(k-1) " V(k) >V(k+1) * "• >V(n-1) <23>

then the operating-point terminal currents of the no-gain resistor ^ must
satisfy the following system of inequalities

1(1) > 0 (24a)

I(l) +I(2) >° <24b>

1<l) + 1<2)+-"+.ICM>>0 <"'>

V) + ^2) + "• +'(W) + ^k-l) + IW> ° <24d>

I(l) +t(2) +-+I(k-2) +I(b-l)i° (24e)

I0) + I(2) + - + I(fc.2) +1(k)2-0 (24f>

J(l) + X(2) + •" +V-2) +Vl) +'(k) +'(k+l) * ° (24*>

I(l) + I(2) + "- + I(k) + -- + I(„-l)>0 (24h)

Lemma 3

Given any set of n-1 node-to-datum voltages satisfying (21) {resp.; (23)},

and any set of terminal currents satisfying (22) {resp.; (24)}, there exists a

connected n-terminal network containing n-1 linear positive two-terminal

resistors having the same operating point voltages and currents.

With these two lemmas, we will now proceed to complete the necessity

proof of Theorem 1 by first assuming that the operating-point voltages satisfy

either the strict inequality of (21) or the mixed inequality of (23). By Lemma

2, the operating-point currents must satisfy the strict inequality of (22) in

the former case and the mixed inequality of (24) in the latter case. It
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follows from Lemma 3 that there exists a connected n-terminal network containing
n-1 linear positive two-terminal resistors having the same operating-point
voltages and currents as the no-gain resistor ^J5.

Using exactly the same procedures as in the proofs of Lemmas 2 and 3, it

is easy to show that in the cases where there are more than two terminals of

fc having identical potential at aparticular operating-point such as

*<!>* •••>V(a)=V(a+D V(« >Vl) *

> V = V
(Y) (Y+D

S3 V > « • » VV(6) V(n-1)

The corresponding operating-point terminal currents of ^Q must satisfy the
following system of mixed inequalities

i(1) >0

\l) +

V) +

fd) +

\d +

?u> +

+ I, -v > 0
(a-1)

+ I, ,x + I, x + ••• + I/nX > 0
(a-1) (a) (g)

+ I (a_l) + I(p) 1° for p =a, a+1, •••,3

(a) + I, n > 0
(y-D

+ I, .+•••+ I, 1X + I, v +(a) (y-1) (y) + X(6) >°

(25)

^

) (26)

?(d +
+ T + . . . + T

+ \a) + + I(Y-1) *(p)+ I, . > 0 for p = y, Y+l, '•', 6

\d + + I, . + ••• + I,x. + ••• +1, _ > 0
(a) (6) (n-1)

J

In turn the two systems of mixed inequalities in (25) and (26) guarantee that a

connected n-terminal network, containing n-1 positive linear two-terminal

resistors having the same operating-point voltages and currents as the no-gain

resistor^,can be constructed. Hence the necessity part of the theorem is

proved. This completes the proof of Theorem 1. n

Corollary to Theorem 1 Interconnection of No-Gain Resistors (Closure Property)

Let ^Q be a connected n-terminal network obtained by a valid
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11interconnection of m multi-terminal resistors R^, R2> ..., Rm, where R± is
an n-terminal resistor andtaa. i* 2 for iw 1, 2, ..., m. If R^9 R2, •••> Rffl
are no-gain resistors, thenH? is a no-gain n-tertninal element.

Proof: Let Q be imbedded in an arbitrary network N containing positive linear

two-terminal resistors, independent voltage and current sources, short and open

circuit elements which do not form fi-loops or ©-cutsets, respectively. Let
Q be an operating point of the resulting circuit. This gives rise to an operating

point Q. for each resistor R. inside ^p. Since each R± is ano-gain resistor,
it can be replaced by n. - 1 positive linear two-terminal resistors, having the

same operating point Q.. If this procedure is repeated for all resistors R^,

R0, ..., R inside^, the resulting network inside^R contains only two-terminal
2 m

positive linear resistors, which when imbedded in N will produce the operating

point Q. This implies that the operating point Q possesses the no-gain property.

In addition, one can use the technique employed in the proof of Theorem 1 to

show that all terminal currents of ^ also satisfy the no-gain property. Hence
fcis a no-gain resistor. n

Lemmas 2 and 3 have been formulated with the assumption that the terminals

have been ordered and relabelled such that (21) and (23) are satisfied. In

the following applications of these lemmas, it is convenient to reformulate them

without any terminal relabelling. This can be achieved through the introduction

of appropriate notations as given in the following properties.

Property 7 No-Gain Resistor Criteria in Terms of Terminal Currents

An n-terminal resistor ^P, shown in Fig. 1, is a no-gain element if, and
12

only if, the following conditions are satisfied

A valid interconnection implies that each terminal of every multi-terminal
resistor, say R^,- inside^ is either a terminal of <Q or else it must satisfy
the following constraints:
i) It is connected to at least one other multi-terminal resistor, say R with
j i i, inside^ J
ii) It is connected to at most one terminal of each multi-terminal resistor inside^?
iii) It is not connected to any other terminal of R..
This is to insure that the interconnection of R , R , ..., R does not produce
short circuit and open circuit elements. m

12
Observe that conditions (la), (lb), (2a) ... are written in a compact form.

When expanded, each will give rise to several inequalities. A detailed expansion
of these conditions is given in Corollary 7.2 for the case where n = 3.
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(la) i, >_ 0 whenever v, >. v.

(lb) i, <_ 0 whenever v 4 v

for all j - 1, 2, ..., n, j f k ; and k = l,2,...,n.

(2a) i, + i, >_ 0 whenever v, >_ v, and v, >, v.
*1 K2 1 j 2 3

(2b) i, + i, <^ 0 whenever v, 4 v, and v, 4 v
Kl fc2 1 J 2 J

for all j = 1, 2, ..., n, j f k^ k2 and
k ,k = 1, 2, ..., n with k^ $ k2»

(3a) i, + i, + i, >_ 0 whenever v. >_ v , v, > v and v, >, v
kl k2 k3 ~ kl " J 2 J k3 J

(3b) i, + i, + i, < 0 whenever v, <_ v , v, 4 v and v, 4 vv kx k2 k3 = kx - j k2 3 k3 j

for all j « 1, 2, ..., n, j # k^ k2, k3 and

kl» k2» k3 " x» 2» •••» nwith ki *k2 *k3

((n-l)a) i, + i, + ... •+ i. > 0 whenever vfc >, v
Kl K2 n-1 P

((n-l)b) 3l + i, + ... + i, < 0 whenever v < v
kl k2 n-1 P J

for j =1, 2, ..., n, j ^ k for p = 1, 2, ..., n-1,

kl» k2* ••'» kn-l "1' 2* •••, nW±th kl *k2 * ••" * kn-l

where the symbol »>" is used to denote that the equality sign on the left can
hold only if at least one of the equality signs on the right holds.

Proof: In view of Lemmas 2 and 3,^ is a no-gain element if, and only if, at
every operating point where the terminal voltages satisfy (21) {resp.; (23)},
the terminal currents of Q are constrained by (22) {resp.; (24)}. Conditions (la),
(2a),...((n-1)a) of Property 7are merely asystematic method of representing the
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conditions in Lemmas 2 and 3 for an n-terminal resistor with fixed labels.

Conditions (lb); (2b),...((n-l)b) follow from Lemmas 4 and 5 which are stated below.

Lemma 4

Using the notation of Lemma 2, we have:

(a) if the operating point node-to-datum voltages of ^-R satisfy

V(n) <V(n-l) <- ^(2)"- <V(2)<V(1) (27)

then the corresponding operating point terminal currents of ^(c must satisfy the

following system of strict inequalitiesi

I, x < 0
(n)

I, N + I> 1X < 0
(n) (n-1)

(n) (n-1)

I, v + I, --v + •••
(n) (n-1)

+ x(k) <°

+ I + • • •L(k) + + I(2)<C0

(b) if the operating point node-to-datum voltages of <~P satisfy

(n) (n-1) (k+1) (k) (2) (1)

(28)

(29)

then the corresponding operating-point terminal currents of ^J2 must satisfy the

following system of mixed inequalities:

I, v < 0
(n)

I, v + I, 1N < 0
(n) (n-1)

I, . + I, - + «• + I,..0* < 0
(n) (n-1 (k+2)

I +T + • • • + t +1 +1 < 0V) + i(n-l) + + i(kf2) + ±(kfl) + X(k) U

I, v + I, n + •••
(n) (n-1) + I(kf2)+I(k+l)i°

I, v + I, -,v + "• + I/i-oX + X/1\ K 0(n) (n-1) (k+2) (k) —

-19-
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V)+ Vd + ••• +Jcw2) +^k+D +x(k) +Vd * °

I(n) + I(„-l) + ," + I(2) <0

Proof: The conclusions of Lemma 4 follow from Lemma 2 and the observation that

I(l)+I(2) + - + I(k) + - + 1(n)-° <31>
n

L^ntma 5

Given any set of n-1 node-to-datum voltages satisfying (27) {resp.; (29)},

and any set of terminal currents satisfying (28) {resp.; (30)}, then there exists

a connected n-terminal network containing n-1 linear positive two-terminal

resistors having the same operating point voltages and currents.

Proof: The proof of Lemma 5 is similar to that of Lemma 3 and hence is omitted.

n

Corollary 7.1 No-Gain Criteria in Terms of Conductance Representation

Letc(c be an n-terminal resistor admitting an (n-1)-port conductance
representation

*k = 8k (vl,v2,#"'vn-l* = 8k(y)' k = i*2"--*1*-1 <32>

where y = [v..,v2,.. ,,v -] is the node-to-ground port-voltage vector and node

@is the common ground for all ports, as shown in Fig. 5. Then^(5 is a no-gain

element if, and only if, the following conditions are satisfied,

(la) gfc(y) >, 0 whenever v ^ 0 and v >_ v

(lb) 8i.(y) 4 0 whenever v < 0 and v ^ v,

for all j = 1, 2, ..., n-1, j 4 k, and k = 1, 2, ..., n-1

(2a) gv (y) + g (v) ^ 0 whenever v ^ 0, v >, v. , v, >, 0, v, >, v
Ki Ko ~ Ki k- j k0 k„ j

(2b) g. (v) + g (y) 4 0 whenever v <0, v < v v < 0, \ <^ v
Kl ~ K2 Kl 1 J 2 2 J
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for all j = 1, 2, ..., n-1, j 4 k^ k2
and k., k„ • 1, 2, ..., n-1 with k. 4 k2»

(3a) g, (v) + g, (v) + g, (y) >_ 0 whenever
Kl ~ K2 ~ 3

\ >=0, v > v , v > 0, v > v f v ^0, v ^v

(3b) g. (y) + g, (y) + g, (v) < 0 whenever
T. K2 3

v^ <0, v^ <Vj, v^ <0, v^ <Vj, v^ <0, v^ < v.

for all j = 1, 2, ..., n-1, j 4 k^ k2, k3
and kx, k2, k3 = 1, 2, ..., n-1 with ^ 4 k2 4 ky

((n-1)a) g (y) + g, (y) + ... + g _i(v) £ ° whenever v, ^ 0

((n-l)b) gy, (y) + ^ (y) + ... + gn-1(Y) < 0 whenever vfe >0

for all k « 1, 2, ..., n-1

where the symbol 'V1 is used to denote that the equality sign on the left can

hold only if at least one of the equality signs on the right holds.

Proof: Corollary 7.1 follows directly from Property 7 with

vn = ° (33)
n

Corollary 7.2

Let^p be a 3-terminal resistor characterized by a two port conductance
representation

*1 = gl(vl»v2}

±2 = z2<yvv2)

then ^ is a no-gain element if, and only if,
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(la) g1(v1,v2) ^ 0 whenever v- ^ v2, V- ^ 0

(lb) g1(v1,v2) 4 0 whenever v.<v2> v.< 0

(2a) 82(v1»v2) £= ° whenever v ^ v_, v2 ^ 0

(2b) 82(v1»v2) 4 0 whenever v. 4 v., v 4 0

(3a) g±(vlfv2) + g2(vlfv2) >, 0 whenever v. :> 0, v2 >, 0

(3b) g1(v1,v2) + g2(v1>v2) 4 0 whenever v. < 0, v» 4O

Remark

Corollary 7.2 serves as an example of the detailed expansion of Corollary

7.1 for a specific value of n=3. Without the symbol "4", as defined in Property

7, the equations would have to be expanded further to convey the proper meaning.

For example condition (la) of Corollary 7.2 could be written as the following

4 statements

g1(v1,v2) > 0 whenever v- > 0 and v., > v? (34a)

g1(v ,v2) >_ 0 whenever v- = 0 and v1 >v2 (34b)

g1(v1,v2) _> 0 whenever v- > 0 and v1 = v2 (34c)

g«(v1,v2) >_ 0 whenever v1 = 0 and ^ = v2 (34d)

where (34d) and its counterpart in condition (lb) of Corollary 7.2 together imply

that

g1(v.,v2) = 0 whenever v- = 0 and v2 = 0 (35)

This Corollary corresponds to Theorem 5 of [3], where Willson has listed only
three equations, in effect combining (la) and (lb), (2a) and (2b), and (3a) and
(3b). In doing this the boundary value information is lost, and he either requires
that gn(-) and g9(.) be continuous or an additional 4 equations are required to

J. ^

specify the nature of g^O and g2(:) on the boundaries.
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Property 8 No-Gain Resister Criteria in Terms of Terminal Voltages

Let^P be an n-terminal resistor with terminal currents and voltages defined

as in Fig. 1. Then ^-R is a no-gain element if, and only if, the following
conditions are satisfied:

(1) At every operating point where not all the terminal currents of ^ are

zero, and for every pair of terminals j, k = 1,2,...,n where j 4 k, we

have

(a) v, - v > 0 {resp.; >^ 0} if either i, > 0 {resp.; = 0}, i < 0 and

i > 0; or i, > 0,i. < 0 {resp.; = 0}, and i < 0 for all m = 1, 2, ..., n
m k j m —

where m 4 j and m 4 k.

(b) vfc - v. <0 {resp.; <_ 0} if either ifc <0 {resp.; =0}, i >0 and
im <_ 0; or ifc < 0,i. > 0 {resp.; » 0}, and i ^ 0 for all m = 1, 2,
..., n where m 4 j and m 4 k.

(c) the terminal current of the highest {resp.; lowest} potential terminal

of k is positive {resp.; negative}. In the case where two or more

terminals of SB are at the same highest {resp.; lowest} potential, at

least one of them must have a positive {resp.; negative} terminal current.

(2) At the operating point where all terminal currents H2 are zero, we have

vk = 0 for all k = 1, 2, ..., n.

Remark

Although it is not obvious, the conditions of Properties 7 and 8 are duals

to each other. The proof of Property 8 is based on the dual versions of

Lemmas 2 to 5. The details of the proof are given in the Appendix.

Corollary 8.1 No-Gain Criteria in terms of Resistance Representation

Let^R be an n-terminal resistor admitting an (n-1)-port resistance
representation

Vk = rk(il,i2,,,,,in-l) " rk(^ k = l»2,...,n-l (36)

where i - [i^,±2,,..,i _] are the port-currents, and v = [v-,v2,...,v ,]
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are the node-to-datum port-voltages as shown in Fig. 5. Then "4c is a no-grain

element if, and only if, r,(0) =0 for k =1,2,...,n-1 and the following

conditions are satisfied:

(1) For any pair of terminals j, k = 1,2,...,n-1 where j 4 k

(la) r,(i) - r (i) > 0 {resp.; >_ 0} if either i, > 0 {resp.; = 0}, i. < 0,

i > 0, and in + i0 + ... + i . < 0; or i, > 0, i < 0 {resp.; = 0}, i < 0,
m — 12 n-1 — k j m —
and in + i. + ••• + i . > 0 for all m = 1, 2, ..., n-1 where m 4 j and m 4 k.

1 2 n-1 —

(lb) rk(i) - r (i) <0 {resp.; 4 0} if either ifc <0 {resp.; = 0}, i. > 0,
i < 0, and i. + i0 + ... + i . > 0; or i, < 0, i, > 0 {resp.; = 0},
m — 12 n-1 — k j

i > 0, and i. + i_ + ... + i . < 0 for all m = 1, 2, ..., n-1 where m 4 j
m — L 2. n—± —

and m 4 k.

(2) For any terminal k = 1,2,...,n

(2a) rfc(i) > 0 {resp.; >_ 0} if either ifc > 0 {resp.; =0}, 1± + ±2 + ••• +
i . > 0, and i > 0; or i, > 0, i- + i« +
n-i m — 1c ± z

< 0 for all m = 1, 2, ..., n-1 where m 4 k.

i .. > 0, and i > 0; or i, > 0, L + L + ••• + i , > 0 {resp.; = 0}, and i
n-1 m — k 1 2 n-1 m

(2b) rk(i) <0 {reap., 4 0} if either ifc <0 {resp.; = 0}, ±± + ±2 + ••• + in-1
< 0, and i < 0; or i. > 0, i. + i0 + ••• + i , < 0 {resp.; = 0} for alJ

m — k 1 2 n-1

m = 1, 2, ..., n-1 where m 4 k.

(3) For each m = 1, 2, ..., n-1 where i = 0, we have

min *.(i) ±r (i) f. max T*(Q
j«l,2,...,n-l J m •" j=l,2,...,n-l J

Proof: Corollary 8.1 follows directly from Property 8 by noting that vq = 0 and
i, + irt + ... + i ,+i =0. Hence the proof of Corollary 8.1 is omitted.
1 2 n-1 n

n

B. Locally No-Gain Elements

Definition 6^ Locally No-Gain Elements

An n-terminal resistor ^, with terminal currents and voltages as defined
in Fig. 1, is said to be locally no-gain at an operating point Q if, and only if,

for every pair of incremental terminal voltage and current vector (6v,6i) con

sistent with the characteristics of Q at the point Q, where
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fiv [fiv1,fiv2,...,fivn_1] and fii = [fii^fiij,...»6in-1] »

there exists a connected network with n-1 positive linear two-terminal resistors

having the operating point (fiv,fii). ^ is said to be a locally no-gain element

if ^-[2 is locally no-gain at every point in the characteristics of *-R,

Property 9 Locally No-Gain Conductance Matrix

Let H2 be an n-terminal resistor admitting an (n-1)-port C -conductance

representation

i = g(v) (37)

where v = [v1,v2,...,v _] and i = [i-,i2,...,i _. ] are the port-voltage and

port-current vectors, as shown in Fig. 5, and g(«) = [g1(0 »g2(*)»• ••gn_1(#)] •
Terminal @ is the common terminal for all ports and v, is the voltage across

terminals ® and @and i, is the current entering terminal® of ^P. Then $is a
locally no-gain element if, and only if, at each operating point voltage y0 of

^-(2i the incremental conductance matrix

n A r t A9= [gjk] -
agj (y)
av,

Y-Yq

satisfies the following conditions:

(1) gfck > 0 for all k = 1, 2, ..., n-1

(2) g k 40 for all j, k = 1, 2, ..., n-1, where j 4 k

n-1

(3* 8kk - " ^ ^i - ° for al3L k =1» 2» '••' n~1j=l J

n-1

(4) 8kk - " 2 8jk 1° for all k =1, 2, ..., n-1

-25-
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1 ^
(5) For each %x I principal submatrix G of G, the sum of the diagonal

elements of (^ is strictly greater than the negative of the sum of the off
diagonal elements, i.e.,

j=l x 'JJ 1=1 k=l ^ /jjk

where I = 1, 2, ..., n-1.

Remark

(41)

Property 9 is a direct consequence of Corollary 7.1 with (32) replaced by

n-1

6ik =8k(6Y) "£ g^^Vj for k-1, 2, ..., n-1 (42)

The details for the proof of Property 9 are given in the Appendix.

From (39), the locally no-gain conductance matrix G is seen to have positive

diagonal and non-positive off diagonal elements. A matrix with this property is

referred to as a Z-matrix in [12] and an M-matrix in [13]. Equation (40) states

that G is both a row and column dominant matrix. In [14] a matrix that satisfies

both (39) and (40) is defined as being hyperdominant. (The column dominance is

not specifically mentioned since the matrices considered in [14] are symmetric).

Together (40) and (41) imply that G is positive definite. A matrix that satisfies

conditions (1) through (5) of Property 9 will henceforth be called a locally

no-gain conductance matrix.

13
Let A = [a.,] be an mxm matrix. An £x£ principal submatrix A of A is obtained

by deleting (m-Jl) columns and the corresponding (m-Jl) rows, i.e.,

*t-

a. . a. . ..» a. .

J1J1 yX22 J1J£

a a. . ... a .

J2:ll J2J2 J2JJl

a, . a, .

J£J1 3Z32
• • • a. ,

SLJl

where 1 4 ^ < j2 < ••• < j 4 m.
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Recall that an (n-1) x (n-1) matrix is realizable as the short circuit

conductance matrix of a common-ground (n-1)-port resistance network containing

only n-terminals if, and only if, the matrix is symmetric, dominant and every

off-diagonal element is non-positive [15]. Hence, even if we assume that ^k is

reciprocal, that is, the locally no-gain conductance matrix is symmetric, a

realizable short-circuit conductance matrix need only satisfy conditions (1)

through (4) of Property 9. Thus the requirements on a symmetric locally no-gain

conductance matrix are stronger than the realizability criteria for a short-

circuit conductance matrix. This unexpected result stems from the fact that

the circuit used to realize a locally no-gain conductance matrix is required to

be connected, as stated in Definition 6 while a circuit realization of a short-

circuit conductance matrix is not, in general, required to be connected. It

can be shown that every connected resistive (n-1)-port network containing n-1

or more positive linear two-terminal resistors has a short-circuit conductance

matrix that satisfies all the criteria of a locally no-gain conductance matrix.

We can relate the locally no-gain requirements and the locally passive

criteria by the following two corollarys to Property 9.

Corollary 9.1 Locally No-Gain and Locally Strictly Passive Resistors

A locally no-gain n-terminal resistor ^-R characterized by a CT-conductance
representation i = g(v) is strictly locally passive.

Proof: It follows from Property 2 that *-R is strictly locally passive if its
incremental conductance matrix

G(y) =
3vk J

Y=YQ

is positive definite for all y = y_. Since the locally no-gain conductance

matrix is positive definite at each possible operating point of ^(3, it follows

that if <-|2 is a locally no-gain element then it is strictly locally passive.
n

Observe that the converse of Corollary 9.1 is not true. For example,

let ^P be a 3-terminal resistor characterized by

H=3vl +V2 *gl(vl'v2)

i2 = vl + 3v2 ~ »2(vl»v2)
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Clearly £j^ is locally strictly passive but not locally no-gain.

Corollary 9.2 Locally No-Gain and Strictly Passive Resistors

A locally no-gain n-terminal resistor characterized by a C -conductance

representation i = g(v) is strictly passive if, and only if, its constitutive

relation passes through the origin.

Proof: This follows -immediately from Corollaries 9.1 and 3.2.

a

Property 10. Locally No-Gain Resistance Matrix

Let^p be an n-terminal resistor admitting an (n-1)-port C -resistance

representation

v = r (i) (43)

where i- [i. ,i0,.... ,i J* and v= [v-,v0, vn J* are the port-current
± z n—± ~ la n—j.

and port-voltage vectors, v is the voltage across terminals © and (n) > ij^
is the current entering terminal © of ^jj as shown in Fig. 5, and r(') =
[r.(.), r2(.) r^O)]* is aC1 vector-valued function. ..If ^ is alocally
no-gain element then for each operating point current I of <-Q9 the incremental

resistance matrix

s =^ ' 8ri<*>
31k ] (A4)

1-Iq

must satisfy the following conditions:

(1) r,, > 0 for all k = 1, 2, ..., n-1

(2) 04 rfc. 4 rfck for all k, j= 1, 2, ..., n-1 where k4 j

(3) 0 <r., lrkk for a11 k, j= 1, 2, ,n-1 where k4 j

(4) 01 r.. + r. .< r.. + r, for all k, j = 1, 2, ,n-1 where k 4 j
jk kj Jclc jj

(5) 0 <r., + r. ,4 r.. + r, for all j, k, I - 1, 2, ..., n-1 where j 4 k 4 *

(6) rkkr*A -rkJlr-k f0r a11 J» k» A=1» 2» ••" n_1 where 3 * *• 4 &
(7) In any nxk submatrix of R, the maximum sum of the elements in each row of
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the submatrix must occur at a row which contains a diagonal element.

Remark

Property 10 is a direct consequence of Corollary 8.1 with (36) replaced

by

a n-1fivk -rk(fii) -£ r^j for k=1, 2 n-1 (45)

The details of the proof of Property 10 are given in the Appendix.

The inverse of the no-gain resistance matrix must be a no-gain conductance

matrix. We have not been able to prove that conditions (1) through (7) of

Property 10 are sufficient to insure this result. For a symmetric matrix

representation it can be shown that all of the conditions are necessary in

order to obtain a inverse matrix that has the hyperdominant property.

C. Weakly No-Gain Elements

Before we proceed to introduce the concept of weakly no-gain elements, let

us first consider the following property, which can be considered as a generali

zation of Property 6.

Property 11 No-Gain Networks containing Two-Terminal Elements Only

A Network containing nonzero independent voltage and current sources,

two-terminal "strictly passive" resistors, and two-terminal "exclusively
14

passive" resistors which do not form loops and cutsets by themselves has the

no-gain property.

Proof: Let N be a network satisfying the hypotheses and let Q be an operating-

point of N. By Corollary 7.1, a strictly passive two-terminal resistor is a

no-gain element. Hence it can be replaced by a two-terminal positive linear

resistor having the same operating-point, as indicated by Theorem 1. Let

(V ,1 ) be the corresponding operating-point voltage and current of an r

"exclusively passive" two-terminal resistor R . Then VI ^ 0. Observe that

R can be replaced by a two-terminal linear element having the same operating-

point (V ,1 ), where the linear two-terminal element is defined by:

14
An element will henceforth be called an "exclusively passive element" if

it is passive but not strictly passive.
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(a) a positive linear two-terminal resistor with a resistance equal to

V /I fiif IV 4 09 and equal to 1ft if I = V = 0p p p p n p p

(b) a short circuit element if V = 0
P

(c) an open circuit element if I =0
P

Let N be the circuit obtained from N by replacing each strictly passive two-

terminal resistor by a positive linear two-terminal resistor having the same

operating point, and each "exclusively passive" two-terminal resistor by

either a positive linear resistor or an open or a short circuit element having

the same operating-point. Then N has the same operating-point Q as N. Since

the exclusively passive elements in N do not form loops or cutsets, there are

no S-loops or ©-cutsets in N—ft satisfies all conditions of Property 6 —

and hence the operating-point voltages and currents associated with Q possesses

the no-gain property. Consequently,N is a no-gain network. n

Observe that Theorem 1 implies that every no-gain resistor is at least

strictly passive. This excludes many networks containing exclusively passive

elements such as ideal diodes, ideal zener diodes and all kinds of three-

terminal resistors having an input-output family of curves in the first quadrant

plus a negative axis such as those shown in Fig. 6. However, Property 11 clearly

demonstrates that the class of no-gain networks may include "exclusively passive"

elements as well. This observation motivates the following definition.

Definition 7 Weakly No-Gain Elements

An n-terminal (n>2) resistor (-Q is said to be a weakly no-gain element if

each connected network containing^, positive linear two-terminal resistors,

and nonzero independent voltage and current sources possesses the no-gain

- 15property.

To derive the basic properties of a weakly no-gain element, we need to

develop the following two lemmas.

Lemma 6

Let^P be a "weakly" no-gain n-terminal resistor imbedded in a network N

Willson1s definition of a no-gain element coincides with our definition of a
"weakly no-gain element" [3]. However, his results are applicable only to
networks containing no-gain elements as defined in our Definition 5, and therefore
can not allow exclusively passive elements.

-30-



containing only positive linear two-terminal resistors and nonzero independent

voltage and current sources. Let Q be an operating-point of ^(J. Let us choose
the terminal of ^ having the lowest potential as the datum node and label the

remaining n-1 terminals of^ so that the operating-point terminal voltages of

SB satisfy the inequality

V(1) >V(2) >•••>_ V(fc) >•••>V(n_1} >0 (46)

where V,.,v {resp.; v/2)»v/3\»''') is the voltage between the highest {resp.;
second highest, third highest,-...} and the lowest potential (datum) node of

<-P. Let Im> I/'9V •"» Ir -n be the corresPondlnS operating-point currents
of <R.

(a) If

V(1)>V(2) >- >V(k)> "• >V« (47>
Then the operating-point currents satisfy the following system of inequalities

x(i) >- °

ZW + X(2) i°

1W + \2) + - + lW>-° (48)

I +T +...+T + •• • + I >0X(l) + L{2) + + X(k) + + i(n-l) - U

(b) If

V(l) >V(2) >- >V(k) mV(kfl) >'" >V(n-1) (49)

Then the operating-point currents satisfy the following system of inequalities

I(1) >_0 (50a)

I(i)+I(2)>0 (50b)

I(l) + I(2) + ,'i +Vl)i° (5°C)
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^l) + X(2) + *' *+ ^k-l) + ^k) +^k+l) ^° (50d>

^l) + *(2) + ***+ '(k-l) + V) + Vl) + \V*2) ^° (50e>

^l) + X(2) + - X(k) + "-+X(n-l)i° <50f)

Proof: The proof of Lemma 6 is given in the Appendix.

Lemma 7

Given any set of n-1 node-to-datum voltages satisfying (47) {resp.; (49)},

and any set of terminal currents satisfying (48) {resp.; (50)}, there exists a

(not necessarily connected) n-terminal network containing m <_ n-1 positive linear

two-terminal resistors and Z <_ n-1 short circuit and open circuit elements which

do not form £>-loops and 0-cutsets respectively, where m + I = n-1, having the

same operating point voltages and currents.
Proof. The proof of Lemma 7 is given in the Appendix.

Property 12 Criteria for Weakly No-Gain Elements

An n-terminal resistor ^Q is a weakly no-gain resistor if, and only if, at

each dc operating-point Q of £Q, there exists an n-terminal network NQ having the
same operating point Q, where N_ contains m <_ n-1 positive linear two-terminal

resistors and H <_ n-1 short circuit and open circuit elements which do not form

2-loops and (y-cutsets respectively, where m + I = n-1.

Proof: With Lemmas 6 and 7 replacing Lemmas 2 and 3, the proof of Property 12

parallels very closely with the proof of Theorem 1 and is therefore omitted.
n

IV. BOUNDING REGIONS FOR DRIVING-POINT AND TRANSFER CHARACTERISTIC PLOTS

We will now apply the results from the preceding section to show that the

DP and TC plots of a resistive network containing only no-gain multi-terminal

resistors and independent sources must lie within some specific bounding regions.

To do this, we must first generalize the well-known "maximum and minimum voltage

node" theorem [16] to allow networks containing multi-terminal resistors.
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Property 13. Maximum and Minimum Voltage Node Theorem

Let N be a connected resistive network containing only no-gain multi-

terminal resistors and independent dc voltage and current sources. Then the

highest potential node (resp.; lowest potential node) must necessarily be

connected to either a voltage source, or a current source.

Proof. Since all multi-terminal resistors are no-gain by hypothesis, it follows

from Theorem 1 that they can all be replaced by an appropriate interconnections

of two-terminal positive linear resistofcs without affecting the node voltages.

Hence the result follows Immediately from the "maximum and minimum voltage node"

theorem for networks containing two-terminal no-gain resistors and sources [16].

n

A dual version of Property 13, as well as of the following properties can

be proved but are omitted to conserve space.

Property 14. Voltage Bound for No-Gain Networks with Grounded Sources

Let N be a connected resistive network containing only no-gain multi-

terminal resistors and grounded dc voltage sources. Then the node-to-ground

voltage V^ of any node ® is bounded by

min — {£) — max (51)

where ^max {resp.; - E^^} denotes the terminal voltage of the voltage source
with the highest {resp.; lowest} node-to-ground voltage.

Proo£. The network N can be represented with all voltage sources extracted as

shown in Fig. 7, where NQ contains only no-gain multi-terminal resistors. It
follows from the definition of E and E . that node (a) is the highest-

max min v-/ °

potential node while node © is the lowest-potential node.

Let 0 be an arbitrary node of NQ, then

v® =Vka + Emax =\b " Emin <">

It follows from Property 13 that

-(Emax+Emln>iv-kai° (53)

0£v^itt+B.) (54)
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Adding E^^ to both sides of (53) and adding -Em±n to both sides of (54), we
obtain

- E < Vl + E < E (55}
min — ka max — max \jjj

-Emin^vkb "Emin^Emax (56>

Substituting either (55) or (56) into (52), we obtain (51). n

Corollary 14.1

The magnitude of the node-to-ground voltage of any connected network

containing diodes, transistors, operational amplifiers,16 and other no-gain
multi-terminal resistors which are biased by a set of complementary dc power

supplies of + E volts with respect to ground cannot exceed E .

We are now ready to derive bounding regions for the v. - vs. - v TC

plot of no-gain networks.

Property 15. TC Plot Bounding Region for Ungrounded Two-Ports

Let N be any connected network containing no-gain multi-terminal resistors

and dc voltage sources as shown in Fig. 8(a), where nodes (b) and (3) are not

necessarily connected to each other. Then we have:

(a) The TC plot must lie within the shaded region shown in Fig. 8(b), where EQ
denotes the sum of the voltage magnitudes of all internal voltage sources.

(b) If the input terminal (a) and output terminal (c) are connected together,

then the bounding region in Fig. 8(b) shrinks to that shown in Fig. 8(c).

(c) If all internal voltage sources are grounded as in Fig. 7, then the TC plot

must lie within the shaded region shown in Fig. 8(d) .

(d) If all voltage sources (including the input voltage source y. ) are grounded,

then the bounding region shown in Fig. 8(d) shrinks further to that shown in

Fig. 8(e).

(e) If all voltage sources (including the input voltage source v. ) are grounded,

16 ~
An operational amplifier here is considered as a six-terminal element with

two of the six terminals being connected to two complementary power supplies,
one with + E and the ot:

17
This somewhat specializi

the proof of Property 17.

one with + E and the other with - E„ volts with respect to ground [17].

This somewhat specialized condition will turn out to be quite relevant to
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and if the input terminal 0 and output terminal © are connected together,

then the bounding region shown in Fig. 8(e) shrinks further to that shown in

Fig. 8(f).

Proof.

(a) Since N is a no-gain network, we have

|v0l 1 |vin| + E0 (57)
where

E0 =t \\\ (58)
i=l x

and n denotes the number of internal voltage sources. The bounding region defined

by (57) is precisely that shown in Fig. 8(b).

(b) Consider first the case 0 <_ v±n <_ EQ and let v.. denote the voltage between
nodes (b) and (3) ; i.e.,

V0 = Vin + vbd (59)

Since N contains only no-gain elements and dc voltage sources,

Vbd Z- * vin * E0 (60

where EQ is as defined in (58). It follows from (59) and (60) that

v0 - ~ E0 whenever ° 1 vin 1 Eo (61)

If vin L eq» tlien node © becomes the highest-potential node and hence

vQ >_ 0 whenever v. >^ E. (62)

The bounding region in the fourth qtiadrant of Fig. 8(e) is precisely that defined

by (61) and (62). A similar analysis shows that

v0 1 E0 whe*ever " EQ < v±n < 0 (63)
and

v0 i° whenever v±n <. - EQ (64)

Equations (63) and (64) defined the shaded region shown in the second quadrant of

Fig. 8(c). The bounding regions in the first and third quadrants follow from
part (a).
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(c) Since the node having the maximum or the minimum potential must be connected

to a voltage source and since all internal voltage sources are connected to a

common ground as in Fig. 7, the potential between the highest voltage node and

the lowest voltage node cannot exceed |vJ I + E + E . Hence,
1 in' max min '

0£vol|vin| + (EBax + Emin) (65)

" <Emax +W " I'mIlv0^° <66>

The bounding region defined by (65) and (66) is precisely that shown in Fig.
8(d).

(d) Since all voltage sources are grounded, using the same argument as above,
we obtain

|vJ < E + E . , whenever - E . < v,, < E (67)
1 0' — max min* min — in — max v '

lvnl < v4« + E 4 * whenever v. > E (68)1 01 — in min' in — max v '

lvnl < v4« " E » whenever v. < - E . (69)
1 0' — in max' in — min v '

The bounding region defined by (67), (68), and (69) is precisely that shown in

Fig. 8(e).

(e) It suffices to prove that vft > 0 whenever vJ > E and vrt < 0 whenever
0 — in — max 0 —

vin <_ - E . The former is true since terminal @ is the highest-potential
node whenever v. > E , while the latter is true because terminal (a) is the

in — max ^

lowest-potential node whenever v,, < - E . .
in — min n

Property 16. TC Plot Bounding Region for Grounded Two-Ports

Let N be a connected grounded network containing no-gain multi-terminal

resistors and dc voltage sources as shown in Fig. 9(a).

(a) If all internal sources of N are grounded as in Fig. 7, then the TC plot

must lie within the shaded region shown in Fig. 9(b), where E and - E .
max min

denote respectively the maximum and minimum node-to-ground voltage of the internal

voltage sources.

(b) If all internal sources of N have their negative terminals grounded, then
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the bounding region shown in Fig. 9(b) shrinks to that shown in Fig. 9(c).

(c) If N contains no internal sources, then the TC plot in Fig. 9(c) further

shrinks to that shown in Fig. 9(d).

Proof.

(a) Since this configuration corresponds to that shown in Fig. 7, it follows

from Property 14 that

- E . < vA < E , whenever - E . < v. < E (70)
min — 0 — max' min — in — max

- E " < vn < v. , whenever v. > E (71)
min — 0 — in' in — max '

v. < vA < E , whenever v. < - E . (72)
in— 0 — max in— min

The bounding region shown in Fig. 9(b) is precisely that defined by (70), (71),

and (72).

(b) In this case E =0 and the bounding region in Fig. 9(b) shrinks to that

shown in Fig. 9(c).

(c) In this case E = E =0 and the bounding region shrinks further to that
max min ° °

shown in Fig. 9(d).
n

The TC plot bounding regions shown in Figs. 8 and 9 are the sharpest possible

since in each case, it is possible to find one or more networks where TC plots

contain points which approach the boundaries of each bounding region as closely

as possible. However, by introducing additional assumptions, the bounding

regions can be further reduced. For example, if the output voltage is taken

from the collector of transistors — as is usually the case for transistor

circuits — then the output voltage is further bounded by the maximum collector

supply voltage and the bounding regions in Figs. 8 and 9 can be further sharpened

accordingly.

We will now make use of the preceding results to derive bounding regions

for DP plots.

Property 17. DP Plot Bounding Region for Ungrounded One-Ports

The DP plot of any connected resistive one-port containing only no-gain
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multi-terminal resistors, dc voltage sources, and a positive linear resistor

R in series with the driving-point terminals as shown in Fig. 10(a) must lie

within the shaded region shown in Fig. 10(b).

Proof.

Since the resistor R is connected to the input voltage source, it follows

from (b) of Property 15 that the v - vs. - v TC plot must lie within the shaded

region shown in Fig. 8(c). Since i = VR/R> tne i - vs. - v DP plot must lie
within the shaded region shown in Fig. 10(b). n

Property 17 has a number of interesting consequences. Among other things,

it implies that whenever a resistor is in series with a resistive no-gain one-

port, the overall DP plot cannot grow faster than a linear rate 0(v) as |v| -*• »,

and cannot therefore be modeled by a polynomial with degree greater than one in

the high operating voltage region. Since such a series resistor is invariably

present in any realistic circuit model of high power devices (it is needed to

account for the ohmic resistance of the connecting terminal and the devices

bulk resistance), this observation actually suggests the use of piecewise-linear

functions for modeling high power devices. Another important consequence of

Property 17 can be derived by examining how the shaded area in Fig. 10(b) changes

as we decrease the value of R. Notice that in the limit as R -*• 0, we obtain

the region shown in Fig. 10(c). Hence we have proved the following rather

surprising general result:

Corollary 17.1

The DP plot of any connected resistive one-port N containing only no-gain

multi-terminal resistors and dc voltage sources must lie within the shaded

region shown in Fig. 10(c) and N is therefore eventually passive; i.e. N is

A npassive whenever |v| >_ E = £ |E |.
i=l 1

Property 18. DP Plot Bounding Region for Grounded One-Ports

The DP plot of any connected resistive grounded one-port containing only

no-gain multi-terminal resistors and grounded dc voltage sources and a positive

linear resistor R in series with the driving-point terminals as shown in Fig.

11(a) must lie within the shaded region shown in Fig. 11(b), where E and

E denote respectively the maximum and the minimum node-to-ground terminal
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voltage of the dc voltage sources.

Proof. Since the resistor R is connected to the input voltage source, Property

18 follows immediately from Fig. 8(f) of Property 15.

n

Corollary 18.1

The DP plot of any connected resistive grounded one-port N containing only

no-gain multi-terminal resistors and dc voltage sources must lie within the

shaded region shown in Fig. 11(c) and N is therefore eventually passive;

namely, whenever v>E > 0 or v < - E , <0.
— max — — min —

We will conclude this section by deriving some bounds on the slopes of

DP and TC plots of locally no-gain networks. Unlike the previous theorems,

we now allow both voltage and current sources to be present simultaneously.

Property 19 Bounds for Slopes of DP and TC Plots of Locally No-Gain Networks

Let N be a connected resistive network containing only locally no-gain

multi-terminal resistors and dc voltage and current sources. Then at any point

Q where the DP or TC plot associated with N is differentiable, the respective

slope at Q is bounded as follows:

(a) the slope of the DP plot across any pair of driving-point terminals of N

is positive; i.e.,

$ >° <73>
(b) the magnitude of the slope of the TC plot with respect to any pair of input

and output terminals is bounded by unity; i.e.,

dv0
dv4

in

1 1 (74)

(c) In the case where the input and output terminals are grounded, the slope of

the TC plot is always non-negative and less than unity; i.e.,

dvo
QldT-i1 <")

in

Proof. Since this property is concerned only with incremental variables about

an operating point Q, all internal dc voltage and current sources can be set
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equal to zero and each multi-terminal resistor can be represented by an incremental

representation

6v " ?• 6x (76)

where (<Sy,6x) denote the associated incremental variables, and H denotes the

incremental matrix evaluated at the operating point Q. Since each multi-terminal

resistor is locally no-gain by hypothesis, then for each admissible incremental

signal pair (6y,6x) about Q for each n-terminal resistor ^P, there exist n-1

linear positive resistors having the same admissible pair (6y,6x). Since the

DP and TC plots are, by hypothesis, differentiable at Q, the slope of di/dv and

dvn/dv. at Q is equal respectively to the input resistance and the voltage

transfer ratio of the associated equivalent linear incremental network. Hence

(73), (74), and (75) follow immediately from well-known results for linear

resistive networks.
n

Corollary 19.1

Every connected one-port containing only locally no-gain >multi-terminal

resistors and independent dc voltage and current sources is strictly locally

passive.

Remark. This corollary is false for n-ports, when n > 1. Using the results

from [18], however, we can prove the following:

Property 20 Strict-Local Passivity Criteria

Every connected n-port N containing only locally no-gain multi-terminal

resistors and dc voltage and current sources is strictly locally passive if

the external ports of N form neither loops, nor cutsets.

Property 21 Relationship between Slopes of DP and TC Plots of Loaded Two-Ports

Let N be a connected resistive two-port containing only locally no-gain

multi-terminal resistors and dc voltage and current sources. Let N be terminated

by a locally no-gain load resistor characterized by i = g^(v ) as shown in

Fig. 12. Let the DP and TC plots of the loaded two-port be represented respectively

by i = g(v) and v_ = v_(v). Then the slope at each corresponding operating point

must satisfy the following inequalities:

(a) d£(v)_ > Q (77)
dv
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(b) dvQ(v)
dv

(c) dvQ(v)
dv

< 1

dg(v)
dv

" dSL(vL>
dv,

(78)

(79)

vL=v0(v)

Proof. The inequalities (77) and (78) follow directly from Property 19. To

derive (79), we observe that the i^ - vs. - i TC plot must satisfy a dual

inequality, namely

di.

di
< 1

Together, (77) and (80) imply that

But

diL
dv

• =

dlLdi
di dv

=

diL
di

. dg(v) < dg(v)
dv — dv

lh
dv dv.

dVL
=

^1? dvQ(v)
dv d\ dv

It follows from (81) and (82) that

dvQ(v)
dv

dv

dgL(vL) - dgL(vL)
dv

dv, dv,

(80)

(81)

(82)

Corollary 21.1

The magnitude of the slope of the TC plot of any locally no-gain two-port

terminated by a linear positive load resistor RT is bounded by

dvQ(v)
dv~~

\
- R

in

(83)
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where Rin denotes the smallest incremental resistance of the DP plot of the
loaded two-port.

V« PROPERTIES OF NETWORKS EXHIBITING TOPOLOGICAL OR COMPLEMENTARY SYMMETRY

In addition to bounding regions, it is often useful to know whether a DP plot

or TC plot exhibits some form of symmetry. For example, the differential

amplifier circuit shown in Fig. 13(a) has an odd symmetric TC plot as shown in

Fig. 13(b), while the full-wave rectifier circuit shown in Fig. 14(a) has an

even symmetric TC plot as shown in Fig. 14(b). That these two TC plots must

exhibit some form of symmetry is not surprising in view of the topological

symmetry of the associated circuits — the circuit inside N exhibits "mirror"

symmetry about a horizontal axis of symmetry. What is surprising is that there

exists a much larger class of circuits having no topological symmetry whatsoever

but nevertheless are characterized by an odd symmetric TC plot. For example,

the two-operational amplifier circuit shown in Fig. 15(a) has an odd symmetric

TC plot as shown in Fig. 15(b) so long as the operational amplifier is represented

by the resistive circuit model shown in Fig. 15(c). Observe that this circuit

does not display any topological symmetry. However, as will be shown shortly,

this circuit possesses a more general form of symmetry called complementary

symmetry and our objective in this section is to define these two forms of

symmetry precisely so that results of a more general nature may be derived.

Definition 8. Topological Symmetry

A network N is said to exhibit some form of topological symmetry if after

subjecting N to a topological transformation T(») such as a physical rotation or

translation, we obtain a new network T(N) which, except possibly for the element

labellings, is identical to N; i.e., N and T(N) have identical topology and the

corresponding elements have identical constitutive relations. In particular,

the class of topologically symmetric networks which exhibits a mirror symmetry

with respect to a horizontal axis as shown in Fig. 16 will henceforth be referred

to as horizontally symmetric networks.

It is important to observe that even though the "corresponding" elements of

a horizontally symmetric network N and the rotated network T(N) are identical

by definition, the current and voltage variables associated with these elements

are generally distinct since they are associated with distinct elements. For

example, element 4 of the network N in Fig. 16 would correspond to element 5

-42-



of the rotated network T(N). While they have identical v-i curves, by definition,

their respective currents and voltages need bear no relation to each other.

However, for those elements which remain in the same position after the

rotation — henceforth referred to as fixed elements — the corresponding current

and voltage variables of N and T(N) are related in a very simple way. For

example, terminals @ and (B) of element 1 and element 3 in Fig. 16 remain in
the same position after rotation and hence i and v . of the corresponding

elements in N and T(N) must be equal to each other. In contrast to this,

terminals (a) - (b) of element 2 or terminals (e) - (?) of element 3 become

interchanged after rotation and hence the corresponding voltages of N and T(N)

must be the negative of each other. In the following, we will exploit these

properties to ascertain the symmetry of DP and TC plots.

Property 22. DP plots of Horizontally-Symmetric Networks

The DP plot across any pair of symmetrically located driving-point terminals

(not on the horizontal axis) of any horizontally symmetric resistive network is

odd symmetric.

Proof. Let f(v,i) = 0 denote the DP plot of N. Since the driving-point terminals

are symmetrically located, (v,i) of N corresponds to (-v,-i) of the rotated

network T(N). Moreover, since N is horizontally symmetric, we must have

f(v,i) = f(-v,-i) =0. n

Property 23. TC Plots of Horizontally-Symmetric Networks

Let N be a horizontally symmetric network with a pair of symmetrically

located driving-point terminals as shown in the four basic configurations in

Fig. 17. Then we have:

(a) The vQ - vs. -v. TC plot of N is odd symmetric if vn is measured across
a pair of symmetrically located terminals as shown in Fig. 17(a), and is even

symmetric if vQ is measured across a pair of terminals lying along the axis of

symmetry as shown in Fig. 17(b).

(b) The iQ - vs. - i TC plot of N is odd symmetric if iQ is the current
through a two-terminal element which intersects the axis of symmetry perpendicularly

as shown in Fig. 17(c), and is even symmetric if in is the current through a

two-terminal element lying along the axis of symmetry as shown in Fig. 17(d).
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Proof.

(a) Let v' denote any voltage of the rotated network T(N) corresponding to v

of N. Since the input and output terminals in Fig. 17(a) are symmetrically

located, we must have v^n = - vin and v' = -vQ and hence whenever (v ,vQ) is
a point on the TC plot, then the horizontal symmetry of N implies that (-v. ,-vn)

is also a point on the TC plot. Hence, f(vin,vQ) = f("vin»*vo^ = ° and the TC
plot is odd symmetric. In the case where the output terminals are located along

the axis of symmetry, vl = vQ remains invariant. Hence, we must have f(v. ,vQ) =
f(-v. ,vQ) = 0 and the TC plot is even symmetric.

(b) The proof is similar to that given in (a) and is therefore omitted.

The class of networks satisfying the hypotheses of Properties 22 and 23

represents only a rather small subset of networks having a symmetrical DP or

TC plot. Let us therefore turn our attention to a more general form of symmetry

which we now define:

Definition 9. Complementary Elements and Networks

Let ^p be an n-terminal resistor characterized by a relation f(y,i) = 0.
We define a complementary resistor <T) associated with ^ to be an n-terminal

resistor characterized by f(y,i) - 0 where

?(Y>i) 4 ?(-Y»-I) (84>

and where v. and i. denote respectively the voltage and current (assuming the

same set of reference direction and polarity as that of terminal j of <-R) of
terminal j of^. A network N obtained by replacing each element in N by its
associated complementary element is called the complementary network associated

with N.

There are many complementary elements of practical interest. For example,
the complement of any two-terminal element is the same element but with its
terminals interchanged. Hence, the complement of a pn junction diode is an
np junction diode. The complement of a pnp transistor is an npn transistor
having the same characteristic curves but rotated by 180° about the origin.
While the two networks N and its complement N are generally distinct, the following
theorem shows that their respective solutions are simply related.
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Theorem 2. Complementary Network Theorem

If (Yq»Jq) is the voltage and current distribution of a network N, then
(-Vq»-Iq) is the voltage and current distribution of the associated complementary

network N. In particular, any DP plot or TC plot of N is related to the corres

ponding DP plot or TC plot of N by a 180° rotation through the origin.

Proof. Since N and N have identical topology, and since the elements of N and

N are complements of each other, the following complementary sets of network

equations must hold:

KCL:

KVL:

Constitutive

Network N

^ 5Q =9

Relations: f(V ,1 ) = 0

Complementary Network N

AI =0=»A(-IQ) =Q
BVQ =0 => B(-VQ) =0

1<VV " «(-W =9

where A and B denote the reduced-incidence matrix and the fundamental loop matrix,

respectively, and where £(•,•) and f"(',') denote the collection of the constitutive

relations of all elements of N and N, respectively. Hence (V0,I_) is a solution of

N if, and only if, (Yn»Jn^ is a solution of **.

Observe that Theorem 2 provides the rigorous basis for the common "ad hoc"

rule in logic circuit design for transforming a "positive" diode-transistor

logic circuit into a "negative" diode-transistor logic circuit by simply

transposing the terminals of all batteries and diodes, and by replacing all pnp

transistors by their complementary npn transistors.

Definition 10. Complementary Symmetry

An n-terminal element H3 is said to possess complementary symmetry if it

is identical to its complement CQ . A network N is said to exhibit complementary
symmetry if its complement N is identical to N.

Property 24. Complementary Symmetric Criteria

An n-terminal resistor £jj possesses complementary symmetry if, and only if,

its constitutive relation is odd symmetric in the sense that

f(y,i) - 0 if, and only if, f(-v,-i) - 0 (85)

Proof. By definition, N is the complement of N implies that f(y,i) = 0 if, and only if,

f(-y,-I) = 0. Hence (85) follows from the hypothesis that N and N are identical.

-45- a



Corollary 24.1

The following elements are complementary symmetric:

1. Any bilateral two-terminal resistor.

2. Any multi-terminal linear element characterized by f(v,i) =Av + B i = 0.

This class includes all common linear elements such as gyrators, transformers,

controlled sources, negative impedance converters, etc.

3. Any operational amplifier represented by the resistive circuit model shown

in Fig. 15(c).

Property 25. Odd Symmetric DP and TC Plot

The DP plot and TC plot of any network containing only complementary symmetric

elements are odd symmetric.

Proof. Follows directly from Theorem 2 and Property 24. H

As a direct consequence of Theorem 2 and Corollary 24.1, we have the following

important special case of Property 25:

Corollary 25.1

The DP plot and TC plot are odd symmetric for any network containing

operational amplifiers, gyrators, ideal transformers, controlled sources,

negative impedance converters, linear resistors, and bilateral two-terminal

nonlinear resistors; regardless of the network topology.

It is possible to further enlarge the class of networks having odd symmetric

DP and TC plots by relaxing Definition 10 as follows:

Definition 11. Pseudo-Complementary Symmetry

A network N is said to exhibit pseudo-complementary symmetry if after

subjecting portion of its complement N to some topological transformation T(*)

such as rotation or translation, the transformed network T(N) can be redrawn

such that except possibly for the element labellings, the networks N and T(N)

are identical.

Examples of Networks exhibiting Pseudo-Complementary Symmetry:

1. The operational amplifier circuit considered earlier in Fig. 15(a) exhibits

pseudo-complementary symmetry since its complement N is identical to N except
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that the two terminals of each diode in N are interchanged. In this case we

can simply redraw N to obtain the original circuit. Hence T(*) in this case

is just the identity transformation.

2. The diode-clipping circuit shown in Fig. 18(a) is pseudo-complementary

symmetric because its complement N in Fig. 18(b) can be redrawn so that N is

identical to N. Again T(») in this case is the identity transformation.

3. The push-pull transistor amplifier circuit shown in Fig. 19(a) is pseudo-

complementary symmetric because its complement N shown in Fig. 19(b) can be

rotated such that T(N) = N. In this case, T(-) consists of a 180°-rotation of

the entire circuit except the input voltage source.

4. The operational amplifier circuit shown in Fig. 20(a) is pseudo-complementary

symmetric because if we rotate the portion of N in Fig. 20(b) consisting of the

two diodes, the four resistors R , R^, R', and Rl, and the two batteries by

180°, we obtain T(N) = N.

It is important to observe that unlike Property 25, the DP plot and TC

plot of a pseudo-complementary symmetric network are generally not symmetric

because even though the networks T(N) and N are identical, the corresponding

voltages in N and T(N) are generally not related to each other, as we have also

pointed out earlier in the case of rotationally symmetric networks. However,

if the output voltage is measured across a pair of terminals which either remain

invariant (such as vfl in Figs. 15(a), 18(a), and 20(a)) or which lies along the

horizontal axis of rotation (such as vn in Fig. 19(a)), then the TC plot would

remain odd symmetric. We will now formalize this observation as follows:

Theorem 3. Pseudo-Complementary Symmetric Network Theorem

Let N be a pseudo-complementary symmetric network and let its complement

N be partitioned into two parts N = N. UN where N_ remains invariant under

the topological transformation T(«); i.e., T(N) = N. U T(N ), where T(N2) denotes

the rotated subnetwork of N. as shown in Fig. 21. Let v. and i. denote the

voltage and current of T(N) corresponding to that of v. and i in N. Then we

have

(a) v. = v. and i. = i. whenever (v,, i.) belongs to the invariant subnetwork
_ J J J 3 j j
H .
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(b) Vj "Vj and *j ™̂ whenever <vj'V belongs to an element of T(N )which
lies along the axis of rotation.

(c) Vfc =-vfc and ifc =- ifc whenever (v^"^) belongs to an element of T(N )
which intersects the axis of rotation perpendicularly..

(d) v£ = -v£ whenever v^ pertains:to a pair of nodes of T(N ) which are
symmetrically located with respect to the axis of rotation.

Proof. The proof is similar to that used in proving Property 23 and is therefore
omitted. h

Property 26. DP and TC Plots of Pseudo-Complementary Symmetric Networks

Let N be a pseudo-complementary symmetric network and let T(N) = N U T(N )

as shown in Fig. 21. Then we have:

(a) The DP plot across any pair of driving-point terminals located in N is
odd symmetric.

(b) The vQ - vs. - v±n TC plot is odd symmetric whenever the driving-point
terminals belong to N_, and whenever the output voltage vn is measured either
across a pair of nodes belonging to N- or across a "fixed" element of T(IL)

lying along the axis of rotation.

Proof. Follows directly from Theorem 3.
n

It follows from Property 26 that the vQ - vs. - v. TC plots of the circuits
shown in Figs. 15(a), 18(a), 19(a), and 20(a) are all odd symmetric.

VI. CONCLUDING REMARKS

The objective of this research was to achieve practical design criteria
on the qualitative behaviour of nonlinear resistive networks that contain

multi-terminal resistors. The results presented in this paper are concerned
with the bounding regions and symmetrical properties of the TC and DP plots

of resistive networks. Most of these results are applicable to networks that

contain operational amplifiers, which are considered throughout as multi-
terminal resistors.

One of the main results given in this paper, the generalization of the

no-gain criteria to include multi-terminal elements, allowed this very basic
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concept to be extended to include a large number of practical devices. In

particular, bounding regions for the TC plots and DP plots of networks using

operational amplifiers — the most practical and widely used multi-terminal

element — were obtained for a large number of very general circuit configura

tions. The tightest possible bounding regions were obtained for the class of

networks considered.

In addition to the generalization of the no-gain criteria a general

characterization for grounded n-terminal no-gain elements is given in

Corollaries 7.1 and 8.1. This characterization is mainly of theoretical

interest, except in the case of a three- or four-terminal element, where it

leads to a simple interpretation of graphical characteristics — the type

often given by device manufacturers. When these general characterizations

were applied to an incremental matrix representation of the device's

constitutive relation about an operating point, a locally no-gain concept

emerged which led to several interesting properties related to the yet

unsolved classical resistance n-port synthesis problem. In the restricted

case where the locally no-gain incremental conductance and resistance matrices

are symmetric (reciprocal), the conditions placed on the matrices should be

similar to the conditions required for a general resistance network synthesis.

In the former case these conditions were shown to be more stringent than the

necessary and sufficient conditions for the realization of a grounded resistive

network described by a conductance matrix. This difference was shown to be a

result of the connection requirements placed on the locally no-gain network.

The incremental resistance case is much more difficult — the necessary

and sufficient conditions for the inverse of a resistance type matrix to be

realizable as a conductance matrix remains an unsolved problem even for the

more restricted case where the conductance matrix is hyperdominant. Several

of the conditions listed in Property 10 appear to be new. They can, by means

of specific examples, be shown to be necessary for the inverse to be a

hyperdominant conductance matrix. It should be noted that most of these

conditions do not come into play for a three-terminal element but only for

higher order systems. As the order of the system is increased more conditions

become necessary, thus making the generalization difficult and as yet unsolved.

The concept of symmetric and complementary symmetric networks was defined

and used to show that various classes of networks exhibit either even or odd

symmetric TC and DP plots. These plots for many operational amplifier circuits
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were shown to have odd symmetry. The symmetric properties and bounding

regions of TC and DP plots of resistive networks are two of the main

qualitative properties.

With respect to the no-gain property several problems reamin

unsolved. These include, generalizing the local no-gain property to

include a hybrid representation; specifying all of the necessary and

sufficient conditions for the inverse of a locally no-gain resistance

matrix to be a locally no-gain conductance matrix. The conditions for

the local no-gain property to hold were shown to be extemely restrictive.

This observation seems to suggest that the more terminals there are in a

multi-terminal device, the more likely that it is capable of small-signal

amplification.
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APPENDIX

A-1. Proof of Lemma 2

(a) Consider the no-gain n-terminal resistor^ shown in Fig. A-1, where
the terminals have been relabelled such that the operating-point voltages

satisfy the strict inequality of (21). To prove that the system of strict

inequalities in (22) follows from that of (21), let us suppose the contrary.

That is, suppose all inequalities in (22) are satisfied except the kth one which

is replaced by

Now suppose we connect a linear resistor with a resistance value

AV) ]Vl) >Qil±.<0 (A-2)
k

if i = 0
k

from node (kf1) to node (k), and connect n-2 independent current sources across

the remaining nodes with values as indicated in Fig. A-1. Applying KCL at each

terminal of ^ shows that the resulting current entering each terminal (j) is
precisely equal to the operating-point current I/.%. Hence, the terminal

voltages of ^R must necessarily distribute themselves so that they too agree
with the associated operating-point voltages.

Now, observe that the sum of the magnitudes of the voltages across the

n-2 independent current sources is given by

n-2

v

3i ' (V(D " V<2)>+ <V(2) "V(3)> + - + (V(k-l) "W

+(Vir^W + '•• + (V(n-2)" V(„-l> + V(n-1)

" V(l) " (V(k) "Vl)> <V(l) <A"3>

Note that Eq. (A-3) violates the no-gain property since the voltage across node

(1) and node (n) is equal to V,-.. Hence (A-1) can not be true. The same

procedure can be applied, mutatis mutandis, to the case where two or more strict
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inequalities in (22) are violated. In each case, we can obtain a contradiction

and hence Lemma 2(a) is proved.

(b) To prove that the system of mixed inequalities of (24) must necessarily

follow the mixed inequalities of (23), let us suppose the contrary and assume

that all mixed inequalities of (24) are true except one. If one of the strict

inequality,equation in (24) is violated, we can use the procedure in the proof

of part (a) of this lemma to arrive at a contradiction. Hence, all strict

inequalities in (24) must hold.

Suppose now (24e) is violated, i.e. assuming

V) +I(2) + - + ^-2) + I(k-1) <0 <A-4>

Let us connect n-2 linear resistors, a short circuit element and an independent

current source with^-R as shown in Fig. A-2. If we choose I such that
0

I >
s *(!) + X(2) + •- + Vl) (A_5)

Then the linear resistors will all have positive resistance values. From Fig.

A-2, the current flowing through the short circuit element is given by

ikils-(I(l) +I(2) +--+I(k-l)) (A"6)

From (A-4) and (A-6), we obtain

h.*1s

which is impossible because this would mean the network in Fig. A-2 is not a

no-gain network, thereby implying that ^ is not a no-gain resistor — contrary

to our assumption. Hence, (24e) must hold. Simllary (24f) also must hold.

Hence, Lemma 2(b) is proved. n

A-2. Proof of Lemma 3

Consider first the case when the strict inequalities of (21) and (22)

hold. Observe that we can always construct the connected network shown in

Fig. A-3 (containing n-1 positive linear two-terminal resistors) having an

identical operating-point voltages and currents, where the resistors have

54-



resistance values given by

R - W " W >o (A-7a)

R2 =fo +I<3) >° <A"7b>^(l) * X(2)

^ I(l) +1(2) +- +1(k)
- >> ' V*? __ >o (A-7c)

R , - V-2) - V(n-1) > (A_7d)
n"2 I(l) + I(2) + •" +V2)

V. .

R , = '' 1 T x ^? >0 (A-7e)
"-1 V) + I(2) + +I(n-D

Next, let us consider the mixed inequality case of (23) and (24). Observe

that (24d) implies that the equality sign in (24e) and (24f) can not hold

simultaneously. Hence, without loss of generality, let us assume that (24f) is

satisfied with a strict inequality. Under this assumption, there are four

exhaustive possibilities.

^A! I(1) + I(2) + "' + V2) + Vl) =° and V) >° <A"8>

In this case, the same network shown in Fig. A-3 can be used to realize

the desired operating-point, where all resistors except Rk_2» ^i. i an<* ^u are

specified by (A-7) and where

R = v(k-2) "v(k-i) 0 ( }
k-2 I + I + ••• + I lA5,a;* l i(l) + L{2) + + X(k-2)

R^ = 1ft > 0 (A-9b)

mV(k) -V(kfl) >Q (A-9c)
* (k)
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^S£-2: Ia) + I(2) + "" + I(k-2)+Vl)>0andI(k) =° (A-10)

In this case, the network shown in Fig. A-4 can be used to realize the

desired operating-point, where all resistors except R, , are specified by (A-7).

Observe that \, mav ^e set eclVLSL1 t0 any positive value since I.,» = 0.

This resistor is used here merely to ensure the network is connected.

^2J V) + X(2) + •'• + X(k-2) + Vl) "° and '(k) <° (A"U)

In this case, the network shown in Fig. A-5 can be used to realize- the

desired operating-point, where all resistors except R, _, R, -, and R, are

specified by (A-7) and

"k-2 =I +I <+'??.Vjk"1? +i >0 <A"12a>k Z i(l) + X(2) + + X(k-2) + x(k)

V - V
R. - = (k-2) (k) >Q (A-12b)

" (k)

p - Vi) - Vi) > (A.12c)
Tr T + T 4....4.T 4-T 4-T -.«•»•/

K i(l) T x(2) + 1(k-2) 1(k-l) 1<k)

^S±A' Ia)+1(2) + --+lik-2) + l(k-l)>0*adIW>0 (A"13)

In this case, the network shown in Fig. A-6 can be used to realize the

desired operating point provided R, _ and R, are specified by

Vd " Vd
K 1 = t Z-t X TT T^r > ° (A-14a)

(1) (2) (k-2) (k-1)

=V(k) ~Vl) >0 (A_14b)
* Xk

and the remaining resistors are given by the same formulas as in (A-7).

This completes the proof of Lemma 3.
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A-3. Proof of Property 8

A. Sufficiency: Let'-R be imbedded in any connected network N containing
only positive linear two-terminal resistors, short and open circuit elements

which do not form 2 ""loops and ©-cutsets, respectively, and nonzero independent

voltage and current sources. Let Q be an operating point of the network and

Q the corresponding operating point of ^ which satisfies the conditions of
Property 8. We will show that a Network N0 containing (n-1) positive linear two-

terminal resistors can be constructed which has the same operating point as "-R.

With N0 replacing H2 in N the same operating point § will be maintained. Since NQ
possesses the no-gain property it follows that K also possesses the no-gain

property. Hence, the construction of N establishes that^fc possesses the no-gain

property.

The construction procedure is carried out by assuming an operating point exists

that satisfies conditions (la), (lc) and (2) of Property 8. With condition (la)

terminals © and Q) exist such that I. > 0 {resp; - 0}, I. < 0, I ^ 0 for
m = 1,2,...,n-1 with m^k and m£j. With this assumption, and terminal @ taken

as reference, all terminal to reference voltages are non-negative . These terminals

with the exception of 0 can be partioned into four sets S,, S«, S, and S,. The

set S^ = {a_} is a terminal at the maximum potential with a positive current i.e.
I > 0. Condition (2) of Property 8 guarantees that such a terminal exists.
al
The set S2 - {a^jOi-,..,,a } is defined as the set of remaining terminals with
positive terminal currents, i.e., I > 0 for p = 2,3,...,A with 1 < I <_ n-1.

P

The set So = ^o+i »ao4.o'* *•»ao+ ^ *s defined as the set of terminals with zero
terminal current and zero terminal-to-reference voltage, i.e., V - V. = 0 and

a£+p J
I =0 for p = l,2,...,g with JH-1 < q <_ n-1. The remaining terminals

S, = {otff+a+-, »ao+a+2' **,,a -1^ are tn08e terminals with positive terminal-to-

reference voltage and zero terminal current, i.e., V -V. > 0 and I =0
a j a
P J P

for p = &+q+l,A+q+2,...,n-l.

Figure A-7(a) is a realization of N . For the terminals belonging to S«,

the resistors are specified as

V -V,
a j

R "-j2 p=2,3,...,A (A-15)
P ap

-57-



For terminals belong to S~ the resistors are specified by

R = lft P = A+l,A+2,...,A+q (A-16)

aP

The terminals corresponding to S, and S, are considered together.

Without loss of generality we can assume

V >V >V > ... > V n > V. (A-17)
°1~ °Wi- aA+q4.2- " n-X ^

If all the strict inequality signs in (A-17) hold, the network of Fig. A-7(a)

realizes N with

V -V

= i /+q+i (A-i8)
a, I1 a±

V -V
a a ,-

R „ —P ?+*• p = a+q+i^+q+a,... ,n_2 (A-19a)

V -V

R = nI1 3 (A-19b)
a n I
n-1 a.

When one of the equality signs in (A-17) holds, for example,

V >V = V > ... > V n > V. (A-20)
al °Wl °Mq+2 ^ *

then the portion of the network N involving the terminals associated with S1

and S, can be realized, as shown in Fig. A-7(b) with

V -V

R = _1 A+q+l (A-21a)
a, I1 a±

R -10 (A-21b)
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V -V
a a

Rct ° ?i P=A+q+2,A+q+3,...,n-2 (A-21c)
P a±

V -V_,

a . I (A-21d)
n-1 a.

In case other terms are equal in (A-17) a similar construction procedure can
be used.

If an operating point exists that satisfies one of the other possible
conditions of (la) or (lb) in Property 8 a similar construction procedure will
realize anetwork NQ with the desired operating point. This then completes
the sufficiency part of the proof.

B. Necessity; The necessity of conditions (lc) and (2) of Property 8 are

obvious. In order to consider the necessity of condition (la), let us assume

that all terminal currents are non-negative except for terminal Q) ,which is
assumed to have negative current, i.e. current flowing away from the element

K. With terminal (j) taken as the reference terminal in order to satisfy
condition (la) of Property 8 all the other terminal to reference voltages must
be non-negative. Suppose this condition is violated for some terminal © ,that
is assume an operating point for ^ exists where Vfc-V <0{resp.; <0} with
Ik >0{resp.; =0}, I^ <0and 1^ >0for all m=1,2, ...,n with nft and m*j.
With this assumption we can arrange the remaining terminals {a^cu,...,a «} so
that the terminal voltages satisfy the following inequalities.

va ± V > Vrt > ... V > V, (A_22}
al a2 a3 " an-2 ~ J (A 22)

If Ik >0and Vk -V^ < 0, then the network of Fig. A-8 has the required
operating point but does not possess the no-gain property. This is because the
current through the short circuit element shown is given by

XA = h + Xs > h (A-23)

which is greater than the source current I , and therefore violates the no
s

gain property. If V^ -0then with Ra short circuit the same network
still violates the no-gain property.
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If IR » 0 and Vfc-V < 0 then, with R replaced by an open circuit, the voltage

V - V„ > V = V (A-24>

exceeds the source Vg, and the network again violates the no-gain property.

We have assumed that a single terminal voltage violates condition (la) of

Property 9 and we have shown that the resulting operating-point violates the

no-gain property. If more than one terminal voltage violates condition (la) of

Property 9 the same method of proof can be used to show that the resulting

operating-point does not satisfy the no-gain criteria. The remaining conditions

of (la) and (lb) can be shown to be necessary in a similar manner. h

A-4. Proof of Property 9

We will prove Property 9 using Property 7 and Corollary 7.1, where 1^ is

replaced by 5:L, vfc is replaced by 6vfc and (32) is replaced by

a n_16ik =gk(6y) =£ gkj 6Vj for k=1,2,...,n-1 (A-25)

A. Necessity. By selecting a particular 6y for (A-25) the 5 conditions

listed in Property 9 can be shown to be necessary

(i) By letting 6v. >0 and 5v& »0 for I = 1,2,...,n-1 where A#c, (A-25)
becomes

«ik =gkk «vk (A-26)

To satisfy condition (la) of Corollary 7.1, we require gj. > 0. Clearly this is
true for k = 1,2,...,n-1 making condition (1) of Property 7 a necessary condition.

(ii) With 6v. < 0 and 6v = 0 for £ = 1,2,...,n-1 where #j, (A-25) becomes
j *

«ife- gy «Vj (A-27)

To satisfy condition (la) of Corollary 7.1, we require gfc. < 0. Since this is true
for all k,j = l,2,...,n-l where k^j, condition (2) of Property 9 is a necessary

condition.

(iii) Next, by letting 6v- = 6v„ =»...= Sv - 4 a > °» (A-25) becomes

n-1

«ifc =a£ gfcj (A-28)
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To satisfy condition (la) of Corollary 7.1 we require

n-1

8n 1°
J-l >kj

implying

n-1

8kk1"g gkj >0 (A-29)
j#e

Hence, we have shown that condition (3) is necessary.

(iv) By summing all the n-1 equations in (A-25), we obtain

n-1 n-1 /n-1 \ n-1 /n-1

Z, «ik -2 (2 gki 6v )= £( X) &., /«v (A-30)
k=l K k=l\j=l K;J J/ j=l\k«l kj/ j

If we now let 6v.. > 0, and Sv^ = 0for £« 1,2,...,n-1 and Z4j, (A-30)
reduces to

n-1 /n-1 \

SMS^n (A-31)
To satisfy condition ((n-1)a) of Corollary 7.1 we need

n-1

Z 8k1 >0
k=l KJ

or

n-1

S. >-2^ g,k >0 (A-32)
3J k=l Jfc

This proves condition (4) of Property 9.

(v) Finally, let us consider the sum of any p equations in (A-25) as

P n-1 / p

E «±0 =E(Ega
k=l ak j=l\k=l ak

<Sv. (A-33)j/ j

If we now let 6va = 6v^ = ... = 6va =a >0 and let all other components of
12 p

6v be zero, then (A-33) becomes
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p

E«
k=l

P P

j-i k=i °k aj
(A-34)

To satisfy condition (pa) of Corollary 7.1, p = 1,2,...,(n-1), we require that

p = 1,2,...,(n-1) (A-35)

P P

2-f Z» g >°
J=l w. \ aj

This proves the necessity of Condition (5) Property 9.

B. Sufficiency;: To show that Conditions (1) through (5) form a set of

sufficient conditions for ^R to be locally no-gain, let us partition the set
of integers (1,2,...,n-l} into two sets; namely, S- = {a-,a ,...,ap} and

S2 ={ei,B2,...,em>, where Jl+m =n-1, Sx Us2 ={1,2,... ,n-l} and S^^ ns =
empty set. Consider the sum of the p equations in (A-25) corresponding to

a subset of the indices in S-, where p = 1,2,,..,£:

p n-1 / p \

E «ia - E E ga 1)«sv
k=l \ j=l\k=l V/ j

I I p

If we let fiv satisfy

ga a /«v +^l^g /fiv (A-36)
j=l\k=l akaj/ aj j=l\k=l \ej/ 3j

m

E E

6v > 6v > ... > fiv >0> 6vn > ... > 6vrt
"l °2 a* Sl 6m

Then Conditions (1) through (5) imply that (A-36) gives

P

fii > 0 for p = 1,2,...,£
k=l "k

In addition, if we let 6y satisfy

6v > 6v > ... > fiv = fiv > ... > fiv >0 > fiv
°1 °2 °k ak+l

> ... > fiv,

m

Then condition (1) through (5) imply that (A-36) gives
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2^,61 > 0 for p = l,2,...,k-l, k+1, ..., I (A-40a)

k k+1

2L, 6i 10 and E 5i 10 (A-40b)
j=l j J-l aj

By Lemma 3, (A-37) through (A-40) imply that we can construct an n-terminal

network containing n-1 positive linear two-terminal resistors having the

operating-point voltage fiv and current fii. Hence ^ is locally no-gain.
This completes the proof of Property 9. n

A-5. Proof of Property 10

We will prove Property 10 using Property 8 and Corollary 8.1 with i,

replaced by fid-, vk replaced by fiv, and (36) replaced by
n-1

fiv, =E rV4 «i4 for k=1,2,...,n-1 (A-41)

Each of the 7 conditions listed in Property 10 can be shown to be necessary. We

will select specific fii for each condition to be considered.

(i) By letting fii, > 0 and fii = 0 for all m = 1,2,...,n-1 where m 4 k,
Jv III

(A-41) becomes

«vk - rkk a^ (A-42a)

To satisfy condition (2a) of Corollary 8.1 will require that r.. > 0 for all

k = 1,2,...,n-1, hence condition (1) of Property 10 is necessary.

(ii) By letting fii. > 0 and fii = 0 for all m = 1,2,...,n-1 where m 4 j,
j m

(A-41) becomes

6vk =rkj «i (A-42b)

In order to satisfy condition (2a) of Corollary 8.1, we require that r,, >o
kj

for all k,j = 1,2,...,n-1 where k 4 j. With -fii. = fii. > 0 and fii = o for
j k m

all m = l,2,...,n where m 4 k and m 4 j; j,k = l,2,...,n where j 4 k (A-41)

becomes

s\ - rkk 61k - rw "k (A-*2c>
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In order to satisfy condition (2a) of Corollary 8.1 we require that rkk - rfe. > 0.
Since this is true for all k,j = 1,2,.. .,n where k 4 j, this constraint, coupled with

the constraint that r,. > 0, makes (2) of Property 10 necessary.

(iii) By letting fii, > 0 and fii = 0 for all m = 1,2,...,n-1 where m 4 k,

(A-41) gives

«*k-«*3- (rkk-rjk)Sik (A"43a)

In order to satisfy condition (la) of Corollary 8.1 we require that r.. - r , > 0

for all j,k = 1,2,...,n-1 where k^l. This constraint and the requirement that

r» > 0 imply that condition (3) of Property 10 is necessary.

(iv) With fii. = -fii. > 0 and fii = 0 for all m = 1,2,...,n-1 where m 4 k
k. j m

and m 4 j; j,k = 1,2,...,n-1 where j 4 k; then (A-41) gives

h - Svi - frkk - v61k +(rjd - *jk)61k <A~43b)
Condidtion (la) of Corollary 8.1 requires that rkk + r.*.i >*iv +rk1* Since
this must be true for all j,k where j 4 k condition (4) of Property 10 is a

necessary condition.

(v) By letting fii, = -5i0 >0> $i =0 for all m « 1,2,...,n-1 where m 4 A
IV Xr HI

and m 4 k; Jl,k = 1,2,...,n-1 where Z 4 k; (A-41) gives

5\ - «*j = frkk "*u> 61k - frJk - rj*> 4ik <A"43c)
In order to satisfy condition (la) of Corollary 8.1, it is required that

r,, + r. > r + r., . Since this must hold for all j,k, £where j 4 k 4 A

Condition <5) of Property 10 is required.
kk(vi) Assuming r^% >0and by letting fi^ >0, 6i£ = $*k ^d 51m = 0
KX>

for all m = 1,2,...,n-1 where m 4 I and m 4 k, £,k = l,2,...,n where k 4 A,

(A-41) gives

^Mfii. =0 (A-43d)6vk=rkk5ik-rkill^/6ik=0
and

where j = 1,2,...,n-1 with j 4 k and j 4 A. In order to satisfy condition (3) of

Corollary 8.1, (A-43e) must be non-positive or rkk r^ 1 r*k r^- If Vy^ = 0.
this condition is automatically satisfied. This inequality must hold for all

j,k,£ hence Condition (6) of Property 10 is a necessary condition.
#
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(vii) Consider a set S = {a.jCu,... ,a } with I < n-1, a. 4 a. if i 4 j and

a. £ {l,2,...,n} for i = 1,2,...,A. Suppose for some j £ S.

I

2^ r. > max
i=l Joti 1=1,2,...,*,

l

I,
j-l ai°J

that

(A-44a)

then with fii- = fii- = ... = fii = a > 0, and with all other incremental currents

set to zero, the voltage

fiv > max fiv (A-44b)
J i-l,2,...,£ ai

This contradicts condition (3) of Corollary 8.1. Hence condition (7) of

Property 10 is necessary. _

A-6. Proof of Lemma 6

(a) To prove that the inequalities of (48) follows from that of (47),

let us suppose the contrary; i.e., assuming all inequalities in (47) hold

except one, say

X(l) +I(2) + -"+I(k) <0 <A"A5>

Consider the network in Fig. A-9 where ^Q. is imbedded in a network containing
positive linear two-terminal resistors and an independent current sources Ic

satisfying

Is> S |l(j)| (A-46)

Observe that the current 1, through R, is given by

ik =IS- [I(1)+I(2) + -"+I(k)] (A"47)

Equations (A-46) and (A-47) imply that i, > I which says that the network in

Fig. A-9 is not a no-gain network. This contradicts the fact thatH2 is a

weakly no-gain resistor as defined in Definition 7. Hence (A-45) can not be

true and (48) follows from (47).

(b) Consider the network in Fig. A-10(a) for the case when I,.. > 0

and Fig. A-10(b) for the case when I. . < 0. The value of each resistor R.
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is assigned is equal to the ratio between the voltage and the current

(corresponding to the operating point) across R.. The imbedding network

contains only positive linear resistors and one independent current source I

One possible choice of values is as follows:

(i) ^EJW

±) v.=^!^ ana VB -WV2)
(1

Since Q is a weakly no-gain n-terminal resistor, the networks in Figs. A-10

(a) and (b) possess the no-gain property. If (49) holds but at least one of
the inequalities in (50) does not hold, then there exists at least one current

through an imbedding resistor having a current magnitude greater than |Ig|.
For example, if (50c) {resp.; (50d)} is not true, i.e., suppose

I(l)+1(2) +-+I(fc-l)<° (A"48a)

{reap.; I(1) +I(2) +... +I(k.x) +I(k) +I(k+1) <0} (A-48b)

then the current i.x {resp.; i^} through R& {resp.; R,^} is given by

Vl^s-^l)*1^)*--*1^ (A"49a)

{resp.; i^ =Ig -[I(1) +I(2) +... +I(k_1} +I(k) +\k+1)» <A~*9b>

In view of (A-48) and (A-49), i^ {resp.; ik+1> is greater than Ig. Clearly
this is impossible since the networks in Figs. A-10(a) and (b) are no-gain
networks. Hence (A-48) can not be true and (50) must follow from (49). This

completes the proof of Lemma 6.

A-7. Proof of Lemma 7
Consider the network shown in Fig. A-ll where each element K^ (k«l,2,...,n-l)

is chosen as follows:
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Casej,. When V(fc) -V(fc+1) *0and U(1) +I(2) + ... +I(fc)] * 0, 1^ is a
positive linear two-terminal resistor with a resistance value of

. V(k)"V(k+l) Q
* I(l)+I<2)+'*-+I(k)

Case 2. When V,.* - V...J* = 0 and II/1)+Im+'' ,+I(k)-' ^ °* ^ ±s a short
circuit element.

Case 3. When [Im+Im+#**+ICk^ ** ° and Vrk^ ~ Vfk-1} ^ °' \ is an °pen
circuit element.

Case 4. When V... - V. . = 0 and II/i\+Im"K" *+Ifk^ - 0, Rj^ is a 1ft resistor

Clear, this network has the same operating-point voltages and currents as those

of<£.
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FIGURE CAPTIONS

Figure 1. A multi-terminal resistor with reference voltage and current directions
defined.

Figure 2. A typical terminal in a network composed of positive linear two-
terminal resistors.

Figure 3. Replacement of resistors R , R, by resistors R', R» R with the
same operating point. a d a b c

Figure 4. A typical terminal following repeated replacement of a two-resistor
network by a three-resistor network that maintains the same operating
point.

Figure 5. Grounded (n-1)-port representation of an n-terminal resistor where
reference voltage and current directions are defined.

Figure 6. Regions where families of v-i characteristics are given for elements
that are not strictly passive.

Figure 7. A network with all internal independent sources extracted.

Figure 8. Bounding regions of TC plots described in Property 15. (a) Ungrounded
case (nodes @ and @ are not necessarily connected). (b) General case;
EQ = sum of magnitudes of voltage sources, (c) nodes ©and © are
connected together, (d) all internal sources are grounded (e) all voltage
sources (including v ) are grounded (f) all voltage sources (including v )
are grounded and nodes © and © are connected together.

Figure 9. Bounding regions for TC plots described in Property 16,(a) Grounded
case (nodes (b) and © connected), (b) all internal sources are grounded,
(c) all internal sources have their negative terminals grounded, (d) N
contains no internal sources.

Figure 10. Bounding regions for DP plots described in Property 17, (a) general
network with series resistor R, (b) bounds on resulting DP plot, (c) bounds
on DP plot as R -* 0.

Figure 11. Bounding regions for DP plots described in Property 18, (a) general
network configuration with series resistor R, (b) bounds on corresponding
DP plot, (c) bounding region when R -* 0.

Figure 12. General network configuration used in Property 21.

Figure 13. Differential amplifier, (a) circuit realization, (b) TC plot.

Figure 14. Full-wave rectifier, (a) circuit realization, (b) TC plot.

Figure 15. Limiter circuit, (a) two-operational amplifier realization, (b) TC
plot, (c) operational amplifier model.



Figure 16. Horizontally symmetric networks.

Figure 17. Terminal locations for TC plots considered in Property 23.

Figure 18. A Pseudo-complementary symmetric "diode-clipping" network.

Figure 19. A Pseudo-complementary symmetric "pulse-pull transistor amplifier" network.

Figure 20. A Pseudo-complementary symmetric "operational amplifier" network.

Figure 21. General configuration of a pseudo-complementary symmetric network.

Figure A-1. A network (described in part (a) of Lemma 2) which may not possess
the no-gain property.

Figure A-2. A network (described in part (b) of Lemma 2) which may not possess
the no-gain property.

Figure A-3. A network containing n-1 positive linear two-terminal resistors
which realizes the operating point described in Lemma 3.

Figure A-4. A network containing n-1 positive linear two-terminal resistors
which realizes the operating point described in Lemma 3, case 2.

Figure A-5. A network containing n-1 positive linear two-terminal resistors
which realizes the operating point described in Lemma 3, case 3.

Figure A-6. A network containing n-1 positive linear two-terminal resistors
which realizes the operating point described in Lemma 3, case 4.

Figure A-7. A network containing n-1 positive linear two-terminal resistors
which realizes the operating point that satisfies conditions of Theorem 8.

Figure A-8. A network (described in Property 8) which may not possess the no-gain
property.

Figure A-9. A network (described in part (a) of Lemma 6) which may not possess
the no-gain property.

Figure A-10. A network (described in part (b) of Lemma 6) which may not possess
the no-gain property.

Figure A-11. A network containing m <: n-1 positive linear two-terminal resistors
and I £ n-1 short circuit and open circuit elements which realizes the
operating point described in Lemma 7.
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Fig.6

F
Vj =0 for ij<0
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(a) ungrounded case ( nodes (b) and
(d) are not necessarily connected )

♦ Vo

(b) general case; E0= sum of
magnitude of voltage sources

(c) nodes (a) and (c) are
connected together Fia.8

(d) all internal sources are
grounded

(e) all voltage sources (including
vin) are grounded

(f) all voltage sources (including vJn)
are grounded, and nodes (a) and
(c) are connected together
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(d) connected )

(b) all internal sources are grounded

Fig. 9

(c) all internal sources have their

negative terminals grounded

(d) N contains no internal sources
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