Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DECOMPOSITION-A STRATEGY FOR QUERY PROCESSING

by

Eugene Wong and Karel Youssefi

Memorandum No. ERL-M574

15 January 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Decomposition-A Strategy for Query Processing

Eugene Wong and Karel Youssefl

Dept. of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory,
University of California, Berkeley

Abstract

This paper deals with the strategy for processing
multivariable queries in the data base management system
INGRES. The general procedure is to decompose the query
into a sequence of one-variable queries by alternating
betweenn (a) reduction: breaking off components of the
query which are joined to it by a single variable, and
(b) tuple-substitution: substituting for one of the vari-
ables a tuple at a time. Algorithms for reduction and
for choosing the variable to be substituted are given.
In most cases the latter decision depends on estimation
of costs and heuristic procedures for making such esti-
mates are outlined.

Research sponsored by the U.S. Army Research Office—-Durham Grant

DAHCO4~74-G0087 and the Joint Services Electronics Program Contract

F44620~71-C-0087.

1. Introduction

The structural simplicity of a relational data
mcdel encourages the use of a non-procedural data sub-
language which specifies what is to be found rather than
how it 1is to be found. Thus, it is not surprising that
rnearly every one of the relational languages which have
beern proposed 1is non-procedural. As is generally true
with high level languages, a price which may have to be
paid is a loss of efficiency. For a relational data base
of any size and for queries spanning several relations,
the price can be fearsome. Results of various degrees of
generality on improving search strategies for a relation-
al data base system have been reported by Palermo
(PALE72], Astrahan and Chamberlin [ASTR75], Rothnie
[ROTH74,ROTH75), Pecherer [PECH75], Smith and Chang
[SMIT75], and Todd [TODD75]. Nonetheless, the lack of a
general approach to optimizing query processing remains a
major impediment to achieving a satisfactory degree of
efficiency for non-procedural relatioral languages.

The purpose of this paper is to describe in some
detail the query processing algorithm developed for QUEL
[HELD75], which is the data language for the INGRES sys-
tem. Insofar as the problems encountered in QUEL are
common to all non-procedural relational languages, their
solution should find general application.

Irn section 2 a brief description of QUEL, the
query language to be processed, is presented. In section
3 we sketch a skeletal outline of the decomposition algo-
rithm emphasizing the functions of the component algo-
rithms and the flow of information and control among
them. The details of the component algorithms are
presented in subsequent sections.

2. QUEL

A complete definition of QUEL 1is given in
[HELD75]. Here, we shall confine ourselves to a brief
description sufficient to make the processing strategy
comprehernisible. There are four commands: RETRIEVE,
REPLACE, DELETE, APPEND. An update command 1is turned
into a RETRIEVE command which is then followed by a low
level tuple-by-tuple operation. We shall restrict our
attention to RETRIEVE. A statement to retrieve in QUEL
has the following form.

RANGE OF (variable [,Variable]) IS
(Relation Name {,Relation Name])

RETRIEVE [INTO result rame] (Target List)
WHERE ~Qualification

Example 2.1:
Consider a data base with relations

Supplier (S#, Sname, City)
Parts (P#, Pname, Size)
Supply (S#, P#, Quantity)

and a query to find the names of all parts supplied by
suppliers in New York. This can be stated in QUEL as
follows:

RANGE OF (S, P, Y,) IS (Supplier, Parts, Supply)

RETRIEVE INTO NYparts (P.Pname) WHERE (P.P#z Y.P#)
AND (Y.S#=S.S#)
AND (S.City="New York~)

From the point of view of query processing there
are two prinecipal sources of complexity. First, QUEL
permits aggregation operators such as MAX and AVG, and
rnesting of sueh operators. Secondly, queries involving
several variables require deft handling in order to avoid
the obvious possibility of combinatorial growth. For ex-
ample, if the query in Example 2.1 is processed by first
forming a cartesian product, then the number of tuples to
be scanned is equal to the product of the cardinalities
of the three relations. In our system all aggregations
are performed on single relations. If an aggregation is
to be done on a subset of the product of several rela-
tions, the subset must first be assembled by processing a
multivariabe query. Aggregations once evaluated are kept
for possible reuse until updates render them obsolete.
Ir the remainder of the paper we shall deal only with
aggregation-free queries, and the thrust of the query-
processing strategy is to cope effectively with

aggregation-free but multivariable queries,

Let X = (X ,...,X) denote the variables declared 1in
the range stgtement and let R yeesyR_ be their
respective ranges. Then the qualiflcatig can” be con-
sidered to be a Boolean function B(X) on the cartesian
product R = R 1% R,x...xR_. The target list can be con-
sidered to ge a” set of functions (T,(x),

(X),..¢,T (X))=T(X) on the product space, and the
rgsult relafion of the query i1s constructed by evaluating
T(X) on the subset of R defined by B(X) = 1, and elim-
inating duplicate tuples. We note that for a query free
of aggregation operators each tuple X in the product
space R contains enough information to completely deter-
mine the values of B(X) and T(X).

The interpretation of QUEL statements suggests
the following procedure for their processing:

(a) Prdduct: A cartesian product of the range
relation is formed.

(b) Restriction: Tuples X in the product which
satisfy B(X)=1 are determined.

(c) Computation and Projection: T(X) is comput-
ed on the subset determined in (b) and dupli-
cate tuples are eliminated.

Unfortunately, this procedure is as 1inefficient as
it 1is obvious. The cardinality of the product R
(i.e., the number of tuples in R) is equal to the
product of the cardinalities of R,, 1=1,2,...,0. It
does not take very large relationg or very many of
them to make this number enormous. Aside from the
difficulty of having to form and store a very large
relation, to determine the subset which satisfies
B(X)=1 requires examining a number of tuples equal
to the cardinality of R.

3. Decomposition

The query processing strategy that we have
adopted nhas two overall objectives:

(a) No cartesian product - The result re-
lation 1is to be constructed by assembling
comparatively small pieces, rather than by
paring down the cartesian product.

(b) No geometric growth - The number of
tuples to be scanned 1is to be kept as
small as possible, and for most queries
this number is much less than the cardi-
nality of R.

Our general procedure is to reduce an arbitrary mul-
tivariable query to a sequence of single-variable
ones. We call this process decomposition. Observe
that the first objective is automatically achieved
by such an approach. To attain the second requires
a detailed examination of the tactical moves which
are available.

Tne decision to reduce multivariable queries
to one-variable ones separates the overall optimiza-
tion into two levels. It has obvious advantages 1in
structuring the optimization procedure which other-
wise may well become unbearably complex. The only
situation in which our approach may be undesirable
is when inter-relational information such as "links"
[TSIC75] 1is available, in which case the desirable
atomic units may be two-variable queries.

It is useful to distinguish two types of
operations which are repeatedly invoked in decompo-
sition.

(I) Tuple substitution: An n-variable
query Q 1is replaced by a family of
(n=1)-variable queries resulting from sub-
stituting for one of its variables tuple
by tuple, i.e.,

Q(X."XZ,-oo,xn)'—'{Q'd (XZ,X3,°O')xn)’°‘eR1}

(II) Detachment of a subquery with a sin-
gle overlapping variable : A query Q is
replaced by Q" followed by Q" such that Q°
and Q" have only a single variable in
conmmon.

Operations of these two types suffice to
decompose any query completely. Indeed, a series of

- successive tuple substitutions is sufficient, albeit
tantamount to forming the cartesian product. Tuple
substitution for a single variable means that the
cost of processing the remaining portion of the
query is multiplied by a factor which in most cases
is equal to the cardirnality of the range of the sub=-
stituted variable. It is important, therefore, that
the ranges of the variables be reduced as much as
possible before substitution takes place. The most
straightforward way of doing this is through res-
triction and projection, which are special cases of
(11). Something equivalent to such a step has been
proposed in every paper on optimizing query process-
ing.

Example 3.1
Consider a data base with three relations

Supplier (S#, Sname, City)
Parts (P#, Prname, Size)
Supply (S#, P#, Quantity)

and a query Q:

RANGE OF (5,P,Y) IS (Supplier, Parts, Supply)
RETRIEVE (S Sname) WHERE (S.City = ‘New York®)
AND (P.Prame = "Bolt”)
AND (P.Size = 20)
AND (Y.S# = S.S#)
AND (Y.P# = P.P#)
AND (Y.Quantity > 200)

If we represent a detachment of Q" from Q leaving Q"
by the binary tree

Q" Q’

then the successive detachment of subqueries can be

represented by

Q
01 : (P.P#) WHERE (P.Size=20) AND (P.Pname=z='Bolt")

02 : (Y.P#, Y.S#) WHERE (Y.Quantity > 200)
3 : (S.S#, S.Sname) WHERE (S.City = ‘New York®)
Q4 : (Y.S#) WHERE (Y.P# = P.P#)
Q5 : (S.SMame) WHERE (Y.S# = S.S#)

In this example cperations of type II have reduced 0
to three orne-variable queries 01, 02, Q3 which can
be processed in parallel cr in arbitrary order, fcl-
lowed by a 2-variable query QY4, and then another
2-variable query Q5. QY4 and Q5 cannct be further
reduced by operations c¢f type II, and tuple-
substitutior. must be used to complete the decompcsi-
ticn. We ncte, however, the ranges of the variables
in Q4 arnd Q5 are likely to be very much smaller than
the original relations, and tuple substitutiorn at
these stages 1is relatively harmless. As an exanple
of tuple substituticn, ccnsider

Q5 : RETRIEVE (S.Sname) WHERE (Y.S#=S.S#)

Suppose that at this point the range of Y is the re-
lation

S#

101
107
203

Ther., successive substitution for Y yields
Q5(101): RETRIEVE (S.Srame) WHERE (S.S#z101)
05(107): RETRIEVE (S.Sname) WHERE (S.S#=z107)
Q5(203): RETRIEVE (S.Sname) WHERE (S.S#z203)
We note that unlike SEQUEL [ASTR75], QUEL has ro
blcek structure and there is rno a priori preferern-

tial crder of variables in substitution.

The general situation covered by (II) 1is the
following: Consider a query of the form

RANGE OF (x1,x2,...-,xn) IS (R1,R2’.‘0.’Rn)
Q RETRIEVE T(xj,xz,...,xm)

WHERE B"(X‘,XZ,...,Xm)

AND B (X, X 1yeeerX))
It is natural to break off B’ to form

RANGE OF (xm,xm+1,...,xn) IS (Rm,Rm+1,...,Rn)
RETRIEVE INTO Rm' (T’(xm))

’

Q
WHERE B”(X_,X) 4yeee)X))
where T (X) contains the information on X needed
by the r®mainder of the query whieh can nBw be ex-
pressed as

RANGE OF (X,,X,,++e,X) IS (Ry,RpyeeeyRy)

Q" RETRIEVE T(X1,X2,...,xm)
WHERE B (X, yXpyeeesXp) |
Observations: (1) Q" is necessarily

simpler than the original query Q since m < r and
R’ is smaller than R_. Even for the worst possible
cale where R°_ = R_ 3nd m=n, Q" is no worse than Q.
(2) The detacBment™of Q° does not lead to an in-
crease 1in the maximum number of variables for which
substitution has to be made. To see this, note that
the maximum number of variables to be substituted
for in an n-variable query 1is n-t, Hence, this
number 1is (n-m+1)-1 for Q° and m-1 for Q" so that
the total is again n-t. (3) Q° and Q" are strictly
ordered. Q° needs no information from Q" so that it
can be processed completely before processing on Q"
begins. At any given time we only need to deal with
a total of n or less variables.

Two speclal cases of one overlapping-
variable subqueries are worthy of special note.
First, it may happen that the detached subquery Q°
has no variable in common with the remainder Q".
That is, B” is a function of only (X yeeeyX) and
not of X . In such a case we shxli say §° is a
disjoint sﬂbquery. The interpretation of this si-
tuation is that if B’ is satisfied by a nonempty set
then Q is equivalent to Q", otherwise Q is itself
void, 1.e., its result is empty. The second special
case arises when m=n and B’ is a one-variable query.

This is a frequent and important occurence, as the
previous example 1illustrates. We say a query is
connected if it has no disjoint subquery, one-free
if it has no one-variable subquery, and irreducible
if it has no one-overlapping-variable subquery. An
irreducible query 1s obviously both connected and
one-free.

Broadly speaking, we will always break up a
query 1into irreducible components before tuple-
substitution. In effect, we will always prefer rot
to tuple-substitute 1if it can be avoided or post-
poned. Although examples can be constructed to show
that such a choice is not always optimal, in general
this is not a bad heuristic. Detaching subqueries
involves an additive growth in complexity, while
tuple-substitution incurs a multiplicative growth.
Our decomposition algorithm is recursively applied
to all the subqueries which are generated.

The Decomposition Algorithm consists of four
sub-algorithms: Reduction, Subguery Sequencing,
Tuple Substitution and Variable Selection and makes
use of the One-Variable Processor of the system.
The interaction among these component processes 1is
indicated in Figure 3.1 below

e - ——y —

Reduction

Subquery
. Sequence One-

Variable
i Processor
- - 2

Tuple
Substitution

|

Variable
Selection

1
4
|

———a P

- _o-,-

-~ -t an = e -t e me - e e Su o S = aa e —e - 0!

[P SR

o oe P e

v wm o = o s o 0 0 o e o s e e

call

return

Figure 3.1 Flow of Control in Decomposition

The fact that the decomposition algorithm is recur-
sive is made clear by the existence of a sequence of
calling-paths (Reduction-Subquery Sequencing-Tuple
Substitution-Reduction) which form a cycle. The
basic functions of the sub-algorithms are as fol-
lows: ' :

(a) Lkeduction breaks up the query into irreducible
comporents and puts them in a certain sequential
order.

(b) Subquery Sequencins uses the result of Reduction
and generates in succession subqueries each of which
contains a sinple irreducible component together
with one-variable clauses. As each subquery is gen-

rated it is passed to Tuple-Substitution, and the
generation of the next subquery awaits return of the

10

result.

(¢) Tuple Substitution manages the process of sub-
stituting tuple values. It calls Variable-Selection
to select a single variable for substitution. After
substituting each tuple for that variable, it passes
the resulting reduced query to Reduction and awaits
the return before substituting the next value.

(d) Variable Selection is where most of the optimi-
zation takes place. It estimates the relative cost
of substituting for each variable and chooses the
variable with the minimum estimated cost. In so do-

ing, it may nave to preprocess some one-variable
subqueries.

The details of the sub-algorithms will be described
in the next few sections.

11

4, Reduction Algorithm

The input consists of a multivariable query
Q, and the output consists of the irreducible com-
ponents of Q arranged in an appropriate sequential
order. This sequence is passed to Subqguery
Sequencing, and the result relation for Q 1s re-
turned. The basic steps of the algorithm are illus-
trated below.

no
variables
>1?

A
| Output
Separate }no s
into disjoin gonnected
components ?

yes

separate into
irreducible
components

Figure 4.1 Reduction Algorithm

Let X = (X, ,...,X denote the variables
of Q and let T(}) Y B(X)"denote its target list
and qualification respectively. We assume that B(X)
is expressed in conjunctive normal form

B(X) = />‘ €y (X)

where each clause C,(X) contains only disjunctions.
Now consider a bin%ry (0 or 1) matrix with p+1 rows
corresponding to T(X) and the p clauses, and with n
columns corresponding to the variables x1,...,x .
An entry of 1 will denote the presence of a variable
in a clause (or target 1ist), and 0 will denote its
absence. We shall call this the 1incidence matrix.
For example 3.1 this matrix is given by

12

to Subquery-

Sequence ,Sequencing

13

S P Y
T: S.Sname 1 0 0
C1: S.City="New York’ 1 0 0
C2: P.Prnamez Bolt’ 0 1 0
C3: P.Size=20 0 1 0
C4: Y.S#=S.S# 1 0 1
C5: Y.P#=P.P# 0 1 1
Cé: Y.Quantity> 200 0 0 1

We rnote that in Figure 4.1 there are two
steps for which detailed algorithms remain to be
provided. First, we need a test for connectedness,

and to separate Q into disjoint comporents if it is

not connected. Second, we need an algorithm to
separate a ccnnected query into irreducible com-
ponents and to put them in a suitable sequential
order.,

14

(a) Connectivity Algorithm

set
i=0

yes is it yes
> a row with connected
all 1°s
?
no
yes > :not connected
\
form the logical or
of all rows with 1
in column i
of the rows with 1 in
columnn i, replace the first
by the logical or and delete
the rest
Figure 4.2 Connectivity

If the connectivity algorithm results in a
natrix with a single row which is not all 1°s then
the variables corresponding to the zero-entries are
superfluous and can be elimirnated. If the final ma-
trix has more than one row, then the sets of vari-
ables corresponding to different rows must be dis-
joint. 1If we keep track of the original rows which
are combined to make up each of the rows of the fi-

15

nal matrix, then the connected components of the
query can be separated.

Consider example 3.1, modified by the dele-
tion of C4, The incidence matrix rnow has the forn

S P Y
T 1 0 0
C1 1 0 0
c2 0 1 0
C3 0 1 0
C5 0 1 1
C6 0 0 1

Applying the connectivity algorithm, we get
successively

S P Y

T,C1 1 0 0

ce 0 1 0

C3 0 1 0

C5 0 1 1

Coé 0 0 1
S P Y
T,C1 1 0 0
¢2,C3,C5 0 1 1
Co 0 0 1

S P Y
T,C1 1 0 0
cz2,C3,C5,C6 0 1 1

Hernice, the query is not connected and the connected
components are (T,C1) and (C2,C3,C5,C6).

(b) Reduction into Irreducible Components

Let Q be a connected multivariable query.
We observe that it is reducible if the elimination
of any one variable results in Q being disconnected.
Let a variable witnh this property be called a
joining-variable. Thus, Q is irreducible if and
only if none of its variables is a joining-variable.
Joining-variables have some important properties
which greatly facilitate the reduction algorithm,
and these are surmarized as follows:

Proposition 4.1 Suppose that X 1is a joining-
variable of Q such that its removal disconnects Q
into k¥ connected components. Thern any Jjoining-
variable of one of the components is a joining-
variable of Q, and every joining-variable of Q is a
JOlnlng-variable of one of the components. Further,
successive elimination of two joining variables in
either order results in reducing Q to the same dis-
joint components.

proof: Each joining-variable joins a number of
compornents which can overlap only on the joining~-
variable. Let X be a Joining-variable of Q which
joins compornents Q yeoo,Q Let Y be a joining
variable of one of éhesg compoFents, say Q1 Then,
Y joins components Q Q12,...,Q of Q , only one
of which can contalﬁ X,” say 6 Therefore,
2,...,Q1 .) overlaps the remaindéﬂ of Q only on Y
ana is a 301ning-variable of Q. Conversely, let Y
be ,a Joinlng-variable of Q, and join components Q1’
f,eeeyQ: ¢ Only one of the set {Q Q ,...,Q
cgn contain X, say Q, , and only one of t set {é
""’Qk} can contain Y, say Th n
{8 ,...,Q ‘} and {Q yeoerQ } must be disaoint since
gh Q., id 2 2, can gverlap its remainder in Q only
on X Tand none of {Q
Q2 “yeee,Q." are subsegs of Q

,...,Q “} contains X. Hence,

Joined to it only by
Y5 so tﬂat Y is a Joinin}-variable of Q It is
clear that Q has components {Q2 03,...,& } each
joined by only X, {Q2', Q3 ,ee5Q. "} each 51ned by

16

cr.ly Y, arnd a ccapenent O jcirned by bctn ¥ ard Y.
Elinination c¢f X and_Y“Xn_eitner_crdeg results 1in
disjoirt ccoporents {C,, O ,...,0 , O, ,...,0.7,
G} where C. denctes 0% WitR Y reméved, 0. derofes
S¥N uith ¥ reficved and 5%y denctes Oyy with™ both ¥

Aand Y remcved.

The substarce ¢f Propesitiorn 4.1 1is 1illus-
trated by Firure 4.3.

<),
N .

Ficure 4.3 Joininr-Variables

The results of Prcpositicrn 4.1 mean that we
carn fird the irreducible componerts cf O by succes-
sively checking each variable for the possibility of
beirg a jeining variable. Each variable ornly needs
tc be examined once, and the order they are tested
is immaterial. Further, sirce a variable is jeining
if and orly if its elimiration disconnects Q, we car
use the connectivity algorithm for the test.

Take the inciderice matrix of Q and eliminate
from it all rows with ornly a single "1v, Beginning
with the first, eliminate each columr in turrn ard
test for connectedriess. Suppose that when eclumn m
is elimirated Q breaks up intc Kk conrected com-
porents with r,, rn,,...,n variables respectively.
Ther., these corréspogd to cOmporents cf O with n,+1,
Li,+1,...,r +1 variables respectively, any pai; of
wgicn cverlap cnly on X . We car now proceed to
test columns m+1,...,L. We note that each of the
variables Xm yees, X occur in only ore of the com-
pcr.ents so‘+éhat a?ter the mnth column (i.e., the
first joininpg-variable) the tests are performed on
matrices of reduced size.

Each irreducible comporent cf 0 corresponds
to one cr ncore row of the incidernce matrix, and can
be represented by the "lozgical or" of the
correspondins rows. Hence, Q can be represerited in
terms of its irreducible compcrents by a matrix witn
variables as columns and compornents as rows. We
shall call this the reduced-incidence-matrix. It is
convenient to arrance the rows as follows:

(1) One-variable rows except the target list.
(2) Components which are one-overlapping after
deletion of one-variable clauses and which do
not contain the target list. These should be
grouped according to the joining variable.

(3) Other comporents which do not contain the
target list.

(4) The component which contains the target
list.

For example 3.1 the resulting reduced incidernce ma-
trix is given by:

S P Y
c1 | 1 0 0
c2 | o 1 0
C3 [0 1 0
C6 | 0 0 1
C5 |0 1 1
T,CH[1 0 1

19

5. Subquery Seguencing

The task of this process is simple. It re-
ceives the output of Reduction and forms a subquery
by taking the component corresponding to the first
multivariable row of the reduced-incidence-matrix
and combining it with all one-variable clauses in
the same variables. It deletes the rows which have
been wused and passes the subquery to Tuple
Substitution. Upon return of the result of the
subquery, it repeats the process on the remaining
matrix until the matrix is exhausted and the result
of Q 1is returned. It then returns the result of Q
to the calling prccess.

For example 3.1, the subqueries which get
generated are as follows:

Qr ¢ C2, C3, C6, C5
Q2 : Ci, C4, T
More explicitly, we have
Qt : RANGE OF (P,Y) IS (Parts, Supply)

RETRIEVE INTO Supplyt (Y. S#) WHERE (P.Pname="Bolt~)
AND (P.Size=20)
AND (Y.Quantity > 200)
AND (Y.P# = P.P#)

Q2 : RANGE OF (S,Y) IS (Supplier, Supplyt)

RETRIEVE (S.Sname) WHERE (S.City="New York’)
AND (Y.S# = S.S#)

6. Tuple Substitution

The 1input to tuple substitution is a query Q
consisting of a single irreducible component in
variables X1, X, y+ee,X , zero or more one-variable
clauses 1in eacﬁ of thl variables, and the range re-
lations R,, R,,...,R_of the variables. It returns
the resule refation %o the calling process.

The first thing that Tuple Substitution does
is to call Variable Selection which takes Q and the
range relations and chooses a variable to be substi-
tuted for. 1In order to make this choice it may have
to process some or all of the one-variable clauses
to restriect the ranges. Thus, in general, it re-
turns { Q°, R,", Ry",...,R_"} and the variable to be
substituted }or (gay X).n For each tuple in R 7,
Q° becomes a (n-1)-varilble query Q°(&) in Pne
variables X,, X, ,.+¢,X .. For each « , Q'(&) is
passed to Rdducfion whiah returns the result. The
results to Q°(«) for all & in R " are accumulated
and returned to the calling process.

20

7. Variable Selecticnh

This is t“he heart cf optimization. The 1n-
put is a nultivariable query which is irreducible
except for one-variable clauses. As its name sur-
sests, Lthe task of this pertion of the deconmpositior
alrcrithn 1s to select a variable fcor substitutiorn,
althcuth tc dc¢ so it may alsc have toc rrceess scnme
cf the crne-variable clauses.

Ccrsider a oue"y ¢ with variables T4
X,yeee,% and rances R ,...,n . Supnose that

is substituted tuple-b § tugle. Fer each tuple, &
becomes arn (r.-1)-variable query Q.(&). It is lilke-
ly that 0.(«) takes the same amcurt of time tc prc-
cess fcr every «, and in nost irstances every « in
Ei has tc be used. l!erce,

(7.1) Cecst ¢f prceessina 0 if Xi is substituted

= (cardirality cof Hi) x Ccst of nrocessirnn 0,

The first tncusht, therefcre, is to chccse ¥, with
the snallest range. Focwever, this is rot Entimal
tor several reascr.s.

F'irst, 1t may be nossible tc reduce some cr
all cf tne "elatlcrs R yees, R _, bv preprocessine
cne variable clauses. hcald fh1§ be decre for all,
for scne, cor for ncre ¢f the variables? If all of
tne R, "s can be reduced, this decisicr alcre in-
velve: 2“ chcices. Tne situaticr. is further ccn-
plicated by the fact that for a piver. variable the
decisicorn as tc whether tc¢ preprcecess the crie-
variable clauses deper.ds cr whether tne variable is
cheser. fer substituticn. If it will be chcser. fcr
substituticr. ther its rancse shculd be reduced as
much as pessible. If noct, preprccessirs may be a
waste cf time, Or. the o¢ther hand whien variabnle
snculd be choser. depends r.ct sc much cr. R. as orn the
reduced R, . Let O(¥,) dencte the cte-variable
subquery Cf_ € in X.; and let K. be +the reduced
rance after 0(X.) is pPocessed. Thé follewlrne poli-
cies seem to be reascnable alterrnatives:

{a) Preprccess every 0(Y.), basin~ the pclicy
cr: the Aarrcument that %he ccst of prccessin-~
cr.e-~variable queries is relatively small ard it
is inpcrtarnt tc chccse the variable for substi-
tuticr. well.

(b) Or the basis cf D), a decisicn is nmade
fer each variable whe he% tc preprccess cr rct
Yariable selecticr. takes place after repro-

21

cessineg.

The version of INGRES completed irn January,
1976, opts for policy (a). In part, it is because
ir. this version the variable selection is thern based
sclely c¢r. - the cardinalities of the reduced ranges
and nc other informatiorn. It is important, there-
fcre, for these cardinalities to be accurate.

For (b) a workable policy is to use Q(X,) to
estimate the size of Ri’ for each i, and preprdcess
only if X, is likely to " be a contender for selec-
tion. Fér example, we might choose the top three
ccr.tenders for preprocessing, or preprocess every
variable fcr which the estimated size of Ri’ is less
tharn min |R.|. Ore good feature of (b) is“that ex-
cept for very urusual situations, the actual vari-
able selected will be among those which have been
preprocessed, and rno further processing is rnecessary
before substituticrn.

A second and mcre impcrtant objection to the
strategy of choosing X, with the smallest rarre is
that thne complexity of Q; can vary greatly with 1
arnd this nust be taken 1nto account in any strategy
which lays claim tc being even near-cptimal. What
nust be determined is the extent to which Q carn be
reduced as a consequence ¢f substituting for Xi‘

Assune that we choose either (a) or (b) for
the policy on preprocessing crne-variable clauses sc
that that decisior. is decoupled from the selection
of variable. e can assume that the query at this
point consists of a single irreducible component
with scme o¢one-variable clauses. The crux of the
matter is how the irreducible component is affected
by the substitution. Assume that whatever preprc-
cessing is to be done has been done. Let the query
be dernoted by Q. Let X1,X ""’Xr’ be the vari-
ables, arnd let R,, R, ,...,R b& their' ranges. Let
Q.(&) deriote tﬁe rgsultinﬁ query from substitutins
& fcr X, in Q. Let C(Q) denote the minimum ccst of
prccessirig Q. Then

(7.2) C(Q) = min { 21_:_ C(o (&) }
1

i

where R. denctes the set of tuple-values which have
to be slbstituted for X,. In most instances this is
simply R.,, althcugh as %e irndicated earlier there
are excebtions.

Equaticn (7.2) 1is a dyramic programning

equation for the cptimization problem at hand. As
it stands, it is not too useful, since how C(Q)
depends on Q is not known. However, (7.2) 1is a
suitable starting point for optimization. The vari-
able selected will correspornd to the value of i
which ninimizes an estimated value for

(7.3) C, = 2= C(Q,(a))
i <€R i
i
Although we have in effect transferred the optimiza-
tion problem to one cof estimating cost, the latter
is amenable to a variety of heuristic approaches.
Corisider some of these:

(i) = Suppose we take the estimate c¢f
C{(Q,{«)) toc be indeperndent of « and i. Then, the
mininum Ci cerresponds tc the smallest R.. This
somewhat “simplistic policy is what has beén imple-
mented in the version cf INGRES operaticral as of
January, 1976.

(i1) We observe that unlike Q, O0,(L) is
nct irreducible. One should theretore call
Reducticri-Subquery-Sequencing tc reduce 0,(&) to a
sequence S, cf subqueries, each of which is irredu-
cible excep for one-variable c¢lauses. Now, «
enters the subqueries only as a paramneter, arnd the
sequernce Si is really irndependent of . Thus, we
have

(7.4) C(Q;(«)) = 2= cla,)

9E Sy
Since the structure of Q,(«) has rnow been
represented, we can accept 3 relatively crude esti-

nate for C(q,). For example, we might take the esti-
mate cf C(q°<) to bpe

where R. are the ranges of q and P(R) is the nrumber
of pageg cccupied by R.

(iii) We might try to obtain an estimate
fcr cost by sampling. Consider the equation ob-
taired from using (7.4) in (7.2)

(7.6) €(0) = min{2. 2. c(q,)}

i dGRi qe Si

This is truly recursive, since Q and qy are queries
of the same restricted type (viz, irreducible except

for one-variable clauses). If the number of vari-
ables in Q 1is not enormous (in practice, very few
gqueries contain more than U4 or 5 variables) one
might try to push the recursion (7.6) all the way
down to one-variable queries, but using small sam-
ples for the range relations of Q. It is very like-
ly that the costs of different paths in the decision
tree vary widely, and only a few are contenders for
the optimal path. With efficient management, this
approach need not be prohibitively expensive.

These are but three possible approaches to
estimating C(Q). Other approaches including some
variants and combinations of these are under con-
sideration. We expect to implement at least the
three outlined above for experimental evaluation.
Indeed, (i) has been implemented, and (ii) is in the
process of being implemented.

24

25

8. Estimate of Result Parameters

In order to use (7.5) in (7.4), we must know
the number of pages occupied by the range relations
for every q, 1in the sequence S.. We rnote that 5, is
a sequence and not a set, so that the ranne rela%ion
of a query may involve the result relations of
queries which precede 1it. Therefore, knowing the
sizes of the range relations of Q is not sufficient
to determine (7.5) for the qu "s. Since we don’t
want to execute the sequence S, except for the op-
timal i, we nmust rely on a pro%edure tc estimate the
sizes and other parameters of the result relation
for a query.

Consider a query Q with range relatiors

R ’RZ"°"R , a target list T(X) and a qualification
Bax). Let Phe domains of R, be denoted by D.,,
j=1,2,...,d;. Each R, is by definitior a subset &

v D,;..

j<a, 13
Hence, the pr%duct'TTRi is a subset of
(801) D'—' —I—l_ Tr Di.

i<n jgd, J

To determine what subset of TTR, satisfies B(X)=1
requires accesses to the actudl relations, but to
determine what subset of D satisfies B(X)=1 requires
only knowing the domains {D,.}. The storage re-
quired to represent {Di.} is i%J general far less
than that required for fRi}.

Let R(Q) denote the result relation of Q.
We can estimate the cardinality of R(Q) as

(8.2) fRCQYI = | 1T Ril- {fraction of D satisfying B(X)=1}
isn

The domains of R(Q) can be estimated by evaluating
T(X) on the subset of D which satisfied B(X)=1.
That is, the kth domain of R(Q) is estimated to be

(8.3) (T, (X) 5 XeD, B(X) = 1}

In most cases D.. has sufficient regularity
to permit it to be reprégented by just a few parame-
ters. For example, D.. night be simply all integers
between a and b. Tnﬁé, the storase requirement for
keeping track of the domains for the result rela-
tions of the sequence Si can be expected to be rea-
sonable.

Since the sizes of the tuples are always
kriownn, the number of pages required for each of the
result relations for the sequence can be computed
from the estimated (8.2), which in turn is computed
from the estimated domains using (8.3).

26

9. Summary

In this paper we have presented a detailed
account of how multivariable queries are decomposed
in system INGRES. The basic 1ingredients of the
decomposition are two in number:

(a) To discover pieces of a query which are
joined to the remainder by a single joining-
variable.

{b) To substitute for a variable.

The overall strategy is to break up a query at the
joining-variables whenever this is possible, and to
select a variable for substitution which incurs a
"minimum cost" whenever substitution can no longer
be postponed. A detailed algorithm for reducing a
query 1nto irreducible components has been given.
Alternative approaches to estimating costs have also
been discussed.

Optimization itself incurs a cost which has
not been taken 1into consideration. For simple
queries, elaborate optimization may well do more
harm than good. The approach to resolving this dif-
ficulty that we have opted is one suggested by M.R.
Stonebraker. Suppose that we have two or more stra-
tegies st ,st1,...,st , each one being better than
the prevgous one but“also requiring a greater over-
head. Suppose we begin a query on st,, ard run it
for an amount of time equal to a fraction of the es-
timated overhead of st,. At the end of that time,
by simply counting the 'number of tuples of the first
substitution variables which have already been pro-
cessed, we can get an estimate for the total pro-
cessing time using st,. If this 1is significantly
greater than the oveghead of st,, then we switch to
st.,. Otherwise we stay arnd compiete processing the
quéry using st.. Obviously, the procedure can be
repeated on st,, to call st_, if necessary, and sc
forth. st ma} correspond, for example, to progres-
sively mor8 levels in the decision tree, or to pro-
gressively more elaborate estimates of result param-
eters, or better sampling.

We have not addressed the question of optim-
izing the processing of one-variable queries. Some
optimization 1is currently being done in INGRES, and
this is described elsewhere [STON76].

In the appendix we have given a brief
description of how INGRES is implemented. The ori-
ginal design of the implementation was primarily the

27

work of M.R. Stonebraker and G.D. Held. Redesign of
process 3, and irn particular the desisn of the query
tree and the implementation of the decomposition al-
gorithm in the current version (as of January, 1976)
have been largely the work of Peter Kreps. We have
alsc 1included in the appendix specifications of the
rincipal data structures needed for our decomposi-
tion algorithm.

One of us (E.W.) is responsible for intro-
ducing the conceptual framework in which the decom-
position algorithm rests, viz. the policy of
transforming a multivariable query to one dimensiorn-
al ones, and the strategy of alternating between
reduction and tuple substitution. We have colla-
borated orn the reductiorn algorithm, and on the
heuristies for variable selection. The implementa-
tion of thne full algorithm as well as monitoring
subsystems for the performance evaluation is being
designed and executed by K.A.Y. The decomposition
alporitnm, being at the heart of INGRES, has enjoyed
the attention of many participants of the project.
It is difficult to remember who suggested what, but
the three aforementiorned colleagues have all made
inportant contributions. In particular, as in every
aspect of INGRES, the influence of M.R.S. is discer-
rible throughout our algorithm.

28

ALLM75

ASTR75

CODDT74

HELD75

MCDOT4

PALET2

PECHT75

RITCT73

RITCT74

ROTHT74

ROTHT75

SMITT75

STONT76

TODD75

REFERENCES

Allman, E., & Stonebraker, M., "Embedding a
Relational Data Sub-language in a General
Purpose Programming Language.", Univ. of
Calif., Berkeley, ERL Mem. No. M564.
Astrahan, M.M. & Chamberlin, D.D., "Imple-
mentation of a Structured English Query
Language", CACM, Vol. 18, No. 10, pp.
580-588, October, 1975.

Ccdd, E.F., "Seven Steps to Rendevous with
the Casual User", Proc. IFIP TC-2 Working
Conferernce on Data Base Management Systems,
Cargese, Corsica, Apr. 1974. ,

Held, G.D. & Stonebraker, M. & Wong, E.,
"INGRES - A Relational Data Base Management
System", Proc. 1975 NCC, AFIPS Press, 1975.
McDonald, N. & Stonebraker, M., , "Cupid --
The Friendly Query Language", Univ. Of Cal-
ifornia, Berkeley, ERL Mem. No. M487, Oct
1974

Palermo, E.P., "A Data Base Search Prob-
lem", Proc. 4th International Symposium on
Computers and Information Science, Miami
Beach, Dec. 1972.

Pecherer, R.M., "Efficient Evaluation of
Expressions in a Relational Algebra", Proc.
ACM-Pacific 75 Conference, pp. 44-49, Apr.
1975.

Ritcnie, D. & Thompson, K., "The UNIX Time
Sharing System", CACM Vol. 17, No. 7, pp.
365-375, July 1974,

Ritchie, D.M., "C Reference Manual", UNIX
Programmer ‘s Manual, Bell Telephone Labs,
Murray Hill, N.J. July 1974,

Rothnie, J., "An Approach to Implementing a
Relational Data Base Management System",
Proc. 1974 ACM-SIGFIDET Workshop on Data
Description, Access and Control, Ann Arbor,
Mich., May 1974.

Rothnie, J.B., "Evaluatirg Inter-Entry Re-
trieval Expressions in a Relational Data
Base Management System", Proc. 1975 NCC,
AFIPS Press, 1975.

Smith, J.M. & Chang, P.Y.T., "Optimizing
the Performarce of a Relational Algebra Da-
tabase Interface", CACM, Vol. 18, No. 10,
pp. 568-579, October, 1975.

Stcnebraker, M.R., Wong, E., Held, G.D. and
Kreps, P., "The Design and Implementatior
of INGRES", To appear.

Todd, S., "PRTV: An Efficient Implemerta-

29

TSIC75

tion for Large Relational Data Bases",
Proceedings of International Conference on
Very Large Data Bases, Framingham, Mass.,
Sept. 1975

Tsichritzis, D., "A Network Framework for
Relational Implementation", University of
Toronto, Computer Systems Research Group
Report CSRG-5%1, Feb. 1975

30

APPENDIX A.
System Organization

INGRES, Interactive Graphics and Retrieval
System, runs on a PDP 11/45 under the UNIX operating
system[RITC73]. The entire system is written in the
programming language "C" [RITC74]. It has four ma-
jor components which are organized as shown below.

31

user >} parser ,jdecom-

interface ¢ positioni,

T lutilities

These four components are set up as processes under
UNIX and communicate through the use of pipes. The
user interface can be one of several forms: an in-
teractive text editor, a graphics interface
[MCDO74], an interactive English-1like language
[CODD74], or part of a host programming language
[ALLM75]. The parser accepts the user’s query and
processes it into a tree in conjunctive ncrmal form.
This query tree and a table of relations declared in
the RANGE statements are passed to decompositiocn.
The decomposition process contains not only the
decomposition algorithm but also the one-variable
query processor., The utilities process contains
many functions which can be used by the system or
the user.

APPLCIDIY B.
Data Structures

There are three main data structures which
are used during decompositicn cf a query.

Rar.me Table:

Some of the information for this structure
is «cathered during parsing and passed toc deccrnposi-
tion as an crdered matrix. It is then put intc a
matrix, each entry of which has the follcwing form:

struct rangev

{ char relid [MAXNAME];
struct descriptor #desp;
int setup;

}

The parser sends a table of relatiocn rnames which
have been declared in RANGE statements; the order of
these rnames indicate the variable associated with
eacn. These are relid. The second entry is a
pcirter to an in-core copy cf the system catalosue
descriptiocn. fcr that relation. The third entry is a
flar which is set whern the correspording variable
has been selected for substititiorn.

The use cf this table will aid deccmpositicrn ir the
use of tempocrary relaticns. Whern a new range is
created for a variable by execution o¢f a one-
variable query, .the entry in the range table for
that erntry is the same except for the pointer tc the
catalopue description. The relid is always the ori-
rirnal relaticn name for that variable and the
desceripter is fer the current subrelation it is
ranfing over. In this way, if a tempcrary relation
must be created several times during the process of
substituticr, the same temporary relation name and
descriptor carn be reused by simply deleting the old
tuples from the previous iteration. This saves nuch
overhead in the creatiocn of temporary relatiocns.

Ir.ciderce Matrix:

This is a binary mnatrix of clauses (or
subqueries) vs. variables which 1is wused withir
deccmpcsiticn to represent the currert query under
ccnsideration. It is wused during reductior tc
determine all irreducible subqueries and can be used
durine selecticn to represent the ccomponent
subqueries in a compact form. This matrix will also
contairn ‘arn entry fcr each clause which pcints to the
actual clause so that it may be easily obtained when
it is necessary to build a query tree for execution
cf a subguery.

Query Tree:

The parser sends a list representing the
query tree to decomposition which then rebuilds the
query tree adding useful information as it is recog-
nized. The general form cf this tree is a root node
with the target list of the query as the left branch
ard the qualificaticn as the right branch. Since
the query is in conjunctive rnormal form, all the in-
termediate nodes along the right side will be AND
(conjuriction) ncdes.

oot
tl AND
Elemernt1
///// disjunctive ~
clause
t1 AND .
Element?2
y disjunégzzz\\\\\
END clause END

llore specifically, nodes of the tree are defined as:

struct querytree

{ struct querytree *left, ¥right;
struct symbcl sym;

}

where left and right are the pointers to the respec-
tive branches. The second entry defines the struc-
ture witnirn the node and this varies depending on
the type of node.

For rcdes representing arithmetic operators, dis-
junctions (OR), result domains and constants, the
structure is: ~

struct symbol

{ char type;
char lern;

} int value[];

where type is a code representing the type of the
rncde (i.e., plus, minus, OR, etc.) and len is the
length in bytes of value. value 1s a variable
lennth field (0-255 bytes) and contains the ap-
prcpriate value for that type of rnode. For example,
if the node 1s representing a constant then the
value contains the actual constant.

33

For rcdes representins variable.attribute (i.e.,
L.SALARY) the structure is:

struct symbol
{ char type;
char len;
char varnc, attno;
char frnt, frnml;
~char ¥valptr;

}

where type is the same as abcve and 1len 1is fixed.
varr.c 1is an index 1intc the range table for the
correct variable; attric is the domain number (from
the system catalogue) cf the correct domain refer-
enced. frmt and frml give the format of the attri-
bute (i.e., AC, I2, etc.). This is used to deter-
riire rnew domain types and for calculations. The
last ertry is used during tuple substituticn. If a
particular variable is selected for substitution,
all variable.attribute rnodes involving that variable
will beccme nodes representing constants. But the
tree itself rnrneed rnrot be changed. This field,
valptr, is simply set tc point to the constant value
that shculd be used. This position remains fixed sc
wher. a new tuple value is substituted, the pcinter
dces not chanpfe, only the value it is peocintinm to
chanres. In this way, a new tree is rot rneeded for
each level of substituticn cr for each iteration of
substituticrn .values. If the pcinter 1is =zero, the
variable irnfcrmation is used; if it is nonzeroc, it
is a constarnt ncde.

For rncdes representing the roct or conjunctions
(AND), the structure is:

struct symbcl

{ char type;
char len;
char tvarc
char lvarc
int lvarn;
int rvarn;

weo e

}

wnere type is the same and len is fixed. tvarc and
lvarce are both counts of the variables used. tvare
is the number of variables ir the sub-tree below
this ncde and lvarc is the number of variables in
the left branch. Sc for the rcot node, tvarc is the
total rnumber of variables in the query and lvarc is
the rumber of variables irn the target list. For an
ALD rode, tvarc 1is the number of variables in the
remairing clauses and lvarc is the number of vari-

L

ables in the single clause of 1its 1left branch.
lvarm and rvarm are bit maps of the variables used

in the left and right branches of the nocde respec-
tively.

This structure is not as costly as it might appear.
It is true that during decomposition many subqueries
are created and executed many times, but it should
be nocted that all of these subqueries use clauses
which appear in the original query. The target
lists may change, but rno new clauses are ever creat-
ed except through substitution. Since this 1s true,
when a subquery is tc be executed, a query tree can
be ccnstructed using nodes from the original tree.
A new root node nust be created for each subquery
arnd for some target list nodes, but all the AND
rodes can simply be detached from the original query
tree and added tc the new query tree.

	Copyright notice 1975
	ERL-574

