
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



IMPULSE CONTROL OF STOCHASTIC PROCESSES

by

Hemant Vasant Desai

Memorandum No. ERL-M572

December 1975

^ ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



4r

fo

"V Research sponsored by the National Science Foundation Grant
ENG74-06651-A01.



TABLE OF CONTENTS

CHAPTER 0. INTRODUCTION

PAGE NOS.

1

p CHAPTER 1. ABSTRACT MODEL: OPTIMALITY CRITERIA 3

1.1. Model, Terminology Preliminary Definitions 3

*t 1.2. Control Laws, Cost 4

1.3. Principle of Optimality 8

1.4. Conditions for Optimality 14

1.5. Local Conditions for Optimality 18

1.6. Optimality Conditions with Complete 23
Information

CHAPTER 2. APPLICATION TO THE PROBLEM OF CONTINUOUS 25
TIME INVENTORY CONTROL

2.1. Model 25

2.2. Value Function and Conditions for 28
Optimality

2.3. Markov Controls, Markovian Value 30
Function V

2.4. Characterization of V under 45

Differentiability Hypothesis

CHAPTER 3. DIFFERENTIABILITY PROPERTIES OF V UNDER ADDITIONAL 50

HYPOTHESES

CHAPTER 4 CONCLUDING REMARKS 58

REFERENCES 59

ii



CHAPTER 0

INTRODUCTION

This thesis examines a class of Stochastic Control Problems where

c

the control laws are restricted to having piecewise constant sample

«/ paths. Thus a control law can be looked upon as a choice of random times

when the value of the control is changed. The system is modelled as a

controlled probability space rather than as a controlled space of

trajectories. This is in keeping with the recent resultH of Boel-Varaiya

[8]. This technique of modelling the effect of control laws was first

used by Benes [2,3] to prove the existence of solutions of systems driven

by a Wiener Process. Subsequently it was used by Davis-Varaiya [10] to

derive optimality criteria for such systems and by Boel [7] to derive

optimality criteria for jump processes. The restricted class of control

laws gives rise to the problem of Impulse Control. This problem has been

considered for systems driven by a Wiener process by Bensoussan and Lions

[4,5,6]. The results presented in the first chapter can be looked upon as

the abstract versions of their results. The differences between the

optimality criteria for the restricted class of control laws and for the

class where no such restriction exists are most clearly brought out in the

local criteria presented in Chapter one (see 1.5). These are to be

compared with the local criteria of Boel-Varaiya [8].
?

The problem of Inventory Control is a typical example of the above

^/ type of problem. There is an extensive literature on this type of

problem some of which has been referenced in Chapter 2. The basic problem

which arises here is that in the general case it is very difficult to

characterize the jump times of the optimal control. The use of (s,S)
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inventory policies circumvents this difficulty by restricting the jump

times to ones that can be easily characterized (viz. exit times from very

simple sets in state space). It is clear however that an (s,S) policy

cannot be optimal for a finite horizon problem. In chapter two we show

that the abstract optimality criteria lead to a complete characterization

of the optimal policy.

Chapter 3 is devoted to showing differentiability properties of the

value function obtained for the Impulse Control problem of Chapter 2.

There we see that under suitable assumptions the value function is

continuously differentiable in its spatial variable.



CHAPTER 1

ABSTRACT MODEL: OPTIMALITY CRITERIA

1.1. Model, Terminology, Preliminary Definitions

We fix a non-empty set ft called the sample space. Let I = [0,1]

p
be the time interval of interest. Let x : I * ft -*• ffi. be a fixed map.

For each uj £ ft, the map t •* x(t,o>) will be called the path a) of x. The

collection of all paths of x manifest all possible evolutions in time of

the process under consideration.

For each t £ I, let 95 be the a-field of subsets of ft generated by

the maps {x } . This will be written as 95 • °{x ; 8 < t}. It is

clear that the family of a-fields {^5.) is an increasing family of
<~r t€lo-fields. i.e. t <. s implies 95 £95. The family {95 } is called

fc s ,. * t^l
the family of complete information a-fields. Let95 denote the a-field

generated by the union of the a-fields 95 , t^I. This will be written

as 9T=Vt95t.
A stopping time T of 95 is an 95-measurable map T : ft •+ TR s.t.

for all t€ I, {u)/T(w) <_ t} € 95 . If T is a stopping time of 91-., let

95Tbe the a-field of all sets A€94 s.t. An{T <t} 695 for all t€I.
It can be verified that the collection of all such sets do in fact form

a a-field. (See IV-D35 of Meyer [13].)

The family of) a-fields (95 } is said to be free of times of discontinuity

if for every increasing sequence T of stopping times of (95 } we have

*/ 95' =v 95T .
{lim T } n n

n

For a definition and discussion on times of discontinuity of the family

{95 } refer to VII-D39, D40, No. 54 of Meyer [13].



LetQj be a fixed (but arbitrary) increasing family of sub a-fields

of 95 • i.e. QJ £ 95 for all t€i. We call AJt> the family of
partial information a-fields. EachOJ is the observation a-field at time

t.

Throughout this thesis we assume that 95t and(-]Jt are free of times

of discontinuity. Note that this is an assumption on the map x.

A map u : I * ft + 1RP is said to be01 -predictable. if for each

t, u is C[[ -measurable and there is a sequence of maps u : I * ft + 1R

such that each u11 has left continuous paths and lim u (t,w) • u(t,u>) for
n-*»

all (t,a>) € I x ft.

A stopping time T of Ql is Algebraically Predictable if the indicator

function of the stochastic interval [T,l] is predictable in the sense of

the above definition. (See Meyer [14].)

If T* is a probability measure on (ft,95)t a stopping time T is

predictable if there exists an increasing sequence of stopping times

S. <S„< .... such that

P

^{T = 0, or S,< T for all k and lim Si, a T} » 1.
K k-H» K

04+(fll >^5) is the class of all Stochastic Processes (afc£l\t£P)>
t ^ I such that a = 0 a.s., a has right continuous, nondecreasing paths

o t

and which are uniformly integrable: sup Eat <«•JklCij^fP) =jl ^Jt»T*)

The definitions and terminology introduced above are quite standard.

They have been recorded for the sake of completeness.

1.2. Control Laws. Cost

Fix a set U C mp. u is the set of admissible control values.



Definition: A control law is a map u : I * ft -»• U.

Definition: Tf u and v are control laws and t e I, the concatenation of

u and v at time t (written (utv)) is the control law defined by

(utv) « u on [0,t] x ft

v on (t,l] x ft.

Definition: The classHAof admissible control laws is any class of control

laws which satisfies the following conditions.

1) Ql is closed under concatenation.

2) The paths of every u £ ~U are piecewise constant, right continuous with left

limits and have a finite number of jumps in a finite time interval.

3) Every ueQi isQJ -Predictable.

The assumption 1) is necessary for Dynamic Programming. The

assumption 2) rules out continuous control laws. This class of control

laws is a subclass of the class considered by Boel-Varaiya [8]. The

assumption 2) gives rise to the problem of Impulse control. It is

particularly useful for capacity programming where there is indivisibility

or set up costs. It is also useful in an economic context when prices

are modelled as control laws. Then institutional constraints require

that prices cannot be changed in a continuous fashion.

Action of Control Laws:

The action of a control law u € HA is characterized by a probability

measure ~|- on (ft,95) such that for each t £ I, Hr restricted to rf

depends only on the values of u on [0,t].

Thus each control law determines a state process (x ,951»P ) anc* a



control process (utiQJ,.» r )• Changes in control laws affect the

Probability Measures on (ft,^) and not the paths of the state process.

This technique of Modelling the effect of control laws is implicit in

the methods of proof used by Davis-Varaiya [10] for the control of Systems

driven by a Wiener process. Boel [7] has used it in modelling the

/ control problem for Jump processes. In Chapter 2 we shall encounter a

problem where it is better to model the effect of changes in control laws

by changing the state process. However the martingale techniques

developed in this chapter still apply. For the control of Jump processes

the results of Boel-Varaiya show that this model is suitable to tackle

a wide class of problems.

If u ^ -U, we define the jump times of u inductively by:

T^ =0, T^+1(a)) =Inf{t/t >Tk(w) and ut(co) * uT (uj)(u>)}

where the Infinum over the empty set is taken to be +». Since we are

only dealing with a finite time interval, this is merely a device to say

that: T, (to) = +°° means the path u of u has no more than k-1 jumps. We

note that the jump times T, (w) are defined since each path of u has only

a finite number of jumps in a finite time interval.

Since each control law u is QJ -predictable, it follows from the

results of Meyer [14] that each T, is an algebraically predictable stopping

time of QJ . From now on we assume that the a-fields QJ are computed

,/ with respect to^PU. Then by T52 of Meyer [13] we have each t£ is a

. predictable stopping time of the a-field QJ completed with respect to

<Va.

With each control law u £^(( we associate the process

N (s) = J^ 1 • Where 1 is the indicator function of the set
k {s>T£} {s>t£



{s>T£} ={u>/s>t£(u>)}.

Thus the process Nu(s) counts the number of jumps of uup to time s.
It is clear that for each u, Nu(s) is an increasingly -adapted
predictable counting process.

?

We are now in a position to describe the cost associated with each

^ control law. In order to do this we suppose given the instantaneous

cost function c which is a bounded nap c :I x Dx q.^i which for

each fixed u6Uis 9^-adapted and 33(1) x9y-measurable on Ixft.
(where35(1) is the Borel a-field on I.)

If uis acontrol law Eu denotes the expectation operator on (ft,9]f)
induced by the probability measured. The cost incurred by ueQ(ls

/•I +1
J(u) = EU{| c(s,u(s)) ds +f dNU(s)}.

J0 Jo

(In the interests of notational simplification we have overlooked the

inclusion of a terminal cost and of adiscounting rate. The equations

which follow can easily be written down for these cases.)

The inclusion of the term Eu{ dNu(s)} expresses the fact that each
Jo

change in the control value costs one unit. This justifies the terminology

Impulse Control. In an economic context this cost could be interpreted

as the cost for broadcasting changes in prices. On the other hand from

a welfare point of view it says that very frequent price variations are

IK detrimental to consumer welfare.

We are interested in discovering necessary and sufficient conditions

for acontrol law u to be optimal in the sense that J(u*) <J(u) Vu eq(.
This end will be achieved by the methods of Dynamic Programming in the

interest of which we make the following definitions.
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1.3. Principle of Optimality

We now assume that the class of admissible control laws is reduced

jl C1 u
to include only control laws u such that E {I c(s,u(s) ds + 1 dN (s)}

J0 Jo
< ». If this new class is empty then J(u) = • for all u and there is no

7

problem. Thus we assume that this new class is non-empty. Because of

^ this assumption the following family of processes (Indexed by control laws

u, v) is well defined and each member of the family is Integrable.

f1 r1I c(s,v(s)) ds +I dNV(s)Ajt>.J(t,(utv)) = EUtV{

J(t,(utv)) is the cost to go from time t onwards given the information

available at time t and that control law u is used up to time t and v

thereafter. Because of the assumption made at the beginning of this

section we have J(t,(utv)) €L1(ft,QJt,^pU) for each t. Since L1(ft,QJti:pu)
is a complete lattice with respect to the natural partial ordering for

real-valued functions (see IV-8-22 of Meyer [13].) the following infinum

exists for each t:

W(u,t) =inf J(t,(utv)) and W(u,t) e L^flAJ ^f*1).'
v

W(u,t) is called the value process associated with u. It is clear from

the definition that W(u,t) is Ql -adapted. If u is a control law,W(u,t)

is the minimum cost to go from time t, given that control law u is used

X upto time t. In order to state our first Theorem we need the following

v • . • •
definition which was first introduced by Rishel [15] and used subsequently

by Davis-Varaiya [10].

Definition: The class Q( is Ql relatively complete with respect to W(u,t)



if for all ueqi, for all TeI, for all e>0, there exists veQI,.

such that

J(t,(utv)) <W(u,t) + e a.s.pU.

^ We note that'll is obtained from QI by restricting the domains of all

u eQ( to [t,l].

By lemma 3.1 of Davis-Varaiya [10] we have thatQ( is '-^-relatively

complete with respect to W(u,t). We can now state our first theorem.

Theorem 1.3.1. (Principle of Optimality)

For all u eQj(, for all 0 <. t <. t + h <. 1

c(s,u(s)) ds +I dNu(s)AJt> + Eu{W(u,t+h)AJt>

with equality if and only if u is optimal.

Proof; The proof is as in Theorem 2.1 of Boel [7] except for minor

modifications and will not be repeated here. n

We now introduce the following notation: If u is a control law,

let c(s,u(s)) be the process defined by c(s,u(s)) = Eu(c(s,u(s))Ajfi).

Then c(s,u(s)) is adapted toQJ for all s.

Corollary 1.3.1.

Jt /»t
c(s,u(s)) ds +I dNu(s),QJt.»<T)U) is a submartingale

0 JO ^

adapted toQJ and a martingale if and only if u is optimal.

(t

c(s,u(s)).ds is

adapted toQJ since c(s,u(s)) is and QJt is an increasing family of

a-fields. Similarly I dNu(s) is adapted toQjt. It remains to show
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the submartingale part of the statement. This is shown as follows:

rt+h /-t+h rt ;
EU{W(u,t+h) + \ c(s,u(s)) ds + \ dNu(s)AU - [W(u,t) + \ c(s,u(s)) ds

Jo Jo C -0

$t

dNU
0

(s)]

c(s,u(s)) dsAJt) -I c(s,u(s)) ds]

$t+h rt
dNU(s)/Qjt) -(I dNU(s))] (a)

The second term in the above sum is:

rt+h - sst rfc -Eu(l c(s,u(s)) dsAJt) -I c(s,u(s)) ds

ds

rt+h ft=EU(l c(s,u(s)) dsAjt) -Eu(j c(s,u(s))/QJ(;)
0

.t+h

=Eu(f c(s,u(s)) dsAjt)

Similarly the third term is seen to be equal to Eu(lw dN (s)MJt)

Thus the right hand side of (a) becomes

rt+h rt+h
[EU(W(u,t+h)AJt) -W(u,t)] +EU(j c(s,u(s)) ds/O^.) +EU[j dNU(s)AJt]

which is non-negative for all control laws u and zero if and only if u is

optimal (by the principle of optimality). This proves the statement of

the corollary. n
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Corollary 1.3.2.

The principle of optimality holds if t and t+h are replaced by

mJ -stopping times T and Ssuch that T£ S.

Proof: Theorem 1.3.1 can be rederived from Corollary 1.3.1. Thus the

result follows from the Optimal Sampling Theorem. n

We remark that the principle of optimality says that if u is an

optimal control law, (W(u ,t) £{l £pu )is a supermartingale. This

prompts the following definition.

Definition: A control law u is value decreasing if (W(u,t),QJ £PU) is

a supermartingale. This definition has been used by Davis-Varaiya [10]

Rishel [15] and Boel [7]. Far value decreasing controls we have the

following result which follows from the Optimality Principle.

Corollary 1.3.3.

For all value decreasing controls u, the process (W(u,t),QJ fPU) is

a right Continuous Potential of class D. (upto right continuous

modification).

Proof: By the Optimality Principle we have

|Eu[W(u,t+h)-W(u,t)]| < Eul c(s,u(s)) ds + EUl dNU(s)

as h -*• 0 we have the first term on the right goes to zero since c is

bounded. The second term goes to zero since u has right continuous paths.

Thus we have that the map t + EuW(u,t) is right continuous. Since u is

value decreasing W(u,t) is a supermartingale. Thus by VI-T4 of Meyer [13],

the supermartingale W(u,t) admits a right continuous modification. Also
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since the a-fields QJ are free of times of discontinuity every path of

this modification is free of oscillitory discontinuities. Note also

that W(u,s) >. 0 and W(u,t) -*• 0 as t+ 1a.s. <T*U and in L CPU). Thus

W(u,t) is a class D potential. This concludes the proof of the corollary.

n

The next corollary provides a relationship between the values of

the value function W just before and just after the jump times of a

value decreasing control.

Corollary 1.3.4.

1) For all value decreasing control laws u we have W(u,Tfc-) <_ 1+ W(u,Tfc)

for all k =* 0,1,... a.s>pu with equality if u is optimal.

2) For all predictable stopping times Tof Qjt such that t£_x <T<Tfc
for some u for some k, we have W(u,T-) < 1 + W(u,T).

Proof: 1) Fix a value decreasing control u. Let {T, } be its jump times.

Fix k. Since T.U is QJ -predictable, there is an increasing sequence of
k ~/t

Qj -stopping times {S }such that S^ +t£ a.s.^P". By considering
S V Tu , if necessary we can assume that S > t" ... Since the optimality
n v k-1 n K~A

principle holds for stopping times ofQ], we have:

T" t"Jk f k
c(s,u(s)) ds + 1 dNu(s)AJS }

S JS ^ nSn

+ EU{W(u,t£)/QJs }. (a)
n

Thus the inequality is preserved in the limit as n + ». The limit of the

left hand side of (a) exists and equals W(u,t£-) a.s. ty" since the paths
of W are free of oscillitory discontinuities and SQ f T,. As for the



right hand side we have:

TU

c(s,u(s)) ds/qjs }- 0 a.s. q)U(Since Sn +t£)
S n

n

-T*

13

dNU(s)Ajs } -*- 1 a.s. <pU(Since t£ is a jump time of u.)
S n
n

and EU {M(u,T^)/Qjs }- Eu{W(u,t£) AJ u}
Tk"

But the a-fields Ql are free of times of discontinuity and T~ is a

predictable stopping time. ThusQj u =Qj u • T*"13
V Tk

EU{W(u,T^)/qj u} =EU{W(u,T^)/qj u> =W(u,t£)
T - T.

k K

since W is QJ -adapted. Putting it all together we obtain W(u,Tfc-)

± 1+W(u,t£) a.s. (PU. The equality for an optimal u is proved similarly

noting that the optimality principle jolds with equality for an optimal

control.

(2) Fix a stopping time T, a control law u and an index k satisfying

the conditions of the corollary. Then there is a sequence {S^} of

stopping times of Qi such that S _> T? -and Sn tT. As in 1) we obtain

W(u,Sn) <EU{f c(s,u(s)) ds +( dNU(s)AJg }+EU{W(u,T)AlJs }.
Sn n

Taking limits as n ->• » we see that

W(u,T-) <W(u,T), Since lim EU{1 dNu(s)/Qjs } « 0
n Js n

n

„u
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in view of the fact that T is strictly between jump times of u. Thus

certainly we have

W(u,T-) < 1 + W(u.T) a.s. <£>u. «

1.4. Conditions for Optimality

In this section we develop conditions which will eventually lead us

to a local characterization of the value function and of the optimal

control law. The argument used in the next Theorem is the same as that

used in Theorem 4.2 of Boel-Varaiya [8] we repeat it here because it is

used later.

Jl cl
c(s,u(s)) ds +1 dNu(s)/QJt} is a <QJt,3>U)

Martingale, the process w(u,t) is a (£Ut>-PU) supermartingale where

Jl cl
c(s,u(s)) ds +I dNu(s)/QJl -W(u,t)

t Jt

Now exactly as we did in Corollary 1.3.3 we can verify that w(u,t) is a

class D potential. Thus by The Supermartingale Decomposition Theorem of

Meyer [13] (VII-T29) there is a unique predictable increasing process

A(u) €^4+AJ ,<PU) which generates w(u,t). That is there is aQL,^)
martingale m (u) such that w(u,t) admits the decomposition w(u,t) = J(u)

- A (a) + m (u). Where J(u) « w(u,0) » J(u) - J . Furthermore the

Decomposition Theorem says that A (u) is the following weak limit in the

1 00 1
a(L ,L ) topology on L :

At(u) =weak lim f £EU[w(u,s) -w(u,s+h) Ajg] ds
h-K) Jo

rt - /-s+h rs+h
= weak lim{l £ EU[l c(s,u(s)) ds + I dNu(s)AL] ds

h-vO JO h Js Js JS
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ft x
' J h EUfW(u's) " W(u,s+h) AJg] ds (a)

It follows that there is a predictable process y (u) € jt+(QJ ,<p'J) such
that

/•t -i rs+h -s+h
Yt(u) =weak lim I - E [I c(s,u(s)) ds +I dNu(s)/q/] (b)

h-H) J 0 J s J s

From (a) and (b) we can conclude that there exists a predictable process

Afc(u) e^<qjt<pu) viz# Yt(u) _At(u), such that

rt .
A (u) « weak lim I - EU[W(u,s) - W(u,s+h)A")| ] ds.

C h-H) JO h ^s

This is sufficient to apply Meyer's Decomposition Theorem to W(u,t) and

we may conclude that

W(u,t) =W(u,0) -At(u) +mt(u) »J* -At(u) +m(u)

where mt(u) is a Cljt£pU) martingale and Afc(u) e J^(C[J ;>pu). We remark
that if u is value decreasing we can immediately use the Decomposition

Theorem on W(u,t). In that case we would obtain A (u) E,j^(C[l ,^pu).

When we develop local conditions, it will be necessary to restrict attention

to value decreasing controls viz. controls such that W(u,t) is a

Supermartingale. We can now state the first Theorem of this section.

Theorem 1.4.1.

it

There exists a constant J and for each u ^Q(, there exists a

predictable process At(u) eJ((C[lfpU) such that
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1) E^dO =J* for all ueQj.

2) EU{-A*+h(u) +̂ c(s,u(s)) ds +J dNu(s)7QJt} >0 a.s.<?>u.

J for all 0 <_ t ± t+h <. 1.

*
A control law u is optimal if and only if equality holds in 2) for all

V * *
0 <_ t <. t+h £ 1. Then furthermore, J(u ) = J and

W(u\t) =Eu*{Aj(u*)rtJt} a.s. 9"*.

where A (u) = A-(u) - A (u).

Proof: as in Theorem 2.2 of Boel [7]. n

We can now use the fact that the a-fields are free of times of

discontinuity to obtain the following sharper version of the above Theorem.

Theorem 1.4.2.

There exists a constant J and for each u €-(( there exists a

predictable process A (u) e^t(^XJ »^PU) such that

1) EuAt(u) =J* for all ueQJ.

... -t+h rt+h
2) -A;! +\ c(s,u(s)) ds +I dNu(s) >0 a.s.9

*

for all 0 _< t £ t+h £ 1. A control law u is optimal if and only if equality

holds in 2) for all 0 <. t <_ t+h <_ 1. Then furthermore J = J(u ) and

W(u*,t) =Eu*{Aj(u*)AJt}.

Proof: For each u ^Qt, let A (u) and m (u) be the processes introduced
* — —

just before Theorem 1.4.1. Then we have W(u,t) = J - A (u) + m (u).
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Thus from the Optimality Principle we may conclude that -At(u)

+C c(s,u(s)) ds +f dNu(s) is a(^L,^) Submartingale. Thus by the
Doob decomposition Theorem (Meyer [13], VII, T31) it admits a decompoition

(t rt

c(s,u(s)) ds + \ dNu(s) =A+ B (u) + m (u)
o Jo

where B (u) is a predictable increasing process and m (u) is a martingale

and A is a constant. The expression on the left is predictable and of

integrable variation. Thus m (u) must be predictable and of integrable

variation. But a predictable martingale of integrable variation on a

family of a-fields which are free of times of discontinuity vanishes.

Thus m (u) =0. Thus the process on the left is increasing. This shows

that condition 2) is satisfied. On the other hand E A^u) = J by
ft

Construction. Let now u be optimal. Then the argument used above

applies noting that B.(u )=0 since -A (u )+1 c(s,u (s)) ds + I dN (s)
c Jo Jo

is a Martingale by the optimality Principle. The sufficiency part follows

from Theorem 1.4.1 since a process A (u) which satisfies 2) of Theorem

1.4.2 clearly satisfies 2) of Theorem 1.4.1. This completes the proof of

the Theorem. n

Theorem 1.4.2 is stronger than Theorem 1.4.1 since it is a statement

regarding the behaviour of the paths whereas Theorem 1.4.1 is a statement .

regarding their expected value.

In the next section we use the above theorem to obtain local conditions

for optimality. This is accomplished by showing that Afc(u) is absolutely

continuous in t. However we shall need that A (u) is an increasing

process. Thus we will henceforth restrict attention to value decreasing

controls.
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1.5. Local Conditions for Optimality

We begin with the following lemma which yields a suitable

representation for the process A (u). Further we restrict attention

to value decreasing controls. Thus for the statement of the next lemma

A (u) is the generator of the potential W(u,t).

Lemma 1.5.1.

For all value decreasing controls u, there exist non-negative,

y -adapted predictable processes

$t ft
ctu ds + 1 3U dNu(s).

o s Jo s

Proof: By the Optimality Principle we have

rt+h ft+h
EU[At+h(u) - At(u)AJt] <EU[l c(s,u(s)) ds +I dNu(s)Ajt]

J t J t

This implies that for any non-negative well measurable process (<fr »Q,Jt»v"P )

we have

(t ft ft
<fr dA (u) < EU[l <|> c(s,u(s)) ds + I <fr dNU(s)]

o s s Jo Jo 8

Thus whenever the second integral vanishes so does the first. Thus by

the Radon-Nikodym Theorem, there exist non-negativeQi-predictable processes

a , $ satisfying
5 S

$t ft
<xuds + I 3U dNu(s).

os Jo S

This completes the proof of the lemma.

Next we prove a lemma which relates the process 3 to the potential
s

W(u,t).
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Lemma 1.5.2

Let A be an increasing integrable process and let W be the potential

generated by it. Assume that there exists an increasing sequence {Tfe}

of QJ -predictable stopping times and non-negative Qj -predictable processes

a , 3 such that A^ = \ a ds + 5Z 3_ 1_,_ . Then for each k = 0,1,...
8 s t Jo s k Tk ^k

we have 3T = WT_ - WT .
k k k

Proof: Fix k. Since T, is aQj -predictable stopping time, there exists

an increasing sequence of stopping times T such that T t T. . a.s. By

considering T \/T, - if necessary we can assume that T j> T, _- for all n.

Now fix n. Fix a set Bn € Qi . Since A„ generates W . we have
-f^n t t

W = -A + m where in is a Martingale. Thus
t t t t

EL K^fm^ a. idW "-e( 1 -1 dA„ +E1 1 1 n dm,.JO B (T ,Tk] t JQ fin (Tn ^ t )Q fin ^n^ t

The second term on the right is zero since m is a martingale. Thus

substituting for A , we obtain:

.1 fl
El 1 1 dWfc =-E 1 1 a ds -El -3T

JO Bn (Tn,Tk] t JO Bn (Tn,Tfc] S Bn Tk

Since Bn € C[l is arbitrary it follows that

Tfc

Et\ "W ="E[JTn asdS/QV "m\%]
or

Tk

Taking the limit as n -*• • on both sides of the above equality, we obtain:
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wT - E[W_ AL ]= E[3T AL ].
T"k Tk UT k Tk UT k

Since the a-fields are free of times of discontinuity and Tfc is predictable

we haveQL «QL . Thus we obtain W_ - W = g since W is QJ -JT-k JTk T-k ik ik jz

adapted. This concludes the proof of the lemma. n

We now come to the main Theorem of this chapter. It provides local

necessary and sufficient conditions for optimality.

Theorem 1.5.1.

There exists a constant J and for all value decreasing controls

ueQl processes otu and 3U which are QJ -adapted and predictable satisfying

1) Eu[ f1 aUds +f1 3>U
Jo s Jo

*

(s)] = J for all u.

2) c(s,u(s)) - au >, 0 a.s. ds xoH*'4.
S

3) 3U < 1 a.s. dNu(s) * dpu.
s ~"

A control law u is optimal if and only if 2) and 3) above are satisfied

ft it ft
with equality for u . Then J « J(u ) the cost of the optimal control law

* /*t * ft * *
and W(u*,t) «Eu [A^(u*)Ajt] where Afc(u*) =J c£ ds +J 3^ dNU (s).

j, 5fc jlO ft vl

Furthermore we have: 3U *sW(u ,Tfc -) -W(u ,Tfc ).
u

Proof: Fix a value decreasing control u. Then W(u,t) is a Potential

of class D. Let then Afc(u) be the unique increasing predictable process
ft

which generates W(u,t). Thus there exists a constant J and a martingale

*m (u) s.t. W(u,t) = J - At(u) + mt(u). Since W(u,l) =0 and mt(u) is a

martingale, J clearly satisfies EuA]L(u) =J for all u. Let ag and 3g



*

be the processes of Lemma 1.5.1. Then it is clear that ag and 3g

satisfy the condition 1) of the Theorem. From Theorem 1.4.2 we have

Jt+h ft+h
(cu-aU) ds + \ (1-3U) dNu(s) > 0 for all h,t...

t S S Jt S
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(b)

Identifying the jumps in the 2nd integral we see that cg-as>.Oa.s.

ds x d^d and 3U < 1 a.s. dNu(s) x<£f>u. Thus c£ and 3* satisfy conditions
s —~ s s

ft

2) and 3) of the Theorem. Let now u be an optimal control. Then again

from Theorem 1.4.2, (b) above holds with equality. Thus it follows that
ft

conditions 2) and 3) hold with equality for u . This proves the necessary

part of the Theorem.

ft

Sufficiency: Assume there exists u satisfying 2) and 3) with equality.

Let

Jt ct
auds + I 3W(s)

o Jo

Vt(u) =E^GO/Qy - Bfc(u)

C(u) = f cu ds +\ dNu(s)
z Jo S J0

^t(u) =E^qCu)/^} - Ct(u)

Consider

rl rl rt ft
♦t(u) - Vt(u) =EU[ I cUds +J dNU(s)AJt] " U^ds +I dNU(s)]

- EU[C aUds +f 3UdNU(s) AIJ +iC «> +[ 3>U(s)]
Jo s Jo s Jt h s Jo S



=EU[f1(cu-a")ds +f\l-3>Nu(s) AUJ0 s S jQ s ^c

- i[ (c"-o")ds +f (l-3>Nu(s)]
Jo s Jo

-Eu[j\s;;- ^)ds +J1a-3^)dNu(s)Ajt] >Q

by conditions 2) and 3). It follows that

i

* <u) 1 V(u) a.s. ds x£()* and if»t(u*) =V (u ) a.s. ds xcfP"
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Thus EU i|> (u) >. E^ (u) and

EU *Q(u*) =EU V0(u*)

* * * *But EU $ (u) =J(u), EU ty (u*) =J(u*) and E^Cu) »EU VQ(u )=» J
ft ft ft

by Condition 1). Thus we have J(u) _> J(u ) * J . This shows that u is
*

optimal and has cost J. To show that W (u )=E {A (u )AJt) we apply

the sufficiency part of Theorem 1.4.1. Finally the stated relation between
* * *

3U ^ and W(u ,t" ) follows from Lemma 1.5.2. This concludes the proof of

the Theorem. n

We note that the above theorem is the version which holds in our case

/ of the optimality criterion derived for Markov processes by Kushner [11],

for Conditional Markov Processes by Stratonovich [20], for processes on a

Wiener Space by Davis-Varaiya [10]. Finally it is the abstract version

of Theroem 2 of Bensoussan and Lions [4].



1.6. Optimality Conditions with Complete Information.

We now consider the case where the Information a-fields are tt.

rather than QL» In order to make the problem meaningful we impose the

following restriction on the probability measures ^P .

Assumption: for all t £ [0,1], for all control laws u, v, w

23

Eutv r1 r1 i- r1 c1[I c(s,vs) ds +I dNV(s)/9j.] =EWtV[j c(s,v8)ds +JdNV(s)/^]

This assumption implies that the dynamics defined by the probability

measures r in fact define a dynamical system. For a version of this

assumption which is stated for the probability measures instead of for

the expectation operators defined by them see Boel-Varaiya [8]. Due to

this assumption the value function now no longer depends on u, the control

law used up to time t, since

W(u,t) = inf J(t,utv) = inf J(t,(wtv)) and
v v

therefore W(u,t) = W(w,t) or W is independent of u. However the processes

in the decomposition of W can still depend on u since the decomposition

holds a.s. with respect to ru measure. Some simplification does occur

as can be seen by the following:

W(t) = J - At(u) + mt(u) = J - At(v) + mt(v) or

J* -A„(u) +m^(u) +m*(u) =J* -A..(v) +m^(v) +m*(v) (aO
t t t tut

c d
where m (u) and m (u) are the purely continuous and purely discontinuous

t t
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c dparts of the martingale m (u). Similarly for mt(v) and mfc(v). Now we

can identify the continuous and discontinuous parts in equality (a) to

obtain

-At(u) +m£(u) --At(v) +m£(v); m*(u) »mt(v).

Unfortunately this is as far as we can go. In the presence of a

Martingale representation Theorem we can do better since each martingale

above can be suitably represented as a Stochastic Integral with respect

to the "basis" Martingales. A Martingale representation Theorem for

martingales on a-fields generated by fundamental jump processes has been

proved by Boei-Varaiya-Wong in [9]. Boel [7] has shown how this can be

used to simplify the optimality criteria for jump process. Davis-Varaiya

[10] have shown how the Martingale representation Theorem for Martingales

on a Wiener Space can be used to simplify the optimality criteria for the

control of systems driven by a Wiener Process. We shall encounter the case

of a system driven by a Wiener Process in the next chapter, where no such

simplification occurs. This is because for the system considered, it is

not possible to model the effect of control laws as changing the Probability

Measures on a fixed Sample Space of paths.

We conclude that for the model considered above the simplification

which results in the complete information case is that all the results of

the previous sections hold with W(u,t) replaced by W(t),QJt by 93Pt and
c by c. We can replace c by c since c is >+t-adapted.
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CHAPTER 2

AN APPLICATION TO THE PROBLEM OF CONTINUOUS TIME INVENTORY CONTROL

2.1 Model.

Fix a time interval [0,1].

Let Bg denote a zero mean Brownian Motion Process on [0,1] with values in
p

3R and B^ = 0. We assume that the components of B are independent.
P

Let U! [0,1] -»• ]R be a bounded integrable function and o a p x p

diagonal matrix. The accumulated demand between times t and s is

>s

D(t,s) = I y(z) dz + a(B -B )
S c<>

where 0 <_ t <^ s <_ 1.

Control Laws:

P *~*f
Fix a set U C ]R . Let \tJ* o{B ; s<t}. An admissible control law is an

P
CY -predictable map u: [0,1] x ft ->• 3R satisfying the following conditions

1) u has piecewise constant sample paths which are right continuous with

left limits.

2) Each sample path of u has a finite number of jumps in a finite time

interval.

3) The jump of u at time t = Au = u - u 6U for all t and for all

paths of u.

Let -|j( denote the set of admissible control laws. We can inductively

define the jump times of u by:
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k

T (u>) =0, Tk+1(o>) «Inf{t|t ^ T|!(u)>» ut(w) ^u (u>)} where the
0 Tk(w)

infinuum over the empty set is understood to be +00. The same comment

as made in Chapter 1 applies here. It is clear that each jump time of u

is a stopping time of the family -C*^^-* >. Similarly we can define the

jump heights of u by h, (w) = Au (oj) .

The jump times of u represent times at which orders for inventories

are places, the jump heights are the quantities ordered. Both are

random variables since we are interested in feedback control laws. It is

clear that the pair of sequences {T, , h. } is an equivalent description
k

of the control law. The two descriptions are related by

t 4-» * mu k
k t>T.

— k

Thus if u is an admissible control law, ufc represents the total supply

ordered up to time t.

We now define the trajectory generated by a control law u to be

xu - 1 y(s) ds + aB - u
t J0 t t

ft u
oI u(s) ds + aB -2l u \
JO k t>T" K

If xU > 0 we have that the accumulated demand between 0 and t is bigger
t

than the total supply ordered up to time t. A similar interpretation holds

for the reverse inequaltiy and for equality.
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Cost Associated with a Control Law

Let c be a bounded continuous map c: [0,1] x IRP -• IR . The cost

associated with the control law u is then

r1 r1
J(u) = E{| c(s,xU) ds + I d Nu(s)}

Jo s Jo

where N (t) =Jl is the counting process which counts the number
k t>Tu

— k

of jumps of u up to time t. Thus each placement of an order costs one

unit. The role of a fixed cost of ordering is essential. In effect it

rules out continuous control laws which would lead to infinite costs.

We are interested in determining necessary and sufficient conditions

for a control law to be optimal in the sense that

J(u*) <_ J(u) for all admissible control laws u.

For a general survey of inventory control models see Scarf [18].

For a discrete time approach see Scarf [19], Vienott [21]. For another

approach in continuous time with infinite horizon see Bather [1], The

model we have adopted is similar to the one used by Benaoussan and Lions

[4].

We shall solve this problem by the methods of Dynamic Programming.

We thus need a definition of concatenation of control laws.

Concatenation of control laws:

Let u and v be admissible control laws and let 0 <_ t <_ 1. The concatenation

of u and v at time t, denoted by utv is the control law defined by:

(utv) = u s < t
s s —

u. + (v -V ) s > t.
t St



It is easily verified that utv is an admissible control law.

2.2 Value Function and conditions for optimality.

Let J (t,(utv)) =E{f c(s,x"tV) ds +f dNV(s)|TTt}
Jt " J t
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Now exactly as in the abstract case we can define:

W(u,t) = Inf J(t,(utv))
v

We note that the a-fieldsxT form an increasing family in t and that they
t

are not affected by changes in control laws. Therefore the relative

completeness lemma of Davis-Varaiya [10] holds. Exactly as in the

abstract case we can establish the Principle of Optimality.

Theorem 2.2.1.

For all u gQI, for all t, t+h such that 0 <_ t <_ t+h <_ 1, we have:

J t+h /-t+h
c(s,xU) ds +1 dNU(s)|CT} + E{W(u,t+h|Cp

t S Jt t t

with equality if and only if u is optimal. The Theorem holds for any 9T
t

stopping times T and S such that T _< S.

Proof: As in Theorem 1.3.1.

The reasoning from now on is the same as in the abstract case. We

thus have the following analog of Theorem 1.4.1.

Theorem 2.2.2. There exists a constant J* and for all controls u a

process Afc(u) dJki^fP) satisfying:
1) E Afc(u) = J* for all u.



2) For all 0 < t £ t+h <_ 1

t+h ft+h ft+h
E{-X (u) +I c(s,x") ds +I dNu(s) \Cf}>0 a.s

t J t s j t t

29

A control law u* is optimal if and only if 2) hold with equality for

u*. Then J* = J(u*) the cost of the optimal control and

W(u*,t) =E{aJ(u*)|CJ'}.
c t

Proof: As in Theorem 1.4.1. c

We now arrive at the main Theorem of this section. It provides a

characterization of the value process W(u,t). It is similar to Theorem

4.3 of Davis-Varaiya [10] and to Theorem 1.5.2. It is better than

Theorem 1.5.2 because of the presence of a martingale representation

theorem.

Theorem 2.2.3.

There exists a constant J* and for all value decreasing controls u,

processes a , 3 > y satisfying the following conditions.
s s s

1(a) BJ\>8-0 (b) |o|Y»|

2) c(s,x ) - a > 0 a.s
s s —

3) 3U < 1 a.s. dNU(s)
s -

4) V (u) = 0 for all u

2 A ,ds < <» a.s.
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-t ft ft
where V (u) = J* - f aU ds - f 3U dNU(s) + I Y^dB .

t Jo s Jo s Jo s s
A control law u*

is optimal if and only if 2) and 3) hold with equality for u*. Then

J* = J(u*) the cost of the optimal control and V (u*) = W(t,u*) the

value process evaluated along the optimal control law.

Proof: Let u* be an optimal control law. Fix a value decreasing control

u. Let A (u) be the generator of the potential W(u,t). Then we have

W(u,t) = J* - A (u) + m (u), where m (u) is a square integrableij-martingale
t

Thus by the martingale representation theorem [10,22], there exists a

process y* satisfying 1(a) and 1(b) such that m (u) =1 y" dB . Let
s Jo S S

a and 3 be the process of Theorem 1.5.1. Then au and 3U satisfy 2) and
s s s s

V«> -J \

3) by Theorem 1.5.1. Clearly Wx(u) = 0 for all u and

it -t ft
a" ds - I 3U dNU(s) +1 y" dB by definition.

0s JO s Joss

Conversely, assume there exist processes ctu, 3U, YU satisfying the condition
o 5 S

of the theorem. The same argument which was used in the sufficiency part

of theorem 1.5.1 yields the result. This completes the proof of the theorem. n

2.3 Markov Controls, Markovian Value Function V.

The set J\j\ of admissible Markov controls is defined by

j\j\= {u e^for all 0 <_ t-h £ t <_ 1, u -u is

o{B ; t-h £ s <_ t}-Measurable .}

For each t€ [0,1], we obtain^! from^'U by restricting the domain [0,1]

of control laws invito [t,l]. If u€fi\ let
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r1 r1J(t,x,u) = E{1 c(s,xU)ds+l dNU(s)|x = x}.
Jt Jt C

The Markovian value function V: [0,1] x ]RP -»• ]R is defined by:

f1 r1V(t,x) = Inf E{1 c(s,xU) ds +1 dNU(s)/X|. = x}.
v£Mt Jt s Jt t

We wish to show that V satisfies a principle of optimally. In order

to do this we use discrete backward dynamic programming. This method is

quite similar to the one used by Boel [7].

We fix t€ [0,1] and an integer N > 0. For each n = 0,1,... 2N we

let tn = t+ (1-t) ~. Thus tQ = tand tN= 1. This partitions the
N ^

interval [t,l] into 2 equal divisions. Let the graph of t , [t ], be
n n

defined by

[tj ={(w,tn)/a>en}. Similarly if u€jUt, define

[t£].- {(u),T£(a>))/u>efl).

2N
Now letyUt be the set of all u€\j[ such that for all k, [t£] C\j [t ].

n=o*

Then by definition ofJ[)[ ,it is clear that u^^UN satisfies

Nus(w) - us_(w) s 0 for tfl < s < t ,n=0,... 2 - 1

u (a>) - u (w) = h(t , xu M) for some function h.
c— t— n t—
n n n
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iiN
Thus the decision times for u^vj are restricted to be at times t

and the value of the jump at time t depends only on the state at that

time. Let C[l be obtained from Q[ in the same way that^AL was obtained

from v_,U.
N

Letqj!! = <u eQ{ Ifor all k [t£] C 2U [t ]}. We define /(t.x)
C t K n=0 n

by backward induction as follows:

p
Let f(t N,x) = 0 for all x € m .

2

p
Then define f(t ,x) for x €lR as follows:

n

f(t ,x) = Inf E{fn+1 c(s,x-h(t ,x) +D(t ,s)) ds +^(t ,x)
i*i./..\Jt n n n

h(t ,x) J n
n

+f(tn+1,x-h(tn,x)+D(tn,tn+1))}

where Nh(t ,x) = 1 if h(t ,x) >0
n n

0 otherwise.

N P
And we define V (t,x) = f(t ,x), x € 1R . We are now ready to state our

first lemma.

Lemma 2.3.1.

P £ NFix N >0 and e>0 and x€ m . Then there exists u ^j\\t such

that J(t,x,u^) <_ VN(t,x) +e.

Proof: By definition of f(t ,x), there exists a function h (t ,•) such
J n n

P
that for all x € jr ,

rn+1 hf(t ,x) + -~- > E{\ c(s,x-he(t ,x) + D(t ,s)) ds + N (t ,s)n 2N - Jt n n n
n

+ f(en+1,x-hc(tn.s)+D(tn,tn+1)}.



e
u.

Define u^ eyUt by ufj(t ,<o) - u^(t-,w) =h (t ,x (to)). Then we have
n

r 2N-1 fSi+l u* A+l u*
J(t,x,u^) » J) E{J c(s,x") ds +J dN N(s)>

t " t
n n

2N-1 2N-1 e e e

0 2 0 n n 2 «N

= f(t ,x) + e (since f(t N,z) = 0 for all z.
o 2w
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Since f(tQ,x) » v (t,x) we have

J(t,x,u^) <V^t.x) +e. i

Lemma 2.3.2.

Fix x € ir and e > 0. Then for all u € M 9 there exists N and

Uj. eyti. such that

J(t,x,uN) <_ J(t,x,u) + e.

Proof: The proof is in two steps. We first show that u Gjm can be

approximated by a v eQ,(,. for N sufficiently large and then show that

we can find u^ € -M which approximates v ^=QI .

^ Step 1: Fix uGJ\A . For each positive integer N define vN e^lt
u N'

as follows: Let {T, } be the jump times of u. Define the jump times T,

r- v

of v by T. (o>) = t where j is the smallest integer between 0 and 2
v v.

satisfying t >t£(w). Define hfcN((o) «h"(to). Then by definition of Tfc
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we have Tfc >_ TJ\ Thus for each k, Tfc is astopping time of &}

and vN Is an admissible control. Since u tJ[J{ C^( we have v eO/N.

It is now clear from the definition of v„ that
N

\N +Tkand\N =hk- ThuS

1 v„ „1

J^ "<•>*=? ^dN^s)
a VN u ' ,

Xs ~n"*Xs a,s* for a11 s e ft'1!- Thus

f1 vn r1 vmJ(t,x,vN) =E{l c(s,xgw) ds +j dN N(s)/x =x}

_{E I c(s,xg) ds +I dNV(s)/x =x} =J(t,x,u)
N J t J t

where we have used the boundedness of c to justify the interchange of

limit operations. This shows that given e > 0, there exists N and

VN ^^'t SUch that

J(t,x,vN) <_ J(t,x,u) + e.

Step 2: Fix N. Now we note that

Inf E{1 c(s,x - h+ D(t ,s) ds + Nh/9T }

h Jt2»-1 2"-l 2' V-l
where the infinuum is taken over all h which are 93f -Measurable,

is equal to
2N-1



nf E{f c(s,x -h+D(t N ,s) ds +N/xt }
h JtN 2N_X 2-1 2N_X
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This is because D(t,s) is a Markov Process. We thus obtain that for all
p

e > 0, there exists a function he(t ,x) such that for all x € m ,
2-1

for all 95" -Measurable functions h

Jl h
c(s,x-he(t ,x) + D(t,s) ds + N }

t 2-1

<E{f c(s,x-h +D(t,s)) ds +Nh/Cyt }+-^
Jt «N , 2

„N , 2 -1

=E{f c(s,x-h +D(t,s)) ds +Nh} +~
JtN 2
2-1

We can carry this process down to n = 0 to obtain

E{f c(s,xgN) ds +f dNUN(s)/xt} <ECJ* c(s,x^)ds+| dNU(s)/9£ +e

Jl fl
c(s,Xg) ds +I dNu(s)/xt} +e for all ueq^.

Thus combining steps 1 and 2 we obtain the statement of the lemma. This

concludes the proof of the lemma.

Now by lemma 2.3.1 we have

VN(t,x) = Inf J(t,x,u)

«€A/C
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Since by definition, N >k implies^/) 3J[/\t» we have that v (t,x) is a

decreasing sequence in N. On the other hand it is bounded from below

N N
by 0. Thus lim V (t,x) exists and equals Inf V (t,x). Let

N-*» N

U(t,x) = lim v (t,x) = Inf v (t,x). In the next lemma, we show that
N-h» N

U(t,x) = V(t,x) the Markovian value function.

Lemma 2.3.3.

Inf V^t.x) = lim VN(t,x) = U(t,x) = V(t,x).
N N-*»

Proof:

Step 1: We show that U(t,x) <_ J(t,x,u) for all u G ,\\ . Towards this

end fix e > 0 and u &j\A . Then since U(t,x) = Inf v (t,x) we have
N N N

U(t,x) <_ V (t,x) for all N. On the other hand since v (t,x) = Inf J(t,x,u)

we have \r(t,x) £ J(t,x,u) for all u €,\/l . Now choose N sufficiently

large that

J(t,x,u^) ± J(t,x,u) + e.

We thus obtain:

N £
U(t,x) < V (t,x) < J(t,x,u„) < J(t,x,u) + e.

Thus U(t,x) _< J(t,x,u) + e. Since e > 0 is arbitrary and u is arbitrary

it follows that U(t,x) < J(t,x,u) for all ue>Ut*

Step 2. We show that for all e > 0, there exists u ^J{\ such that

J(t,x,u) < U(t,x) + E.
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Since U(t,x) = Inf V (t,x) we have
N

(a) U(t,x) + 2e >_ VN(t,x) + e for N sufficiently large. Since

VN(t,x) = Inf J(t,x,u) we have, there exists u^ ^jl\t such that

(b) V^t.x) +e>_ J(t,x,u^). Thus combining (a) and (b) we have

U(t,x) +2e >J(t,x,u*). But u* e^^ £j\j\t- Thus we have established
the lemma.

N
We now impose a Lipschitz condition on c and show that each V is

then uniformly Lipschitz in x for fixed t. This will enable us to

conclude that V (t,x) converges uniformly in x to V(t,x) and that for

each fixed t, V(t,x) is uniformly Lipschitz in x.

Assumption: We assume that the cost function c satisfies a uniform

Lipschitz condition in x. i.e. there exists a constant K such that for

all s6 [0,1], for all x1 and x€ mP, |c(s,x) - c(s,x')|£ K |x-x'|.'

Lemma 2.3.4. For each fixed tS [0,1], VN(t,x) converges uniformly

to V(t,x) in x as N •>• »"

Proof: We show that v (t,x) is uniformly Lipschitz in x with Lipschitz

constant independent of N. Towards this end we fix N and let

t =t+ (1-t) -^7, n=0,... 2N as before. We first show that each function
p

f(t ,x) is uniformly Lipschitz in x. Fix x and x' ^ K . Fix e > 0. Then

by definition of f(t XT ,x) we have there exists u^j\\r such that
2N-1 %N-1



w

r1 h
f(t „ ,x) < E{l c(s,x-h(t ,x) + D(t ,s) ds + N } + £

2-1 " Jt „ 2-1 2-1
2N-1
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1 if h(t N ,x) > 0
where h(t ,x) is the jump of u at (t N ,x) and N = J 2-1

2~1 2 -1 'o Otherwise.

Using the same h at x' we have

r1 hf(t .. ,x») < E{1 c(s,x*-h(t M ,x) + D(t N ,s)) ds + Nn}
2N-1 " JtM 2N-1 2N-1

2N-1

Thus we obtain

f(t M ,xf) -f(t N ,x) <E [ |c(s,x-h(t ,x) +D(t ,s))
2-1 2-1 LJtM 2-1 2W-1

2N-1

-c(s,xf-h(t„ ,x) + D(t N ,s))|ds
2W-1 2-1 J

+ E

since the N 's cancel each other out. Using the uniform Lipschitz

condition on c, we see that

"d-tl -e.f(t„ ,i') •f(t . ,*>£^ir- |x-x'| +
2-1 2-1 2

Similarly by considering an e-effective h(t ,x') at x' we obtain

f(t ,x)-f(tN ,x") i^^- |x-x'| +e.
2-1 2-1 2



Combining the last two inequalities, we obtain:

f(tN ,x) -f(t ,x»)| <^|=^- |x-x»| +£
2-1 2-1 2W

Since £ > 0 is arbitrary we obtain

|f(t ,x) -f(t ,x»)| 1^=^ |x-x»|
2-1 2-1 2
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Usingthis argument backward, we see that

|f(Vx) -f(tn,x')| <K(l-tM2N-n) |x_xl|> ^...2".!.

Thus for n=0 we see that

If(t ,x) - f(t ,x')| < K(l-t) |x-x'|.
1 o o

Since f(t ,x) = V^t.x) we have shown that V (t,x) is uniformly Lipschitz
o

N
in x with coefficient independent of N. It follows that V (t,x)

decreases uniformly to V(t,x) in x and that V(t,x) satisfies a uniform

Lipschitz condition in x. This completes the proof of the lemma. n

We are now ready to prove the Markovian Principle of Optimality.

Theorem 2.3.1.

For all (t,x) G [0,1] xmP ,for all hs.t. t+h£ 1, for all ue^'Ut»

the Markovian value function V(t,x) satisfies:

V(t,x) <Ej f c(s,Xg) ds +f dNU(s)/xt =x +E V(t+h,x"+h)/xt =x



4Q

with equality if and only if u ^\j\ is optimal.

Proof: Step 1

By the definition of V(t,x) we have,

V(t,x)<Ef( c(s,x")ds +1 dNu(s)/x -x + Inf EEj f c(s,x^)ds
~LJt Jt J ^'t+h +h

+ChdNV(s)/x"+h}/xt=x]
Consider the second term on the right in the above expression. The

first statement of the Theorem will be proved if we show that the Inf

and the first conditional expectation operator can be interchanged.

Towards this end we fix e > 0. Then since \T(t+h,x) + V(t+h,x) uniformly

in x we have: There exists N s.t.

V(t+h,x"+h) +2e >At.x^) +e a.s.

Now by Lemma 2.3.1, there exists v* eAlt+h such that

V^t.x^) +e>J(t+h,x"+h, v*) a.s.

Combining this with the above inequality and taking expectations we obtain:

E[V(t+h,x"+h)/xt =x] + 2e >E[J(t+h,x"+h,v^)7xt -x]

Taking the Inf over ve>Ut+h °n the right, we get:

E[V(t+h,x"+h)/xt =x] + 2e >. Inf E[J(t+h,x"+h>v)/xt »x]

f Since e > 0 is arbitrary it follows that

E[V(t+h,x"+h)/xt =x] >_ Inf E[J(t+h,x"+h,v)/xt =x]
^'t+h
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The reverse inequality is clear from the definition of V(t+h,xt+^).

We have thus proved that:

Inf E E c(s,x^)ds +f dNV(s)/x" /x. =x =E[v(t+h,x" )/x.
v€^t+h L IJ t+h S Jt+h t+h t J t+h t

This establishes the first statement of the Theorem.

Step 2: We now show that u ejU is optimal in >l/t if and only if

V(t+h,x"+h) =Ef c(s,Xg) ds +| dNU(s)/x"+h Ia.s.

for all t _< t+h £ 1.

If equality holds above, we immediately obtain that u is optimal by

taking h = 0. On the other hand suppose u is optimal. Then by definition

of V(t,x) we have:

ff t+h rt+h "Iff1V(t,x) =E J c(s,Xg)ds +J dNU(s)/xt =x +EJ c(s,Xg)ds

+ f dNU(s)/x,. =x]
•'t+h c ' J

=Ej c(s,x^)ds +f dNU(s)/xt =x +EJEJf c(s,Xg)ds

+lLdNU(s)/x"+4/xt=x]
on the other hand by the first statement of the Theorem we have



s

42

V(t,x) <E|j c(s,Xg)ds +f dNU(s)/xt »x+E V(t+h,x"+h)/xt =xj .

Subtracting gives:

e| f c(s,Xg)ds +f dNU(s)/x"+h| -V(t+h,x"+h)/xt =x<0

But by definition

e{ fLc(",x-)d"+ChdNU(s)/x"+h }•• v(t+h'x"+h>
is a non-negative random variable. We tjms obtain

V(t+h,x^+h) =E|jt+hc(8,x^)d8 +|t+hdNU(3)/x^+hJa.S.

Step 3. We now use step 2 to show that u is optimal iff equality holds

in the first statement of the Theorem. If u is optimal then,

V(t,x) =Ej c(s,Xg)ds +I dNU(s)/xt =x +E E< f c(s,x")ds

+iLdNU(s)/x"+4/Xt=x]
rr t+h /-t+h 1 T u "1

=E \ c(s,Xg)ds+l dNU(s)/xt =x +EV(t+h,x"+h)/xt =x

(by step 2).

On the other hand if equality holds in the first statement of the Theorem,

we take h = 1 - t to obtain
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V(t,x) -EJf c(s,Xg)ds +jdNU(s)/xt =xl .

Thus by definition of V(t,x), u is optimal. This concludes the proof of

the Theorem.

We can restate the above Theorem in the form of the following

equivalent corollary which is in the form of the Abstract Optimality

Principle.

Corollary 2.3.1.

For all u^J(\, for all 0 <_ t £ t+h <_ 1, the function V satisfies:

V(t,x£) <eI]^ c(s,x^)ds +ft dNU(s)/x^j +EJv(t+h,x"+h)/xn

a.s. with equality iff uGj\j\ is optimal.

Proof: Follows immediately from the above Theorem. a

All the results of section 2.2 now apply. In particular we have the

following corollary.

Corollary 2.3.2.

For all u €j[\, the process V(t,x") +f c(s,x")ds +1 dNU(s) is an
c Jo Jo

^-submartingale and a martingale iff u is optimal,
t

Proof: Follows immediately from Corollary 2.3.1. n

We now proceed as in Section 2.2. However we make the following

observation: We construct the process w(u,t) as we did in Section 1.4 and
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associate the processes At(u) and mt(u). But now, just as in Theorem

2.5 of Boel [7] we can show that S^+h(u) and m"^+h(u) depend only on

TI =a{Bs; tlslt+h>- Thus Theorem 2.2.2 takes on the following version.

Theorem 2.3.2

There exists a constant JM and for all controls u€E j\\ aprocess

\(u) *>A&<V) such that ^+h(u) is^t+h-Meas. satisfying
c t

1) EA1(u) = JM

2) For all 0 <_ t <_ t+h <_ 1

r-t+h ft+h rt+h -,E[-At (u) +J^ c(s,x^)ds +j dNU(s)/x^J >0a.s.

A control law u= u* is optimal iff 2holds with equality for u*.

Then J = J(u*) = Inf J(u) and

V(t,x^*) =E[Aj(u*)/x^*].

Proof? as in Theorem 2.2.2. n

We can now derive a local version of this Theorem which is the analog

of Theorem 2.2.3. However it is necessary to restrict attention to

value decreasing controls.

5 Theorem 2.3.3.

There exists a constant JM and for all value decreasing controls

"G^U. processes a" b", y" satisfying the following conditions:
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fi -1 2
1(a) El Ygd Bs =° <b> I hU\ ds <oo a.s.

2) c(s,x ) - a > 0 a.s.
s s —

3) BU < 1 a.s. dNU(s)
s —

4) V-(u) = 0 for all u where

Vu> =Jm - f «" ds - f BUdNU(s) +( yU dB .t M JQ s JQ s J0 s s

A control law u* €^\j\ is optimal if and only if 2) and 3) hold with

equality for u*. Then JM = J(u*) the cost of the optimal Markov control
u*

and V (u*) = V(t,x ) the value function evaluated along u*.

Proof: As in Theorem 2.2.3. H

We note that in the above theorem we can say that the processes

a , 3 » Y are in fact obtained from measurable functions
s s s

a, B, y: [0,1] * 1R •+ 1R by

u t u. _u , u. u / uxag = a(s,xg), Bg = 31(S»XS)»YS = Y(s,xg).

This is because of the observation made just prior to Theorem 2.3.2.

We.have not done this because it makes the notation intolerable.

2.4 Characterization of V under Differentiability Hypothesis.

In this section we use Ito's rule to show that the value function

can be characterized as the solution of a partial differential equation

with inequality constraints. In order to state the differentiability

hypotheses we need some terminology from distribution theory. For
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definitions of all the terms used below refer to Rudin [17] or to Yosida

[23].

p
By condition Dg on a function V: [0,1] * R -*- ]R which is

continuous and bounded, we mean D_: The first and second partial disti
ls

8 P
bution derivatives of V in the x variable are in L ([0,1] x ]R ) and the

first partial distribution derivative with respect to t is in

L3([0,1] x ]RP).

The imposition of condition D0 on V is weaker than imposing continuous
p

differentiability. A Theorem of Rishel [16] states that a version of the

Ito rule is valid if V satisfies the weak differentiability hypothesis D0
p

for some 3 > 1. If V satisfies D_ for 3 > 1 we define the action of the
p

partial differential operator A(t,x) on V by:

A(t.x) [V] -|2 (t.x) +IV <t) f (t,x) +Z Vj J&r <t,x)
i i i,j J i j

Using this notation, we have the following Theorem.

Theorem 2.4.1.

P
Assume there exists a bounded continuous function V:[0,1] x jr -»- ]R

and a control law u* satisfying the following conditions:

1) V(l,x) = 0 for all xe irP

2) V satisfies condition D for some 3 > 1
p

3) c(t,x") + A(t,x")[V] >0= c(t,x"*) + A(t,x"*)[V] a.s.

4) V(T^, xuu) -V(T^,xUu) <1=V(T"*,xU*i -V(t"*,x^ a.s.

where 3) and 4) hold for all controls u.
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Then u* is optimal, V is the Markovian value function and V(0,0) = Jw
M

the cost of the optimal control law.

Proof: Fix t € [0,1]. Fix a control law u. Let t" be the jump times

of u. Define the sequence of stopping times S, by S, = t A T, . Then S,

is an increasing sequence of stopping times and S. t t. Now we have:

00 00

(a) V(t,x"j - V(0,0) = £ [V(Sr+1,x" ) - V(S, ,x" )] - £ [V(S-, ,. ,x" )
k=0 K+i b"k+l R bk k=0 k+1 S"k+1

-V(Sk,x")]
k

But the 2— term on the right hand side of the equality (a) is

t

[V(s-,x"_)- V(s,xU)] dNU(s)

=f [V(s,x" )-V(s,x")] dNU(s)
Jo S" S

in view of the continuity of V in the t variable. Thus equality (a)

becomes

f
Jo

(b) V(t,x^) =V(0,0) +£ [V(Sk+1,x^_ )-V(Sk,Xg )]
k k+1 k

-j:[V(s,x" ) - V(s,x")] dNU(s)
0 s" S

From Theorem 2 of Rishel [16], it follows that

/• k+1

Ej A(s,x^) [V] ds =E[V(Sk+1,x^_ )-V(Sk,Xg )]
Sk k+1



Thus taking expectations in (b) we obtain

S,

(c) E V(t,x") - V(0,0) + E]£ I A(s,xU) [V] ds - E| [V(s,xU )
t kJs, s Jo s"
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- V(s,xU)] dNU(s)
s

or carrying out the summation in the 2— term on the right, we obtain

ft ft
EV(t,x )= V(0,0) + E1 A(s,x")[V] ds - E( [V(s,xU )- V(s,xU)] dNU(s)

L Jo s JO s" s

Now put V(0,0) = J*, - A(s,x")[V] = a11 and [V(s,xU ) - V(s,xU] = 3U.
o s s^ s s

Then it is seen that the conditions of the sufficiency part of Theorem

1.5.1. are satisfied. This proves the Theorem. °

Corollary 2.4.1.

The V appearing in the preceeding Theorem is unique..

Proof: Clear since the V is the Markovian value function. a

A Partial Converse of the above Theorem is provided by the next

Theorem. Here we assume that the Markovian value function V satisfies

condition D . Towards this end we have already shown that V is Lipshitz

in x and absolutely continuous in t (due to the integral representation

for it in Theorem 2.3.3). In the next chapter we deduce some

differentiability properties of V under alternate hypotheses.

Theorem 2.4.2.

Assume that the Markovian value function V satisfies condition D0 for
p

some 3 > 1. Then u* is an optimal control implies for all value decreasing



controls u, the Markovian value function satisfies.

1) c(t,x") +A(t,x")[V] >0=c(t,x"*) +A(t,x"*) [V] a.s.

2) V(T",x; u) -VCT^x" )<1=V<(x«*ul -V(Tf,x£) a
T"k Lk L~k lk

3) V(l,x) = 0 for all xe mP

Proof:

Condition 3) follows immediately. Let now u* be optimal and fix a

value decreasing control u. By the same argument as in the previous

Theorem we have

Jt ft
A(s,x")[V] ds - El [V(s,xU ) - V(s,x")]dNU(s)D s j0 s- s

We can now use the optimality principle to conclude that

-A (u) + 1 c(s,x ) ds + I dN (s) is a submartingale where
Jo s h

A.(u) *= f - A(s,xu) ds +f" [V(s,x" ) - V(s,x")] dNU(s)
cJo Jo

The technique which was used in the necessary part of Theorem 1.4.2

yields the result. This concludes the proof of the Theorem. n

Theorem 2.4.1. is to be compared with Theorem 2 of Bensoussan and

Lions [4], It is a slightly stronger version of their Theorem since we

only need their "Differential Inequalities" to be satisfied along the

admissible trajectories generated by control laws.

.s.

49
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CHAPTER 3

DIFFERENTIABILITY PROPERTIES OF V UNDER ADDITIONAL HYPOTHESES

In this chapter we show that the Markovian Value function V of the

Impulse Control problem introduced in Chapter 2, is continuously

differentiable in x under suitable assumptions on the cost function c

and the set U of admissible jump heights. We will further assume that V

satisfies a condition which makes it into a "good" function. For ease

of exposition we assume that u(t) = 0.

We know that V is a bounded continuous function V: [0,1] x]Rp-*]R+.

From 1) of Corollary 1.3.4 it follows that

V(t,x) <1 + inf V(t,x-u) for all (t,x) e [0,1] x mP
uQj

Let C = {(t,x) e [0,1] x ]RP/V(t,x) < 1 + inf V(t,x-u)}.
u€u

Let S = C (viz. the complement of C). Note that C is the set of all

points in (t,x)-space where a change in control value is not advisable.

Thus an optimal control if it exists cannot jump in C. The region C

may therefore be called the continuation region. On the other hand in

the region S it is imperative that we change the control value.

Intuitively an optimal control should jump as soon as the trajectory

reached the boundary of C and the height of the jump should be the u

which minimizes v(t,x-u). For a Theorem regarding the optimality of this

policy refer to Bensoussan and Lions [4]. We now make the following

assumptions:

Al The set C is non-empty, its complement S has non-empty interior and

3C = 3S is regular (where 3 denotes boundary and the bar over C denotes

closure).
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A2 For all (t,x) G s, there exists a unique u (t,x) ^U such that

inf V(t,x-u) = V(t,x-u (t,x)) and for each fixed t the map (t,x) •*• u (t,x)
uOj

from TR -*• U is continuous.

A3 The set U C ]R^ of admissible jump values is a cone.

A4 The cost function c is continuously differentiable in both variables.

A5 There exists an optimal control.

Al, A2 and A3 are similar to the assumption of Bensoussan and Lions

[4] that V be a good function. In Assumption Al, what we mean by the

regularity of the boundary becomes clear in the analysis between Lemma 3.2

and Theorem 3.1. We note that the continuity of V implies that C is an

open set. We prepare the proof of differentiability with the following

Lemmas which say that V is continuously differentiable in C and in Int S

(where Int denotes "Interior.")

Lemma 3.1. V is continuously differentiable in x in the region C.

Proof: Fix (t,x) G C. Since C is open there is a Neighbourhood (Nbd)

of (t,x), N(t,x), s.t. N(t,x) C C. Let S be the first exit time for the

Brownian Motion which starts from x at time t from the Nbd N(t,x). Now

since in C, V satisfies V(t,x) < 1 + V(t,x-u (t,x)), it follows that the

optimal control law does not jump in C, in particular in N(t,x). Thus

the optimality Principle yields.

V(T,BT)= E{1 c(s, Bg)ds/BT} +EV(S,Bg)

for all stopping times T such that t <_ T _< S. Now since c is continuously

differentiable in both variables, it follows from the solution of Problem 6,

pg. 59 of McKean [12] that V is continuously differentiable in x in the
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Nbd N(t,x). This completes the proof of the Lemma n

Next we show that V is continuously idfferentiable in x (for fixed

t) in int S = int C. It will then remain to show that V is differentiable

on ds.

Lemma 3.2. For each t, V is continuously differentiable in x on int S.

Proof: The proof is in two steps. We first show that for each fixed t,

*

(t,x) £ S =* x - u (t,x) £ C. Then we use this to establish the statement

of the lemma

Step 1; Fix (t,x) G s. Let z = x - u (t,x). We need to show that

z £ C. Now since. (t,x) G S we have

(a) V(t,x) = 1 + V(t,z). If z is not in C then z £ S. In that case we

have

(b) V(t,z) = 1+ inf V(t,z-u). Now since U is a cone in ]RP, every
uQj

point which is accessible from z is accessible from x. Thus inf V(t,z-u)
uQj

>_ inf V(t,x-u) = V(t,z). So certainly we have 1 + inf V(t,z-u) > V(t,z)
uQU uGu"

which contradicts (b). Thus we must have z^C. This concludes the proof

of Step 1.

Step 2: We now show that for fixed t, V is continuously differentiable

in x for x G int S. Towards this end fix (t,x) € int S. Let u = u (t,x).

Then by step 1, x-u G c. Now since C and int S are disjoint open sets,

there are Nbds. Nof x-u and N, of x in 1P such that N CC and ^C int S,

By the continuity of the addition Map on 1RP, there exists aNbd. N2 of

x in ]RP such that xf-u € N for every x1 e N2« By the continuity of the

map u as assumed in A2, there exists a Nbd N3 of x such that x'-u (t,xf)

e N for every xf G N . Let now N'^N^^n N3« We shall work locally
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in Nf. Let x* £ N'. The we have:

V(t,x') - V(t,x) « [1 + V(t,x,-u1)] - [1 + V(t,x-u)] where uf = u (t,x»)
it

„ and u = u (t,x)

= V(t,x,-uf) - V(t,x-u)

= [VU^'-u^-Vft.x'-u)] + [V(t.x'-u) - V(t,x-u)] (a)

Now x'-u', x'-u, x-u £ c and by the previous lemma V is continuously

differentiable in C. Therefore taking recourse to a Taylor expansion

(a) can be rewritten as

V(t,xf) - V(t,x) =
3x

z.(u-u')+f x-u^x'-x) + o(x'-x) (b)

where z is an interior point of the line segment joining x'-u' to x'-u,

We show that the first termon the right in (b) is zero. Towards this

end consider

V(z) < V(z+ (u-u1)) 1 e
3x

(u-u1) + V(z) (c)

for all |e| sufficiently small. We note that the first inequality in

(c) holds for e both positive and negative by the continuity of the map

u and because U is a cone.

Thus from (c) we obtain

3V

°±e*3x-
(u-u*) for all |e|. sufficiently small

Taking e > 0 and e < 0 we see that

3x
(u-uf) = 0

Thus (b) becomes



V(t,x») -V(t,x) =|~
x-u

(x'-x) + o(x'-x).

3V
This shows that -r-~

3x
exists and equals -r—

3V
Next we show that -r— is

x-u 3x

continuous at all points x £ int S. Towards this end fix t and let

P * *
x > x in Kp, where (t,x ) £ int S for all n. Let u (x ) • u (t,x )
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3V
Then —

3x 3x
*, x. Now since x + x and u is continuous we have

... x -u (x ) n
* n* n n* * *
u (x ) •> u (x) or x - u (x ) -*» x - u (x). But x - u (x ) £ C for all n

n n n n n

and V is continuously differentiable in C. Thus iHX
3x

3V

x -u (x ) 3x
n N n

*

x-u (x)

3x
. This shows that V is continuously differentiable in x in int S,

This concludes the proof of the lemma. a

We are now ready to prove that V is continuously differentiable in x

on 3S. In order to prove this we fix (t,x) £ 3S and consider a control

law which does not jump in a small Nbd of (t,x) and follows the optimal

policy outside this Nbd. This will enable us to compare the right and

left partial derivatives at x, in every direction, which exist by

lemmas 3.1 and 3.2. We shall see that they are equal. This will enable

us to conclude that
3x

exists and is continuous for x G 3C= 3S. Before

we prove the theorem we introduce some notation and make an observation.

We remark that this cumbersome notation is necessary because of the

variety of cases that occur.

Fix (t,x) £ 3C =3S. Let e. denote the unit vector in the direction

of the i.th co-ordinate axis. For each e let &±(e) = e± + ee^ Now fix

i. Since (t,x) € ac = 3S and 3C = 3S is regular the following mutually

exclusive cases arise:

1) x + 6 (e) € S for all |e| sufficiently small.

2) x+ 6±(e) G c for all |e| sufficiently small.



3) x + 6 (e) € S and x + 6.(-e) € c for e > 0, e sufficiently small.

4) x + 6.(-E) g S and x + 6.'(e) € c for e > 0, e sufficiently small.

We remark that these are the exclusive cases which arise because of the

assumption that 3C = 3S is regular.

3V ^
Now let D . (x) = lim -~- (x+6.(e))

e+i e-K) 9xi ±
e>0

3V
and let D (x) « lim ~- (x+6 (e))

e~i e->0 3xi i
e<0

J

where we have

suppressed the

variable t since

we have fixed it.
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Then by lemma 3.1 and 3.2 both D (x) and D (x) exist. We have to
e i e"i

show that they are equal. If the index i satisfies case 1) then by

lemma 3.2 we have D ^ (x) = D (x). If the index i satisfies case 2)e+± e-±

then by lemma 3.1 we reach the same conclusion. The only cases that

remain are cases 3) and 4). Let now Ig be the set of all indices i which

satisfy case 3) and let Ic be the set of all indices iwhich satisfy

case 4). Fix an index i€ i Then we claim that T)&+ (x) < Dg_ (x) .

Here we recall that (t,x) € 3.C. To see the above claim, fix e > 0.

Then since i€ I we have x+ 6±(e) e S, x+ S^-e) ^ C for e sufficiently

small. Since the set U of admissible control values is a cone, we have

V(x+6 (e)) <_ V(x). Thus D , (x) <_ 0. On the other hand since (t,x) € 3S,
i e+±

we have V(x) >. V(x+6. (-e)) for e sufficient small. Since if not we would

obtain V(x) < 1 + inf V(x-u) which contradicts the fact that x € S. Thus
uOJ

D (x) > 0. We have thus shown that D . (x) < 0 < D (x) ore-± - e+± - - e-±
D . (x) < D (x). If the index i G i_ a similar argument holds. Thus we
e+. — e-. C

i i -.
have shown that D , (x) < D (x) for all indices i when (t,x) € 3S = 3C.

e+i ~ e"i
In the theorem we show that the reverse inequality holds.
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Theorem 3.1.

For each fixed t £ [0,1], the Markovian value function V is

continuously differentiable in x on 1RP.

Proof: Fix t. Let cl = t* e lRP|(t,x) GO. Similarly define int s|t-
By lemmas 3.1 and 3.2, the statement of the theorem holds in C t and

int si . We now show that it holds on 3C| . Towards this end, fix

xG 3CI and fix e > 0. Let N(e;(t,x)) = {(s,y) ^ [t,l] x mp/|s-t| < t,

|y-x| < e}. Then N(e;(t,x)) is a Nbd of radius e around (t,x). Let S£

be the first exit time of the Brownian Motion starting at x, from the Nbd.

N(e;(t,x)). Consider the control law which maintains a no jumps policy

in N(e;(t,x)) and follows the optimal policy outside N(e;(t,x)). Compute

the cost J of this policy. We have

S

J=E[( c(s,x+B )ds] +E[V(Se,x+Bg )] <K^e +K2e +EV(t,x+Bg ) (a)
Jt s £ e

where K is the uniform bound for cand K2 is the time Lipschitz Constant

for V. Now since S is the first exit time for the Brownian Motion
. 1

starting at x from N(e;(t,x)) we have |b |<ewhere Bg is the ith
e e

component of B. . Thus using lemmas 3.1 and 3.2, the inequality (a) can
e

be rewritten as

J < K.e + V(t,x) + E Do+ <x> E^Bs /0 - BS < £]
i ^i e e

+E D M EIBs 7"e<Bs <0] +o(el/2) (b)
i e"i e e

i 1/2where we have used the fact that Eo(Bg )= o(e ). But
1 i i , i e i °i 1/2 . ,1/2.-E[B. /- e <Zt <0] = Ep£ /0 <Bt <e] < jtj e . + o(e )
se Se Se e (2tt)1/Z

Thus (b) can be rewritten as
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0. -,/2 1/2 1/2

J<K-e + V(t,x) + £ [D + <*> - De- (x)1[ 1/2 G +°(£ )] +°(£ }"
i e+i 6 i (2tt) '

(c)

Now looking at (c) we see that if any term under the summation sign is

strictly negative we <:an take e sufficiently small and obtain J < V(t,x)

which contradicts the fact that V is the value function. Thus we have

D (x) >. D (x) for all i. Combining this with the result Dg+ (x)
e+± e-± ±

<_ D (x) proved just before the statement of the theorem, we obtain

D , (x) = D (x). We have thus shown that V is continuously differentiable
e+i e"i
at x in every co-ordinate direction. This concludes the proof of the

theorem. n

We remark that when the state space IRP is one dimensional, the

assumption that int S is non-empty implies that V is constant in x for

each fixed t for x G int S. This statement is fairly easily proved. We

shall not go into details here. Thus in the one dimensional case we

obtain that V is twice continuously differentiable in int si and in fact

both the derivatives are 0. Furthermore the technique used in lemma 3.1

could be used to show twice continuous differentiability on cl . Furthermore

the technique used in Theorem 3.1 could be used to show that V is twice

continuously differentiable on 3Cl . In addition the technique used in
•wr~- jt

Theorem 3.1 could be used as a basis for discovering a heuristic algorithm

which tells us whether we are following an optimal policy or not. This

would be particularly useful if we restricted ourselves to (s,S) policies.

Then we could discover whether the reorder point we operate on should be

increased or decreased in order to maintain the equality of the derivatives.
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CHAPTER 4

CONCLUDING REMARKS

In chapter one we have considered a fairly general form of the

stochastic control problem and a class of control laws which are important

whenever physical or institutional constraints require that controls

cannot be changed continuously. This is particularly meaningful in an

Economic Context when control laws are modelled as prices or have

components which represent capacity levels. Another important class of
problems which can be tackled under this framework is that of optimal
stopping problems and quickest detection problems. The results presented

here could be combined with those of Boel [7] to obtain a theory of

Impulse Control of jump processes. The detailed analysis of the continuous

time Inventory control problem carried out in chapter two shows that the

abstract conditions lead to equations which are difficult to solve

computationally but which nevertheless indicate important properties of

the optimal control as remarked at the end of Chapter 3.
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