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1. Introduction

Let X > 0 < t < 1, be a standard Wiener process defined on a probability

space (fi,{(3lK rn). Let ^P be aprobability measure on (ft, Jk) equivalent

to (~P. Eand Eft will denote expectation relative to P and CP- respectively.

Let <7 denote a(X , 0£s£t). The following set of results are by now well

known: [See e.g., 3]

(a) If
d^P _
Wo

= exp {J
fl 2 1 c-f

<{> ds> where <j> is an xXy-} adapted process,
0 S J

)dX -\
s s 2

then W = X - (j) ds is a standard Wiener process with respect to

(b) Under some additional conditions such as

hood ratio is expressible as

t oacp0 ^xt Uo 8 8 2Jo S J

where $fc =E((j>t |<3P ).

Ed) ds < °°, the likeli-
v s

(c) Even without the hypotheses of (a) and (b), the likelihood ratio

(viz., the projection of on the a-field generated by X ,

0 < s < t) is of the form

ff* If* 2 1. « exp < v dX - t v ds yt F|J0 s s 2jQ s J
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ft
v ds is a

0s
where v is an ix} } adapted process and V = X -

standard Wiener process with respect to (ft.vtJ- },P).

The purpose of this paper is to consider these and related problems for

Wiener process with a two-dimensional parameter. An attempt in this direc

tion was begun in [4] but the effort was only partly successful. It revealed

the far more complex structure of the stochastic calculus in the two-para

meter case, and a full elucidation of the form of the Radon-Nikodym deriva

tive and likelihood ratio had to await the development of the calculus

as presented in [6,7].

o
Let R denote the positive quadrant of the plane. For two points

a = (a.,a2) and b = (b ,b ) we denote

a < b if a <b. and a_ <_ b«

a -ft b if a- < b- and a2 < b„

a A b if a- £ b and a2 ^L t>2

a £ b if a. < b and a„ > b«

Furthermore, we shall adopt the notations

a® b = (a^b^

a ~ b = (min(a.,b ), min(a2,b2>)

a v b = (max(a ,b ), max(a2,b2))

Observe that if a A b then a ® b = a ~ b and b ® a = a ~ b. Note also that

2
a®b<8>c = a®c. Finally, for a fixed point zQ in R+, Rz will denote

2
the rectangle {z: z4 zQ, zE R+}.

Let (fi,^,^) be a probability space and let {9? ,zeR }be a family
z 0

of a-subfields such that

V «' >z- % D^i
F„) 'rj. contains all null sets of of where 0denotes the origin



Fj ^ = n ^T i for every z
6 Z z'>z z

F4) 9^2 and yP ^ are independent given ^

For each z, tjf will denote oF~ and J- will denote yf <$&,•

Let {X , z £ R } be a stochastic process defined on (ft,y i~P) and
Z z0

adapted to CdP } (i.e., for each z, X is J- -measurable). For b » a let

(a,b) denote the rectangle {z: a ^ z -< b} and X(a,b] the increment

Xb"Xa®b"Xb®a+Xa*

Definition. {X ,9T , z € R } is said to be:
z z z0

M.) a martingale if E{X \\f } = X almost surely

M2) aweak martingale if E{X(z,zl]|^J }=0

M3) astrong martingale if E{X(z,z']frJ^V^} =0
M.) an adapted i-martingale of E{X(z,z*] |^J } = 0, i = 1,2

M_) a Wiener process if {X , x} ,z£ R } is a strong martingale,

and X is a Gaussian process with EX = 0 and

EX(A)X(B) = Area(AHB) for all rectangles A and B .

We note that if X satisfies condition M, it is said to be an i-martingale

whether or not it is {*tT } adapted. In (l)-(5) the conditions are to hold
z

for all z and all zf > z. With these definitions, we can easily verify

that a process is a martingale if and only if it is both an adapted

1-martingale and an adapted 2-martingale. A strong martingale is also a

martingale, and an adapted one or two martingale is also a weak martingale.

We owe most of these definitions to [1]. In the appendices, a summary of

the principal results concerning the stochastic calculus for a Wiener

process is presented. These results in a more general form and in

greater detail can be found in [6,7].



Let (fif{ci- }) be a measurable space on which two probability measures

<+> and 4^ are defined. Let {\^ *zGr }be aWiener process under
rQ and let ^xz denote the a-field generated by {X ,C< z}. We shall
attempt to answer the following questions:

(a) Suppose that P and P are equivalent and

d^P ff if 2 1

z0 z0

how does X behave under P?

(b) With whatever additional assumptions which might be necessary,

is it possible to obtain an explicit expression for the likelihood

ratio

(c) If we do not assume that P and P are equivalent, but only that

their restrictions on \f are equivalent, can the general form

of the Radon-Nikodym derivative on <j- be found?

We believe that these questions are answered with reasonable completeness

by the results of this paper. We are satisfied that the form of these results

is quite general, even if the conditions under which they are proved may

not be the best possible, The order of our presentation will be as follows:

In section 2 we shall obtain a series of formulas which provide an answer

to (c), and in section 3 a generalization to the exponential formula for

Wiener processes. In section 4 we shall give an interpretation for these

formulas in terms of some conditional moments of the process X under the



HP-measure. Finally, in section 5 an application of these results to the

following hypothesis testing problem which arises in signal detection will

be considered:

H~: The observation {£ , z £ R } is a white Gaussian noise.0 zQ
H: The observation is of the form £ = 0 +r\ where r) is a

z z z

white Gaussian noise and 0 is a random signal.

It will be shown that in this case the likelihood ratio is expressible in

terms of 8 = E(0 1^ ) and p(z,z') = cov(0 0 ,|<3f .).
z z xz z Z ^ XZv z

2. Likelihood Ratio Formulas on Increasing Paths

Let (&,cj-) be a measurable space and {X , z £ R } a family of measurable
z zQ

functions. Let ^ = a(X^, £€ R ) and assume & = aF. Let 4^ and ^PA
^xz £' z xzn

be two equivalent probability measures on (£2,<jr) such that under Pn, X is a

Wiener process. Denote the likelihood ratio by

dc
(2a) \ mEo ldS) ^xz} •
Then L is a positive ({\f }rPn) martingale. In addition, we shall assume

XZ u

(2.2) EAL2 <«> , Vz G R
0 z z0

so that we can invoke the representation theorem of [5] and write L in the

form

(2.3) L = 1 +
z

R

a dX +

z z z

$_ _i dX dX f .

Whence it follows that L can be chosen to be almost surely sample-continuous,



The square-integrability condition of L is made necessary by the fact that

unlike the one-parameter case the stochastic-integral representation for

Wiener-martingales has been proved only for square-integrable martingales

and not for martingales in general. Because of this, it is not yet clear

whether all Radon-Nikodym derivatives on a Wiener space are sample continuous

However, we believe that the square-integrability condition (2.2) can be

weakened and that the form that we will derive is valid for all continuous

likelihood ratios.

Equation (2.3-1) can be put in the form

(2.4-1) L = 1 +
z

with

LC'®z u(z»C,) dV
R
z

(2.5-1) u(z,Cl) «r-^- [arf + I(CACf)er r,dX ] .

z

Alternatively, (2.4-1) and (2.5-1) can be recast into the form

f
(2.4-2) L = 1 +

z
L^ „(,,0 dXc

R
z

(2.5-2) i(z,C) =7^- [or +[ KCAOB- r,dXr,] .
z

We recognize (2.4-1) as a representation of L as a 1-martingale, and

(2.4-2) a representation as a 2-martingale. Since L > 0 almost surely,
Z

we can now apply the differentiation formula (B.2) of the appendix to

In L and get



£n L =
z

uCz.C^dX ,-|if 2
u (z.OdC1

u(z,OdX - ±
R ^ J

u (z,C)dC .

It follows that we have

(2.6-1)

(2.6-2)

fi-lJR
Z e.

| u(z,C)dX^ -if G2(z,C)dcl .

L = exp
z e

(z.C')^, -i u (z,C')dC •}

Equation (2.7) is reminiscent of the exponential formula in one dimension,

and indeed it is precisely that. We note from (2.5-1) that

u(z,C') = ute'Oz,^)

so that the exponent in (2.6-1) is a semimartingale on horizontal lines.

Thus, (2.6-1) can be considered a representation of L as a positive martin

gale on horizontal paths, and (2.6-2) as a representation on a vertical

path. Thus, the similarity of (2.6) to the exponential formula for one-

parameter Wiener processes comes as no surprise. Indeed, the representation

(2.6) can be generalized to any increasing path.

Let T be an increasing path connecting the origin and zA. For any

point z €= R , z„ will denote the smallest point on T greater or equal to
z0 l _

z. We say {<J> , z £ R } is C7r-adapted if for each z (j) is <jh -measurable.
Z Z^ 1 Z Z-p

In appendix A, stochastic integrals for J^-adapted integrands have been

defined. Using this definition, we can rewrite (2.3) for z € r as

(2.7)

where (c.f. (B.10))

!.Lz •1 +L Lcr Vc> d\
z



(2.8) ur(C) = (Lr )
-l

a +

C®C'eD

B?, ^ KC?A C) dX?l

c»®cgd;
3c,cf 1(?>u,) dXcf

Observe that only one of the two integrals in the definition of u„ is non-

r r r
zero. For C €= D , £f ®£ cannot be in D , and for £ £ D«, C®Cf cannot be

in D . So defined u„(C) is <S -measurable, and an application of the one-

dimensional differentiation rule to the path T yields

(2.9)

for all z e r.

LJR_
L = exp
z r

(Odxc - f
R

Up(C)dC}

Theorem 2.1. Let (ft,(rjfPn) be a probability space and {X ,z€ R }a
0

'0

Wiener process. Let tJ denote the a-field generated by {X , X, -< z} and
XZ *3

assume ex = ct

XZ0
(a) Suppose ^ is aprobability measure equivalent to 4^ such

that the likelihood ratio

L = E
z %z}

is ^-square-integrable (i.e., El <», Vz-4 zQ). Then for any increas
ing path T there exists an yL-adapted process u„ so that for all z € r

(2.7)

and

(2.9)

L = 1 +
z

ur(C) Lr dX
r l t* ^

z

L = exp
z {JR

ur(C)dX^ "l|R ur«dc}



(b) Conversely, let T be an increasing path and Up an <jp-adapted

process satisfying

u„(a)dC < °° almost surely 43% •

'0

Define for z £ T

L = exp{I Uj,(OdX --
R

Up(C)dC}

Suppose that ErtL = 1. Then ,s?\ = L defines a probability measure
0 z0 ^0 z0

and E0(L2ol9Tx2) =L,.

q>

Proof: (a) Since L is a ^P-square-integrable ^^-martingale, we can write
xz

as in (2.3)

L = 1 +
z

R

a dX + 6c,c dxc dV •R XR
z z

Define u„ by (2.8). Then (2,7) follows. An application of the one-parameter

n L on r yields (2.9).

uP(C)d£ < oo almost surely (4^A) then

differentiation formula to &n L on T yields (2.9).

' 2Z

M =
z

(b) Conversely, if
R

R

Up(OdX is well-defined as a local martingale on T with

<M,M> =
z

R

Up(C)dC .

Mz-|<M,M>z
Hence, L = e defines a probability measure if EL =1. Since

z zQ

L = 1 +
z fLCUjr Qr

r(C)dXc

it follows that EA(L ItT ) = L , almost surely. D
0 z' ^xz z* y
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Let Y = a(C) (dX -ur(C)dc) ,where a is a bounded deterministic func-
z JR 5 i

z

tion. Then, under 4?, Y can be considered a semimartingale on T, and the

one-parameter differentiation rule (B.8) yields

L Y =

2 z in C
Iv [a(C)+Y^ u„(C)]dXcr rv-—c

R T
z

so that LwYw is a P-martingale on T, Therefore Y is a 4^-martingale on I\
z z

This gives us the interpretation

(dx-ur(c)dc)|(3fx2
rJ

= o

or

(2.10) ur(C)dC = E^ig-rJ

Specializing to horizontal and vertical paths yields an interpretation

for the functions u and u in (2.6) as follows.

(2.11-1)

(2.11-2)

u(z,C,)dCt = E

u(z,C)dC = E

dV'^x,C'®zJ

A more precise statement of (2,10) or (2.11) can be made as follows:

For a fixed V define a f-martingale Y by the property

e|y(z,z,]|<t3Tz }=0 for all z'yVz .

This generalizes the concept of i-martingale (adapted or non-adapted). Now,

a precise statement of (2.10) or (2.11) is given by
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Theorem 2.2. Let up, X, *P and 4^, be as in Theorem 2.1. Then

M =
a

is a r-martingale with respect to P,

Proof. Fix two points z ^ zf, and for {a: a >-z and a £ T} define

\ " xz - L ur(c)d5
K
Z

I(z-{ C4z')[dX -ur(C)dC] .
R ^
a

<V-Since M is a K-martingale on the portion of V from Zp to zA we have

E(Mz l^z }=Mz •zo zr zr

Since M = Y(z,zT] and M =0, the desired result follows. •
2o zr

Before proceeding to the derivation of a two-dimensional exponential

formula for L , consider the special case where u„(C) = <J>r is independent
Z 1 c,

of path. In that case the formula (2.9) becomes

Z Z

which being path independent is already a full-fledged two-dimensional

exponential formula. Needless to say, the condition that Up be independent

of path is a severe one and the circumstances under which this obtains will

become apparent in the next section.

-1 **}

3. A Two-Dimensional Exponential Formula

The exponential formulas for the likelihood ratio given by (2.6) and

(2.9) are two dimensional in form, but clearly one-dimensional in spirit.
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Our next objective is to derive a formula which is inherently two-dimensional,

The starting point is (2.5-1) and (2.4-2). Observe that (2.4-2) is in the

form of (B.5-2) so that (B.6-1) applies. It yields

(3.1) V®z • V +
R

KUC,)Lc,(2)Cu(Cl®C,C)dXc

If we denote

(3.2) Yz,C* = V +
R

KUe')B5 c,dx?

then (2.5-1) acquires the form

(3.3) u(z,C?) = (r^-^z r»

For a fixed Cf, L .~ and Y „. are 2-martingales, and we can apply (B.2-2)
£'®z z,C

to get

u(z,C*) =(7^0 +

- I(U C) zy>C' Lrt<ftr u(c'®C,^)dX?
R

Ut.AS')-l— Br r, dX
R V®C ^ ^

z

T2 -C'®?

I(C>tC,)7J^-u(C,®C,C,)Bir c,dC
R LC'®C ^

z

R

Kac,)[-^ii-]Lj.^u2(c,«c,c)dc .
: V®C

Observe that because of the term !(£./. £*) in the integrals, we have

u(z,C') = u(C,®z,Cl)

so that

f&*£- =u^CC') =u(C,®C,^)
Lc'®c
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Then it follows that we can write for z ^ £'

(3.4-1) u(z,C?) = 8 , +
R

iaAC,)p(C,C,)[dXc-u(C,®C,C)dC]

a

where

(3.5)

and

(3.6) P(CC') =3Ta,C,) -u(^®C,C')u(C,®C,0

By symmetry we can also write

(3.4-2) u(z,0 = 0 +
R

KC^OpCcOdX f

KCyU'WCOuCCGcOdC .

Equation (3.4-1) yields

f

(3.7) u2(z,C') = 0*. + 2
R

I(CXC')u(C,®C,C,)p(C,Cf)[dXc-u(C,^,C)d^]

KUOp^COdC .

Putting (3.4-1) and (3.7) into (2.6-1) yeilds

1(3.8) Lz =expj I O^dX^, -%
z

2 1
p^(C,C,)dCdC'

R XR
z z

R XR
z z

Ptt.C'MdX^C'^.OdCHdX .-uCC^.e^dC']

which is the two-dimensional exponential formula that we have sought.

Given p and 0, (3.4) can be viewed as a pair of linear integral equa

tions with unknowns u and u. Indeed, if we set u(a®b,a) = h(a,b) and
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u(a®b,b) = fi(a,b), (3.4) can be rewritten in the form

G (C,C,)h(C,,C)dCdC'h(a,b) = hQ(a,b) +
R ^,xr a

h(a,b) = hQ(a,b) +
•d xR

a®b a®b

If p is bounded then so are G and G, in which case Picard iteration converges,

and the existence and uniqueness of h and h are not in question. Therefore,

if p is assumed to be bounded then (3.8) can be viewed as an expression of

L in terms of 0 and p.
z

Summarizing, we have the following:

Theorem 3.1. Let {L , z £ R } be an almost surely positive square-integrable
z z0

martingale defined on {QjxffP^) where iJ is generated by aWiener process

{X , z E R }. Let LA = 1. Then, there exist functions 0, p, u and uz zQ U

satisfying (3.4) such that L can be expressed by (3.8). Further, L satisfies
z

(3.9) L = 1 +
z

L 0 dX +

R ^ Q Q

f

Lc,0c[p(C,C,)+u(C,®C,C,)u(Ct®C,C)]dXcdXi;t
R xR

z z z

Conversely, let 0 be an J -measurable function defined for z £ R
z xz zA

and p(z,zf) be an VJ .-measurable function defined for all z, zf £R
xz^z' zA

such that z z'. Suppose that (3.4) has unique solutions for u and u, and

when 0, p, u and u are substituted into (3.8), it yields an L satisfying

EAL = 1. Then, L is a positive martingale which is the unique solutionU zQ z

to (3.4).

Corollary. Let {X , z G R } be a Wiener process defined on (ft, J-, PA) and
z z0 °

denote cf = a(X , C-< z) • Let 4-* be a probability measure on (ft,of) such
XZ (p

that the restrictions of 4^ and 4^ to ^ are equivalent. Suppose that
U xzQ

the likelihood ratio



15

<*gyL aE[ £±L-CT )

is 4y» square-integrable. Then, it satisfies (3.8) and (3.9).

Proof. The fact that L satisfies (3.8) has already been proved by the steps
z

leading to (3.8). To obtain (3.9), we return to (2.3) and use (3.5) and

(3.6) to identify a and B- Finally, to go from (3.8) to (3.9), we rewrite

(3.8) using (3.4) to get back to (2.6-1), viz.,

L = exp
z {I u(z,C')dX^ -| }•u'(z,C')dC

If EJL = 1, this implies (2.4-1), i.e.,
U zQ

L = 1 +
z

R
V®zu(z'cl)dV '

Now, we can use (3.1) and (3.4-1), whence (3.9) follows. D

We observe that if p = 0 then (3.8) degenerates into the form given at

the end of section 2. In that case u(z,£) = u(z,£) = 0 ,and Up is indeed

independent of the path. This situation arises when and only when L satis

fies the equation

L = L +
z

R
W*c+ jR XR

z z

Vc*Vc,dW

4. Interpretation of the Functions 0 and p

The interpretation of 0 comes immediately from those of u and u and

the relationship 0(C) = u(C,C) = u(C,C). We have from (2.11)

(4.1) e(0dc =Etdxjgy .
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The interpretation of p is more obscure. A hint as to what it should be

comes from comparing (3.9) with eq. (4.12) of [4]. (In the latter

equation the factor y is due to a slightly different definition of the

stochastic integral of the second type.) These equations are similar,

and the comparison suggests that while u and u are conditional expectations

of dX given a-fields of various kinds, p should be the covariance of such

conditional expectations. Specifically, we should have

(4.2-1) u(Ct®C,C')dC' =E^Vl^x,^

(4.2-2) a(Cf®C,C)dC =E(dXc|9rx>c,0c)

(4.3) p(C,C,)dCdCl = E (dxc-u(c,®c,0) (dXcf-u(C,®C,0) iQ^taJ

for all C, V in R such that CAC'. We note that because £>(£*, V®X>
Z0

can be replaced by Cv V as is done in [4].

To verify (4.3) precisely, we must show that if

f

(4.4) Y =
z

f(C,C')J[dX -u(C'®e,C)dC][dX .-utC'^.OdC1]
R xr L
z z v

}- p(C,C,)dCdCt

where f is any bounded deterministic function, then Y is a weak martingale

with respect to ({9-jf }fP), or equivalently, Y L is a weak martingale with
xz z z

respect to ({9T )t^Pn)« To do this we follow the procedure of appendix B,
xz 0

by first writing Y and L in the form of (B.5-1) and then representing the
z z

integrands as stochastic integrals of the form (B.4-1).

Define

(4.5-1) v(z,Cf) =f KCACf)f(C,Cl)[dX -uCC'St.Odd
JR

z
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I(CACt)f(C,Ct)[u(C,®C,Cl)(dXc-a(C,®!;,C)dc)
: - p(C,C')dC] •

(4.6-1) w(z,^') =

Then,

(4.7-1) Y =
z

[v(z,Cl)dXc,+w(z,C')dC?] .

Similarly, we can also write

(4.7-2)

with

Y =
z

R

[v(z,C)dXc+w(z,C)dC]

(4.5-2) v(z,C) = I(CXCf)f(C,C,)[dXct-u(C,®C,C,)dCl]

(4.6-2) w(z,C) = I(UCl)f(C,C,){u(C,®C,C)[dXcl-u(C,®C,C,)dCr]
- P(C,C)dC'} .

Using (2.4.1) and applying the differentiation rule for 1-semimartingale,

we get

(4.8) L Y =
z z V®z[v(z'c,) +u(z^f >V®z]dV

R

Lc,0z[w(z,Cl)+u(z,C,)v(z,j;,)]dCl .

From (4.5-1), (4.6-1) and (3.4-1), we get

w(z,Cl) + u(z,C,)v(z,Cl)

•I. KC>Cc,)[v(C'<8>C,C,)p(C,Cl)+2f(C,Ct)u(C,®C,Cl)][dXc-.u(C,®C,C)dC]

It follows from (3.1) that
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V®z[w(Z,C,) +u<z»5,)v(z,C,)l

KCAC^L ,^[u(uv+w) +(vp+2fu)]dXc

where the arguments of the functions in the integrand are (£,£f) for f and

p, (C'fcCC1) for u, v and w, and (C'®CtC) for u. Thus, (4.8) can now be

written as

L Y =
z z V®z[v(z'C,) +u(z^,)YC'®z]dV +

Symmetry dictates that G(z,£) must be such that

(4.9)

G(z,C)dX^ .

L Y =
z z

R
LC«®z[v(z'C,)+u(z'C,)YC»®z]dXC»

R
W*(z'°+G(z'C)V]dXC

which is clearly a weak martingale with respect to P..

5. Random Signal in Additive White Gaussian Noise

The following situation often arises in signal processing problems.

The observation is represented by a process £ of
z

£ - 0 + n
z z z

where 0 is a random process representing the signal and n is a white

Gaussian noise. To deal with such a model, we can integrate both sides of

the equation and get

(5.1) X =
z

JR

0„dc + w , z e r
C z z,

where X represents the observed process and W is a Wiener process. Let
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(fl,(T, P) be the probability space in which the processes X, 0 and W are

defined. For problems in signal detection and filtering it is useful to

introduce a probability measure P on (ft,T.J) with respect to which X itself

is a Wiener process.

Lemma. Let (ftjiJvP) be a probability space and let {7+ , z S R } be a
Z Z0

family of a-fields such that 0 is J- -measurable for each z and {W , z £ R }

is a standard Wiener process with respect to {tj- }• Define

(5.2) Vz = exp V-
R

'cdVi
R

6*dC I
and assume that 10 (to) | <^ c for almost all (£»&>)• Then for a _> 1, we have

(5.3) 1<EVa <exp[(^-7^)c2Area(R )]
z z z

Proof. Using the differentiation rule (B.2-1), we can write

If we set

then

and

or

va= 1-
Z

R
vVcdw, +i("2-a)

R
M*«

va < 1-
nz —

V = V if sup (V ^ ) < nnz z ceJ ^z -

= 0 otherwise

R
vn,g3ze,dw? +7<a2-a>

R
]K,r^

EVa <1+^-(a2-a)c2
nz — Z

R

,a
EV ^ df;

n,C®z
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EVn,st iX+T<«2-<Ot
S

EVa da
n,at

^n.st - 6XP T(0t "a)tS

and the right hand side of (5.3) follows from Fatou's lemma.

Since
a 2

E[\T~0 ] dC < °°, the stochastic integral

zero mean so that

R

V°L 0^dWr has
C®z C C

EV® =1+|(a2-a) j E(02V^g)z)dC >.1 .•

Theorem 5.1. Under the conditions of the above lemma, define a measure

<P0*
dCD

0

,q> =vzo

where V is given by (5.2). Define X by (5.1). Then,
z z

(a) 4(\ is a probability measure

(b) X is a Wiener process under 4-i

(c) ^ ^ and

(5.4)
d£p
d<?>

= exp {I R
Wf e^c }•

Proof. (a) From (5.3) we have EV =1. Since V is clearly positive,
—— z0 zo
PA is a probability measure.

(b) To prove X is a PA-Wiener process it'is enough to show that
z U

EQ exp{if u(C)dxJ =exp{-|| u2(C)dcj
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for all bounded deterministic u. Now,

EQ exp«ji| u(C)dX l= E

Rzo

V exp^i u(C)dX
.zo U*

'0

= exp<—, u (C)dC^E exp<-

^-R *
•iu(C)]dXc-i

R

Since u is bounded (by u say)

exp

R

[0 -iu(£)]dX -|
R

[0c-iu(C)]^dC

R

[6 -iu(01 dC

w I r1V |exp[y
Z0 Z

u^(OdC <V exp||u2Area(R )>
~ z0 l2 ° zoR

Hence, exp<-

R

[0 -iu(C)]dXc-|
R

[0 -iu(C)] dCf is a square-integrable

^P-martingale and

E0exp|i u(OdX ^ = exp -- }u (C)dC
R R

•o

as was to be proved.

(c) Since X is a cP-Wiener process and 8 is bounded

= exp<

R
Wi

R
9^i

must satisfy (5.3) with E replacing E and — replacing V . Thus,

20

and part (c) is proved. D



22

Now, let \f denote the a-subfield generated by {X^, £€ R } and
C zxz

denote

(5.5)

Let

(5.6) A =-i
z V

L2 =v|r|3y-

= exp-

R Vc 41 «H

which is of the form (3.8) with p = 0. Hence, (3.9) and (3.4) yield

(5.7) A = 1 +
z

R

A 0 dX + V®c8cec,dxcdxcfR XR
z z

which was also derived in [4]. Since

L = En[A \<& ]
z 0 z'^xz

we can follow the arguments of [4] and get

(5.8)

Now, denote

(5.9)

and

(5.10)

L = 1 +
z

R

LcE(6cigxC)dXc

R XR
z z

V®cE(ecV l^xc'a^YV

§(c|2) =E(0c|9yxz)

R(C,cMz) =E[(0c-0(c|z))(0c,-§(Cl|z))]

Then (5.8) can be rewritten as
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(5.ii) l =i+[ L0a|c)dx+ ff l r[§(c|cl®oe(c,kl®o
z JR S ^ JJC®C'

Z R XR
z z

+R(C,C,U,®0]dXcdXcf

Comparing (5.11) with (3.9) and using (3.8), we get

(5.12) L =exp{[ 0(c|OdX -if §2(c|c)dC-y[ R2(?,Cf U*®C)dCdCf
Z lJR Q ZJR zJr xr

z z z z

+[ R(C,C |C'®C) [dX -0(C| Cf®C)dC] [dX ,-§(?' |C'WdC ]1
JR XR ** ^ J

z z

which gives an explicit representation of the likelihood ratio L in terms

of the moments 0 and R. Such a formula was sought without success in [4].

In light of the amount of additionalmachinery which has been necessary to

derive (5.12), the failure is hardly surprising.

Now, (3.4) takes on the form

(5.12-1) (kc'U'Sz) =Q(V\V) + I(CXCt)R(C,C,|c'®C)[dXr-0(c|C,®C)dC]
JR ^

z

(5.12-2) 0(c|z®C) = 0(C|O + I(C>LC,)R(^,C,|Cf®C)[dX .-©(cMc^OdCM .
R ^
z

It follows that {L , z £ R } is completely specified by {0(z|z), z £ R }
z z0 z0

and {R(z,z'|zvz?), z,zf £ R }. Furthermore, if 0 and W are jointly Gaussian
z0

under ^P, then R(C,Cf|£v£?) is a deterministic function, and {L ,zG R }
z0

is completely determined by 0(z|z), z £ R . This implies, for example,
Z0

that a detector for testing between the hypotheses:

(J) dC + W and W is a Wiener process

r

HA: X is a Wiener process

H: X =
z R ?

z

can be implemented by a filtering operation which yields 0(z|z), z £ R .
z0
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Equation (5.12) represents a constraint on the various conditional moments.

The existence of such a constraint is surprising and could hardly have been

predicted a priori. As such, (5.12) has considerable interest in its own

right.

Finally, we observe that a natural concommitant of the likelihood ratio

formulas is the behavior of martingales under such transformation of measures

Theorems of the Girsanov type [2], representation theorems for martingales

and weak martingales are all to be expected. Much of this body of results

is already in hand and will be reported in a subsequent paper.
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Appendix A. Stochastic Integrals for 2-Parameter Wiener Processes

As in section 1, define a Wiener process {W ,J , z £ R } as a strong
z Z Zp.

martingale such that W is also a Gaussian process with EW = 0 and
z

(A.l) EW W , = Area(R t) .
V Z Z ZvZ

Provided that a separable version is chosen, a Wiener process is sample

continuous, and for rectangles A and B

(A.2) EW(A)W(B) = Area(AHB) .

Let {<J> , z € R } be a process satisfying the following conditions:
z zQ

(A. 3) (a) (J) is a bimeasurable function of (co,z)

and

(b) | E<|>2dz <°°1.
2

(bf) ^(jo): sup|<J>(w,z)| <ool) =i
and for each z

either (crt) d) is cr -measurable
0 z z

or (c„) <b is J- -measurable, i = 1,2.
i Tz z

Then the stochastic integral

or z0

(A. 4) (<|>oW) =
z

<f>r dW
R ^ ^

z

is well-defined for each z £ R . The process (<J)<»W) is a square-integrable
z0

strong martingale with respect to Vxf } if (a), (b) and (cA) are satisfied,

a square-integrable i-martingale if (a), (b) and (c ) are satisfied. In

each case a sample continuous version can be chosen, and

(A.5) E(<}>oW)2 =[ E(J)2dc .
z JR Q

z
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If condition (b) is replaced by (bf) then there exists a sequence {<J> }

satisfying (b) such that (<J> <>w) converges uniformly with probability 1, and

(f>n •> <t> almost surely. Hence, (j>oW can be defined as the uniform limit of a

sequence of continuous strong martingales (resp. i-martingales), if $ satis

fies conditions (a), (b) and (c ) ((c)). Convergence being uniform, <j>oW

is sample continuous. We shall call (<J>oW) under these conditions a local

martingale (or local i-martingale).

The integral <j>oW can be generalized still further. Let V be an increas

ing path connecting the origin to zA. For each z £ R let z„ denote the0 zQ r

smallest point on T greater than z (with respect to the ordering ). The

r r
path T divides R into two parts, say D , i = 1,2, where D- is the area

z0 L
r

below T and D. is the area to the left of T, i.e.,

D = {£ e R : £®r = r }
1 zo r r

d!=(?GR :Cr®C =Cr>2 z0 r r

Now, suppose that instead of (A.3c), § satisfies

(A.3c') For each z G R , <j> is J -measurable
z0 Z

Define for i = 1,2
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r
t

j

= 0 otherwise

(A. 6) 4>lz = <|>z if z G Di

Then <j). is J- -measurable, i = 1,2, and d> = d>, +<b_ for almost all
riz z Tz lz 2z

Hence, we can define

(A. 7) <j>oW = ((JyW) + (*2<>W)

and so defined (J)©W is a sample-continuous martingale (or local martingale)

T. It is also a weak martingale if <j> is <J- -adapted.on

Consider a process X , z £ R , defined by
z zQ

(A.8) X =
z

f(z,C)dW .
R ^

z

In general, because the integrand depends on the endpoint, X is not a martin

gale of any kind. However, suppose that f satisfies the conditions:

(A. 9) For each z G R and each C e R
20 Z

(a±) f(z,C) = f(9»z,C) for i = 1

= f(z®C,C) for i = 2

and

(b.) f(z,C) is <f^ -measurable, i=1

f(z,C) is <J\g -measurable, i= 2 .

Then, X is an adapted i-martingale (local i-martingale). The intuitive

reason for this is clear. For i = 1 let z and z% y z be two points on the

same horizontal line, then £®z = £®z' so that

•Ir ,-R
xz, -xz = I f(gaz,c)dwc

z z

and
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E[X ,-X !££] =0.
z' z,v^ z

Similarly, for i = 2, we have E(X ,-X |C£ ) = 0 whenever z, z1 lie on the

same vertical line.

Now, let }\) ,, (z,z') € R xr ,bea random function satisfying thez,z zQ zQ

following conditions

(A. 10) (a) ty is a measurable function of (u),z,z')

(b) I(zXz')El|;2 fdzdzf <«
JR xr z»z

Z0 zo

(alternatively, (bf) <P( sup |ty ,|<»)*1)
t z, z

z,zT *

(c) For each (z,zf) ^ ( is j ,-measurable.
Z % Z 2v Z

For such a iJj we define the integral

*r r,dy(c)dy,(Cl)
R xr *»*

z z

where y and y* can each be either W or the Lebesgue measure, as follows:

Let I(C^C') be equal to 1 or 0 according as C-^-C1 or not. Define

yz,^) = Kc^cc1)^ r,dy(c)
R ^

z

(dy(C) = dW or d£) and

Sfz.C) - I UKAVnr r»dy(Cl) •y JR <,,<,
z

Observe that iJj (z,C) satisfies the condition (A.9b.) and it (z,C) (A.9b«)
y ± y ^

It can be shown that

ty (z,C*)dy(£!) -[ $n(z,C)dy(C) (]i9i =Wor Lebesgue)
R y JR M
z z
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<J>CjC,dy(C)dy(Cf)
R xr

z z

is well-defined. 0|x>uW) is a 1-martingale, (tyoWy) is a 2-martingale, and

iJjoWW, being both a 1-martingale and a 2-martingale, is a martingale.

We should note that for any ip

f

i/^.KCXOdy^dvKc') =
R xr

z0 z0

iJV r,dy(C)dy(Cf)
JR xr ^
z0 z0

so that only values of ty t for C^C1 affect the integral (ipoyy). We also

note that the definition for i|>°WW given here is slightly different

from the symmetrized definition given in [5], but is the same as the one

introduced in [1,6] and used in all our papers on the subject since that

time.
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Appendix B. Differentiation Formulas

The simplest differentiation formulas for two-dimensional stochastic

integrals are those associated with horizontal and vertical paths. Let

X, be processes defined by

(B.l) X^ =X^ +J uk(z,C)dW^ +j vk(z,£)d£ , k=1,2
R R

,t•• ,n

where u, and v, satisfy conditions (A.9-a. ,b.). We shall call X an

i-semimartingale. For i = 1, X, is a continuous semi-martingale on hori

zontal paths, and for i = 2, X is a continuous semi-martingale on vertical

paths. If we consider the differentiation formula for continuous one-parameter

martingales on horizontal paths in the case of i = 1, and on vertical paths

in the case of i = 2, we get the formulas [7]

(B.2-1)

(B.2-2)

F(Xz) = F(XQ) + W)[uk(z'c)dwc+Vk(z'°dc]

+ 2
R

Fu(W\(z*°Vz*°dc

F(Xz) = F(XQ) +
R
V^V'^VV2'^1

«.+2lFu(Wuk(z,0u*(z'!;)dc
R

z

n 3
where F(x), x € R , has continuous partials F. (x) = ~—F(x) and

.2 k 9xk

Fk£(x) Zxypx^F(x) and every repeated index implies summation from 1 to n.

Now suppose that X, satisfy

(B.3) \z =\0 +J

f

6, dW +
R k? ? 'R

z z

Lv

V,?-dW +
R xR

z z

8k,?,?-dV?' •
R XR

z z

fk,wdcdVR XR
z z
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Then, it can be rerepresented in the form (B.l) in two ways: as a 1-semimar

tingale and a 2-semimartingale. Defining

»

(B.4-1) uk(z,Cl) =<j)kc, + I(CXC')Wk^^fdWc +fk^ctdc]
R

z

vk(z,C')=0kc?+jRI(C^^)gk>^c,dWc

(B.4-2) {^(z.C) = <f>k + iaxc'Hi^^.dw^+g^^dcM

\(z,C) = 0kc +
R

KC^C^^^^.dW^,

we can write

(B-5"1> \z a \0 +
R

uk(z,Cf)dWcf +
R

vk(z,Ct)dCf

<B'5'2) \z * \0 + u, (z,C)dWr + vk(z,C)dC

which in turn yield

• .

(B.6-1) X^,^ =2^ , + I(CXCl)[uk(C,®C,C)dWc +vk(C,®C,C)dC]
R

Z

(B.6-2) X^^ =\>c +1 KCXC,)[uk(C,®C,C,)dWcl +vk(c,®C,C,)dc'].
R

z

The differentiation formula (B.2-i) as applied to (B.5-i), can be taken

together with (B.4-i) and (B.6-i) to yield a two-dimensional differentiation

formula which represents F(X ) where X is the sum of five integrals as in
z z

(B.3)) as the sum of integrals of these five types once again. This formula,

given in [7], involves mixed partial derivatives of F through the fourth

order. It is not necessary for our purpose here.
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Equations (B.2) are basically one-parameter differentiation formulas

for horizontal and vertical paths, and can be generalized to any increasing

path. Let T be an increasing path and let X^, zG T, be processes of the

form

<B-7) \z mho
R

uk(r,c)dwc + vfc(r,C)dC , k = 1,2,..,,m

where vl (r,z) and v,(r,z) are ^ -measurable for each z^^ . Then X^
are semimartingales on T and (B.2) now takes the form

(B.8) F(Xz) = F(XQ) + VXC )tuk(r,C)dWC+Vk(r,C)d?]
R 1

z

+CFu(vuk(r'?)u*(r'c)dc-

If X, are defined by (B.3) then they can be put into the form of (B.7)

by suitably identifying u and v as follows. Consider an integral of the form

(B.9) Y =
z

to fdy(Odff(C')
R XR
z z

as introduced in appendix A where y and y can each be a Wiener process on

the Lebesgue measure, and to ,is ^f ?-measurable. This can be

reexpressed as

(B.10) =f i^Kc/Ody^dya')
C?®CeD

I
C^GD

tor rll(CXCf)dy(C)dy(C!)
p ^»> s>

4. r,I(C/(Cf)dy(C) dy(C)•uRz C'®^

R z C'®CGD,

*r ^KC^OdvKC') dp(C)
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which is of the form

(B.ll) Y =f a(r,c)dy(C) +
z JR

z

$(r,c)dy(c)
R

where for each £, a(r,£) and 3(r,£) are c£ -measurable. Reexpressing each
i r '

of the double integrals in (B.3) in this way puts it into the form of (B.7).
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