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Abstract

Two problems of analysis of multicommodity communication nets are

dealt with in the paper:

a) checking the realizability of a given set of multicommodity

requirements and providing a flow distribution for the realizable cases.

And

b) finding the maximum value of the sum of multicommodity flows

between a number of specified pairs of terminals.

Algorithms for solving both of these problems are presented based

on the theory of nonlinear resistive networks. This network-theoretic

approach eliminates the need for an exhaustive search and provides a way

leading step-by-step to the optimal solution.
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1. Introduction

The problem of multi-commodity communication nets have been dealt

with in a number of papers. However, only special cases in this field

have actually been solved.

There exists an analogue of the max-flow - min-cut theorem for two

commodity flows [1,2], and there are known some results for tree-structured

communication nets, for a special class of "bi-path" networks [3], or for

some integer branch capacity nets [9>10].

For the general case, however, the only available approach remains

the linear program formulation, due to Ford and Fulkerson [h]. The original

algorithm may be made more efficient [7] by applying the Dantzig-Wolfe

decomposition principle. Its computational cost for normal networks remains,

however, very large indeed.

The aim of this paper is to present another approach to analysis

of multicommodity flow problems. It turns out that the method of analysis

of one-commodity flows based on the theory of nonlinear resistive networks

[5] may be extended to cover the case of multi-commodity flows.
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The most important feature introduced by the network theoretical

approach is that it is inherently capable of distributing the flow through

the network in a way which minimizes some form of losses by adapting

itself to the peculiarities of the network topology, and by taking account

of the potential ability of each edge and edge to participate in the

transmission of flow.

On the computational side this approach eliminates the need for

exhaustive research techniques and shows a systematic way leading step-by-

step to solution.

In the paper, algorithms leading to solution of two main problems [8]

of the multicommodity nets will be presented: (a) checking realizability

of a given set. of multi-commodity requirements and providing a flow distribu

tion for realizable cases; (b) finding the maximum value of the sum of multi-

commodity flows between specified pairs of terminals.

2. Max-Flow Min-Cut Theorem

For a given non-oriented communication net N let G= (V,E) be

the underlying linear graph, and suppose that each edge [i,j] eE has

associated with it a non-negative real number c[i,j] = c^, the capacity

of the edge [i,j], which bounds from above the total amount of flow in

either direction through this edge.

Before embarking on the more complex problem of multi-commodity

flows, let us, in order to be to some extent self-contained, recall, with

some modifications, the technique which can be applied when dealing with

the one-commodity case.
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Since the elements of linear network theory cannot provide the proper

tools to describe the channel saturation property of a communication flow,

it was proposed [5] to base the analysis of communication systems on the

theory of nonlinear resistive networks.

In the case of a nonoriented communication net N the method re

quires to start with a network N isomorphic with N and to assign to an

arbitrary element [j,k] of N, corresponding to an edge with capacity

c of N, a nonlinear voltage-vs-current characteristic of the type shown
j>k

in Fig. 1.

The characteristic has to satisfy the following conditions:

(a) It has to be confined to the strip

between the straight lines i = ±c .

(b) Inside the strip the characteristic

has a monotone character, i.e. it is

a continuous curve going upwards and

to the right with the border lines

i = ±c presenting its asymptotes,
jk

|-> / S"

Fig. 1

It can readily be shown [5] that capacity of the min-cut between

any pair of vertices (A,B) of the communication net N, and so the

max-flow between these vertices may be found on such a network N simply

by applying the following:

(i) The max-flow between any pair of vertices (A,B) of the communica

tion net N is equal to the limit of the current between the cor

responding vertices A, B of the network N, when the voltage

applied between A, B tends to infinity.
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3. Distribution of Flow in the Net

Notice that the wording of (i) does not refer to any particular

shape of the characteristics of the elements of N, apart from requiring

them to satisfy the conditions (a) and (b) of Section 1.

However, although the maximum current between any pair of vertices

does not depend on the exact form of the current voltage relations of the

elements, the distribution of the flow of current throughout the network

can be very much influenced by the form of this dependence.

The problem of proper distribution turns out to be of special

importance for the multi-commodity case. As is well known, not all combina

tions of multi-commodity flows can be accommodated in a net even if the

sum of the flows of all the commodities is less than the maximum possible [8].

In order to respond to all such critical demands, the optimal flow distri

bution has to be evidently, very carefully looked for.

In trying to get some results for optimal flow distribution in

communication net N by studying behaviour of the corresponding network N,

let us notice that the nonoriented character of N requires for the edge

characteristics v = v(i) in addition to (a) and (b) to satisfy the following:

(c) The characteristics v =vk(ik), k =l,2,...,e of all the e

elements of N have to pass through the origin of coordinates and to be

symmetric with respect to it; i.e.

v (0) =0 and v^"1^ =~\(\^9 k=1»2»"*»e *

In addition we shall require that

(d) The derivative \{±k) =dvk(±k)/d±k exists and does not vanish

for any i in the open interval -cfc < ifc < cfc for k = l,2,...,e.
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We shall refer to its inverse:

-1
t dv^U,.;

(O =W = rjTT
k k dik

(i)

as to the differential conductance of the element k.

The initial value &(0) of the differential conductance of the

edge k without current is some positive real number. Because of the

asymptotic character of the lines i = ±c there is
K K.

lim g, (i. ) = 0 . (2)
i +±c K *
k k

This dependence of differential conductance from current and its

vanishing when the magnitude of current approaches its upper bound presents

one of the most important features of this method.

In order that the modeling of N by means of N operates properly,

we shall require that the actual differential conductance provide an indica

tion of capability of the edge to accept additional current. More specifi

cally, we require that:

(e) The differential conductance g^O te in tne interval 0 <_ i < c

a continuous monotonically decreasing function of the current i (tending

to zero when i •*• c ). Notice that because of condition (c), 8^*0 has

in the interval -c < i <_ 0 a monotonically increasing character.

4. One-Commodity Flow

Suppose that an excitation current i enters N at a vertex 1, and

leaves it at vertex 2. Suppose that the network has (n+l) vertices and

e edges. Let us assign some arbitrary orientations to the edges of N and

let A be the (n*e) incidence matrix of N.
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In order to find distribution of current flow in N, i.e. the

(e*l) vector I of edge currents due to excitation current i, we shall
e

iteratively compute AI caused by small increments Ai and sum them up,

while the excitation increases from zero up to its final value i.

For a given vector I = (i-^i^ "-'V of edge currents> the

conductance of the edge k may be - for small current changes - taken to

be equal to the differential conductance g^1^- Thus, for the given dis

tribution vector I the diagonal branch conductance matrix takes on the

form:

G=diag[g1(iJL),g2(i2),...,ge(ie)] <3)

or in short,

G= G(I ) , W
e

where G(«) presents a vector-to-matrix operator defined by (3) and {k).

Let V and I denote the n x1 vectors of the node voltages

with respect to the reference and of excitation currents entering N at the

n other than reference nodes, respectively.

The computation starts with I =0, V =0, Ig = 0.

With an increment Ai of excitation current between the vertices

1 and 2, there is

AI = (Ai,-Ai,0,0,...,0)f '(5)

and the increment of AI may be computed by executing the following steps:
e

1. The node-to-datum short circuit admittance matrix of N(0), i.e. of

the network N at zero state,

Y° = Y (0) = AG(0)A' . <6)
n n
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2. The open-circuit impedance matrix

Z(0) = Y-1(0) . (T)
n

3. The increment of the vector of node-to-reference voltages

AV = Z(0)AI = [z1(0) - z2(0)]Ai (8)

Here z1(0) denotes the column i of the matrix Z(0).

h. The increment of the vector of edge voltages

AV = A'AV = AiA,[z1(0) - z2(0)] (9)
e

5. The increment of the vector of edge currents:

AI = G(0)AV =AiG(0)A,[z1(0) - z2(0)] . (10)
e e

Note that if one of the terminals of excitation is the reference

node, then in AI in (5) there is just one nonzero element and between

parentheses in (8), (9) and (10) there is just one column of Z(0).

From the first iteration of the algorithm it follows that applica

tion of the excitation vector:

I1 = 1° + AI = AI (11)

results in distribution vector of edge currents:

I1 = 1° + AI = AI . (12)
e e e e

For the next iteration a new increment Ai is applied, and the

computation is repeated with the state of N defined by the edge currents

vector I .
e

Remark: 1. Normally it will happen that some elements of the vector AVg

in (9) and AI in (10) will be positive and others negative or zero,
e

Because of the symmetric character of the characteristics, there is

& (-i ) = SiJO and tne computation is not affected by the possible
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difference in sign of the elements. Of course, if we prefer to have all

elements nonnegative, we may change the orientation of some of the edges

and this will result in: AV >_ 0 and AI >_ 0.
e s

It may happen that some edge current, say ik, passes through its

stationary value at some value of the excitation current. If this happens,

Av and Ai change their sign in the next iteration, the change of
k k

differential conductance g^1^ is reversed and the procedure adapts

itself automatically to the new situation. Because of the symmetric

character of the characteristics no special attention is required to check

if, due to these changes, the sign of the total edge current was changed

during the computation or it remains invariant.

The procedure goes on and it terminates if either the required

excitation i is achieved, or if at some iteration j the admittance matrix

Y"5 appears to be singular and its inversion required in step (2) cannot be
n

executed.

Singularity of YJ indicates that the network N is disconnected,

with the vertices 1 and 2 belonging to different parts of N. Thus at

iteration j the differential conductances of the edges belonging to some

cut separating the vertices 1and 2appear to be zero. Since |y^| f 0
for k<j, the value iJ of the excitation current at iteration j approxi

mates the max-flow or min-cut of the network.

The exact position of min-cut can readily be located if we look for

the zero diagonal elements of the diagonal branch conductance matrix

Gd'5""1) corresponding to the vector of edge currents Iq in the (j-l)
e

iteration. The edges discovered in this way evidently contain the branches

belonging to the min-cut (and may be some additional branches as well).
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5. Optimal Characteristic of Network Elements

As has been mentioned in Section 2, the proper distribution of flow

in the channels of a multi-commodity communication net is of paramount

importance for its operation.

Since the procedures presented in this paper are sequential in

character, leading in a finite number of steps to the required solution, it is

important to provide an optimality criterion for all the intermediate stages

of computation.

As it happens, the Kirchhoff distribution of currents throughout N

shows a possible approach to the problem.

Suppose that at some stage of the procedure the vector of the edge

currents turns out to be I = (i ,i ,...,ie) so that at this stage the

conductances of the edges of the network N have to be taken equal to

gjU,), k =1,2,...,e.

Application of the current excitation increment Ai between the

vertices 1,2 of N results in an increment AI = (AijjAig*. ••»Aie) of the

edge currents. As is well known [6] for a resistive network with external

current sources, among all those distributions of edge currents, which obey

the Kirchhoff current law, the distribution which satisfies Kirchhoff

voltage law corresponds to the minimum of absorbed power.

Since the distribution of currents in network N satisfies both the

Kirchhoff laws, the loss of power corresponding to AI :

e (Ai)2
P= I —tK (13)

k=l W

presents the minimum power loss for all the possible distributions of the

external current Ai throughout N obeying the Kirchhoff current law.
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Returning to the communication net N we recall that the magnitude

of the current |i | is bounded by capacity c of the edge k, so that
K

the difference e, (i, ) = c, -li, I presents the residual capacity of the
k k k k'

edge k which still remains at our disposal.

There is Ae (i ) = —A |i I and if the characteristics of the
k k k'

elements would be chosen so that

^V-«J(V (lU)
then the current distribution throughout the network N would - according

to (13) - minimize the expression

^k^k^2
k=l ^^

(15)

Ae. (i )
The ratio —/. v presents the relative depletion of residual

VV

capacity of the edge k by the flow increment Ae (^ •

Thus, it follows from the above discussion, that assigning to the

elements of N, v-i characteristics defined by {lk), results in such a

distribution of flow throughout the net that the sum of the squares of

relative capacity depletions, shortly SSRCD, taken over all edges of the

net will be minimum over all such distributions which obey Kirchhoff current law.

In order to translate the condition (lk) into the voltage-current

relation of a typical edge characteristic, we can write (omitting the sub

script for simplicity):

£l__ 1 1 _ 1 (16)
di gTiT" e2(±) - [c.|i|]2

For the positive branch of the characteristic, i.e, for 0 <_ i < c,

and assuming v(0) = 0, we get
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, which with v(0) = 0 renders

v =
c - 1 T^iT '

For the negative branch: -c < i <_ 0, there is

dv

di (c+i)'

+ ^ =
and v = " 7TT + 7= c(c+i)

Thus the v-i relation for the whole open interval (-c,c) turns

to be

v = c(c-|i|)

as shown in Fig. 2.

Such an h-characteristic

(hyperbolic in each of the two

quadrants) satisfies for each i

in the open interval (-c,c) the

condition (l6), so that for each

current the differential conduct

ance of such an element is equal

to the square of its residual

capacity.

Fig. 2

We shall adopt henceforth as the criterion for optimality of the

flow distribution in the net the condition of achieving the minimum of

SSRCD.

Thus, the above discussion shows, that the optimal flow distribu

tion of some commodity in a communication net N may be read out from

out

(IT)

/:

J
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the current distribution in the edges of the resistive network N with

the h-shaped characteristics (17) assigned to all of its elements.

It may be noticed that in place of the logarithmic characteristic

suggested in [5] introduction of the above optimality criterion leads to

the modified characteristic (lT)»

As pointed out in Section 2, this change is of no consequence if

the maximum of one-commodity flow is all that is looked for. However, for

multi-commodity cases, the problem of proper characteristic shape cannot

be left aside.

6. Multi-Commodity Flow with a Given Requirement Vector

Suppose there are p commodities which have to be transmitted

simultaneously through the communication net N, with the commodity I

to be transmitted between the (ordered) pair of terminal vertices (s^jt^)

which we shall refer to as source and sink, respectively. We shall not

assume that {sp,tp}f\{s ,t }= <j> for I i m, however {s^.t^} ±^'V
*\* Am* UX Hi

for t t m, i.e. the pairs of terminals for different commodities cannot

have more than one terminal in common. Thus if there are in N, (n+l)

vertices, then:

p<|n(n+l) . (18)

Note that in undirected nets any distribution for the (s£»*£)

case renders the solution for the (t^,s^) case, if we reverse the

direction of the corresponding flow in each edge of the net with its

magnitude remaining invariant.

Suppose there are in N, e edges, and let {c^}, I = l,2,...,e

be the set of edge capacities.
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Let N be as above, a directed network, isomorphic with N, with

an appropriate h-characteristic assigned to each of its elements, and let A

be its incidence matrix.

Suppose, there is a requirement for a set ^r/K ^ = l»2,...,p, of

amounts of the p commodities to be sent through the net.

Let us visualize the pairs of terminals (s^s^)' ^ = 1»2' •••»?»

connected by additional edges: (t^s^), representing the current sources

(with vanishingly small conductances) through which the multi-commodity

flows have to be injected into the net.

Let T be the (n*p) incidence matrix relating those additional

edges to the vertices of the net, and let Z = (Y ) present, like in

Section 3, the open-circuit impedance matrix of N in zero state.

It may be readily recognized that any column £, t - l,2,...,p

of the matrix

B1 = Z1! (19)

presents, analogously to (8) the vector of node-to-reference voltages of the

(linear) network IT when just a current i» = 1 enters this network

through the edge (t»,s») with the other additional edges being currentless.

Thus, premultiplication of B by A' renders, like in (9), a matrix

M1 = A'B1 = A'Z^ (20)

whose columns present edge voltages corresponding to different commodity

flows.

In order to get current distribution throughout the network, we have,

like in (10) to premultiply M by the branch conductance matrix G . How

ever, the results of Section h suggest, that if
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C=diag(c]L,c2,...,ce) (21)

is the diagonal branch capacitance matrix of N, then the recommended matrix

G may be obtained as

G1 = C2 . (22)

Thus denoting by q the column <£ of the matrix

q1 =cV = C^A'Z^ , (23)

we realize that for a vanishingly small, positive real number Ap, the

optimal distribution of the flow Ap of any commodity £ through the

communication net N, i.e., the distribution which minimizes the SSRCD is

£l opresented by Apq for £ = 1,2,...,p.

When going over to simultaneous multicommodity flows, we have to

take into account that the flows of different commodities, when passing

through the same edge never cancel, so that the sum of the magnitudes of all

the flows passing through any edge is bounded by its capacitance.

Let the set of requirements F = {r^} be ordered and arranged in

form of a diagonal matrix

R=diag(r1,r2,...,r ). (2U)

The method we shall apply in studying the possibility of accommodat

ing {r«> through the net N will be:

(a) presenting R as a sum of, say, m increments:

A^-PjR \
m

k=i *

(25)

with y , k = l,2,...,m being a small, positive, real number;
k
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(b) trying sequentially to distribute each increment AR , k = l,2,...,m

in the optimal fashion through the net N, through which the flows

AR., i = l,2,...,k-l have already been distributed in the previous

k-1 steps.

Starting with the network N in the zero state - call its linear

approximation N - we find Q , (23), by the steps described above.

Taking the product

J1 = AJ1 = Q^-AR, (26)
e e 1

we realize that each column I of AJ , t = l,2,...,p presents the vector
e

of incremental currents flowing in the edges of W~ with just the
•i

excitation current Ar» applied between the vertices (s^j"^) of ^e

network.

When all the p-commodities are flowing simultaneously through N,

then in order to evaluate the magnitude of the overall flow passing through

the edges of the network, we introduce the symbol mod(J ) to denote the

matrix whose elements are the moduli of the elements of AJ~ .

then

If 1 denotes a (pxl) vector with all elements equal to unity,
P

I1 = mod(J1) -1 (27)
e e p

presents the vector of the magnitudes of the overall flow in the edges of N.

This computation ends the first iteration.

edges,

The second iteration starts with the current I flowing in the
e

This algorithm is based on assumption, that the problem is convex.
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Let diag I denote the diagonal matrix obtained by placing the
e

elements of I1 along the main diagonal with their order preserved,
e

"2
The recommended branch conductance matrix of the linear network N

approximating N at the beginning of the second iteration may be

written as

G2 =(C-diag I^)2 . (28)

In general if at the end of iteration k-1 the vector of the

— k—1 —
overall flow in the edges of N is I then N behaves for small

e

excitations like the linear network W.

Starting with the diagonal residual branch capacitance matrix

Ck = C-diag I11"1 (29)
e

the iteration k goes through the steps:

Gk = (Ck)2 (30)

Y* =AGkA' (3D
n

Zk = (iV1 (32)
n

M* = A'ZkT (33)

Qk =gV (3*0

a/ =Q1^ . (35)

The flow in N is defined by

Jk = j*"1 + AJk (36)
e e e

being equivalent to the overall flow

k = mnrf Jki . (37)I ..= mod J 1
e e p



Notice that:

The computation of the edge currents for each commodity following
k k

the steps (29)- (36) may result in the elements of Jq and AJg being

positive, negative or zero. In fact if the current (Je)s£ of some commodity

t in an edge s at some iteration k passes through its stationary

value, then the increments

<<1>rf and (<X)s£
computed in step (35) differ in sign. In such a case the algorithm auto

matically adapts itself to the new situation and the magnitude of the flow

of commodity s in edge I, found in (36) passes through its extremum.

It is important to note that the operator mod is applied only in

(37) when the overall depletion of the edge capacities defining the next

state of the network is evaluated.

The computation may finish in one of two ways.

First, it may happen that at some iteration h+1 the matrix i^

turns out to be singular (or nearly so), so that its inverse Z cannot

be evaluated. This fact indicates that the edge capacities of some cut

set separating the points s» and t^ for some pair qe{1,2,... ,p} (or

a number of such pairs) have been depleted and the network N is not

connected any more.

This cut-set, call it Cs, may be identified by looking for the

vanishing elements of the matrix Gh+1 in (30). The set of these elements

may contain besides Cs some additional elements which can readily be

eliminated by inspection.
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The maximal set of requirements proportional to the original one

which can be accommodated by N is:

f h 1

R
max

R (38)

As a second alternative, the algorithm may successfully continue

through all the iterations, required by (25), which shows that the whole

set of requirements may be accommodated by N.

In each case the distribution of the flow throughout the edges of

N for all the commodities may be read out from the matrix Jg obtained

in executing step (36) for the last time, with the element (Jjg^ cor

responding to the total flow of commodity I in edge s.

The diagonal matrix C-diag I with Ie obtained in the last

execution of step (37) presents the residual edge capacities, "unused" in

accommodating the requirements presented to the net.

7. The Maximum Sum of Multi-Commodity Flows

Let us suppose that there are p communication sources applied to

agiven net N between given pairs (s^^)* ^=1*2,...,p of vertices

of N.

Let F={F,} be the family of sets Fj = {r^>, I =l,2,...,p of

feasible requirements which can be accommodated through N and put
p

•S s Jr}. In what follows we shall often refer to the requirement r£
J £=1 L
as to communication source applied to the net.

Let F* eF be the set (or one of such sets) for which the sum S

of requirements reaches the possible maximum, i.e.

q* - TOQV q (39)S = max o. .

*



Our intention will be to find S* through defining F and the

corresponding distribution of multicommodity flows in N.

Once more let the requirement sets Fj be presented in ordered form
at #

by the diagonal matrices R., {2k), with R corresponding to F .
J

We shall start with the network N in the zero state and

sequentially build up the looked for R* as the sum of diagonal matrix

increments:

R* = I AR* »<>>
i=l X

with each R*, k = l,2,...,M being optimally distributed throughout the

* -^Y1 R*edges of N carrying already the flows corresponding to R^ - l^i •

This time, however, there is an additional degree of freedom since

we are free to choose the increment ARfc in an arbitrary fashion constrained

only by the condition AI^ >. 0, k=1,2,... ,M. The discussion which

follows leads to the proper choice of these increments.

Suppose, like in the previous section, that at the end of itera

tion (k-1) the matrix of the commodity flows J^"1 and the overall flow

vector I in
e

known.

* k"1 *
the network N under the excitation R = I AR are

K~-L i=l

The various operators related to the linear network IT approximat

ing the behaviour of N under these conditions can be found by performing

the steps (29) - (3*0 of iteration k.

It follows from the previous discussion that any column I,

I =l,2,...,p, of the matrix Qk presents the vector of edge currents of

H* when the excitation applied to 5* consists just of r£ =1 with

r = 0 for j ^ I.
J
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In order to be able to express the following results in a concise

form, let us agree to some shortcuts in writing.

If A = (a ) and B = (b ) are two matrices of the same order
pq P<1

(m*n), then let us introduce a symbol II for an operation on A and B,

and a matrix operator sign defined by:

and

A D B= (a., -b ) (M)
i j i j

sign A = (s(a )) , (te)

where s(a.4) =1 for a > 0 and s(a )= -1 for a < 0.
lj ij ~" XJ -"-J

Thus A n B presents actually a direct product of two matrices in

which the multiplication is performed elementwise,and all elements of the

matrix sign A are ±1, the -1 being reserved only for the places where

a., < 0.
ij

Let now Ap be a vanishingly small, positive, real number, and let

us try to define the changes of the magnitudes of the edge currents of N

when in addition to the excitation R ± there appears a Ap current

source of each of the p commodities, one at a time.

It may readily be recognized that the p columns of the matrix:

Ap •Tk =mod(Jk"1 + ApQk) -mod(Jk"1) (^3)
e ®

present exactly the looked for magnitude changes. Namely the column I,
I - l,2,...,p of Tk corresponds to the case when the additional excita

tion is: Ar« = 1, and Ar =0 for j ^ £.

Applying the symbols {kl) and (U2), we can rewrite (1*3) in a

concise form

ApTk =ApQkD sign J^"1 , (^)
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which leads to:

Tk = Qk O sign Jk_1 (U5)

The meaning of {kk) is, of course, that the change in the current

magnitude is positive and equal to the current increment, if either the

current is zero, or both the current and its increment are of the same

sign. Otherwise this change is negative.

At this stage of discussion, we have to define the method of

*

choosing, for the network N under the excitation R the optimal m-

._*

crement of excitation, AR .

To this end, consider the family of incremental requirement sets

K= {AF}, where AF ={Ar^Ar^.. .,Ar }, Ar± >0, i=1,2, ...,p such that

V Ar. = Ap = const. (^6)
i=l "

Each AF corresponds to a diagonal excitation matrix

AR = diag(Ar ,Ar ",... ,Ar ) which, when applied to N under the given

excitation R* renders the incremental multicommodity flow distribution
k-1

matrix Aj£= QkAR (35).

The reasoning which lead to {kk) shows that the changes of the

magnitudes of multicommodity flows in the edges of N are provided by

elements of the matrix

TkAR (*7)

and the changes of the magnitudes of the equivalent, total edge currents

are given by the vector equal to the sum of columns of {kf), i.e. by the

vector h:

h = T"AR 1
_k._ . (i^8)

P
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where 1 stands for the p-vector, each element of which is equal to unity.
P

Since the change of the overall flow magnitude in an edge is equal

to the depletion of its capacity, the vector h, found in {kQ), provides

as well the edge capacity depletions under the additional excitation AR.

Thus, with Ck, (29), standing for the diagonal matrix of edge

capacities in iteration k, the vector d of relative capacity depletions

is:

d = {ckr\ . (w

Applying {kQ), (1*5) and (3*0 to (1*9), we get:

d=Ck(Mk D sign J^-1)AR •lp . (50)

Let us now define as the optimal member of the family K such a

requirement set AF* which leads to the maximum element of the vector d

being minimal, i.e., to minimization of the maximum relative capacity

*)
depletion for all the edges of N.

Let us denote by w the (exp) multicommodity depletion matrix:

W* = (wkJ =Ck(Mk Q sign J1""1) . (51)
ij e

The problem of finding the optimal increment ATfc may be cast in

the form of the following linear program.

* The algorithm which follows is based on a conjecture that a finite sequence
of such choices of incremental requirement sets will ultimately sum up to
the looked for optimum requirement set F*.
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For a given Ap > 0 find

Arl9Ar2,...,Arp, v >_ 0

such that v is minimum subject to

wk Ar + wn „Arrt + ... + w_ Ar -v<0
11 1 12 2 lp p -

vatoi +w22Ara + ••• +%% " v £ °

Vtol +Vte2 + •
. + w Ar - v < 0

ep p -

Ar + Ar + ... + Ar = Ap

(52)

This program looks for AFfc ={Ar^Ar^... ,Arp} eK, such that the

upper bound on relative capacity depletion in the edges of N, presented

by v be minimal.

This F is the looked for optimum AF . It may be presented in
k *•

the diagonal form AR required by the algorithm. Thus the overall

sequence of steps for iteration k is: (29)- (3*0, (51), (52), (35)- (37).

The computation for the maximum sum terminates when at some itera

tion M+l the matrix YM+1 turns out to be singular (or almost singular)
n

indicating that the edge capacities of some set separating the points

S£ and tt for every pair £=l,2,...,p in Nk are zero. Thus the over-
all flow vector IM obtained in the last iteration of (37) presents the

looked for maximum sum of the p flows which can be transmitted through

the net.
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8. Conclusion

The algorithms presented in the paper have not been streamlined

with respect to minimizing the complexity of computation.

An immediate step to reduce the computational load is possible

if we notice that the matrices y which have to be inverted in the
n

step (32) are only slightly modified from iteration to iteration.

Thus the Householder's, Bennett's or similar method can be used to

take advantage of this fact.

Another point which deserves special attention in this respect

is the magnitude of the increment of the requirement vector which

we apply at each iteration. Good judgement in modifying the magni

tude of this vector according to the changing state of the net at

each iteration is apt to reduce appreciably the required computer

time.
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