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ABSTRACT

This paper deals with tearing methods for the solution of a large

scale system of linear algebraic equations. A modification algorithm is

presented and evaluated with respect to other available techniques, namely

Householder's Formula and Bennet's Algorithm. Then, an optimization problem

related to the "best" way of tearing a given matrix A with a certain

associated structure is taken into account and proven to be equivalent to

the determination of a minimum essential set (MES) of an hypergraph H. Some

algorithms for finding a MES in H derived from the minimum feedback vertex

set problem algorithms are briefly described.

Then a particular way of applying the modification algorithm to a

matrix rearranged according to the previously selected criterion is

introduced and its complexity is compared with LU decomposition method.
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I. INTRODUCTION

Recently much effort has been devoted to tearing methods for the

analysis of large scale electrical networks [1,2,3,4,5],

Tearing, usually referred to as diakoptics was introduced by

Kron [6], and basically consists in breaking the original analysis problem

into simple subproblems which can be solved either independently or

according to a (possibly partial) ordering.

In [3], it has been pointed out that it is fundamental from the

computational efficiency point of view to take into account the underlying

structure of the system not only during the formulation phase but also in

the solution phase.

This consideration leads to the study of efficient algorithms for

tearing a system of algebraic equations

A x = b (1.1)

since almost all the computer programs available solve any nonlinear

dynamical networks by means of linearization and discretization techniques

(e'g. [7,8]). The aim of this paper is to give a contribution to the

development of such efficient algorithms.

Without any loss of generality, A and b will now onwards be assumed

to take real values. If the matrix A is reducible, i.e., if A can be given

a block triangular form by row and column reordering, the decomposition

of the system in simple subsystems is straightforward. If this is not

the case, a possible strategy is tearing someone of the nonzero entries

of A so as to obtain a reducible matrix. Formally assume that A can be

written as
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m - jX = x -"- " " ~JC + 22 WA X >
j=l J

where w is in turn the solution of

Dw = d,

2

where the matrix D £ R and the vector d £ R are easily computed as

functions of the cut matrix C and of the m + 1 partial solutions obtained

at the first level.

The aforementioned result is stated as Theorem 2.1 and proved in Sec.

II. A few comments about the computational complexity of the method

presented here as compared with the ones already available are given in

Section III. Section IV deals with the problem of optimal tearing, i.e.

with the problem of determining a cut matrix C such that a suitable

measure of the overall computational effort involved by the method above

is minimized. Under reasonable assumptions, it is proved that this

problem is equivalent to a MES (minimal Essential Set) problem in an hyper

graph H associated to A.

In Section V, a particular way of applying the results obtained in

Section II to a matrix reordered according to the criterion given in Section

IV is described and some computational remarks are introduced.

In Section VI some concluding remarks are given.

II. A MODIFICATION ALGORITHM

Consider a system of linear algebraic equations of the form

(B + C) x = b (2.1)

2 2

where B £ M is nonsingular, C £ ]R has rank m and is such that B + C
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A « B + C, (1.2)

where B is reducible and nonsingular. Then the classical tearing technique

basically consists of two steps. At first, system (1.1) is analyzed

assuming A « B; then, the so obtained result is modified to take into

account the real structure of A, i.e. the "perturbation" due to the nonzero

entries of the "cut matrix" C. The second step is not only fundamental

in tearing but also in other important applications as piecewise analysis

of a nonlinear resistive network where many systems, whose coefficient

matrix is slightly changed, have to be solved sequentially [9,10]. In

[6] as well as in [9], Householder *s Formula is adopted. However, by

means of Householder's Formula, the solution of the original problem is

obtained via matrix inversion; this is, in general, a costly technique

which furthermore fully destroys, with the original sparsity of A, any

possibility of saving computer storage. In [10] these difficulties have

been encompassed with a method related to Bennet's algorithm [11]. This

algorithm consists in computing the LU factorization of A in terms of C

and of the LU factorization of B.

In this paper a multi-steps two-levels modification technique is

presented whose logical frame is as follows. The first level consists of

m + 1 steps, where m is the rank of the cut matrix C; each step calls for

the solution of a system of the form

Bx** = bJ, j = 0,1,. ..,m;

where each vector b 6R does depend upon the cut matrix C. At the second

level, the solution x of system (1.1) (with A given by (1.2)) is computed

as
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is nonsingular. Furthermore, let

C = HK» (2.2)

where H, K ^ 3R m, and denote by e the i-th versor in ]Rm.

Theorem 1

Let x(*)jR "*" R be a linear mapping defined as follows

w b- x: Bx = - Hw (2.3)

and denote by x the solution of Bx = b and by x the solution of system

(2.1). Then

_ m

x= x° + 2 x(eJw (2.4)
1=1 x x

where, letting

Q=iK'x^): R,x(e2):...JK,x(em)|, (2.5)

w is the solution of

(I - Q)w = K»x°. (2.6)

To prove Theorem 2.1, the following Lemmas will be used.

Lemma 2.1

The solution of

Ax = b - Hw (2.7)

is equal to x if and only if
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w = Fw + K'x0 (2.8)

where F is any mxm matrix such that

Fw = K'x(w), Vw <= ]Rm. (2.9)

Proof. Let w be a solution of (2.8) and x be the corresponding solution

of (2.7), then

^ o ~
X as X + X(w)

furthermore

Ax = b - H(Fw + K'x°) = b - HK'(x(w) + x°) = b - HI^x

hence, in view of the nonsingularity of A + HKf, x = x. Conversely, if

w is such that

Ax = b - Hw (2.10)

then

Hw = HK'x

and, since H is rank m,

w = K'x. (2.11)

On the other hand, in view of (2.10)

x = x(w) + x ,

hence, from (2.9) and (2.11)

w = Fw + K'x°
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i.e. wis a solution of (2.8)

Lemma 2.2

The solution of equation (2.8) exists and is unique.

Proof. The nonsingularity of A + B implies that x exists and is unique,

On the other hand, since A is nonsingular and H is rank m, then there

exists a unique w such that

Ax = b - Hw.

Therefore, from Lemma 1, Lemma 2 follows. H

Proof of Theorem 2.1

12m m
Let w , w , •••, w be a m-tuple in E. , then,

k,x(w1) :k»x(w2) :•••:K'x(wm) = F

so that, letting w = e , by (5) it follows

1. 2. . m
w .w . • • • .w

F = Q.

This and Lemma 2.2 guarantee that w exists and is unique. It can be

written as:

m

1=1 x 1

In view of Lemma 2.1, x is the solution of

Ax = b - Hw

hence, by linearity, eq. (2.4) follows.
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Theorem 2.1 induces straightforwardly the following Modification Algorithm.

step o Let b e mn , h e mnxm, k e mnxm, b e mn, b £ - P, x(e ) £ x°,

b- lb', •••• lb
J., z. • m

= H, i = 0.

STEP 1 Compute the LU factorization of B.

STEP 2 Compute the solution x(e ) by forward elimination and back

substitution of Bx = - b..

STEP 3 If i = m, go to STEP 4, otherwise i = i + 1 and go to STEP 2

STEP 4 Compute the LU factorization of

I - |K'x(e1):...:.K'x(e )| =I -Q
m • 1 . . m ' m x

STEP 5 Compute the solution w by forward elimination and back substitution

of (Im-Q) w = K»x(eQ).

_ m
STEP 6 Compute x = x(e ) + £ w x(e ).

o i=1 1

STEP 7 End. n

Remarks 2.1. From a conceptual point of view MOD can be viewed as an

application of what Mesarovic calls the Interaction Prediction Principle

[12], In fact, if system (2.2) is written as

Bx = b - HK'x = b - Hw

w can be interpreted as an interaction variable describing the effect of

the modification occurred-in B. The m versors e, ,...,e can be viewed
1 ' m

as m independent estimates of the exact value of w. STEP 4 and 5 can be
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considered as the exact computation of the modification variable carried

on by the "predictor" on the base of the informations achieved during the

m previous stages of MOD and coded in Q.

III. COMPUTATIONAL REMARKS

In this section, the complexity of MOD algorithm is evaluated and

compared with other available modification techniques, namely Householder's

Formula and Bennett's algorithm.

Assumption 3.1. The number of multiplications required by a method is

considered as its complexity measure. (Inversions are counted as multi

plications.) n

Assumption 3.2. n > > m.

n

Under these assumptions, STEP 1 of MOD requires

n-1

n+ £ Sk<Yk + 1) (3-D
k=l k R

operations, where L + 1 is the number of nonzero elements in the first

row and y, + 1 is the number of nonzero elements in the first column of the

reduced matrix of order n - k + 1 during the k-th step of Gaussian Elimina

tion performed in natural order on B[13]. STEP 2 requires m + 1 times the

forward elimination and back substitution of the system Bx = - b. and then

n-1

(m + 1) n + (m + 1) X) (Yu + Cv) (3.2)
k=l K *

operations; STEP 4 requires
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13 1-j m - j m + mn (3.3)

operations, being I - Q in general full; STEP 5 requires

m2 (3.4)

operations and STEP 6 requires

mn (3.5)

operations. In Table I, the above results are summarized and compared

with Householder's formula and Bennett's algorithm, also in the case of B,

H, K1 full matrices.

It has to be noted that in the case of full matrices TA requires

about half of the time required by Bennett's algorithm. In the general

case of sparse matrices, TA requires less operations than Bennett's method

if the following inequality holds:

n-1

(m + 1) £ (y, + £,)
n< ^ — (3.6)

It has to be noted that in many cases the sparsity structure of B is such

n-1

that ^ (y, + C) = an, where a ranges from 3 to 20.
k=l k fc

IV. OPTIMAL DECOMPOSITION PROBLEM

This section deals with the important case where the system under

consideration consists of a number of interconnected subsystems so that

the unknown vector x can be "a priori" thought as "naturally" partitioned

into a number of subvectors while an interaction pattern which is very
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Householder

Bennett

MOD

l-1

Initial inversion or decomposition Initial solution Solution of the modified system

full sparse full sparse full sparse

3
n

3
n

2
n

2
n 4n2 4n2

1/3 n3
n-1

£l (Vk^k>
2

n

n-1

£(Yk+£ )+n
k=l k

(2m+l)n2
n-1

(2m+l) £ (Yt+Cv)+n
k=l * K

1/3 n3 M 2
n

u 2
mn

n-1

3mn + m £ (Yk+?k)
k=l R fc

Table I. Comparison of Householder's Formula, Bennett's Algorithm and MOD.



strong among the elements of the same subvector and relatively weak among

elements of different subvectors.

In this situation, it is generally possible, in view of Theorem 2.1,

to decompose the original problem into a number of simpler subproblems the

solutions of which when suitably combined, give a solution of the original

problem. Such a decomposition can actually be done in more than a single

way, so that an obviously important task is to find, among all the possible

decompositions, at least one of those which are optimal in some specific

sense. One such problem is, in general, extremely difficult to solve and

it is even hard to find situations where the computational effort needed

to solve it is worth to be paid. However, it is quite reasonable, when

searching for an optimal decomposition, to restrain the attention to some

suitable subclass of all possible decompositions, thus resulting in a

computationally feasible and economically efficient procedure. The herein

adopted approach consists in restraining the search for an optimal decompo

sition only to those decompositions which retain, in a sense, the natural

structure of the given system, which is supposed to originally consist of

a number of well identified interacting subsystems.

In order to illustrate the decomposition procedure and specifically

state the corresponding optimization problem it is necessary to introduce

some further definitions and notations.

Let Qk be the set of the first k integers, E, be the class of all

ordered sets of k elements, £f). and IL. be the classes of all possible

permutations from E, to E, and partitions from E, to E,, h .£ k,

respectively.
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Definition 4.1

A partition tt(*) G n,, is said to be regular if
kh

*(Qk) ={{l,2,...,j1}, {jj+l.jj+2,...,j2},...,{jh_1+l,jh-1+2,...,k}}

A .for some Jr J2, ..., Jw 6 ^ 0 =jQ <^ <^ <• ••< j^ <j =k.

Remark 4.1

Any regular partition t?(«) € n induces in an obvious way a correspond-
2 q

ing partition ?r(.) on Rn ; formally:

tt(«) : A h- A

a.

Jr-1+1» Vl+1
rs

"VW1

Definition 4.2

Jr-1+1' js

Vjs

, Vr,s e Q .
q

»n
A matrix A G r is block lower triangular with respect to a regular

partition ff(.) en if A is lower triangular; i.e. if £ =0 whenever
"4 rs

r < s; r, s G Q . n
q

Proposition 4.1

For any tt(-) e nfch there exist a unique regular partition tt(») Gl

and a unique permutation p(.) G Cpfc such that ir(«) = tt(p(.)).

n

Remark 4.2

Proposition 4.1 says that any partition is a regular partition of a

permutation. The partition tt(-) and the permutation p(.) will henceforth
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be referred to as the regular partition and the permutation defined by

*(•).
n

Remark 4.3

Any permutation p(«) € ^p induces in an obvious way a corresponding
11 2

(symmetric) permutation {>(•) on R ; formally:

p(-): A^EAE'

n2
where E^R is a unimodular matrix defined as follows. Let {p, ,pn,...,p }

rl r2 *n

- P^Qn)» then ei4 ~ •Sp .«» vi>J e Qn» where 6 is the Kronecker function.

Definition 4.3

For any ir(.) G n , let T^(.) = Tr(p(«)) where tt(.) and p(») are

induced by the regular partition tt(«) and the premutation p(*) defined by

tt('). n

Definition 4.4

2

A matrix AGR is block reducible relative to ir(«) G n if there
nq

exists p°(») € cp such that T (A) is lower triangular. n
q P°(ir)

Remark 4.4

2

Consider the problem of finding x such that Ax s b, where A £ R and

b £R are given (Basic Problem). Assume also that the system under

consideration consists of q interconnected subsystems and that this kind

of structural information can be specified by means of a regular partition

tt(«) Gl . If A is block reducible relative to ??(•), then splitting the

Basic Problem into an equivalent set of q (partially ordered) subproblems
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is an almost trivial task. If this is not the case, a conceivable approach,

in view of Theorem 2.1 consists in looking for a minimum rank matrix C such

that A - C is block reducible relative to a partition ir(*) £ II u _< n,

the largest element of which has a cardinality significantly less than n.

This kind of approach is followed in the sequel, where an optimal decompo

sition problem is formally stated and solved. n

2

Given A € R and S C Q the reduction of A to Q - S is denoted by
n' ^n J

A . Formally, let ir(«) 6l 0 be such that ir(Q ) = {Q -S,S}; furthermore,
a nz n n

let I = T (A); then, Ac = L..
IT S 11

Given tt(«) = {7^(•) ,tt2(•),... ,tt (•)} G n and SG Q ,with |s| = m,

let tt0(#) G n , y = n - m, be such that
S Yq

VQn's) =» {^(Q^es, 7T2(Qn)es,..., 7rq(Qn)es},

where

S16S2 " Sl " <S1 ° S2}

For any pair of sets S1 and S«.

Definition 4.5

2

For any S C Q , the matrix A G Rn is block S-reducible relative to

tt(0 e n if there exists p*(0 € <p such that T (A ) is lower

q p*(7rS^
triangular. n

Proposition 4.2
2

Let A e Rn s C Q and tt(') e n . If A is block S-reducible relative
n nq

to Tr(')f then there exists tt (•) G II _ such that a..., is block lower
nz 11

triangular with respect to the regular partition defined by p*(ir (•)),
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where A = T *(A). h

Example 4.1. Let Ae m8><8and tt(8) » {{1,2,3,4}, {5,6}, {7,8}} (Fig. 1)

Let S = {2,6}. A is block S-reducible. In fact, tt_(6) = {{2,3,4}, {5},
o

{7,8}} and there exists apermutation P*(7rg) ={{5}, {7,8}, {2,3,4}}

such that T *, .(A ) is lower triangular (Fig. 2).
P Ug; b n

An optimization problem which, in view of Theorem 4.1, Remark 4.4

and Proposition 4.2, is of obvious interest can now be formally stated

as follows.

Optimal Decomposition Problem (ODP)
2

Given A^R and tt(») £ n find S C Q of minimal cardinality such
nq ^n

that A is block S-reducible relative to ir(*)> n

In order to solve the problem above, it is quite natural to restate

it in graph-theoretical terms.

A directed hypergraph H = (X,Y) is constituted by a node set X and an

arc set Y the elements of which are ordered pairs of nonempty subsets of X.

Let ft « {to. ,w«,.. .,w }, t > 1, be an ordered subset of X. If, for each

i i
w. £ fi, there exists a pair Z and Z of subsets of X such that

a), e Z1 O Z*
1 — T

n± ^(z^;, z^+1) e Y, n± /n,, Vi,j eQt, i#j,

where

zt+1 i Z1'

then S2 is a cycle of H,

-16-



A directed hypergraph without cycles is said to be acyclic.

Given a directed hypergraph H = (X,Y) and a subset Z of X, the

section hypergraph of H with respect to Z is an hypergraph H = (X - Z, Y_),
z z

where

Ayz »«xi,xj)|xi =x±ez, xj =xjez,(x±,x )eY}

Any subset S of X is an essential set of H if H is acyclic. Any essential
——————^—^—_ o

set of minimum cardinality is said to be a minimum essential set. Its

cardinality is said to be the index of H.
2

Given a matrix A e Rn and a partition 7r(«) = {ir-(.),Tr (•),...,ir (•)}

G nnq» let H^*71) be tne direct hypergraph relative to Aand tt(-) defined

as follows: H(A,tt) = (X,Y) where X = Q , Y = Y UY, where
n ex in

Yex =<<r»s>lr eVV' s€*i(V» ij J€V 1* j' ars * 0}

and Ym • MJyin • <*3 <V»-j <V>Vj eV

The arcs in Y are called external arcs, the arcs in Y. are called
ex ^——————— m

internal arcs. It has to be noted that |Y. | = q.

Example 4.2. The hypergraph H(A,tt) associated to A, it of Fig. 1 is shown

in Fig. 3. n

Lemma 4.1

2

For any A E R , tt(.) e n and p(«) e <p, H(A,tt) is isomorphic to

H(A,P(tt)). b

Lemma 4.2

2

For any AGR , tt(«) e n , let tt(*) and p(») be the regular partition
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and the permutation defined by 7r(»); i.e.: ir(0 = ir(p'(-))« Then H(A,ir)
2

a — A n
is isomorphic to H(p(A),ir) where p(«) is the(symmetric) permutation on R

induced by p(•).

Lemma 4.3

2

For any A^R and tt(*) £ II , H(A,ir) is acyclic if and only if A

is block reducible relative to tt(«).

Proof

If A is block reducible relative to tt(*)» then (see Definition 4.4)

there exists p°(«) E 4^ such that T (A) is lower triangular. Thus,
q P 00

if ir(«) and p(«) are the regular partition and the permutation defined by

P (ff('))s the hypergraph H(p(A),ir) is acyclic since none of its external

arcs is going from ir (Q ) to ir.(Q ), whatever i, j e Q may be, with i > j.

Since, in view of Lemma 4.2, H(p(A),Tr) is isomorphic to H(A,p (tt)) and,

in view of Lemma 4.1, H(A,p (tt)) is isomorphic to H(A,tt), the conclusion

can be drawn that H(A,ir) is acyclic.

Conversely, if H(A,ir) is acyclic, then there'exists p (•) e ^-P such
oo A oo oo

that, letting tt (•) = p (ir(*))» H(A,tt ) has no external arcs going from

CO CO

7r.(Q ) to tt,(Q ), whatever i, j € Q may be, with i > j. This means that

T m (A) is lower triangular, hence A is block reducible relative to tt(0.
P (tt)

Theorem 4.1

2

For any A^Rn S C Q and ir(«) e JJ A is block S-reducible relative
J ' xn v ' nq*

to tt(>) if and only if S is an essential set of H(A,tt).
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Proof. If S is an essential set of H(A,tt), H (A,tt) is acyclic. Let A
b b

be the reduction of A to Q - S. By definition of section hypergraph

and of H(A ,tt ), H(A ,ir ) is isomorphic to H (A,tt) . In view of Lemma 4.3,

A is block reducible relative to tt(«) and, according to Proposition 4.2,

A is block S-reducible relative to tt(«).

Conversely, if A is block S-reducible relative to tt(.), according to

Definition 4.5, there exists p*(«) € *P such that T *, N(A0) is lower
q P (ts) s'

triangular. According to Definition 4.5 and Lemma 4.3, H(A ,ir ) is acyclic,
b b

Being H (A,ir) isomorphic to H(A ,tt ), S is an essential set of H.

2 n

Corollary 4.1. Given A € ]Rn and ir(.) G n , ODP is equivalent

to the determination of a minimum essential set of H(A,it).

It has to be noted that the problem of finding a minimum essential set

t
in H(A,tt) can be easily proven to be hard. In fact, it can be considered

a generalization of the minimum feedback vertex set problem which is well

known to be hard [14]. The minimum feedback vertex set problem has been

investigated in a number of papers and some satisfactory approaches have

been developed. In particular, preliminary simplifications [15,16,17],

branch and bound techniques [15,16,17,18] and near optimal algorithms [17,

18] have been devised.

In the sequel, some definitions are introduced so that the extension

of almost all the results obtained in relation with the minimum feedback
t
A problem is said to be hard (NP-complete) if it belongs to a class of

well-known combinatorial problems (covering, sequencing, knapsack, 0-1
integer programming, Hamiltonian circuit, etc.) which are equivalent, in
the sense that no algorithm terminating with a number of steps bounded by
a polynomial in the dimension of the problem (length of the input) exists
for their solution. Moreover, it has been shown that a polynomial bounded
algorithm for one of them yields polynomial bounded algorithms for all.
This result strongly suggests that these problems will remain "intractable"
perpetually [14].
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vertex set problem to the problem of determining a minimum essential set

of H(A,ir) is possible. This extension is possible due to the very

particular structure of the hypergraph associated to A.

Definition 4.6. The elimination of x € ir. (Q ) from H(A,tt) is accomplished:

(i) forming the section hypergraph H (A,tt), (ii) adding a set of new edges

Yex =<(*,s)|(r,s) €Yex'(r'x) GYex>(x's) GYexVs GW**

Definition 4.7. Let x £ ir. (Q ) be a node of H(A,ir):

(i) The external out-degree of x, d (x) is

dex(x) = lYex(x)l Where Ytx(x) ={y GYexly =(x'z)>Z GV

(ii) The external in-degree of x, d (x) is
ex

dex(x) = lYIx(x)l Where Yex(x) = {y GYexly ° (z'x),Z EQn}

A self-loop is an edge y = (r,s) in Y such that r 5 s.

Proposition 4.3. The following local transformations of H(A,tt) are index

preserving:

Rl. Elimination of x when min(d~ (x),d+ (x)) _< 1 [15].

R2. Deletion of all the edges G Yex incident at x except those forming

doublets , if after removing those edges in the doublets, min(d (x),d (x))

= 0. [15].

R3. Deletion of (y,x) 6Y if (y,z) G y whenever (x,z) G y

4.

A doublet is a cycle formed with arcs in Y of length 2.
J ex

-20-



Likewise for (x,y) G Y . [16].

Proposition 4.4. If (x,x) €Y^, Hx(A,tt) has an index which is one less

than the original. [15]. n

The previous Propositions form a basis for efficient branch and bound

techniques. [15,16]. Moreover, the preliminary reduction performed by

means of the rules described in Proposition 4.3 and 4.4 can often determine

a minimum essential set [17]. As an example, consider the hypergraph in

Fig. 3. By means of Rl and Proposition 4.4 repetitively applied, the

minimum essential set S = {2,6} is eventually obtained.

An alternative approach consists in applying, instead of branch and bound

techniques when the preliminary reductions fail, near optimal algorithms

in order to find non optimum but "good" solutions.

Proposition 4.5. The following algorithm [18] can find a minimal essential

set of H(A,ir), i.e., an essential set S of H(A,tt) such that no proper

subset of S is also an essential set of H(A,ir):

STEP 0. Set HQ ^(X^) =H(A,tt), n=|xj, i«0, S=*.

STEP 1. If there exists an edge (xi,x±) Ey± ,go to STEP 2, else, go to

STEP 4.

STEP 2. Form the section hypergraph of Hw vr >t .x ,H, and set H
1 i ix. i+1

H lx . S = SU {K±}9 go to STEP 4.
i

STEP 3. Eliminate any x± in H. and set H equal to the obtained

hypergraph.
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STEP 4. i « i + 1, if i = n, go to STEP 5, else go to STEP 1.

STEP 5. End. n

V. THE TEARING ALGORITHM

In this section, a particular way of applying MOD to a system Ax = b,

where A is defined in Proposition 4.2 and is assumed to be obtained by

means of any decomposition algorithm, is described and some computational

remarks are given.

Let 1.. be as in Proposition 4.2; then

lll

a"
ail 0 .... 0

a"
a21

a"
a22 0

. •

. •

. •

qi qq

*"let the dimension of a,, be p, , k = 1, ..., q; let x be partitioned
kk

according to ir (•) into

1

into

•1
x

q

X
1 *; let x be partitioned according to p (irq(.))

and b be partitioned into , where b is partitioned into

as well. In view of MOD, the following algorithm can be applied:

TE (TEaring) Algorithm.

STEP 0. Let C= \c± I C|where C± «0 and C2 «
l12

a22 - Im
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b*i- c = all °-

•21 *.
,x(. )A*°, °b A b. ^-^-...A

«."

STEP 1. Compute the LU factorization of a,,, k = 1, ..., q
kkJ

= c2, i = 0,

STEP 2. k = 0.

STEP 3. k = k + 1. Compute the solution x, (e ) of the following system

by forward elimination and back substitution

p=i

STEP 4. Compute x2(e±) =^ -a21 x1(ei).

STEP 5. If k = q, go to STEP 6, else, go to STEP 3.

STEP 6. i = i + 1. If i = m + 1 go to STEP 7, else go to STEP 2.

STEP 7. Compute the LU factorization of

I -
m

x (e )'.... Ix (e)
J. • . m

» I - Q
m ^

_2
STEP 8. Compute the solution x by forward elimination and back substitution

of

(Im-Q) x2 =x2(eQ)

STEP 9. Compute x1 =x1(e )+ £ x2 x1(e )
p=l

STEP 10. End.
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Remark 5.1. H and K in MOD are equal respectively to C« and in TE.

m

In order to compare the performances of TE with respect to LU decomposition

method the number of multiplications needed in TE is evaluated.

Let e. + 1 be the number of nonzero elements in the first row and

£. + 1 be the number of nonzero elements in the first column of the reduced

matrix of order p. - i + 1 during the i-th step of Gaussian Elimination

performed in natural order on a|V. Let N be the total number of nonzero

elements in a«r and a" , r < 1. TE requires
zx r i

in STEP 1

A^ kk k
Z H te±*± + O multiplications (5.1)

k=l i=l

q Pk
n -m+ (m + 1) (V (V (e* + Q+ p)+ N) multiplications

k=l i=l 1 1 k
(5.2)

in STEP 3.

im73 - m/3 multiplications (5.3)

in STEP 7.

2
m multiplications (5.4)

in STEP 8.

Globally,
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q pk ^k
E E (ei?i +*b +(« +i) ( E <£ <ek +A +P, ) +N) +
fli=i X1 L k=i i=i i i k

3 2
+ m /3 + m - m/3 + m (n - m) multiplications (5.5)

LU decomposition requires [13]

n-1

^ ^iYi +2Ci +YP +nmultiPlications (5.6)
i=l

where c and y have been defined in Section II.

Assumption 5.1 The elimination orderings in LU decomposition and in TA

are the same. Moreover, rows and columns have been rearranged so that the

chosen elimination ordering is correspondent to the natural ordering.

D

k k k kIn view of Assumption 5.1, let n. - C. - £-, and 8. • y. - £.; then

(5.6) can be rewritten as

qPk,,' q Pk , , q k v v vl-
E E W +o + E<E (e7 + p +pk) + E E (ex +\q +

k=i i=i *•1 1 k=i i=i 1 1 * k=i i=i * * x 1

+nkek +2nk +ek) + E <Vk +nk +V +m* (5,7)
k=n-m+l

TE requires less operations than LU decomposition if the following inequality

holds:

qPkkk 3 1 llk kk
m<E <E <ei +V + Pv> +N> m/3 +m(n - ^) < V E <eX +

£i i^l 1 1 * J H i=l X X

+nkek +nkek +2nk +ek) + £ <Vk +2ck +vk) +« (5.8)
k=n-m+l
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By inspection, it is possible to claim that TE tends to overcome when m

k k
decreases and n , 0 increase w.r.t. N. A precise evaluation can be given

if some particular cases are investigated. In Table II, some comparison

are given.

For all the cases considered in Table II, the following assumptions

hold: (i) pk = p, k= l,...,q and (ii) a12, a21 l^ and arg, r< s, s= 1,

...,q are full matrices.

Remark 5.2. If the structure of the system is repetitive, i.e., if the

matrices on the main diagonal of a.,- are equal, TE performs only once

STEP 1, saving in this way many operations, while LU decomposition method

cannot exploit this structural property. n

Remark 5.3. TA does not generate any fill-in in a" , r <_ s, and in a2^.

n

Remark 5.4. At the k-th step of TA only a square matrix of dimension p,

and a rectangular matrix of dimensions p, x p (where p = max p.)
k r r j=l,...,k-l J

must be retained in the fast memory. This feature makes TA suitable for

the analysis of large systems with small computers.
n

Remark 5.5. STEP 1 of TA can be accomplished by parallel computation.

•

VI. CONCLUSIONS

In this paper, tearing methods for solving large scale systems of

linear algebraic equations have been discussed. In particular, a modification

algorithm has been presented and proven to be more efficient than the most

used techniques, in almost all the applications. Then, the problem of

determining what are the "best" elements to be torn in the original given
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matrix A has been taken into account. In particular, the reduction of A

into a block inferior triangular matrix with as few as possible "modifications"

has been assumed as goal to achieve. Under reasonable assumptions, the

problem of determining the optimal rearranging of A according to the selected

goal, has been proven to be equivalent to a minimum essential set in an

hypergraph associated to A. Some preliminary reduction rules and a. near

optimal algorithm derived straightforwardly from the minimum feedback

vertex set problem reduction rules and near optimal algorithms, have been

introduced. A particular way of applying the previously presented modi

fication algorithm to a matrix rearranged according to the chosen criterion

has been discussed and its performances compared with LU decomposition

method.

Further work could be done in defining new criteria to be followed in

rearranging A and in deriving efficient algorithms to solve the related

optimization problems.
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CAPTIONS

Fig. 1. A matrix A and its partition in blocks.

Fig. 2. A generated by p*(ir (6)).
o

Fig. 3. The hypergraph associated to A, tt of Fig. 1,



y!n=({'.2.3.4}. {1.2,3,4})

yi2n=({5»6}.(5'6})

£=({7.*}.{7.s})
Figure 3
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