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ABSTRACT

In the tableau approach to large electrical network analysis, as well

as in structure analysis, finite element method, linear programming, etc.,

a very sparse linear algebraic set of equations Ax = b has to be solved

repeatedly. In order to efficiently solve the system via Gaussian

Elimination, an optimization problem has to be faced: the selection of

a pivot strategy to maintain the sparsity of the matrix A. While a certain

number of theoretical results are available when the pivotal elements are

chosen on the main diagonal, very few results have been obtained when the

selection is done out of the main diagonal. The problem is usually solved

via heuristic algorithms. The general structure of these algorithms is

such that there is no guarantee that the pivotal elements sequentially

chosen were nonzero in the original matrix. In this case, Brayton et al.

have shown that Gaussian Elimination is no longer optimal in the sense

that unnecessary arithmetic operations as well as unnecessary storage

requirements may be produced. In this paper a graph theoretical inter

pretation of nonsymmetrical pivotal strategies is given and an efficient

algorithm which enables to select always nonzero pivotal elements in A,

is proposed.
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I. INTRODUCTION

Sparse matrix techniques [1-4] have been applied in many different

technological areas such as structure analysis, finite element method,

linear programming and circuit analysis [5-7]. These techniques are

concerned with the solution of linear algebraic systems of equations Ax * b,

when the coefficient matrix A is sparse [1-4]. Their purpose is to fully

exploit the sparsity in order to lower the complexity of computer computations.

In ordinary Gaussian Elimination (GE) [8], the choice of a pivot strategy

is fundamental in order to economize computer storage and time [1-7]. The

figure to be minimized is usually the number of fill-ins, i.e., of the

nonzero elements introduced during the elimination process [1-7,9-12], or

the number of arithmetic operations.

When A is symmetric and positive definite, it is obvious to restrict

the pivot choice on the main diagonal [12]. Rose, Ohtsuki et al., Ogbuobiri

et al., etc. [12-16], have introduced a graph theoretic interpretation and

proved theorems in order to find efficient near-optimum algorithms for the

symmetric case.

In the sparse tableau approach to electrical network analysis and

design [6], which can be considered as one of the most efficient available

techniques, the structure of the coefficient matrix A is highly nonsymmetric

and A is not positive definite. In this case, there is no reason to

restrict the search of pivot elements on the main diagonal. However the

complexity of the optimal pivot selection is by far increased. Some heuristic

algorithms [6,7,17-21] have been devised, but very few theoretical results

have been obtained. In particular, all the heuristic algorithms available

do not assure that the pivotal elements (chosen in a sequential way

simulating the elimination process on a structural matrix associated to A)
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are nonzeros in the matrix before the elimination procedure starts. In

this case, Brayton et al. [22] have shown that Gaussian Elimination as well

as LU decomposition is not "optimal," i.e., some unnecessary operations and

storage requirements may be needed, while if all the selected elements were

nonzeros in A, G.E. and LU decomposition are optimal.

As in the symmetric case, a graph theoretic interpretation may be

helpful to devise and compare pivot strategies. At the moment, two of

them are available:

1) one given by the author [23] and based on simple digraphs and on

graph operations on them.

2) the other given by Shirikawa et al. [19] and based on bipartite graphs.

In this paper, a bipartite graph representation similar to the one given

in [19] is used in order to build up an algorithm able to select always

nonzero elements in A as pivots. It has to be noted that this algorithm

can be used as a general framework in which it is possible to insert

whatsoever heuristic procedure to minimize the computation time and the

storage requirements. In particular, the paper is organized as follows:

in Section II, some preliminary remarks and graph theoretic definitions

are given. In Section III, the bipartite graph interpretation is introduced

and in Section IV the algorithm is described and its complexity is evaluated.

In Section V some concluding remarks are given.

II. PRELIMINARY DEFINITIONS AND REMARKS

A graph theoretical background is presented in this Section. All the

undefined terms are to be understood according to Harary [24]. Let G = (X,U)

(G = (X,E)) be a (di)graph with a set of vertices or nodes X and a set of

(directed) edges or arcs U= {{x^x ^x.^ x. GX} (E = {(x±,x.) |x±,x G x>).
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A simple (directed) path y(x±,x ) of length £ is an ordered sequence of

distinct vertices.

y(x±,xj) - <P0>PV- ••»?£>

such that po =x±, p£ =xj^pk,pk+1} e u((pk,pk+1) e E) k=0,...,*-l,
x.^x..

A simple(directed) cycle n of length Z is an ordered sequence of

distinct vertices: n=<po,.,.,pA> such that pQ =p£ »x, {p^P^)

Gu^Pk»Pk+l) E E) k = 0,...,£-l. The section (di)graph defined on a subset

YCXis G(Y) =(Y,U(Y)) (=(Y,E(Y)) where U(Y) ={{x±,xj} eU^x
€ Y}(E(Y) ={(xi,xj) €E|x±fx e y)

Given a digraph G = (X,E), the reversion of an arc (x.,x.) is performed

by replacing it with an edge (x.,x.).

Let G be a directed graph. G is said to be strongly connected if for

each pair of vectices x^x. G X, there exist a simple path u-te.jX.) and

a simple path y^(x.,xi). It has to be noted that the trivial graph constituted

by one node only is considered tobestrongly connected. Let it = {X.,...,X }

be a partition of the nodes X. If the section graphs G. = (X.,E±) = G(X.),

i = l,...,q, are strongly connected and if no G. is a proper subgraph of a

strongly connected subgraph of G, then the G.*s are called the strongly

connected components of G.

A bipartite (di)graph B = (S,T,U) (B = (S,T,E)) is a (di)graph

B = (X,U) (B = (X,E)) such that S U T = X, S O T = 0 and the section

(di)graphs B(S) and B(T) are both vertex graphs. Given a bipartite

(di)graph B = (S,T,U) (B, = (S,T,E)) a matching I is a set of edges

such that no two edges in I are incident to the same node. A node x £ X
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is said covered if there is an edge in I that incides in it. A complete

matching is a matching such that all the nodes of the bipartite (di)graph

are covered. A maximum cardinality matching is a matching containing a

maximum number of edges. Given a bipartite graph and a matching I, an

alternating simple path A(xi,x ) is a simple path such that if the edges

*Pk,Pk+l* with k even are in I» the ed8es with k odd are not in * or

vice versa. An alternating simple cycle p is an alternating simple path

X(x.,x.) in which x. = x..

A bipartite graph can be conveniently used in order to code the zero-

nonzero structure of a matrix. In particular, given a matrix A = [a..] G ]Rn

a bipartite graph B[A] can be associated to A as follows: B[A] = (S,T,U),

with |s| = |t| =n, and {s±,t }Guiff (if and only if) a $ 0; i, j

*"~ i) • • t )H«

The structural rank of A, rs(A), is given by

(1) rs(A) = max rank A.

LfA i
where

2

(2) _/= {A±|A1 e ]Rn A (B[A±] =B[A])

Then, the following Lemmas can be stated without proof [25,26].
2

Lemma 2.1. Given a matrix A^E , rs(A) = 111, where I is a maximum

cardinality matching in B[A].
2

Lemma 2.2. A system Ax = b, A £ TEL , x,b £ IRn has a solution only

if I of Lemma 2.1 is a complete matching in B[AJ.
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III. ORDERING STRATEGIES AND BIPARTITE GRAPHS

2

When G.E. is performed on a given nonsingular matrix AG In , the

matrix is modified step by step during the elimination procedure. Not

only the numerical values of its elements are modified but also its

structure. In particular, new non zero elements can be added. If the

first pivot is taken in position t^, ^(^ ^0), the modified matrix
(1) (i) 1 ±

A - [a.. ] is obtained from A as follows:

*ij i= hi w
(3) a£} =̂-0 j=k^ î (b)

aij -(aikx / \\^ \l otherwis* (c)

Recursively, if the £-th pivot is taken in position h„, k. (a^"1^ f 0,
£ £

h£ *hm' k£ ^km' m=i*-*-*!--1)* AW is obtained from A^*"1^ as follows:

(£-1)
/aij i=hl'"'*,h£' ^=ki»*•' »k&-i (fl)

(4) ag) =£.Q jak^ i^h^...^ (b)

aij " (aik ;Vk }\j otherwise (c)

The fill-ins introduced during the £-th elimination step are

(5) ^-{.yi.g^o, .g-y-o)
and may occur only in the submatrix of A* ,A* k GTR^n"^ defined by 4c.

(£) A £
In particular, it has to be noted that A/ ' can be obtained from

(£-1) ^ l
A, ' , deleting row h and column k , and modifying the other elements
Vl £-1 Z %
according to 4c. When £ = n, the elimination process terminates.

The set of indices ,Q = {(h.,k,)» (h0,k0)..., (h ,k )} individuates
xx a a n n

the pivot strategy.
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If a minimum fill-in policy Is followed, it has to be chosen a pivot

strategy o^ such that

- h k

F(<y) - min F($) = min | U f l l\ .
& °Vk£)e£

Now, a graph theoretic interpretation of the elimination process on A

is proposed.

Definition 3.1. Given a bipartite graph B = (S,T,U) a dumb bell is a

couple of nodes d = [s,t] such that s £ S, t £ T and {s,t} £ U.

Definition 3.2. Given a bipartite graph B = (S,T,U) and a dumb bell

dhk= fVH1*
(a) the deletion of cL. from B is accomplished removing s. and

tfc with their incident edges. The obtained graph is then B(X-{{s,}U{tk}})

(b) the elimination of d,. is accomplished deleting <L . and adding

a set of new edges Uhfe = {{s±,t }|{s±,t }£UACs^t^ €u A {8h,t }€ u}

|u,,| is called the deficiency of d., , T(d-,).

2

Theorem 3.1. Given a matrix A^i and a pivot sequence individuated

by £ -fCW.'-tW1' 3[Atl 3=(-"((B[A1)h1k>h,k '-\ k
nn 1122 nn

n

and F(£) = £ T(d , ).
j=l jj

Proof. For sake of simplicity, we set B° = B[A] = (S°,T°,U°) and

B£ = B[A^£] - (s\t*,UA) £=l,...,n. At first we prove that B1 - (B°). .
HH niKi

ii a.}and that |F |= x(d. , ). A> ' is obtained from A deleting row h-n^ n^ i

and column k,. In B the nodes s, and t. , corresponding, by definition
1 hl kl

of bipartite graph associated to a matrix, to row h, and k_, have been
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removed. The condition a, . ^ 0 is correspondent to the condition that
Vl

[s ,t, ] is a dumb bell in B°. The structure of A is possibly modified
nl Kl

adding new elements according to 4c. By (6), fill-ins occur if a « 0

and a., and a, .f 0, a new edge is introduced in B1 if {s.,t.} £ U,
1 V h± i J

{s±,tk }e uand {sh ,t }eU. Then |F l L\ =x(dh fc ). By the same

reasonings it is possible to conclude that B = (B^"1) . and that

|F \= T(dh k ), £= 2,...,n. By recursion we obtain the proof of the
Xr X*

Then a pivot strategy & individuates a sequence of dumb-bells

H) = '{d-,... ,d-') »d. - d, . »such that
i n j h .k.

J J

The converse is also true: a sequence of dumb-bells ^D ° <d,,...,d >

such that (7) holds individuates a pivot strategy. In fact, (7) implies

a^1* *0and hj *h±, k^ k̂±, if j, i,j «l,...,n.
The successive elimination of the dumb-bells in a sequence

u = \ d-,... ,d) is called dumb bell elimination process and^0 is a

dumb bell elimination sequence. An elimination process with £ «= n is said

to be complete. Therefore, the minimum fill-in pivot strategy has the

following graph theoretic interpretation: determine a complete dumb-bell

elimination process in B[A], individuated by a dumb bell sequence H), such that

(8) t<£D) = min x(CD)

Proposition 3.1. Let B = (S,T,U) be a bipartite graph and^ a sequence

of £ dumb bells satisfying (7). ^ individuates a matching in

B = (S,T,U) where 6 = U U ( U n.)

dhk^D
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Proposition 3.2. A matching T = {{s. ,t, } ,...,{s, ,t, }} in
"l ft n£ k£

B = (S,T,U) individuates a dumb bell set D= = {(s, ,t, ),..., (s. ,t, ).}
l h, n, ti k

11 e e

such that (s. ,t. ), j = 1,...,£, satisfy (7).
3 j .._ „ . .

It has to be noted that there are no computational feasible algorithms

able to find an elimination sequence^) such that (8) holds. In general

[6,7,12-21], the problem is addressed via heuristic algorithms which

try to obtain local optimum with a sequential deterministic procedure

or step-by-step strategy. The fundamental rules on which the sequential

procedures are based can be considered: select the dumb bell d. . in
h k

i-1 i i
B at the i-th stage, such that:

(i) x(d , ) is minimum (local minimum fill-in strategy) [18,19]
ni i

(ii) the product of the number of edges incident to s, and t,
h. k.
i i

is minimum (Markowitz criterion) [17,18]

(iii) the number of edges incident to s, is minimum and among all
hi

the dumb bells with this property select one with t. of minimum degree
ki

[18].

Almost all the available heuristic algorithms are based on these

rules, or on combinations and slight modifications of them. However, as

pointed out in Section I the pivot elements have to satisfy the following

condition:

(9) ft1,#ahk *°n£K£ n£K£

in order to assure the optimality of Gaussian Elimination and LU decomposition

in the Brayton's sense [22].

The heuristic algorithms are in general not able to fulfill the

condition (9) as shown in Fig. 1 for Markovitz criterion. Sometimes
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the general structure of the heuristic algorithms have been modified as

follows [27]:

STEP 0. i = 0 B° = B[A] = (S,T,U)

* i
STEP 1. Let D.. be the set of dumb-bells in B such that the

correspondent edges 6U. If D± is void, D± is set

equal to the set of all the dumb-bells in B . Select a

4c 4c
dumb-bell d. £ D. according to the chosen heuristic rule,

i = i+1. If i = n+1, STOP. Otherwise continue.

i i-1 *
STEP 2. Obtain B from B performing the elimination of d. -. Go

to STEP 1.

*

However, according to STEP 1, sometimes D. is void and then it is

necessary to take into account the elements not satisfying (9) in order

to complete the elimination process. An example is shown in Fig. 2,

where the Markovitz criterion requires the selection of the dumb-bells [s,,t,]

[s ,t ] at the beginning of the elimination procedure. All the
5 6

pivotal orderings after these Steps require the choice of a fill-in as

pivotal element.

IV. THE ALGORITHM NONZERO

Before proving the fundamental theorem on which the algorithm for

the selection of a pivotal strategy satisfying (9) is based, we point

out the following Remark:

Remark 1. In view of Proposition 3.1 and 3.2, given a complete

dumb bell elimination sequenced in B[A], condition (9) is satisfied

iff the dumb-bells in ^0 individuate a complete matching in B[A].
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Remark 2. In order to obtain a complete elimination process

satisfying (9) we have to devise an algorithm which is able to select

sequentially acomplete matching in B[A] without loosing the capability

of maintaining the sparsity of A.

The basic idea is,

(1) to begin with a complete matching in B[A],

(2) to consider as possible pivot elements the edges which are

in I or which can be inserted in a complete matching

(3) if an element not in I has been chosen according to the

heuristic rules adopted, to modify I in order to insert the

new element.

The set of elements which can be inserted at a certain step of the

selection procedure is identified by the following Proposition which

can be considered a consequence of a theorem in [28 pg. 123]

Proposition 1.1. Given a bipartite graph B = (S,T,U) and a complete

bipartite matching I-, any other possible bipartite complete matching in

B, I, , can be obtained from I, as follows: individuate one or more
h 1

disjoint simple alternating cycles (e.g., m) pJ w.r.t. 1^. Let 1^ be the

set of edges in I- but not incident in the nodes of the alternating

cycles, and I the set of edges belonging to the alternating

cycles but not in I-. Then I, = I|Ul.

Suppose now to have a complete matching I in B and direct the

edges in B as follows:

(10) {si,tj}Gu

y (t.,s.) €E iff ts±,tj} € I

(s,,t.) otherwisev i» y
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Let B = (S,T,E) be the obtained directed bipartite graph.

Proposition 4.2. There is a one-to-one correspondence between

simple directed cycles in B and simple alternating cycles in B w.r.t. I.
n

Now it is possible to prove the fundamental theorem.

Theorem 4.1. Let B = (S,T,U) be a bipartite graph and I a complete

matching in it. Let {s.,t } be an edge not in I. There exists a complete

matching I1 in Bsuch that {s±,t }G I1 iff (s±,tj) belongs to a strongly

connected component of BT = (S,T,E).

Proof. If part: by definition of strongly connected components

there exists a simple path y(t.,s.) in B_. Then {s.,u (t. ,s.)} is a

simple cycle in B . By Propositions 4.1 and 4.2, it is possible to

obtain a complete matching I' such that {s.,t.} G V..

Only if part: If there exists a complete matching I' such that

{s.,t.} 6i', then by Proposition 4.1, there exists an alternating cycle

containing {s.,t }. By Proposition 4.2, there exists in Bj a simple

directed cycle such that Jk9 pfc = s., pfc -= t.. By definition of

strongly connected component, there exists a strongly connected component

of B such that (s.,t.) is present in it. H

Now, we are able to build up an algorithm for the selection of an

elimination process satisfying (9).
2

Assumption 1. A € 3R is nonsingular

By Lemma 2 we know that there is at least one complete matching

in B[A].

Assumption 2. A complete matching I in B[A] is given.
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ALGORITHM NONZERO

STEP 0. Set i=0, B° =B[A]. B° =Bj

STEP 1. Find the strongly connected components of B .

STEP 2. Let D, = {D* U D'.1} where D' is the set of dumb bells
ill i

corresponding to the edges in the strongly connected

components of B and D" is the set of dumb bells corresponding

to the edges directed from T to S not in the strongly

connected components of B . Select a dumb-bell d^ £ D^

according to the chosen heuristic rule applied to B .

STEP 3. If d e DV, go to STEP 6.
i l

STEP 4. If the edge corresponding to d. is directed from T to S,

go to STEP 6.

STEP 5. Let d. = [s, ,t, ]. Find a path y(t, ,s, ) and accomplish
i i i i

the reversion of the arcs in the path.

STEP 6. i = i+1, if i = n, STOP

-i-1 -i
STEP 7. Delete d - from B to obtain B . Eliminate d - from

i-1 i
B to obtain B . If d. , ^ D", go to STEP 2, otherwise

go to STEP 1.

n

The correcteness of the algorithm is proved in the following theorem.

Theorem 4.2. The dumb bells in the sequence ^D = (d ,...,d ,)

individuate a complete matching in B[A].

Proof. We prove the theorem proving that the following statement

is true:

(S) for every i = 0,...,n, there exists a complete matching in

B[A] individuated by d ,...,d.__ and by the arcs directed from T to S

in B1.
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In fact, if the statement (S) is correct, setting i = n, the theorem

is proved.

(S) will be proved by induction. For i = 0, by Assumptions 1 and

2 and by STEP 0, there exists a complete matching in B[A] individuated

by the edges directed from T to S in B°. Suppose that (S) is true for

i = k, (S) is true for i = k+1. In fact, at the k-th stage, there is

a complete matching in B[A] and this is individuated by d.Q9"*>\-i
—kand by the edges directed from T to S in B by hypothesis. Suppose that

d, is selected in STEP 2. Then two cases occur: (1) the edge individuated
k

by d, is directed from T to S. (2) the edge individuated by dfc is

directed from S to T.

In the first case, after STEP 7, the edges corresponding to the

-k+1
dumb-bells d ,...,d. and the edges in B directed from T to S

ok

obviously individuate a complete matching in B[A]. If d, £ D", then the

-k+1
strongly connected components of B are equal to the strongly connected

-k
components of B except the trivial ones. Therefore, there is no need

to recompute them according to STEP 7.

In the second case, d. £ D' and it belongs to a strongly connected

—k
component of B . Then, by Propositions 4.1, 4.2 and Theorem 4.1, at

the k+l-th stage, after the execution of STEP 7, the edge corresponding

-k+1
to d ,...,dt and the edges directed from T to S in B individuate a
ok

complete matching in B[A]. n

The complexity of Algorithm nonzero is now discussed.1

Recall that an algorithm has complexity 0(p ,qa) if the computation time
and the storage requirements are bounded by k_p + k2q where k1 and k„
are constants. p and q are parameters depending upon the input of the
algorithm [29].
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It is immediate to observe that STEPS 1, 5 and 7 are dominant in

complexity, so we concentrate our complexity analysis on these steps.

STEP 1 can be implemented via Tarjan algorithm [29] or Gustavson algorithm

[32]. Both of them are 0(|x|,|e|) if |x| is the number of nodes of the

considered digraph and |e| is the number of its edges. The data structure

used in [29] can be applied in Nonzero as well, while the data structure

used in [32] has to be modified with the addition of new arrays. STEP 1

is executed in the worst possible case n-1 times on graphs of decreasing

2
size. For this reason the complexity of STEP 1 is estimated to be 0(n ,

n £) where £ is the number of nonzero elements in A.

STEP 5 consists mainly in finding a directed path between two vertices.

If a depth first search strategy is used on a directed graph stored as in

[29], the complexity of STEP5 is 0(|x|,|e|). In the worst case this STEP

, 2 .
is executed n times. Therefore the overall complexity is 0(n , n £).

In STEP 7 the leading term is given by the elimination of d. ...

Because of Definition 3.2, in order to eliminate d. , = [s._1>ti_i]> a

number of elementary operations proportional to the product of the number

of edges incident in s. - and the number of edges incident in t. . is

+

needed. Then, its complexity is 0(n(x+£)). However, since the elimination

of d. - is required because almost all the heuristic rules require to

simulate the elimination of the selected pivot at each step, it is not

necessary to obtain a nonzero pivot selection. Therefore its complexity

will not be considered. It is now possible to claim that the complexity

2
of Algorithm Nonzero is 0(n ,n£).

t
It has bo be noted that the algorithm described in [30] whose complexity
is 0(n,T+£) does not work in this case because the complete elimination
ordering is not known in advance.
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Remark 3. The complexity of the selections rule is not taken into

account (STEP 2). In fact, it depends on the particular heuristic

rule followed.

Remark 4. If we relax Assumption 2, an algorithm developed in [31]

can be implemented to compute a complete matching B[A]. Its complexity is

0(n°*5£).

Remark 5. As already pointed out, the complexity of almost all the

heuristic rules is 0(n(x+£)). Then, Algorithm Nonzero does not increase

significantly the complexity of an algorithm for the selection of a sub-

optimal pivotal strategy.

V. CONCLUDING REMARKS

In this paper, a bipartite graph has been used to code the nonzero

structure of a sparse matrix. This representation has been shown to be

well suited in order to investigate the problem of the choice of an

optimal pivot ordering in Gaussian Elimination, when the pivot elements

are not forced to be on the main diagonal. A graph theoretic interpretation

of the Gaussian Elimination process as well as of the heuristic rules

more frequently used has been proposed.

This graph representation has been used to solve the problem of

the selection of pivot elements such that no fill-in is chosen. The

problem was introduced in [22], as it was shown that Gaussian Elimination

with fill-ins as pivot elements is not optimal in the sense that

unnecessary operations as well as unnecessary storage requirements may be

needed.
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The main result of the paper is an algorithm able to solve the

fill-in avoidance problem. Its correctness has been proved and its

2
complexity has been shown to be 0(n,' n£) where n is the dimension of the

sparse matrix and £ is the number of nonzero in it. It has to noted that

(i) the algorithm can be used together with almost all the

available heuristic rules for the selection of optimal pivot strategies

(ii) its complexity is such that it does not increase significantly

the computation time and the storage requirement needed for the application

of the heuristic rules alone.

As a final remark, it has to be pointed out that bipartite graphs

may be the most promising tools for the study of optimization problems

which involve the use of non symmetric permutations of a sparse matrix

[33,34].
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FIGURE CAPTIONS

Fig. 1. An example of failure of Markowitz criterion in producing a

set of pivot elements satisfying (9).

Fig. la. A matrix A and its associated bipartite graph B[A],

Fig. lb. The bipartite graph (B[A]) obtained eliminating the dumb-
Vl

bell [s-jt-] selected by Markowitz criterion ( x(d )).
sri

Fig. 2. An example of failure of the modified Markowitz criterion in

producing a set of pivot elements satisfying (9).

Fig. 2a. A matrix A and its associated bipartite graph B[A],

Fig. 2b. The bipartite graph ((B[A]) ) obtained eliminating the
S4t4 S5t6

dumb bells [s,,t,] and [s_,tfi] selected by Markowitz criterion.
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