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ABSTRACT

In recent years a number of important results and unique features of

the piecewise-linear analysis of nonlinear resistive networks has been

derived. However, the applicability of the method relies on the fact

that every nonlinear device is modeled by a piecewise-linear continuous

function. In order to extend the applicability of piecewise-linear

analysis to study more general nonlinear networks, three steps need to

be carried out:

(i) the subdivision of the domain of the multi-dimensional

nonlinear network function;

(ii) the interpolation of a piecewise-linear continuous function

on the subdivided domain; and

(iii) the application of piecewise-linear analysis.

It turns out that the above three steps can be accomplished

effectively by the use of simplices. Furthermore, with that, the

difficulties encountered in the implementation of piecewise-linear

analysis are greatly simplified.
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I. Introduction

In 1965, Katzenelson developed an efficient method for solving

nonlinear resistive networks which contain uncoupled resistors represented

by monotonically increasing, piecewise-linear, continuous functions [1].

During the past decade, the work has been greatly extended and generalized

[2-8]. However there exists a fundamental limitation of the approach,

that is, nonlinear resistors must be first approximated by continuous

piecewise-linear functions.

The purpose of this paper is to develop a method which deals directly

with the multi-dimensional nonlinear network function, thus extending

the applicability of the piecewise-linear analysis to solve more general

network problems. This method consists of two preliminary steps:

(i) the subdivision of the domain of the nonlinear network function;

and

(ii) the interpolation of a piecewise-linear continuous function on

the subdivided domain. Since the multi-dimensional piecewise-linearization

is carried out with respect to the given nonlinear network function, the

modeling process of nonlinear resistors is avoided.

In 1956, Stern first proposed the idea of using vertices of simplices

for interpolation in the analysis of nonlinear resistive networks [9].

Iri extended Stern's work and furthermore, considered the problem of error

estimation [10]. Ohtsuki and Yoshida based on the method above, employed

multi-dimensional interpolation of transistor characteristics in applying

Katzenelson*s algorithm of piecewise-linear analysis [3]. Our present

paper takes into account the latest advances in piecewise-linear analysis

[4-8], and demonstrates the advantages of multi-dimensional interpolation

by using simplices. These advantages are summarized as follows:
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(i) The structure of simplices can be predetermined and necessary

calculations can be easily made if the subdivision is carried out

properly. A systematic procedure, called the simplicial subdivision,

is presented in section II.

(ii) The interpolation of an affine function in a simplex is

extremely simple. In addition, an affine function on a simplex can be

obtained by making minor modifications of the affine functions on its

adjoining simplices [11]. This property greatly improves the efficiency

of the method.

(iii) The boundaries of a simplex are easily defined. Furthermore,

there exists a one-to-one correspondence between boundaries and vertices

of the simplex. Consequently, the most difficult part in the algorithm

of the piecewise-linear analysis, namely, "boundary crossing," is easily

done by replacing an "old" vertex by a new vertex. This procedure is

called the replacement rule and is presented in section IV.

II. Simplicial Subdivision and Piecewise-Linear Interpolation

Let xn, x1,... and x be (n+1) points in the n-dimensional space.
-U ~i -n

A simplex S(x~,...,x ) is defined by

n

i=0

(1)

n

i = l,2,...,n and 2J P- = 1)
i=0 X

In other words, S(xQ,...,x ) is the convex combination of xn, x_ ,... and

xn which are called the vertices of the simplex S(xQ,...,x ) [12-19]. A

simplex S(xQ,...,x ) is said to be proper if and only if it cannot be

contained in an n-dimensional hyperplane {xln x = constant}. This has
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been proved to be equivalent to that the (n+1) * (n+1) matrix
fx0-"Xn|
li ...1 J

is nonsingular [12]. In this paper, this condition is assumed to hold.

A simplex is considered "proper" unless explicitly stated. In a

2-dimensional space (n=2) the above condition simply asserts that x^,

x, and x« are not on a straight line, as shown in Fig. 1.

Corresponding to the (n+1) vertices, there are (n+1) boundaries.

The boundary B, corresponding to the vertex x, is defined as

B. = {xlx £ S(x.,...,x ) with u. =0}. (2)
k ~'~ ~0 ~n k

It is easy to see that B, contains all the vertices except x, . This

one-to-one correspondence between vertices and boundaries is shown in

Fig. 1 for the case n=2. The intersection of more than one boundary is

called a corner. Thus a vertex is a corner which is the intersection of

n boundaries.

In this paper, we assume that the solution of the nonlinear

resistive network is bounded. The determination of such a bounded set,

in which the approximate solution lies, has been considered by many

authors [20-23]. The purpose of this section is twofold, namely: the

derivation of a systematic method to subdivide the bounded set and the

interpolation of a continuous piecewise-linear function on this set.

Let the bounded set be contained in an n-dimensional rectangle

RL = (x|a <_x 4 b}, where a < b to ensure that RL cannot be contained

in an n-dimensional hyperplane. The procedure of subdividing RL consists

*

In this paper, we use the following notations:

x .< y means x. < y., i = k,2,... ,n;

x < y means x. < y., i = 1,2,...,n;

x <. a means x. <. a , i - 1,2,... ,n; and

x <^ y means x <. y and x ^ y.
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of two steps, namely, the tessellation of RL into small rectangles and

the subdivision of each small rectangle into simplices.

The first step is accomplished by the construction of a homeomorphism

between RL and C ={z|0<:z:<p, p>0 and every component of p is an

n

integer}. The rectangle C contains TT p. n-cubes. Let the transformation
E i=l *

be defined by

P1/(b1-a1)

z = T(x) =

p /(b -a )
rn n n _

(x-a) (3)

n

Accordingly, the rectangle RL is also divided into "["[ P« rectangles.
i=l 1

Each rectangle is mapped onto one and only one n-dimensional cube in

C by T(«). This is illustrated in the following example.

Example 1:

Let RL -M" < x <
8.0

2
jand Cp =|z|0 <?4 3}

x ^ RL, there is one and only one z G c defined by
p

z =

4/(8-5.5)

0 3/(2-(-l)) (: •N

For any

The rectangle RL is divided into 12 small rectangles, as shown in Fig. 2.

Next, we wish to subdivide each small rectangle into simplices. In

the z-space, the set of vertices of the cubes contained in C is defined by
p

v =^5|0<rJ<rP' Every component of I is 0 or an integer,

P > 0}. (4)
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From (4), the set of vertices of the rectangles contained in RL in the

x-space is T (V ), i.e.,

V = T"1^ ) = (xlT(x) e v } (5)
p -•„ ~ p

The subdivision of cubes of C into "non-overlapping" simplices is done
P

by properly arranging the vertices of V in a fixed order as shown by

Kuhn [13,14].

Lemma 1:

Every z £ C has a unique representation

z = u In + ... + u I
0~0 m~m

Where

and

m

M > 0, I € v for j = 0,1,...,m (<n), £ u = 1
J ~J P j=0 J

In < I. < ... <I < In + 1*
-0 1 — m = ~0

Note that the point z is in the cube C(Ifi) in C , where

C(IQ) = {z|j0 < z < IQ + 1}.

In the case that m = n, z is an interior point of the simplex

S(I0,...,I ) C C(I0). Otherwise, z lies on the boundary of a simplex.

It should be emphasized that the simplex S(In,...,I ) is unique. The

computation of y.'s and I.'s is illustrated by the following example.

*

Xq + 1 denotes a vector which is formed by adding unity to each component

of h
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Example 2:

Let n = 6. Let x = [1.3 0.6 2.9 0.4 1.5 0.8]T. We first
Tdecompose x into two parts: x = TQ + [0.3 0.6 0.9 0.4 0.5 0.8]

where J =[1 0 2 0 1 0]T. The vector [0.3 0.6 0.9 0.4 0.5 0.8]T

can be represented by

0.3

— —

1 0 0

— —

0 0 0

•— —

0

1 1 1 1 0 0 0

1

1

+ 0.1

1

1

+ 0.1

1

0

+ 0.1

1

0

+ 0.2

1

0

+ 0.1

1

0

+ 0.1

0

0

1 1 1 0 0 0 0

1
_ -J

1
L J

1
— —

1 1 0 0
— _

Therefore

x =

1.3 2 i 1 1 1 1 1

0.6 1 i 1 1 0 0 0

2.9

0.4

= 0.3

3

1

+ 0.1

3

1

+ 0.1

3

0

+ 0.1

3

0

+ 0.2

3

0

+ 0.1

3

0

+ 0.1

2

0

1.5 2 2 2 1 1 1 1

0.8
_ —

1 1
_ _

1 1

- —

1 0 0

= %h + y5?5 + ^4 + y3?3 + y2*2 + ylil + y0*0'

The conditions of lemma 1 are fulfilled, namely,

(i) uQ > 0, px > 0 ,..., y6 > 0;

(ii) £ u = 1; and
j=0 J
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(iii) J0 i Ix i I2 i I3 i I4 1 I5 i I6 = I0 + !•

The result in Lemma 1 provides a canonical decomposition of the

rectangle C into simplices. The decomposition for n = 2 is shown in
P

Fig. 3. Each 2-cube (square) is divided into two 2-dimensional simplices.

Each simplex contains three vertices. The decomposition of a unit

3-cube is shown in Fig. 4. A unit 3-cube is divided into six 3-dimensional

simplices. Each simplex contains four vertices. In general, the

n-dimensional simplices generated by the above method, called the

simplicial subdivision, have the following properties:

(i) The union of these simplices is C .
P

(ii) They are "non-overlapping." More specifically, if the

intersection of any two simplicies is nonempty, then it is either a bounday

or a corner.

(iii) Every n-dimensional simplex contains Ifi and I + 1 which define

the cube C(I-.) containing the simplex.

Consequently, RL is also divided into simplices which have the above

properties. It should be mentioned that the homeomorphism T(*) preserves

the ordering of vertices, since the matrix defined in (3) is a positive-

definite diagonal matrix. In other words, I. <. I. if and only if

x. <_ x., where I., I. £ V , I. = T(x ) and I. = T(x.). Thus, from

Lemma 1, we obtain the following:

Lemma 2:

Every x^RL has a unique representation

x = y x + .. . + u x
0-0 m~m
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where

m

y > 0, x e V for j = 0,1,...,m (<n), £ y = 1

and

T(xn) < T(Xl) < ... < T(xm) < T(xn) + 1

Having presented the simplicial subdivision of RL, we are ready to

take a look of the piecewise-linear interpolation. Let the nonlinear

equation be g(x) = y*, where g(») maps from R into self. Let S(xQ,...,x )

be any simplex generated by the simplicial subdivision. An affine

function approximating the given g(.) on S(xQ,...,x ) can be defined by

f(x) = [g(xQ), ..., g(xn)] u (6)

Tfor x£ S(xn,...,x ) and y = [yn,y.. ,... ,y ] as in Eq. 1. Extending

this interpolating procedure to all simplices, we have a piecewise-linear

continuous function f(0 approximating g(»)> which is defined on the

rectangle RL. The continuity of f(») is a direct consequence of the fact

that the simplices do not overlap.

Suppose the function g(0 is continuous, then there exists e > 0 such

that Hg(x) - g(x')ll 4 e for all x, x1 € S(x ,...,xn). This together with

Eq. 1 leads to the following lemma.

Lemma 3:

If g(.) is continuous, then there exists e > 0 such that

llf(x) - g(x)ll < e for all x G RL.

In this paper we shall adopt the following representation of Eq. (6),



f(x)

1

s^o5

for x € S(xQ,...,xn)

" S<*n>

x

-ti

A „
y = G y

x_... x
-0 -n

(7)

<}•
This is similar to the Wolfe secant formulation [12]. If S(x_,...,x )

~U ~n

is proper, Eq. (7) can also be written as

f(?)

1

g(xQ)...g(xn) Xrt... X
-0 ~n

-1
—^ —.

X X

A j
1 1

(8)

where J is the Jacobian matrix in the usual formulation of the piecewise-

linear analysis. The geometric interpretation of (7) and (8) is shown

in Fig. 5 for n = 2.

The advantages of this particular formulation in (7) are:

(i) There is no need to compute the Jacobian matrix J.

(ii) Since x £ S(xn,...,x ) if and only if the vector y satisfies

1 >. y 2l 0, it is very easy to check whether an approximate solution is

found in the simplex. More specifically, an approximate solution of the

equation, g(x) = y*, is found in S(x0,...,x ) if and only if the solution

of Eq. (7) satisfies 1 ^ y J> 0.

III. The Solution Curve in the Piecewise-Linear Analysis

Consider an arbitrary nonlinear resistive network. Let the vector

x represent the chosen network variables and the vector y the inputs to

the network. It is well-known that a nonlinear resistive network can be

described by [5,6]

g(x) = y (9)
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where g(0 is a continuous function from R into itself. In the

piecewise-linear analysis, the continuous function g(-) is pie.cewise-

linear, that is,

g(x) = J(m)x + w(m) =y, m=0,1,...,A, (10)

where J is a constant Jacobian matrix and w is a constant vector

defined in the region R . The finite integer Z denotes that the total
m

number of regions is finite. The piecewise-linear analysis amounts finding

a continuous piecewise-linear curve from an initial point x to a solution

in the domain space such that the image of this curve is a straight line

which connects y = g(x ) and the given input y* [4-8].

The continuous piecewise-linear curve, L(x ), is called the solution

curve in the domain. The image of L(x ), L(y ), is called the solution

curve in the range space. The computation of both solution curves is

done by an iterative procedure. More specifically, a series of doublets,

(x .y1), i = 0,1,2,..., is calculated such that

(i) y1 = gCx1);

(ii) {x|x =x1 +t(xa,+1-xi)> tG[0,1]} is in the region R±,

i = 0,1,2,... ; and

0 12
(iii) y , £ , y ••• are on a straight line

A number of conditions has been derived, which guarantee that the

0 12
sequence, y , y , y ..., converges to y* in a finite number of steps.

0 12
Accordingly, the sequence in the domain, x , x , x ..., converges to a

point x* which is a solution of (10). This is shown in Fig. 6. The

main feature of this approach, which should be emphasized, is that the

solution curve L(x ) enters a new region at each iteration.
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The operations which are needed to carry out the analysis are

summarized as follows:

(i) The determination of the boundary of the present region to

be crossed. (When a solution cannot be found in the present region, the

solution curve L(x ) traverses the region and reaches a boundary which

is to be crossed.)

(ii) The identification of the new region into which the solution

curve should enter. (This new region is uniquely defined when the

solution curve reaches a single boundary.)

(iii) The formulation of the new equation to compute the next segments

of the solution curves, L(x ) and L(y ).

When the simplicial subdivision is used to divide the domain into

simplices and a continuous piecewise-linear function f(«) is interpolated

on those simplices, the above three steps are greatly simplified as

follows:

(i) The determination of the boundary B, to be crossed is equivalent

to the determination of the vertex x, to be deleted from the present

simplex S(xn,...,x ). As discussed in the previous section, x, is opposite

to B, .
k

(ii) The computation of the vertex x' which forms, together with the

remaining n vertices, the new simplex S(x0,...,x, _jxj,x^_,...,x ). The
0

solution curve is forced to enter this new simplex.

(iii) The new equation is simply formulated by replacing the (k+l)th
r ~|

?(xk^ , that is,
L 1 J

column of the matrix G in Eq. (7) by

;(x0 "• 5**k-l* ?*SjP ?(xk+l^ *•• 8(~n)
1 ... 1 1 1 ... 1

-12-
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The procedure to replace x, by x* is called the replacement rule

and is presented in the next section.

IV. Replacement Rule

The derivation of the replacement rule relies on the fact that the

generated simplices are "non-overlapping," i.e. if the intersection of

two simplices is empty, then it is either a boundary of the simplices

or a corner. Furthermore, for any given boundary of a simplex, there

are two and only two simplices containing the boundary except that the

boundary is itself a subset of the boundary of the rectangle RL. When

a solution is not found in the present simplex S(xQ,...,x ), the solution

curve traverses S(xrt,...,x ) and reaches either a boundary or a corner.
-0 ~n

Suppose the solution curve L(x ) reaches a boundary it is easy to see that

the next simplex is uniquely defined because there are only two simplices

which contain the boundary. In other words, if

(i) the solution curve is forced to enter a new simplex at each

iteration; and

(ii) if the solution curve L(x ) reaches a boundary but not a

corner, then the new simplex at each iteration is completely determined

by the structure of the simplices.

Let the solution curve L(x ), traverse S(x ,...,x ) and reach a

{[-xt rxn ... x -
x| = y, the kth component

of y, y, , is zerol. The new region is determined by the boundary B, and

a new vertex xJ" which is computed according to the following theorem:

-13-



Theorem 1:

Let T(xn) < T(xJ < ... < T(x ) = T(xJ + 1, where x. G v,
~ ~u — ~ ~i — — - ~n ~ ~o ~j

j = 0,1,...,n. Then the new vertex x/ is defined by

xk+i + xk-i " V k = O'1---^

where x ,, = x~ and x _ = x .
~n+l -0 —1 ~n

Before presenting the proof, we illustrate the meaning of this

theorem by the following examples.

Example 3:

Consider a 3-dimensional cube. Let the old simplex be defined by

0 0 0 1

0 > 0 y 1 and 1

0 0
—

1 1

as shown in Fig. 4. Suppose B, is defined by

0 0 1

0 0 and 1

0
— _

1 1

, i.e. is to be deleted, the new vertex is

— —

1

1

0 0 1

1 + 0 - 1 = 0

1 1 1 1

The integer k is 3. The new simplex is therefore

defined by

Example 4:

Consider the simplex defined by

vertex

r~ —i I—1 r~ *n r— —i

0 0 i 1

0 » 0 » 0 and 1

0
I 1

1
I 1

l 1

1

0 1 1 1

0 J 0 » 0 and 1

0 0 1 1

Let the

be deleted. The new vertex is obtained as

— —

1 1 0

1 + 0 - 0

1 0 0

, and the new simplex is defined by

c —1 r—i C~ "~1 c —\

1 1 1 2

0 > 0 y 1 and 1

0 1 1 1
L. -J L. -J _ — J

, as
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shown in Fig. 7.

Example 5:

Let RL =|x|
r ~i f 1
5.5

4 x ^
8

-1 2

> and C = {zl 0 < z < 4} as shown in
J P

Fig. 8. Let the present simplex be defined by x. =

5.5 +2-(2=p>

?i

5.5 +3- (5=p.)
and x

5.5 +3- (-5=1^)

-l +3-(^)
Suppose x1 is deleted,

the new vertex x* is computed as x| = x2 + x - x^ =

5.5 +2. (5=p>

-1 + 3.(2*)

Proof of Theorem 1:

n

Since x S b, , it is uniquely represented by x = £ y.x where
fc ~ j=0 3~J

yj = 0 and 1 > y. > 0 for j ^ k. Let e be an "arbitrarily small" positive
k J

number. The vector

;fe> - E ^Sj +<vi +f> Vi " e xk +(yk+i +!> *k+i (12)
j^(k-i),k

(k+l)

defines a point in the new simplex. Note that x(e)-»-x ase + 0. Thus

x(e) is an interior point of the new simplex when e is sufficiently small.

Equation (12) can be rewritten as

n

x(e) = 53 yjx +(y^_x -f) x^ +e(^ +x^ -*y)
j=0 J J

j*(k-l),k
(k+l) (13)

+ (\+l " 2° \+l
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Since T(«) is a homeomorphism, x/ = x, . + x^ - x, is also a vertex

of RL in V. The conditions of lemma 2 are fulfilled when e is sufficiently

small hence, the representation (13) is unique. Consequently the vertex

to replace x is defined by x' = x, _ + x, - - x, . The same argument

holds for k = 0 or n. The only difference is that the "new" simplex is

in a new rectangle. This completes the proof.

V. The Algorithm

With the replacement rule, the new region in which the solution

curve enters is easily determined. The equation for the new region is

'g(xQ) ... sCx^) S(^) S(xk+i) ••• §(V
1 ... 1 11 ... 1

y*

1
(14)

where y* denotes the input. Let the solution of (14) be y. If all the

components of y are larger than or equal to zero, a solution x* is found

in this simplex,

?*= IJb ••• 5k-l5k?k+l ••• *n] H

The semgent of the solution curve L(x ) in this simplex is simply

obtained by connecting x and x*, i.e.,

x(t) = x1 + t(x*-xi) 1 > t > 0.

(15)

(16)

In the case that y defines a point outside of the simplex, two steps

need to be taken to continue the tracing of the solution curve in the

domain. The first step is the determination of the sign of the kth

component of u, y, . If y, > 0, then

y(t) = y1 + ttf-y1). t > 0,

-16-



0
defines the segment of L(x ) entering the simplex. If y < 0, then

i i
y(t) = y - t(y-y )

0 Adefines the segment of L(x ) entering the simplex. Let SGN (yfc) = 1 if

u > 0 and SGN (y, ) = -1 if y\ < 0. The solution curve entering the
*k k . k

simplex is then defined by y(t).

y(t) =y1 +sgn (Jk) •t•(y-y1). (17)

The second step is the computation of A > 0 such that y(A ) defines

a point on the next boundary of the simplex. This is accomplished by

checking the components of y(t). At least one component of y(t) will

approach zero when the value of t increases from zero. This fact is

derived from the following lemma.

Lemma 4:

At least one component of (]i-\i ) is positive (negative) if y ^ y .

Thus

A > 0 is computed by

x1
r - 1 1

=min \ ^ — >Of
j lsGN(y.)-(y>yt) J

The vector y(A1) defines a point on a boundary of the simplex, namely:

i+1

x " Ix0 "* * Xk-1 ^k" x. .- ... x ] y(A )
rk+1 "n

The solution curve L(x ) in this simplex is then defined by

{x|x = x1 + tfcc1-x1), 1>t>0}

-17-



The computation of A also determines an index which identifies the

vertex to be deleted from the simplex. The procedure discussed above is

repeated until a solution is found.

The following algorithm summarizes the above discussion.

ALGORITHM

Step 1: Choose x and

x = x. - + E., i = 1,2,...,n, where

T
E = [0,...,0,e.,0,...,0] and e, > 0 is the jLth component of

?r
0 1 TStep 2: Let u = ^- [1,... ,1] , i.e.,

n

x = —77 Y] x. which is the center of the initial simplex.
" n+1 M1 Q
Set i = 0 and SGN (y. ) = 1.

k

Step 3: Compute y according to the equation

g(xQ) ... g(xn)

1 ... 1
^i =

y*

1

4
If very component of y is nonnegative, a solution

x* = [x„,...,x ] y1 is found. STOP
~0 ~n

Step 4: Otherwise, compute A from

y(t) = y1 + SGN (yf) *t* (^-y1) ,such that

(i) 0 < y(t) <, 1 for 0< t < A1

(ii) there is one and only one index k satisfying

y(Ai)k =0
(iii) 1 > y(AX). > 0 for j ^ k.

Step 5: Replace xfc by (x^j+x^-Xj^

-18-



If this new vertex is outside of the interested range (RL) the

algorithm is terminated. Otherwise let i, = i+1 and go to Step 3.

The convergence of Algorithm I depends completely on the continuous

piecewise-linear function f(«) interpolated on the rectangle RL. Let

B(RL) denote the boundary of RL = (x|a < x < b}. Then the algorithm

will locate a solution in a finite number of steps under the following

conditions:

(i) The Jacobian matrix, G =

at each iteration;

(ii) The solution curve in the range does not go back to y = f(x );

(iii) The solution curve in the domain never reaches a corner;

(iv) The solution curve does not reach B(RL).

Conditions (i), (ii) and (iii) guarantee that the solution curve

in the domain is well determined at each iteration. Condition (ii)

and (iii) further exclude the possibility that the solution curve in the

domain becomes cyclic. Condition (iv) asserts that the solution curve

stays in RL before a solution is found. Two possible situations which

violate conditions (iv) are shown in Figs. 9 and 10. If the image of

B(RL) is not the boundary of f(RL), then the solution curve might reach

B(RL), and hence, the algorithm is terminated without locating a solution

as shown in Fig. 9. The same problem might occur if L(y ,y*) is not

contained in f(RL) as shown in Fig. 10. The above difficulties arise

from that the interior of f(B(RL)) is not convex.

g(xQ) ... g(xn)
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Finally, it should be pointed out that in the first iteration, the

condition x < x < ... < x is satisfied, i.e. the vertices obey a
~0 — "1 — "*n

ordering property. In step 5, xfc is replaced by (xk+1"bc]c_i""x^ without

rearranging the vertices. This is true even in the case that k = 0 or

n. The reason is that Theorem 1 is applicable to a "circular" list of

vertices. This property is very important from a computational point

of view. If a rearrangement of vertices is necessary, the method of

matrix modification cannot be applied [6,11].

Example 6: To illustrate the Algorithm we consider the tunnel diode

circuit, as shown in Fig. 11.

The network equation describing the circuit is

2ei - e2 + V6^ - i = yx = o

- e, + 2e0 - i,(1-eJ = y0 = 0

where e, and e? are node voltages as shown in the figure and are the

components of the vector x. The tunnel diodes are represented by

., / n 29 7 2,13i(v) = 12 v - g v + J2 v ,

as shown in Fig. 12. Let

5la5o+(V) =(o)

?2 =*1 +(o%) °(o.°5)
The equation to be solved at the first iteration is

g(xQ) g(xx) g(x2) -3.4375 -1 -1.5

-1.125 1.625 0

111

-20-

y =



The solution is y

-0.657

0.455

L 1.202

Since y is the only component which satisfies

0

"^0

SGN<y0)-<y0-y0)

P-0.5

0_

> 0

The vertex is replaced by

r— —

0

+

0
im

0.5
=

0.5

0
— —

0.5 0
_ .j _ ° J

The new simplex is defined by

0.5

0.5

>

0

0

»

0

0.5

and the new equation is

0.5 -1 -1.5

-0.5 1.625 0

111

The solution is y =

0.8125

-0.25

0.4375

It is easy to see that the vertex

The new simplex is then defined by

0.5

0.5

»

—

0.5

1 ^
>

— —

0

0.5

-21-

has to be replaced by
0.5

1



and the new equation is

0.5 0 -1.5

-0.5 1.5 0 y =

111

r 1

o

o

l

The solution is y =

0.6

0.2

0.2

> 0

The approximate solution is found to be

0.5 0.5 0

0.5 1 0.5

Substituting

y =

0.6

0.4

0.2 —

0.6

0.2
i_ _

. .-<

0.4

0.6

into the network equation, we find

0.03

-0.03

whereas the actual input is y* =

VI. Conclusion

In this paper, the method of simplicial subdivision and its application

to piecewise-linear analysis are presented. The method of subdivision

provides a systematic way to tessellate an n-dimensional rectangle into

simplices. Interpolation is then applied to each simplex. When applied

to piecewise-linear analysis, the transition from a simplex to another

is extremely simple and is determined by the structure of the simplices.

-22-



In fact, the procedure is equivalent to the deletion of a vertex from the

present simplex and the identification of a vertex to form the new

simplex. Consequently, the most difficult part of the piecewise-linear

analysis has been overcome. Most of the theorems and techniques in

piecewise-linear analysis can be applied to this new formulation.

Further study is needed in order to make the method more effective.

Investigation on the determination of the bounded set in order to select

RL for a given equation is important. Another area to explore is the

possibility of changing the size of the simplicies in tracing the

solution curve.
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Figure Captions

Fig. 1. A two dimensional proper simplex S(x0,x ,x_) and its boundaries.

Fig. 2. Tessellation of RL into small rectangles and the corresponding

Tessellation of C into unit cubes.
P

Fig. 3. Canonical decomposition of RL (2-dimensional) into simplices.

Fig. 4. Canonical decomposition of a 3-dimensional cube into simplices.

Fig. 5. Relations among the various spaces as given in Eqs. (7) and (8).

Fig. 6. The solution curve in the domain L(x ) enters a new region at

each iteration and converges to a solution x* as y* is reached.

Fig. 7. Geometrical interpretation of "Replacement Rule" (Examples 3 and

4).

Fig. 8. Illustration of Theorem 1 (Example 5).

Fig. 9. The solution curve L(x ) reaches the boundary of RL.

Fig. 10. The line segment L(y ,y*) is not contained in f(RL).

Fig. 11. Tunnel diode circuit

Fig. 12. Model of a tunnel diode.
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