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ABSTRACT

The object of this paper is a general study of the input-output

stability of arbitrary interconnections of nonlinear, time-varying,

multivariable subsystems which may be either continuous-time or discrete-

time. The paper shows how the overall system can be algorithmically

decomposed into a hierarchy of strongly connected subsystems interacting

through interconnection subsystems. Theorem I establishes that the

overall system is stable once the strongly connected subsystems and the

interconnection subsystems are stable. Theorem II shows that, under

very reasonable assumptions, these sufficient conditions are actually

necessary. Part II of the paper will consider subsystems whose dynamics

are restricted in several ways.
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A. Introduction

The object of this paper is a general study of the input-output

stability of arbitrary interconnections of nonlinear, time-varying,

multivariable subsystems which may be either continuous-time or discrete-

time. This problem can be viewed as a generalization of that dealing

with the feedback interconnection of multivariable systems: see for

example references [1-5]. On the other hand, since an arbitrary inter

connection can always, by suitable reformulation, be viewed as a single

overall feedback system (as is done in Eqs. (7) and (8) below), the

task of this paper is to analyze the details of the interconnections and

to bring them to bear on the stability study. Arbitrary interconnections

of systems can be treated by Lyapunov techniques [6-10], the cost is that

the dynamics are restricted to ordinary and functional differential

equations, [23]. Our functional analysis approach is much more general.

For other papers using this approach see [11,12].

The thrust of our approach lies in exploiting the structure of the

overall system. Thus, in spirit, our approach is very close to that of

signal flow graphs, see for example [13]. Following Kevorkian [14-16] we

decompose the overall system into a hierarchical structure of strongly

connected components. This was also done in [17] however in contrast to

[17], we use a much more efficient algorithm due to Tarjan [18]. In

Part I of this paper we prove two very general structural theorems which,

together with their corollaries, make technically precise and correct

the intuitive notion that if all strongly connected subsystems are stable

and if all interconnecting subsystems are stable, then the overall

system is stable. Theorem I shows that under very mild assumptions these

conditions are necessary and Theorem II specifies a number of technical
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assumptions which guarantee that these conditions are both necessary and

sufficient. Part II of the paper will consider special interconnections of

subsystems whose dynamics are restricted to special classes.

B. Preliminaries, System Description and Assumptions

Throughout this paper we consider an interconnection of subsystems

each one having the following standard descrption [2,Sec III.l]. Let

J be the time set of observation (typically U = 1R. or I ), (J be a

normed space with norm |-| (typically 7/ = IR, C, ln or C ), and \J be

the set of all the functions mapping Cf into \f. The function space Cf

is a linear space over ]R (or C) under pointwise addition and pointwise

multiplication by scalars. Introducing a norm »•" on \J, we obtain a

normed linear subspace 3L of the linear space 3", given by

d A {f :J-, tt|||ffl <co}

For any T G C( we define f (t) = f(t) if t £ T, and zero for t > T.

We say that f is obtained by truncating f at T. Associated with the

normed space st is the extended space ©£ defined by

£ = (f :V - V\ VTG ^ llfll < co}
e 1

We shall often write II fII instead of OfTD. From now on we take U= ]R .

The object of our study is the overall system S which consists of m

subsystems described by the operator equations (Fig. 1)

n. = G.e. + v. i = 1,2,...,m (1)
1 ~x x 1

n. .• n. t ...
where (i) G. :i •* "£, is a causal operator sending e. into the

By definition, i" = c^x<^x-»»x^> n times.
J e e e e n,

ftBy definition, G^ is causal i

(G±eT)T = (G.e)T , [2]. _
-3- *
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n4io_p xo
ith subsystem undisturbed output y. = G. e.; (ii) v. €= SC is an output

n.

disturbance and (iii) y. + v. = r\. €: j£ ±s the ith subsystem

available output. Each subsystem input, say e., is the output of a summing

node fed by the interconnection operators F.. and the i.th subsystem

external input u.; more precisely e. is given by the operator equations

(Fig. 2)

m

ei = Z ?-Mni + ui ±= 1.2,... ,m (2)
j=l 1J J 1

n. n..

where (i) for j = l,...,m, F.. : 5t •* <£ is a causal interconnection

operator (which may be the zero operator) sending n. into F..n. which is
n.. ~13 3

fed into the summing node (Fig. 2) and (ii) u. £ j£ 1:L is the ith subsystem

external input.

The 2ra Eqs. (1) and (2) describing the overall system S can be

condensed to describe the causal relationship between inputs and outputs

of S.

A m A m
Let n. = Y] n. ., n = Y] n. (3)

i f-» n' o *-*_ xo
x=l x=l

n. i*"M*

u = (u, ,u9, ... ,u ) = (u.)™ e^ 1 (4a)
i £. m x x—± e

vivr...vi(v1)I.1^° («>>

•4V2 •/•fci'I.1%1 (4c)

tttTo avoid clumsy notations, we shall often represent column vectors as
ordered sets.
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By referring to Table I, the reader will perceive the logic of our

notation scheme. We choose to view (u,v) as the overall system input

and (e,n) as the overall system output.

n. n

Let G : dL 1 •+ £ ° be defined by (5)
e e v '

Ge * (G.e.)? .
- ~1 X 1-1

n n.

F : s£ ° -v ± X be defined by
e e m (6)m N '

A / V^ -n \m

and

j=l

With these definitions, the 2m Eqs. (1) and (2) become two operator

equations

e - Fn = u (7)

-Ge + n = v (8)

Thus at this abstract level the overall system S, with its complicated

interconnected structure defined by (1) and (2), is just like a standard

feedback system (Fig. 3). Our task is to take advantage of the structure.

In order to perceive (7) and (8) in simpler form, let
n.+n n.+n

H:^f10 <^10be the causal operator defined by
e •*• e

H(e,n) « (Fn,Ge) (9)

and let I denote the identity operator. Then (7) and (8) give rise to the

equation

(I-H)(e,n) = (u,v) (10)
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Assumption I:

Throughout this paper, we assume that

the operator H = (I-H) is a well defined causal
~e ~ - "•

n.+n ./^i"*"11 ^ ^11^
map from £ -1 ° intoX

Conditions under which this assumption is satisfied can be found in

[1, Chap. 2], [2, Sec III.5]. If (I-H) is not one-to-one, then H is a

, .. tttt
relation.

If we define H : (u,v) n- (Ge,Fn) and the linear isometric map

K : (u,v) h- (v,u), then

H = K(H -I) and H = I + K H (12)
-y ~ ~e - ~e ~y

Hence H exists (resp. is causal) if and only if H exists (resp.
~e y

is causal).

The causal operator G :̂ t*1 •*• £ is said to be ^-stable iff there

exists constants b, y in IR such that Ve €= £ , VT G J

«GellT <b+Y>elT (13)

(b and y stand for bias and gain respectively)•
n.+n

Using the sum norm in the product space £L , i.e. H(u,v)H

= lull + llvll, we say that H xs 6L -stable xff there exxsts constants b,
~e ——

n.+n .

y in 3R+ such that V(u,v) 6 £ 1 °, VT ^ J

lei + Bnl <b+y(MT+lvBT). (14)

++++lf H is a relation, then He is defined to be &-stable iff (14) holds
for air?e,n) in the relation/ With this definition, all the stabxlxty

ilts presented below also hold, with obvious modification, for the case
resu.

where He is a relation.
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Similarly we define s£-stability of H . A system whose input-output

relation is given by a causal operator G is said to be St-stable iff G

is ^-stable. In view of (12), we have H is £ -stable if and only if H

is^-stable. Hence, as far as the stability is concerned, we can choose

either (e,n) or (Ge,Fn) as the overall system output of S. We chose

(e,n) because H has a simpler expression.

For causal operators, the above definition of i-stability can be

shown to be equivalent to the usual one [2, Sec III.7], [1], [19].

C. Graph Theoretic Preliminary System Decomposition

By definition, a digraph J3 - (V,E) consists of a set of vertices V

and a set of directed edges E= {(v.,v.)|v i> v, £ V}. (v^v )is an

edge directed from v- to v. and is said to be incident to both v^ and

v. [20,21]. A section graph of J3 = (V,E) is defined to be a digraph

</3(U) - (U C V, {(v.,v.) € E|v.,v. € U}). <£J(U) is said to be connected

iff disregarding the direction of the edges, every pair of vertices in U

are mutually reachable by going through edges in J0{M). «C*(U) is said

to be strongly connected iff respecting the direction of the edges, every

pair of vertices in U are mutually reachable by traversing along edges in

jO(U). A maximal strongly connected section graph o(7(U) is called a

strongly connected component (abbr . SCC) of <&. A connected component is

similarly defined. The vertex v. is said to have a self-loop iff

(v-»v-) e E. A circuit of length I > 1 is defined to be an ordered set

of i distinct vertices (ff, ,n«, ,^0) such that (tt£,tt,) eE and

(it ,tt ) G E for k= 1,2,..., l-l. A digraph is said to be acyclic iff it

does not contain any circuit. The indegree (resp. outdegree) of a vertex

v. is defined to be the number of edges coming into (resp. out of) v^.
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The adjacency matrix of a digraph «0 = (V,E) is defined to be an nxn

matrix A where n is the number of vertices in J3, such that a. . = 1 iff

(v.»vu) EE§ and a. . = 0 otherwise.
3 t- 3-3

Consider the overall system S described above. The interconnection

digraph jQ. of S is defined as follows: each subsystem operator G±

corresponds to a vertex v., and there is a directed edge from v to v±

iff the interconnection operator F.. is not the zero operator. Since each

connected component of <£3. can be analyzed separately, without loss of

generality, we assume that <0. is a connected digraph.

We now perform a graph theoretic decomposition on the connected

digraph «0int-

Step 1: Find all the SCC's G^G^,..., G of <U±nt-

Step 2: Make a condensation of <£). with respect to these SCC's. That

is, we define a new digraph called the structural digraph Jjs of

S as follows: each SCC & of <C>.ni. corresponds to a vertex
a int

v in J! and there is a directed edge from v to v iff the sat
as a p

of directed edges in <D. from any vertex in Q to any vertex

in C is not empty. By construction, <Q is a connected acyclic
3

digraph.

Step 3: Relabel the vertices of jD so that its adjacency matrix Ag is

a lower triangular matrix. Hence, with respect to the new

labeling, a SCC, say Ca ,can only feed its output to SCC's,

say CdX »•••» with a higher subscript, i.e. 3, Y > <*•

§Most graph theorists define ay =1iff (v±,v.) €E. Hence our adjacency
matrix is the transpose of theirs.
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Step 4: Relabel the vertices of J& so that (a) those that belong to the

same SCC are numbered consecutively and (b) those that belong to the

lower numbered SCC are numbered lower than those belong to the

higher numbered SCC. n

An example illustrating this decomposition algorithm is given in

Appendix All. Step 1, the identification of SCC's, can be done by

using Tarjan's efficient algorithm STRONGCONNECT [18]. An English language

description of it is in Appendix All. Step 2 can easily be done by

inspection. Step 3, labeling of a connected acyclic digraph is called

topological sort [20,pp.462], [22,pp.258]. It is done in y iterations

(y = the number of SCC's) by deleting a vertex with zero indegree and all

its incident edges at each iteration and, then, by relabeling the

vertices in the order they were deleted.

A little thought reveals that the adjacency matrix A. of «*Qj.nt

after Step 4 will be in the lower block triangular form:

A. ^
xnt

m.

m.

m

m„

11

Ac
A21

m
2

0

^22

V V

m

y

0

w

(15)

where (i) m is the number of vertices in C , (ii) each diagonal block
a a

AC is the adjacency matrix of & and (iii) each off diagonal block
aa aaa

,cA" , a > 3 is the adjacency matrix of & a which is defined to be the

bipartite digraph [20, pp. 168] consisting of (a) all the vertices of
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f, and &n9 and (b) all edges of JO. _ directed from a vertex in £p0 to
^a 3 int 3

a vertex in £ .
a

From now on, without loss of generality, we assume that we start

out with the overall system S which has been relabeled. For each SCC

& , a = 1,2,...,y, we define

c A t-* c A

nai ~ 4* nki ' n<*° V ko
k k

(16)

< =<Vk • \ A= <Vk <17)

<k<\\ • \ =(Vk (18)

5a :^ ^*1° SUCh ^ &l =(^k>k (19)

and c j>nto At , , -c cA,^, v (20)
V ^e " ^ e SUCh that U n3 =(£Vj>k

a-1 a

where in every case, k ranges from Y] m, + 1 to 2J m.
A=l A X=l A

3-1 8
and j ranges from £ mx +1 to £ ny Since Gk> Ffc^ are assumed to be

A=l A=l

C C
causal, G„, F n are also causal.

-a' ~ap

Equations (1) and (2) (or equivalently (7) and (8)) can now be

rewritten as 2y equations

vk»v\ --1-2 " (21)
p—1

-G°eC +nC = vc a = 1,2,...,y (22)
-a a a a

Observe that due to relabeling, the index 3 in (21) does not go

beyond a.
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For a = l,2,...,y, we denote by Sc the strongly connected subsystem

(abbr. SCS) described by Eq. (22) and

C _C C C (OQN
e - F n = u . ^J/
a ~aa a a

For a > 3, a,3 = l,...,y, we denote by S^g the interconnection

subsystem (abbr. IS) represented by the interconnection operators F^.

By Assumption I in Sec. B, the SCS S^ is represented by a causal
J c , c ot

n ,+n .

operator mapping from £ a° into itself. Thus the <£-stability of

the SCS Sc and IS Sc« are defined unambiguously using the definition
a a3

given in Sec. B.

D. Structural Theorems

The two structural theorems presented below are based on the form

of the Eqs. (1) and (2) as well as the structure of the interconnection

exhibited by (21) and (22). We emphasize the fact that these theorems

are valid for a very general class of systems: linear or nonlinear,

time-invariant or time-varying, continuous-time or discrete-time.

Given the decomposition described in Sec. C, it seems intuitively

obvious that the statement "the overall system S is ^-stable if and only

if each SCS S° and each IS Scrt are ^-stable" should be true. Theorems I
a a3

and II below should be viewed as attempts to delineate technical conditions

under which that statement is true. Although many sets of conditions

were considered, the conditions below seem to the authors to be the most

general and elegant.
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S 6

Theorem I

Consider the overall nonlinear system S originally described by (7)

and (8) and by (21) and (22) after relabelling:

C C -Jf
(a) If every SCS S and every IS S n are 51-stable, then the overall

a a3

system S is ^L-stable.

(b) For the overall system S, assume that for x = 2,...,y, there xs an
c , c

n .+n
• "C aCx , ^ ai ao - ._ ,, ,. ,

xnput (u ,v ) fc «- , a = 1,...,i-l such that for the
a a

^c
corresponding output n , a = l,...,i-l

a

i-l n..

£ *?.£ €£u, (24)

under these conditions, if the overall system S is jL-stable then every

every SCS S is ^-stable. n
a

Assumption (24) above is very mild. Indeed if G(9) = 6 and

F(0) = 0, then (24) is satisfied by taking the inputs (uC,v°) = 6 for

a = l,...,y-l. In particular, (24) is satisfied for all linear G and

F.

Since each IS Sc does not involve feedback loops, its stability

problem is straight forward. The following corollary is an obvious result

of Theorem I. It is useful because it gives us an assumption under which

the question of stability of the overall system S reduces to the stability

of each SCS S°.
a

Corollary 1.1

Consider the overall nonlinear system S described by (21) and (22).

§§
All the proofs are relegated to Appendix AI
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Suppose G(6) = 0, F(0) = 0 and suppose that every IS SC is ^-stable.
ap

Under these conditions, the overall system S is So-stable if and only if

every SCS SC is ^-stable. n

In order to obtain the desired if and only if statement for the

ZL-stability of S versus the ^-stability of each Sc and each Sc_, it
J a a3

turns out that more delicate assumptions are needed.

Theorem II

Consider the overall nonlinear system S described by (21) and (22) .

Assume that

c c

for a=l,...,y, F^tf a°) CHai (25a)
nc. c_c n^Q

for a = l,...,u, there exists an e £ s£ such that G e *= & ,
a -a a

(25b)
n

for 3 = 1, ,y-l, there exists an n? £ ©£ such that for all
c P

a>3, F^_n^ 6£ ai; (25c)
~ap p

c

C =C -f pO
for every unstable F _, there exists an n 0 £ °L

-ct$ ap
c

_ n .

such that FCQnC0 £ £ ai.. (26)
~a3 a3

Under these conditions, the overall system S is ^L-stable if and only if

every SCS Sc and every IS Sc0 are ^-stable. H
a a3

Assumption (25a) appears to be more restrictive than necessary. It

is required by the form of the system equations and by the possibly

devilish behavior of nonlinear maps: suppose that Fo„(0) = 0 but for all
c c -22 c

0

n nc n
^ Ho ^ oo , F00n0 = y» a fixed element of 3L -oL and similarly

z -* zz z c e
n_n

suppose that f^i^6^ =e for a11 8 ^ ni e <^ »F21nl = "y* Then in the
n„.

equation for SCS S^, Joi^i + F?«n? is always 0, hence in &, , even though
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c

n2*most of the time the two terms are not in dL . Obviously, in general,

in the linear case, such cancellation will not occur for all n-, ? 0 and

n2 £ e.

Assumption (25b) and (25c) are very mild. They are of a similar

nature as assumption (24) of Theorem 1(b). If G(0) = 0, F(0) = 0 and

every F is ^-stable, then (25) holds: choose all eC,nf in (25) to
~aa a 3

be 0. In the proof of Theorem II, we use Theorem 1(b) after showing that

(25) implies (24).

Assumption (26) is required because our definition of ^-stability

not only requires that any input in JU gives rise to an output in Jl> but

also that the "gain factor" y in (13) be finite. From a strictly

mathematical elegance point of view, deleting the second requirement would

have made assumption (26) unnecessary.

E. Conclusion

This paper has treated in a very general setting the stability of an

arbitrary interconnection of subsystems. Due to the functional analysis

approach the assumptions required on the subsystems are minimal. The paper

shows how the overall system can be algorithmically decomposed into a

hierarchy of strongly connected subsystems interacting through inter

connection subsystems. Theorem I establishes that the overall system

is stable once the strongly connected subsystems and the interconnection

subsystems are stable. Theorem II shows that, under very reasonable

assumptions, these sufficient conditions are actually necessary. Part II

of the paper will consider strongly connected subsystems whose dynamics

are restricted in several ways.
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APPENDIX AI: PROOFS

PROOF OF THEOREM I

Proof of (a): By induction. (I) observe that because SCS s!r is ^-stable,

C C C C -*fl
the system (u-,v ) *+ (e ,n-) is X-stable. (II) Using the induction

principle, we only need to prove that if the system (u.,... ,u .. ;v ,... ,v. -)

C C C C ^P C C C Cv*+ (e..,... ,e._. ;n-,... ,n. -,) is ©L-stable, then the system (u.. ,... ,u. ;v ,... ,v^)

**- (e_,..•,e.;n_,.. .,n.) is also <Jc-stable.
1 x 1 x

Set a = i in the system Eqs. (21), (22) and obtain

i-1 a,c c c , v» „c c A ~ce° - FC nC = uC + T FC nc = uc (AI)i £iini i fa ~i3 3 i
p=±

«c c , c c A „c /ao\-G.e. + n. = v, = v. (A2)
~x x x i x

Because of the c^-stability of SC0 and the inductive assumption in
a3 c .c

(II), there exists constants b and y in 3R such that V (u«,v„) e *^e »

3 = l,...,i-l, and VT ^ Cf

'x;WTi5+^s<sC|T +u?T>} (A3)
p=l p—1

Hence the conclusion in (II) follows from (A3) and the & -stability

of SCS S?. n

Proof of (b): Consider an arbitrary SCS S9. Set a = i in the system

equation (21), (22) and obtain (AI), (A2).

Thus the operator (u?,v?) •> (e?,n?) represents the SCS S^. By

assumption, the overall system S is £-stable, i.e. there exists b, y in
n.+n

. c cm ^- *f

Y1 I t->

^ such that V(uC,vC)P .e £ J- °, VT G J
+ a a a=l e

£ <K't +KV -b+Y{^ (,U«'t +1v«'t)} (M>
a=l a=l
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i-1

Consider first i = 1: the term Y* F. n in (AI) is absent. Hence
*-t ~xa a
a=l

(u![,v!p = (u![,v£). Setting (uj.v^)^ =6 in (A4) , we have b, y in 3R +
-n. ,+n,

such that v(a°,^) e Xe1:L 10, me J,

eiBT + "VTib+Y(lVT + llVT)

i.e. the SCS S£ is ^-stable.

Now consider i > 2: setting (u0^0)1"} = (u0,^0)1"} »the inputs specified
— a a a=l a a a=l

c cx y _ qby the assumption in part (b) of the theorem; and setting (ua,va)a=i+1 - o,

we obtain from (A4)

n.,+n.

v(uc,v?) edL11 lo, vt e Cf,
xx e

"ei"T +K't ±b+̂ <""«'? +'*?T> +("Ui"t +K'V*
a=l

(A5)
i-1

y>c.+nc)
=i al a0

By (24), (uC,vc), e <£a , hence there exists b, in ]R such
J a a a=l x T

that VT € C/,

y (llucli + ilvCll ) < bn (A6)
*-* K a T a r - 1
a=l

Using (A6), the second equalities in (Al) and (A2), and triangular inequality

of the norm, we obtain from (A5)

,n. .+n.

v(a?,*?) eiu io, vt e 0"
xx e

xi xi -»- J-* •*• ••• a=l

X-l /)nM a **f
By (24), X) F^ n° e £ »hence there exists b2 in 1R+ such that VTtJ,

a=l

i-1

II £ F? ncHT <b? (A8)
*-* ~xa a T — 2
a=l
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Substituting (A8) into (A7), we have b = b + yb, + Yb0
c . c x z

and yin ]R+ such that V(u^,v^) G^ 1:L 10, VT €3

He^T +ii^nT<b+Y(n^iiT + flv^iT)

i.e. the SCS S. is .^-stable.
x

Since this conclusion holds for all i = l,...,y, the proof is

complete. n

PROOF OF COROLLARY 1.1.

Since G(0) = 9, F(6) = 6, assumption (24) is satisfied with

(uC,vC) = 8 for a = l,...,y. The result follows immediately from
a a

Theorem I. n

PROOF OF THEOREM II

<= Follows immediately from Theorem 1(a)

=> (i) We prove first the ^-stability of SCS SC. By Theorem 1(b),

we only need to show (25) implies (24). We want to choose inputs, say

—c —c y
(uC,v )y , such that the corresponding outputs are the (e ,n ) specified

a a a=l a a u x

in (25b) and (25c). By (21) and (22) these inputs are given by

\* 4ic. f FC.nC a=1 y (A9)~c A -c ^ _c -c .
u - e - > F n a = 1,...a a g^ ~a3 3

>c A -c „c -c
a

n.+n

^4-c_GciC a-l,...,y (A10)
a a ~ a a

Note that (uC,vC)y ^i1 ° since each term in the right hand
a a a=l c c

n . n

sides of (A9) and (A10) are in £ and <£ a respectively. Thus, by

the uniqueness assumption (11), assumptions (25) imply the existence of

the inputs (uC,v°)y n which produce n° (denoted here by n ) which satisfy
v a a a=l ct a

(24).
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(ii) We prove the ^-stability of IS S by contradiction. Suppose
Otp

there is at least one ^-unstable IS S°_. Among all the £ -unstable S^ fs
a3 aP

let S?. be the one, first, with the smallest value of a and, second, with

the largest value of 3 among ^-unstable S 's. Hence for a,3 = l,...,i-l,
xp

a > 3, Sc„ is ^-stable and for 3 = j+l,...,i-l, S^Q is ^-stable. Rewrite
ap xp

the system Eq. (21) for s£ as follows

4-&«t -*t *giSrf +?• fl ♦ eS f±A (aw
where the last term is absent when j = i-1.

We shall reach a contradiction by showing that for some input, say
n..

(u,v), the left hand side of (All) is in <£. 1X while the right hand side

is not.

n ,+n

By ^-stability of S and assumption (25a), for all (u,v) G <£ ,

the left hand side of (All) is in X 1X. (A12)

Using arguments similar to those in (i), we first pick (u,y)
c , c a a

n .+n
,_ ~J> ax ao - . ,. .
G X , a = 1,..•,j so as to obtaxn

fp , as given by (25c) for a = l,...,j-l

ni. as given by (26) for a = j.

^- c . C
n ,+n

Second we pick any (u ,v ) G <£ for a = j+l,...,y so that the
a a

n.+n c ^c ±
overall input (u,v) G £ 1 °. Now substituting u. and (n ) , into the

x q q=l

right hand side of (All) we have,

j-1 i-1
AC , v^ _c -c . _c -c , \-» t,C ^cui + L F1RnR + f n + 2j F n
1 b=1 3 B J j 3=3+1 3 3

.nii . -ynii
where the first term is in ^L by choice, the second term is in oL
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fyj^C;

c
n..

by £25c), the third term is not in £ X1 by (26); the last term is in

£ in": for 3=j+l,...,i-l, by the £ -stability of S, t£ e/e° and by
nc. B

the ^-stability of sfD, F?0nf G £ 6i.
xp ~xp p

n.+n

In conclusion, there exists a (u,v) G 3b x ° such that the right
n..

hand side of (All) is not in £ X1. This is a contradiction to (A12) and

hence every IS S ft must be ^-stable. a
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APPENDIX All: IDENTIFICATION OF STRONGLY CONNECTED COMPONENTS OF A DIGRAPH

By definition, a search of a digraph Z5is a process in which one

traverses* all the directed edges of £}, each exactly once; and,a depth-

first search is a search in which the edge to be traversed at each step

is always an unexplored edge emanating from the vertex most recently

reached. Tarjan's algorithm is based on using depth-first search: it

will neglect edges which are irrelevant in identification of SCC's and it

will classify the remaining edges of JDas either a tree arc or a nontree

arc. The algorithm uses a stack which is a linear list for which all the

insertions and deletions are made at the same end of the list, hence it

is characterized by last-in-first-out. We number the vertices consecutively

in the order they are reached in depth-first search; these numbers will be

used in the algorithm. The algorithm"STRONGCONNECT can now be described

in the English language as toilows:

Algorithm STRONGCONNECT [18]

Step 1: If there is a vertex not yet numbered, take it as the active

vertex, number it and insert it into the stack; }$)$XX/$%n$$%*

Step 2: Choose an unexplored edge emanating from the active vertex v.

Step 3: Case (a) If the chosen edge leads to a vertex ir not yet numbered

(Fig. 4(a)), then classify (v,tt) as a tree arc, number ir and insert

ir into the stack. Take ir as the active vertex and go to Step 2.

Case(b) If the chosen edge leads to a vertex ir already numbered

and ir is not reachable from v by traversing along any number (> 0)

of tree arcs (Fig. 4(b)), then classify (v,ir) as a nontree arc and

Throughout this paper, traversing means moving along the directed edges
respecting their direction.
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go to Step 2.

Case (c) If the chosen edge leads to a vertex ir already numbered

and ir is reachable from v by traversing along some number (> 0)

of tree arcs (Fig. 4(c)), then neglect (v,ir) and go to Step 2.

Case (d) If there is no more unexplored edge emanating from v,

then (i) evaluate LOWLINK (v) = min{number of vertex v, number of

vertex ir|ir ^J^^J^^j^ ±S reachable from vby traversinS alon*
some number (> 0) of tree arcs followed by exactly one nontree arc};

(ii) If LOWLINK (v) =•• number of vertex v, then, from the stack, delete

v and all the vertices that come after v in the stack because they all

belong to the same SCC; 1^,$*^^

go to Step 4; if LOWLINK (v) ^ number of vertex v, then go to Step 4.

Step 4: Take the preceding active vertex as the active vertex and go to

Strp ? n

Tarjan proves the correctness of the algorithm and shows that the run time

and memory storage required is bounded by a linear function of the number

of vertices and number of edges in <0.

Example 1:

Consider the interconnection digraph «0i t given in Fig. 5(a) and

associated adjacency matrix in Fig. 5(b). When algorithm STRONGCONNECT

is applied on*D . , it generates the digraph as shown in Fig. 5(c) where

the solid lines represent the tree-arcs, the dashed lines represent the

nontree-arcs and the LOWLINK values are given in square brackets. The

SCC £..,..., <?s, labelled in the order they are detected in the Algorithm

STRONGCONNECT, are the section graphs «0({7}), ,0({3,4,5,6,8}),
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X)({10,11,12}), oD({l,2,9}) and ^({13,14,15}) respectively. The

corresponding structural digraph cU is given in Fig. 5(d). Figure 5(e)
s

is the table relating the old labeling to the new labeling after steps

3 and 4 of the decomposition algorithm described in Sec. C. Figure 5(f)

gives the adjacency matrix of Jy. with respect to the new labeling and

observe that it is indeed in block lower-triangular form. Although such

relabeling is not unique, the corresponding adjacency matrices will

always be in block lower-triangular form with the same number of diagonal

blocks of the same sizes.
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Table I: Summary of Notations

number of subsystems

system

number of inputs

number of outputs

subsystem operator

interconnection operator

external input

output disturbance

local input

disturbed output

undisturbed output

digraph

adjacency matrix

vertices

directed edges

Strongly connected
component (SCC)

interconnection between

SCC's

adjacency matrix of <J

adjacency matrix of £,
q3

number of vertices in £

subsystem level strongly connected
subsystem level

m

(see Fig. 1,2) sc, sc.
q q3

c A x7»
n . - 2-i n'jnii

n
xo

G.
~x

c A y^
n =2-. nj„

00 1Q, io

?« =dtag^e,

F.. ~q3 " ^ij;iGa,jG$

u.
X

c A , .
u = (u.) .(-

q i'xGa

V.
X

c A f x

e.
X

c A , N
eq= ^iGa

ni

yi

«c A ( x

c A . ,

JO.int

A. .
xnt

G. -*-»• v.
~x i

JD

F
~ij

(v^V

Sc or G «-• v
q ~q q

SCD or FC.
q3 ~a3 (vv

c.

6 q3

Aao k (IAlnt]«)i.jS.
Aa6 =^ntWiSx.je*

m
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overall system
level

S (see Fig. 3)
m

An. * £ n..
x *-* XX

i=l

m

n = y n.
o .*-» xo

i=l

G = diag(G.)
° ~x i=l,.. . ,i

F = (F..). . .v~xj'x,i=l,...,m

u = <ui> i-i
v A (V.)™ .

x x=l

A / Nine = (e.). t
x x=l

A / \mn = (n.).=1
A / \m

y= <yi>i-i



Figure Caption

Fig. 1. The ith subsystem.

Fig. 2. Summing node associated with the ith subsystem.

Fig. 3. The overall system S.

Fig. 4. The solid lines represent tree arcs. The dashed line represents

the edge (v,ir) under consideration in Step 3 of the algorithm

STRONGCONNECT.

Fig. 5. Illustrations for Example 1. (a) Interconnection digraph <^int

with vertex numbers, the corresponding new vertex numbers after

the relabeling are given in parentheses, (b) Original adjacency

matrix A. of £). . (c) Digraph generated by the algorithm

STRONGCONNECT with LOWLINK values given in square brackets,

(d) Structural digraph JD . (e) Table relating the old label

to the new label, (f) Adjacency matrix of JO. after relabeling.
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14(14) 13(13) 7(19) 9(3)

(a)

9\\) ioQo] L>f

(O

11(11)

12(9)

3(7)

I5[l3]

1403]

I3&3]

' /

1 2 3 4 5 6 7 8 9 10 II 12 13 14 15

1 1

2 1

3 1 1

4 1 1 1 1

5 1

6 1 I 1

7 1 1 1 1

8 1 I 1

9 1

10 1 1

II 1 1

12 1 1

13 1

14 1

15 1 I

(b)



OLD LABEL NEW LABEL

*\ '5
7 15

Cl Cl
3 7

4 4 ~_\
5 5

6 6

8 8

C* _£a
10 10

II II

12 9

c* C\
1 1

2 2

9 3

<% Ca\

13 13

14\ 14

15 12

—

(e)

1 2 3 4 5 6J 7 8 9 io|n 12 13 I4I5|
1 1

2 1

3 1

4 1 1 1 1

5 1

6 1 1 1

7 1 1

8 1 1 1

9 1 1

10 1 1

~ir 1 1

12 1 1

13 1

14 1

15 1 1 •1 1
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F. Introduction

Even though Part II of this paper can be read independently from

Part I, Part II obtains its justification from Part I. Indeed Part I

considered an arbitrary interconnection of subsystems and by studying

the structure of the overall system, it was shown that, roughly speaking,

the overall system is input-output stable if and only if the strongly

connected subsystems (SCS) and the interconnection subsystems are stable.

Part II studies exclusively the stability of strongly connected subsystems.

In order to save space we do not replicate references and equations

from Part I: so for Part II, references start with item [24], equations

start with (27) and the first section is labelled "F. Introduction."

Throughout Part II we study the stability of a single strongly

connected subsystem, namely, S . For convenience and to alleviate the

already burdensome notation, we will drop the subscript a throughout

c

Part II. Thus Eqs. (22 ) and (23) which in Part I describe the SCS S^,

now labelled S , are now written as

c _c c _ c (2i\
e - F n = u \*-i)

_C C , C C (2R\
- G e + n = v v-^o;

The thrust of Part II lies in obtaining a graph theoretic decomposition

of the SCS under study by using the concept of minimum essential set.

Once a minimum essential set is obtained, the SCS can be viewed as

partitioned into a "forward subsystem" whose only feedbacks are strictly

local (self-loops) and the subsystem corresponding to the vertices of

the chosen minimum essential set. Together they form an overall multiloop

feedback system. The task is to obtain stability conditions for the SCS
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by making use of this structural decomposition. One theorem considers

nonlinear time-varying subsystems. The remaining six occur in pairs,

one for the lumped case and one for the distributed case, and they

consider only linear time-invariant subsystems. The techniques involved

are those developed recently in the study of feedback systems [2,4,5,32].

In section J we use the structure of the SCS to calculate the characteristic

polynomial. In section K we give translation rules for continuous-time

to discrete-time. Finally a simple example shows how the techniques of

the paper are applied. The reader may find it helpful to use the example

as a vehicle to illustrate the theoretical developments of the paper.

G. Graph Theoretic Decomposition on SCS

In addition to the graph theoretic terms defined in Part I Sec. C

we will need the following terms. By definition, U c V is called an

essential set of a digraph cO = (V,E) iff the section graph o£?(V-U) is

acyclic. Given a digraph, an essential set with minimum number of

vertices is called a minimum essential set of the digraph. It should be

noted that our definitions allow an acyclic digraph to have self-loops;

this follows from our requirement that a circuit be of length >1.

c •
Consider the strongly connected subsystem S and its interconnection

digraph Q = (V,E) which by construction is strongly connected. We now

perform a graph theoretic decomposition on Q.

Step 1: Find an essential set V of O and define V = V-V . By

construction, the section graph G(V ) is acyclic.

Step 2: Relabel the vertices of Q so that every vertex in V is

2
numbered lower than all the vertices in V .
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Step 3: Relabel the vertices of £f(V ) so that its adjacency matrix

11 t
A is a lower triangular matrix.

A little thought reveals that the adjacency matrix Ac of C? after

Step 3 will be in the bordered lower triangular form:

1
m

2
m

1
m [a11 1a12

AC =
i

i

2
m A21

l

» 22
• A _

(29)

where (i) for i = 1,2,1a1 is the number of vertices in V and (ii) A

is a lower triangular matrix.

To exploit the structure of 6 as much as possible, it is obvious

that one should use a minimum essential set in the decomposition. The

problem of finding a minimum essential set has been studied by many

researchers [24-29,39]. Theoretically speaking, the problem can be

considered solved since it requires a finite amount of work; however the amount

of work required can become potentially excessive for some large digraphs.

To perform Step 1, we must first compensate for the fact that we allow

self-loops, so we first remove all the self-loops in <5 ,then apply the

algorithm given in [28] to find a minimum essential set and then put back

the self-loops. Step 2 of the decomposition can be done easily. Step 3

is carried out by using the topological sort described in Part I, Sec. C.

Take note of the definition of adjacency matrix in Part I, Sec. C.
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c c
.n n

Remark. Consider the operator Fc :^CQ° -> &^ . The algorithm above
c

can be viewed as a reordering of the scalar equations representing F

and of its variables; in fact since only a relabelling of the vertices

of <2 is involved, the same permutation is applied to the equations as

well as the variables. Clearly we are perfectly free to permute the

equations independently from the permutation of the variables, this
22 . c

increased flexibility will, in general, decrease the size of A in A

of (29). There is as yet no practical algorithm for doing so: however,

as soon as such an algorithm is available it can be used and the theory

below is applicable, except that the description of the variables

associated with A as "associated with the minimum essential set" is no

longer appropriate.

From now on, without loss of generality, we assume that we start

out with the SCS S° which has been relabelled after decomposition with

respect to a minimum essential set. We define, for i = 1,2,

i A v-» i 4 V
n. = ) . n.,, n - /. n,

i Lrt ki o i ko
k k

u = (uk) , v = <vk)

e = (ej,., n - (njk7k' " vVk

i i A

l l
n. n

G1 : X ± + £ ° such that gV = (G.e, )
e e ** ~k k k.

and for j = 1,2,

Fij :£° -X"1 such that Fijnj - (E \<Pl)
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where in every case, k ranges over V and I ranges over V . Since

the G 's and F fs in (1) and (2) are assumed to be causal nonlinear

operators, the G 's and F s are also causal nonlinear operators.

Equations (27) and (28) which describe the SCS S can now be

rewritten as four equations

1 _11 1 _,12 2 _ 1 nm
e-Fn-Fn=u vjU;

- gV + r,1 =v1 (3D

_21 1 . 2 _22 2 2 n2v
-F n +e -F n = u \^z)

n2 2 m 2 - 2 nv>- G e + n = v vjj;

Observe that since A is lower triangular, F as defined above

is a block lower triangular matrix which is partitioned columnwise

according to (n, ) , and row-wise according to (n. .) 1• Diagonal
ko kGV1 k^V

blocks of F- are (F..) -. We define
~1X i^V1

F22 AF22 +^^(I-F11?1)-^12 (34)

The matrix signal flowgraph [13] associated with the nonlinear

-22
Eqs. (30)-(33) is given in Fig. 6. The flowgraph interpretation of F

defined by (34) is given in Fig. 7.

H. Nonlinear Time-varying Case

We first consider nonlinear time-varying subsystems. We give below

c

a theorem which makes use of the structual decomposition of the SCS S .

The incremental gain, y(G), of a causal operator G :oO g -> cOe 1S

defined as
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9(G) £ inf{T e m+|vx1,x2 e ^n, VT e CT, (40)

OgX;l-Gx2Dt <yBx1-x21t}

From (40), it follows that when G is a linear operator, G is

06-stable if and only if Y(G) < °°.

Theorem III

Consider the SCS S° described by (30)-(33). We assume that for all

12 12 J i o(u ,u ,v ,v ) £ ^ , these equations have at least one solution
e

,12 12, ^ •/("i"*1^
(e ,e ,n ,n ) e cL

e

If (a) for i,j = 1,2, each F J is ^-stable and its incremental gain

yiF1^) < 00;

(b) G1(I-F11G1)'"1 and G2(I-F22G2)"1 are ./-stable

(c) YtG^I-F11^1)"1] <00

then the SCS S° is £-stable. n

12 Jf
Comments: (i) Neither G nor G are required to be Sc-stable. (ii) If

all the F J,s are linear, then assumption (a) need only require them to

be c?C-stable. (iii) By referring to Fig. 6, the physical meaning of

112
assumption (b) becomes clear: first, set u , v , v identically zero in

(30)-(33), a careful computation with nonlinear operators show that

2 2 ~22 2 -1 2 2 ~22 2 -1
n = G (I-F G ) u and hence G (I-F G ) can be viewed as the closed

2 2 112
loop operator taking u into n with u = 0, v = 0, v =0; second, set

1 12
v identically zero and set F as the zero operator in (31), (32), again

by computation we have n = G (I-F G ) u and hence G (I-F G ) can
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12
be viewed as the open loop operator (since F is the zero operator)

taking u1 into n1, with v =0. (iv) Another benefit of the decomposition

of SCS S° is that G has a block diagonal structure which conforms with

the block lower triangular structure of F ; consequently (I-F G ) is

block lower triangular with square diagonal blocks. Hence its inversion

is greatly simplified: it requires only the inversion of the (J-!:^?-^'s

for each i^ V .

I. Linear Time-Invariant Continuous-Time Case

It is well known that a very large class of linear time-invariant

operators can be represented as convolution operators [30]. We shall be

concerned with two classes of convolution kernels. First, we define the

convolution algebra CL\2\\ fbelongs to & iff, for t<0, f(t) = 0,
00

and for t>0, f(t) = f&(t) + £ f. 6(t-t.) where f& e L1(»+), f± e m
i=0

oo

for all i, £ |f | < oo, 0 = t , 0 < t for i > 1, and 6(.) is the Dirac
i=0 °

delta "function." An n-vector v, (nxn matrix A), is said to be in CL ,

($.nxn, resp.), iff all its elements are in &. Let denote Laplace

transforms; £? denotes the commutative algebra (with pointwise product)

of the f's where f <E C(. We note that (i) f belongs to the convolution

algebra CL iff fbelongs to the algebra C(. (with pointwise product);

(ii) fG CL±s invertible in (X iff inf |f(s)| >0; (iii) k^U
Re s_>0 ^ A

is invertible in a""" iff inf |det[A(s)]| >0 [37,2]. £?,(tfnxn), is
Re s^O

a commutative (noncommutative, resp.) algebra over the field IR [31].

A linear time-invariant distributed system with input u and output y is

said to be ^-stable iff its transfer function H(s) : u^ y is a matrix

th all its elements in (X. It is well known that if a system is
wi
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CL-stable then (i) for any p € [1,-], it takes an L -input into an

L -output and (ii) it takes continuous and bounded inputs (periodic
P

inputs, almost-periodic inputs, resp.) into outputs belonging to the

same classes, resp. [2,38]. For linear time-invariant lumped systems,

we introduce the algebra IR (s) of rational functions with real coefficients

An nxr rational function H(s) is said to be exponentially stable iff

(i) all its elements are in IR (s) and are proper (i.e. bounded at

infinity) and (ii) fi(s) has all its poles in the open left-half plane.

It is easy to see that IR (s), the class of all scalar exponentially

stable transfer functions is an algebra over IR , in fact a subalgebra of

a.

The following well-established identities will be used repeatedly

throughout this paper. Let M, N be matrices of appropriate sizes with

elements in a commutative ring, say M, 3R (s), we have

det(I-NM) = det(I-MN)

M(I-NM)"1 = (I-MN)" \

I+ M(I-M)"1 = (I-M)"1

Let M be a square matrix partitioned into four submatrices M

i,j =1,2 where m is square and nonsingular, then

de(
and

M11 M12

.M21 M22.
= det(MU) xdet (M22)

-9-
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(51)

(52)

(53)



-1

M11 M12

M21 M22

(M11)-1 + (M11)-V2(M22)-V1(M11)-1 -(M11)-^12^22)"1

- (M22)-V1(M11)-1 (M22)"1

where M22 = M22 -l^VW2

We denote by (G,F) the linear time-invariant feedback system

described by

I -F(s)

•G(s) I

S(8)

n(s)
=

v(s)

(54)

(55)

(56)

where (u,v), (e,n) are the Laplace-transformed input and output,

respectively. It is the same system shown in Fig. 3 except that the

operators G, F are now replaced by the transfer function G(s), F(s)

respectively.

Direct calculation [4] shows that the transfer function H of the
e

A A

linear time-invariant feedback system (G,F) is given by

-1

A
H (s) =

e

I -F(s)

-G(s) I

AA —1 A AA -»1

(I-FG) •L(s) F(I-GF) X(s)

GCl-TO^Cs) (I-GF)_1(s)
(57)

By definition, the linear time-invariant feedback system (G,F) is

said to be exp. stable (resp. ££-stable) iff every one of the four

submatrices in (57) is exp. stable (resp. £a-stable).

-10-



In the following, we list a set of known stability results for

the linear time-invariant feedback system (G,F). Throughout this

section, we use L and D to indicate Facts and Theorems associated with

lumped and distributed systems, respectively. The similarity between

these two cases is noteworthy. We first list three facts whose proofs

except for Fact ID, are available in the literature [5,32]. For

completeness, we include the proof of Fact ID in the Appendix AIII.

Fact IL

If G(s), F(s) are exp. stable, then the feedback system (G,F) is

exp. stable if and only if det(I-FG)(s) ^ 0 Vs £ C+ n

Fact ID

If G(s), F(s) are££-stable, then the feedback system (G,F) is

^-stable if and only if inf |det(I-FG) (s) | > 0. n
sGc+

Fact IIL (resp. Fact IIP)

If F(s) is exp. stable (resp. (^-stable), then the feedback
A *. AAA _1

system (G,F) is exp. stable (resp. £(-stable) if and only if G(I-FG) (s)

is exp. stable (resp. CX -stable). n

Fact IIIL

If G(s) and F(s) have no common € -pole, then the feedback system

(G,F) is exp. stable if and only if G(I-FG)_1(s) and F(I-GF)""1(S) are

exp. stable. n

Fact HID below requires the concept of pseudo-right-coprime

factorization (abbreviated p.r.c.f.) . Given an m*r transfer function G(s)

-11-



1/ * A A i/Pl-l
the ordered pair (J49iO) is said to be a p.r.c.f. of G iff (i) G =^^ ,

(ii) Si G^mXr and ^e^rxr, (iii) there is someK^^, 77 €drxr
and 2cT e £? rxr such that

/^ A a a

and det ~l/J (s) ^ 0 for all s^ c , finally (iv) for all sequences (s^

C <c with |s.| -»- oo, lim inf|det„£T(s.)|> 0. The important fact is that

if G(s) = R(s) + G^(s) where R(s) is a proper rational matrix with poles
b

A

in C and G, (s) G 67 mxr then there is an algorithm which gives a p.r.c.f.
+ b

of G [2]. The concept of pseudo-left-coprime factorization is defined

similarly except for interchange of factors.

FACT HID

Suppose that G(s), F(s) have no common d+-pole. Suppose that G

has p.Jt.c.f. and F has p.r.c.f. or G has p.r.c.f. and F has p.r.c.f.

Suppose that V sequences (s.)" C <n and |s |+ «, lim inf |det[I-F(si)G(si)]

> 0. Under these conditions, the feedback system (G,F) is #-stable if

and only if G(I-FG)"1(s) and F(I-G^)~ (s) are $-stable. a

For the linear time-invariant case, Eqs. (27), (28) translated

into the frequency domain become

•* c

-FC(s)

"C

•GC(s) I

e°(s)

n°(s)
=

u (s)

v (s)

(60)

In other words, SCS S° is simply the linear time-invariant feedback

system (GC,FC). In terms of decomposition quantities, we have frequency

domain version of Eqs. (30)-(33) ,

-12-



•G^s)
-2-GZ(s)

-11•F±J-(s)

•F (s)

•f12(s)
-22, x
•F (s)

-1eX(s) "-1 I
u (s)

-2eZ(s)
-2
u (s)

n (s) vi(s)
-2
n (s)

-2vZ(s)

(61)

To find the transfer function H°(s) of SCS S , which is the inverse
e

of the matrix in (60) and (61), we first perform the block Gaussian

a! -2
elimination as follows: (i) add G times row 1 to row 3, (ii) add G

-2-21 -1-11 -1
times row 2 to row 4 and (iii) add G F (I-G F ) times row 3 to row 4.

We now have

•—

I 0
-11

-F -F12

0 I
"21

-F
-22

-1
u

u

-1-11 -1-120 0 (I-G F ) -GXFJ-^

0 0
-2^22(I-GZF^)

-2
e

-1
n

-2
n

-1-1 -1
G u +v

~9~?1 -1-11 -1 -1-1 -lv -2-2 "2GZFZ1(I-G1F1±) ^(G u -HO+G u +v

-?? A -2? -21-1 -11-1 -1 -12where FZZ = FZZ + FZV(I-F±-LG1) L F±Z

(62)

(63)

nc,
By back substitution in (62), we obtain the transfer function H (s)

AC.Using (57), four submatrices of H (s) can be described as follows:

A f*Ap _ 1

(I-FCG )

(I-G^)"1

r- -n ~l -1 -12-2-21-1 -12A2
r(I-F1±G-L) ±(I+F±ZGZMZ1G-L) h"gz

A21"l
M LG

~22A2 -1(I-FZZGZ)

ai.ll.-l„.AU12A2-21N Alpl2
(I-G F ) (I+G F G M ) G

-2-21
G M

-13-
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GC(I-FCGC)_1

FC(I-GCFC) X

- . -11-1 -1. ^12-2-21-lv -1-12-2G1(I-F GX) (I+FX GMZXG ) GV" G

A2^21A1
G M XGX

aO ~?9-2 -1
GZ(I-FZZGZ) X

-11-1 -1 -11 -12-2-21 -J.2(I-FXXG ) X(FXX+F G MZX) MT

~21
M

-22 -2-22 -1FZZ(I-GZFZ^) X

-12 A -11-1 -1-12. -2c22v-lwhere MXZ = (I-FXXGX) XFXZ(I-gVz) x

and M21 &(I-FcV^Vg1*11)"1

(66)

(67)

(68)

(69)

Obviously, Eqs. (64)-(67) can also be obtained by direct calculation

using (54) .

We shall now present a number of theorems on the stability of the

linear time-invariant SCS Sc which make use of the structure obtained

in decomposition. The first two theorems give necessary and sufficient

conditions for stability.

Theorem IV L

Consider a linear time-invariant lumped SCS S described by (60).

If Gc(s), Fc(s) are exp. stable, then Sc is exp. stable if and only if
S.22-2.

Vs e <c ,Vi e V1, det (I-F..G.) (s) i 0 and det (I-F G ) (s) ^ 0.
+* ' n l

Theorem IV D

Consider a linear time-invariant distributed SCS S described by

(60). If Gc(s), Fc(s) are ^-stable, then SC is (^-stable if and only
A Aft «J

if Vi e V1, inf |det(I-F..G.) (s)| >0 and inf |det(I-F G) (s)| >0.
SQE sQE
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Comments (i) Theorems IV L and IV D have the following meaning: In
c

case SC is formed by an interconnection of stable subsystems, the SCS S
A A

is stable if and only if every (local) feedback system (G^F^) (where

i£ V2 the minimum essential set) is stable and also the overall feedback

system (G2,§22) formed on the one hand by the subsystems associated with

the minimum essential set and on the other hand, by the subsystems not

associated with the minimum essential set. Note that the feedback systems

(G ,F ) ., correspond to self-loops associated with the vertices of
1 " lev1

(5CV1).
(ii) The two*theorems above, namely, IV L and IV D, are a good

illustration of the benefits that follows from the exploitation of the

structure of the SCS Sc. If we applied Fact IL and ID, we would have to
12

consider det(I-FcGC), the determinant of a matrix of dimension 0^+n^.
a a i

Thanks to the decomposition we need only check det(I-F^G^), Vi ^ V

and det(I-l22G2). Furthermore in case of instability these new conditions

will pinpoint the location of the instability and, hence, help in the

stabilization.

We now consider sufficient stability conditions:

Theorem V L fresp. Theorem V D)

Q

Consider a linear time-invariant lumped (resp. distributed) SCS S

a i aii
described by (60). If (a) the feedback subsystem (G ,F ) is exp. stable

9 — 9 9

(resp. Ci-stable); (b) the feedback subsystem (G ,F ) is exp. stable

(resp. Ci-stable) and (c) F 2(s) and F (s) are exp. stable (resp.

(^.-stable) then the SCS SC is exp. stable (resp. £?-stable). n

Comments (i) Facts IL, IIL and IIIL give three sets of conditions under

which conditions (a), (or (b)) of Theorem V L will hold. Hence using

-15-



these together with Theorem VL we would derive 3><3 = 9 corollaries. A

similar comment holds for Theorem V D. (ii) In view of the four (2,2)

position submatrices in Eq. (64)-(67), it is obvious that assumption (b)

of Theorem V is also a necessary condition, (iii) Theorem V has a form

similar to that of Theorem II.

Theorem VI L(resp. Theorem VI D)

Consider a linear time-invariant lumped (resp. distributed) SCS S

described by (60). If (a) FC(s) is exp. stable (resp. ^-stable) and

(b) G1(I-F11G1f1(s) and G2(I-f22G2)"1(s) are exp. stable (resp. ^-stable),

then the SCS S° is exp. stable (resp. ^.-stable). n

Comments: (i) Theorem VI L can be viewed as a specialization of

Theorem III by using the linearity of all the subsystems and taking the

spaced to be L^(1R+). This is, however, not the case for Theorem VI D

because a convolution operator is L^-stable if and only if its kernel

is a bounded measure and CL is a subalgebra of the convolution algebra

of bounded measures. The formulation of Theorem VI emphasizes the

analogy between the lumped and the distributed case as well as the

essentially algebraic nature (i.e. closure) of the result. (ii) The

comments (i), (iii) and (iv) of Theorem III also apply to Theorem VI.
"22 .

(iii) Condition (a) and (b) of Theorem VI imply by (63) that F is

exp. stable (^Z-stable)

J. Characteristic Polynomial

In this section we first show that the structure of the matrices

Fc and G° leads to simplification in the computation of the characteristic

polynomial provided the computations are carried out selectively. For

-16-



simplicity of exposition, we detail the procedure for the lumped case.

It is clear that for the distributed case a similar computation can

be carried out using pseudo-coprime factorizations [4]. Next we develop

some interpretations of the Theorems IV L, V L and VI L which illuminate

the effect of the structural decomposition on the statements of these

theorems.

J.l. Obtaining the Characteristic Polynomial

Let H(s) € ]R(s)nXm be proper (bounded at infinity), let (A,B,C,E)

be any minimal state space realization of H(s), then det(sI-A) is called

the characteristic polynomial of the transfer function H(s). The transfer

function H(s) G ]R (s) can be written as a matrix fraction

H(.) =DH£(s)-1NH)l(s) =NHr(s)DHr(s)-1

where the four matrices D , R,,,, N , D are polynomial matrices;

furthermore D„0 and Nu0 are left coprime i.e. their only left common

factor which is a polynomial matrix is a unimodular matrix (nonsingular

with constant determinant); similarly D„ and N„ are right-coprime.
tir rir

For algorithms for calculating such factorizations see [33,34,2]. It is

well known [4] that the characteristic polynomial X(s) of the transfer

A A

function of the feedback system (G,F) is given by

X(s) =det[DF£DGr-NFAr](S) (80)

-det[DOlDnr-HGl,,ft1<') (81)

where G=d"^ =H^, f =D;£n„- N^

are left-coprime and right-coprime factorizations of G and F respectively.
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All the "numerators" N and "denominators" D in the formulas above are

assumed to be multiplied by a nonzero constant factor so that the

polynomials (80) and (81) are monic. . We now use (80) to obtain the

characteristic polynomial of the feedback system (G ,F ), equivalently

the SCS S , bytaking advantage of its structural decomposition.

— c
First, we find a left-coprime factorization (D„ ,N ) of F as

follows:

-cFC(s) =

^AllF±J-(s)
A21LFZ±(s)

~12F±Z(s)
A22FZZ(s)_

Dx(s) 0
-i

0 Vs2

Nu(s) N12(s)

LN21(s) N22(s)_

(82)

(83)

where for i = 1,2 D.(s) is a diagonal matrix and its jth diagonal element

is the least common multiple of the denominators of the elements in j^th

row of Flx(s) and Fl2(s). Since Flx(s) is a block lower triangular matrix

due to the structural decomposition, so is N..,(s). To find the greatest

common left divisor of the two polynomial matrices in (83), we perform

elementary column operation on the polynomial matrix [33,34,2]

Nu(s) N12(s) D-^s) 0

J*21<8) N22(s) 0 D2(s)

and obtain a lower triangular polynomial matrix

Ru(s) 0 0 0

R21(s) R22(s) 0 0_j

-18-



The square matrix Ru(s) 0

Rn(s) R22(s)

is a greatest common left divisor

of the two matrices in (83), hence a left coprime factorization of F

is given by

F°(s) =DF£(s) ^(s) (84)

where (dropping the dependence on s)

FA

and

NF* =

Rll 0
-1

"Dl 0 ~RiiDi
—1

0

R21 R22 0 \ X X

Rll °

R21 R22

-1 r

Nll N12

N21 N22

r N x
1111

x x

where X denotes the appropriate submatrix. Note that by construction,

N and D are polynomial matrices. Observe that R^N-j^ is block lower
-11 -1 . -itriangular with the same block partition as F and that R^D-^ is lower

triangular.

Second, we find a right coprime factorization (D^jN^) of Gw. For

.c

~c

each subsystem iof Su, i.e. for all iGV1 UV,let G± =NQ rDG rbe a
- i Aright coprime factorization of G±. For j = 1,2 let N^ = diag.(NG ^)

'ir ievJ

and let
J 4Di = diag.(Dn ) .. Since G = diag.(G.) , obviously
Gr Gir iGv3 i^vW

(diag.(D_ ) _ 0, diag.(N_ ) , J is a right coprime factorization
Gir ievxuv2 Gir iSvW

-c
of G . In other words,
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D
Gr

Gr

0 D
Gr.

and GC NGrDGr

and N
Gr

Np 0
Gr

0 n:
Gr

(85)

(86)

By (80), we have the characteristic polynomial of SCS S ,

X (s) = detl
rT^D-dJ -rTJ-n.-n?; x
11 1 Gr 11 11 Gr

X X

(s) (87)

Since R, TO- is lower triangular and D_ is block diagonal with size
11 1 Gr

-U ~1of jLth diagonal block being n..xn.., R^D.D is block lower triangular

with size of i^th diagonal block being n..xn... Similarly, R..N.. is

block lower triangular with size of ^th diagonal block being n..xn. and

Nr is block diagonal with size of ith diagonal block being n. *n.., thus

R N Nr is block lower triangular with size of jLth diagonal block being

-11-1 1
n..xn... Therefore (R,.D^^ -R_-N-nN„ ) is block lower triangular with size of
ii ii 11 1 Gr 11 11 Gr

jLth diagonal block being n .xn... Hence using (53) to evaluate the

determinant in (87), we find that det(R~ D-Dg "RTiN-iiNg ) is the Product

of determinants of n. .xn. . matrices for all i^V .
ii ii

Remark: At first sight one might think that one could save computations

by using (81). However this will not work because when we post-multiply

HU N12
N21 N22

r.

Rll °

R21 R22
by either

-1

or by
Rll R12

R
22

lower triangular form of N_. will be destroyed.

-1

, the block

J.2. Interpretation of Theorem IV L, V L and VI L

In theorems IV, V, and VI we saw that the stability of the feedback

system (G (s),F (s)) played a key role in the stability of the SCS S .
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We now exhibit the relationship between x(s), the characteristic polynomial

9 ~9 9

of SC, and x9(s), the characteristic polynomial of (G (s),F (s)).

Start with Eq. (61) rewritten in a different order so that the

-2 ~22
variables associated with (G ,1T ) are written last; furthermore we use

factorizations (84) and (86); inserting superscripts (i,j) for the

partitioned matrices of the factorization, we obtain successively:

-1

H =

All
0 F x

~1
GX 0

F21

0
"12
F

0 0

0
-22
F ^

0

which is of the form

- -1 -1H=DlXND2

-11
d;

n

21

Fl
D

D
Gr

D
22

F£

Gr

-1

N
Gr

N
11

FH

N
21

FSL

N
Gr

12

Fl
N

22

FH
N

(91)

(92)

with (D ,N) left coprime and (N,D2) right coprime. From (91), we can

calculate the transfer function of S

- -1 -1 -1 -2 -2X ,~1 -1 -2 -2V
(I-H) : (u ,v ,u ,v ) i-H» (e ,n ,e ,n )

where

(I-H) x=02(0^2^) xDr

In view of the coprime properties of the polynomial matrices the

-21-
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characteristic polynomial of S is given by [35]

X(s) = detlD^-N] (s) (95)

Let D" denote the last two block-rows of D~ and Dl1 denote the last two

block-columns of D_,

then (91)-(94) it follows that

D2(DlD2"N)"lDl (96)
-2 -22

is a representation of the input-output transfer function of (G ,F ),

-2-2 -2-2
namely, that which maps (u ,v ) i-+ (e ,n ). The three polynomial matrices

appearing in (96) no longer have the pairwise coprimeness. So let

R^(s) = g.Jt.c.d. of (D^-N) and D^

R(s) =g.r.c.d. of R~1(D1D2-N) and D£

then, it is well known that [35]

det[R~1(DlD2-N)R^1] (s) =x2(s). (97)

Hence using the product of determinants rule, we conclude that

X(s) =X2(s) 'det R^(s) *det Rr(s) . (98)

Now the zeros of the polynomial det R£(s) are the input decoupling zeros
9 7

[36] of SC when only the inputs u and v are operative, i.e. they
2 2

correspond to all modes of S that are uncontrollable by (u ,v );

because of the order of our factorizations, the zeros of the polynomial

det R (s) are the output decoupling zeros of S (when only the outputs

2 2e and n are observed) and which are not input decoupling zeros; i.e.
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the zeros of det R»(s) correspond to modes of S that are controllable

(from (u2,v2)) but unobservable at (e ,n ). In the light of this

interpretation it becomes clear why the stability condition specified

by theorems IV, V and VI require two sets of conditions: one that
a2 -22

guarantees the stability of the feedback system (G ,F ) and the other

guarantees the stability of the other modes.

An alternate way of looking at this question is to start by

considering a minimal realization of SC, then restrict the inputs to

(u2,v2) and restrict the outputs to (e ,n ). This gives a realization
•"22of the "minimum essential subsystem" S but the realization thus obtained

is not necessarily minimal. If it were minimal, then S is stable if

~22and only if S is stable and x(s) -X2(s). If it is not minimal then
~22

the stability of S° cannot be decided by only studying S because,
«. 2?

roughly speaking, S contains modes that are not in S . The factors

det R0(s) and det R (s) in (98) serve to check on the stability of these

modes.

K. Linear Time-invariant Discrete-time Case

The results in Sections I and J above are stated for the continuous-

time case. A study of the proofs would easily show that they extend

easily to the discrete-time case. The required changes are listed in

the Table I: B(0,1) and B(0,1)° denote the open unit ball centered on 0

in C and its complement, resp.; Z. denotes the convolution algebra of
00

absolutely convergent sequences: & = {(z.) ^ C| ^J |z | < °° }, (for
0

details see [2]).
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Table I

Continuous-time Discrete-time

Laplace transform -¥ Z-transform

a -•

*i

O

B(0,1)

«+
->• B(0,1)C

s -*• °° H- z ->• °°

3R(s)
nxn

]R(z)
nxn

L. Example

Consider the interconnection SC of linear time-invariant lumped

multivariable subsystems shown in Fig. 8(a). Using the labelling of

Fig. 8(a), we obtain the interconnection digraph V of S and its

associated adjacency matrix which are shown in Fig. 8(b) and (c)

respectively. Due to the circuit (3,1,4,5,2), every pair of vertices

in the interconnection digraph are mutually reachable and hence the

system Sc is a strongly connected subsystem (SCS).

Recalling that we disregard the self-loops in finding a minimum

essential set of G> , we can easily check that the vertex 2 is contained

in every circuit of <$. Hence {2} is aminimum essential set of Q and

for this particular digraph, it is the only minimum essential set. The

acyclic section digraph Cp ({1,3,4,5}) is shown in Fig. 8(d). Applying

the topological sort on this section digraph, we obtain the new labeling

given in Fig. 8(e). The adjacency matrix with respect to the new labeling

given in Fig. 8(f). Note that it is a bordered lower triangular matrix,
is
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From now on, we will use the new labeling throughout.

Ap ^ C

Suppose that the transfer function matrices G , F of the subsystems

and the interconnection subsystems are specified by Eqs. (101) and (102)

below.

Note that both Gc, F are proper but not exp. stable. Hence

Theorems IV L and VI L cannot be applied to this system. To show that

-12 ~21
SCS S is exp. stable, we use Theorem V L: first we note that F , F

-1 -11
are exp. stable, next we have to show that the feedback subsystems (G ,F )

-2 ~22
and (G ,F ) are both exp. stable.

-1 -11
Since neither G nor F are exp. stable, no simplifying theorems

"1 "11
on stability condition applies to the feedback system (G ,F ). So the

most convenient procedure is to compute its characteristic polynomial

X, and to check that it has no <C -zero. First by finding a right coprime
1 +

factorization (D_ ,N_ ) of G. for each i = 1,2,3,4, we obtain a right-
Gir V X A j_

coprime factorization (D ,N ) of G ; next we obtain a left-coprime
G r Gr

A 1 1

factorization (D ,N ) of F ; these are shown in (103)-(106).
F«, Flll

It can be checked that for this particular example, the jLth diagonal

blocks of D and N also form a left-coprime factorization of F^.
F £ FxlJi

In general this is not always true. For convenience, we denote the ith

diagonal blocks of D n ,N u as D &, Np ^ respectively. Since
F i F i ii ii

D ., ,N, , D -- »Nni are block lower triangular, so is (D D
Gxr Gxr F11*, F11* Fxx* GXr

- N N ). Hence the characteristic polynomial of the feedback system
FlxJl G r

-1 -11(g\fXx),

Xl(s) = det(D D -N N ) (s)
x FA Gr F I G r

-25-



4

= n det(D D -N N ) (s)
i=l *ir V Fii* Gir

=- (s2+2s+2) (2s2+9s+l) (s2+s+2) 6(s+l) (s+2) (s+3) (s+1) (s2+s+8)

(107)

Since \1 has no (D+-zero, the feedback system (GX,F ) is exp. stable,

To determine the stability of the feedback system (G2,F22) we first

note that G is exp. stable. We compute F22 = F22 + F2xGX(I-FxxGx)~xF12

and obtain

~22 -1FZZ(s) = — x
(s+1)2(s+2)2

25s2+67s+25

29s2+68s+56

-22
Since F is also exp. stable, by Fact IL, the feedback system

(G ,F ) is exp. stable if and only if det(I-F2262) has no <E -
"T"

~22-2 a9S99
det(I-FzzGz) (s) = det(l-GZFZZ) (s)

-2-22(1-GZFZZ) (s)

(108)

(4s4+24s3+152s2+187s+38)/4(s+l)2(s+2)2 (109)

It can be checked by the Lienard-Chipart Test that the numerator

polynomial in (109) has no (C -zero and since the rational function in

~99 a9

(109) is bounded away from zero as |s| -*- «, det(I-F G ) has no tl -zero.

Therefore (G ,F ) is exp stable.

Hence by Theorem VL, the SCS S° is exp stable.
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-c

G°(s) =

-3s+2 s

s2-l s-1

-(2s+l)

s2-l
s+2

s-1

0
- 2

s

- 1
1

s+2

1 1

s+1 s+1

s

s+3
0

-s

s-2

0 3(s+1)
s-2

s+1

s+2

-1

4(s+2)

(101)
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F°(s)

l
to
oo

I

s+1

(s-1)

2s2+7s+3
(s-1)(s-2) (s-1)(s-2)

-3s

(s-1)

(s-1)

s2+5

(s-1)

2 19 ,,,
2 -s r* s+14

-18s +22s+3 2
(s-1)(s-2) (s-1)(s-2)

-s2-39s+32 -3s2-5s+4
(s-1)(s-2) (s-1)(s-2)

s+1

(s-1)

-s+7

(s-1)

-2

0

0

0

0 0

0 0

0 0
2s -14s+16

(s-1)2(s+1) (s2-l) (S"X)
s+3

(s2-l)

1 -(s+2)

<s"x) (s2-l)

0

0

a(s) = -

b(s) = -

(s+1)

(s+2):

(s+2)

(s+l):

0

0

0

0

s+2

1

s+1

s+1

s+2

1

s+3

s+1

s+3

s+2

s+1

s+1

s+2

s(19s4-l \ s3-55 \ s2+72s+2)
(s+l)3(s+2)2

s(19s4-l \ s3-55 \ s2+72s+2)
(s+1)2(s+2)3

(s+3)(4s4+69s3-53s2+76s-124)
(s+1)2(s+2)4

(s+3)(4s4+69s3-53s2+76s-124)
Xs+1)3(s+2)3

(s+1)

s

3(s+2)

0

(2s2+9s+l) (s2+s+2)
(s+1)2(s+2)2

s2+s+2
(s+1) (s+2)

-1

s+1

-12

s+12

0

a(s)

b(s)

(102)



N - (s)
G r

D - (s)
Gr

s-2 s

s+1 s+2 0
-2

s-3

2s+3

s

6(s+1)

6(s+2)

0

0
-s

3(s+1)

s+1 0

s s-1 0
s

r\

s+3 0

2s(s+2) 6(s+l)(s+2)

L 0 s-2

Vi.(s) =F I

1—
s+1

s+2

1

s c )

4 3/2 s+1

s s+3 -4 0 0 0

15 1/2 s-1 0 0 0

-(19s+33) -(4s+18) 2 •
s+1 s+3 s+1 -(s+2)

M. —*

-29-

(103)

(104)

(105)



D 11 (s) =
FA

s-1 0

-(s+5) s-2 , °
s-7 s-2 s-1 J
-s s-1

s+1 . s

-3 I 1 0

s-1 J 0 1
s-5 s-2 s s-2 s-2 2 -,s -1

-30-
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M. Conclusion

Part II has treated the stability of a strongly connected subsystem

for various types of dynamics. The paper shows how the SCS can be

partitioned using the concept of minimum essential set. Simplified

stability conditions and computational advantage obtained from this

.structural decomposition are presented.
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APPENDIX AIII: Proofs of the Theorems in Part II

Proof of Theorem III. From (31),

fV = W +gV) . (A13)

Define

v1 AFU(v1+G1e1) - f^W . (A14)
nl

By assumption (a), Vv1^/ , VTG J

ilvi«T <YCF") xllvxilT . (A15)

From (A13) and (A14),

pJ-V = pLV/e1 + v1 . (A16)

Substituting (A16) into (30), we obtain

(I-^Je1 =u1 +^ +F12n2 .

Solving for e1 and substituting the result into (31), we have

r|L-vL+ GL(I-FUGx)"1(u1+v1+F12n2) • (A17)

Define

P-+P- AG1(I-IlW-)"1(uL+vl+F1V) - ^(I-rtVVV . (A18)

By assumption (c), Vu1, v1 G £ , VT ^ J

lluX+vXllT <Y(G1(I-FLt1)"1)[lu1+v1|lT .
nl nl

By (A15), Vu1 e £ x, Vv1 e £°, VTG C7

-34-



lu1+v1+v1[lT =!lu1+v1!lT +llv1!^
<yCg1Ci-pl:lg:l)"":L) CHix1IIt +yC^-:l)[Iv:lHt) + llv1ilT
<[Y^d-rt1)"1) xmaxd^^^+lJdl^l^+llv1!^)
AY1(llu1llT+llv1IIT) . (A19)

From (A17) and (A18),

(A20)

Therefore

F2Y =F^I-rtVW + u1 + v1 (A21)

where

„~1 . ~1„ . ~,„21u+vH <y(FZ1)xy1x(||u1||t+||v1Ht) . (A22)

Substituting (A21) into (32), we obtain

e2 - [F22 +F21G1(I-A1)-1F12]n2 = u2 + G1 + v1 . (A23)

By (34)

F22 AF22 +^Vd-ftVV2 .

~ ~22
By assumptions (a) and (c), y(F ) < °°. Define

J2. ~22 2 2 2 22 9 ?v AFZZ(Ge+vZ) - FZZGe . (A24)
2

Thus, Vv2e^°,VTG CJ

»v2|lT <Y(F22)llv2llT . (A25)

From (33),

-35-



-22 2 ~22. 2 2 , 2N
F n =F (Ge+v)

-22 2 2 ~2
= FZZG e + v . (A26)

Substituting (A26) into (A23), we obtain

/T ~22 2. 2 2 _,_ a.2 _,_ J. ^ -1
(I-F G)e =u +v +u +v ,

2
Solve for e and substitute the result into (33), we have

n2 = v2 + G2(I-F22G2)"1(u2 +v2 +a1+v1) . (A27)

In view of (A27) , assumption (b) , (A25) and (A22), we conclude that the

112 2 2 ^/
map (u ,v ,u ,v ) i—> T) is oC-stable. In view of (A20) , assumptions (b) ,

112 2 1 ./
(a) and (A19) , we conclude that the map (u ,v ,u ,v ) •—*• r\ is 3L -stable.

112 2 1
Furthermore, from (30) and (32), it follows that the maps (u ,v ,u ,v ) «—> e

and (u ,v ,u ,v ) I—»- e are also Jc-stable. Hence S is ^-stable. //

Proof of Fact ID.

G, F are (^-stable implies (I-GF), (I-FG) are (7-stable. It is well

known that if H is £7-stable, then H~ is £Z-stable if and only if
e v e

inf |det H (s)| >0 [37,2]. Hence (I-GF)"1, (I-FG)"1 are^Z-stable if and
sG(C+ e
only if inf |det(I-GF)(s)| = inf |det(I-FG)(s)| > 0. By the closure property

sQE+ sQC+
of CL , the (^-stability of G, (I-FG) , F and (I-GF) implies that of
/v /\/s —1 /\ /\a —1
G(I-FG) and F(I-GF) . //

Proof of Theorem IV L.

">C £C —By Fact IL applied to (G°,F ), S is exp. stable if and only if V sG (D+,

det(I-FCG°)(s) i 0. Now

det(I-F°GC)(s) = det(
L^Dgl -F12G2 1

-F21GX I-F22G2
)(s)

= det(I-FUG1)(s)xdet(I-F22G2)(s) (by 53 ).
-36-



By construction, F is a block lower triangular matrix and G is a

conforming block diagonal matrix, hence (I-FX j is also a block lower

triangular matrix with (I-F..G.), i € V on the diagonal. Thus

det(I-f1G1)(s) = n det(I-F\,G )(s) .
iGv lx x

Hence the result follows. //

Proof of Theorem IV D.

Follows in the same manner as proof of Theorem IVLby using Fact ID. //

Proof of Theorems VL and V D.

By the closure properties of the algebras ]R (s) and C(i It Is easily

checked that all sixteen submatrices in Eq. (64)-(67) are stable under the

assumptions of the theorem. //

Proof of Theorem VE L and VI D.

Using Fact 2 on (GC,FC), we have S° is stable if and only if GC(I-FCGC)~
A.

is stable. By the closure property of the algebras ]R (s) and ££, it can

easily be checked that all four submatrices in Eq. (66) are stable under

the assumptions of the theorem. //
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FIGURE CAPTIONS

Fig. 6. Flow graph associated with Eq. (30)-(33) .

-22
Fig. 7. Flow graph interpretation of F

Fig. 8. (a) shows the interconnection S of linear time-invariant

lumped multivariable subsystems used in the example, (b)

Interconnection digraph C of S°. (c) Adjacency matrix of

Cp using the original labeling shown in (a) and (b) . (d) The

acyclic section digraph ^({1,3,4,5}). (e) Table relating the

old labeling to the new labeling, (f) Adjacency matrix of

(5 after relabeling.
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