

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EMBEDDING A RELATIONAL DATA SUBLANGUAGE IN A

GENERAL PURPOSE PROGRAMMING LANGUAGE

by

Eric Allman, Michael Stonebraker and Gerald Held

Memorandum No. ERL-M564

10 October 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EMBEDDING A RELATIONAL DATA SUBLANGUAGE
IN A GENERAL PURPOSE PROGRAMMING LANGUAGE

ERIC ALLMAN AND MICHAEL STONEBRAKER
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

AND THE ELECTRONICS RESEARCH LABORATORY
UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

and

GERALD HELD

RCA LABORATORIES

SOMERVILLE, N.J.

ABSTRACT

This paper describes an operational precompiler which embeds the
relational data sublanguage QUEL into the general purpose pro
gramming language "C". Also briefly described are two operation
al subsystems written in this combined language. Lastly some of
the language oriented shortcomings that have been observed in
QUEL and QUEL augmented by C are discussed.

I INTRODUCTION

INGRES (Interactive Graphics and Retrieval System) is a relation
al data base system which is implemented on a PDP-11A0 based
hardware configuration at Berkeley. INGRES runs as a normal user
job on top of the UNIX operating system developed at Bell Tele
phone Laboratories [RITC74]. The only significant modification
to UNIX that INGRES required was a substantial increase in the
maximum file size allowed. This change was implemented by the
UNIX designers. The implementation of INGRES is primarily pro
grammed in "C", a high level language in which UNIX itself is
written. Parsing is done with the assistance of YACC, a
compiler-compiler available on UNIX [J0HN7^].

The advantages of a relational model for data base manage
ment systems have been eloquently detailed in the literature,
[CODD70,CODD7i*,DATE74] and hardly require further elaboration.
In choosing the relational model, we were particularly motivated
by (a) the high degree of data independence that such a model
affords, and (b) the possibility of providing a high level and
entirely procedure free facility for data definition, retrieval,

Research sponsored by the National Science Foundation Grant DCR75-03839.

update, access control, support of views, and integrity verifica
tion.

INGRES runs as three processes which communicate via the UNIX
interprocess communication facility, together with a fourth
"front end" process. One of these front ends is an interactive
terminal monitor which allows the user to formulate, edit, print
and execute interactions in the data sublanguage QUEL. As will
be seen, the precompiler allows (among other things) a fourth
process of a users choosing to be substituted for the terminal
monitor.

INGRES is currently operational and most performance oriented
access paths are implemented [HELD75]. Support for 1, 2 and 4
byte integers, 4 and 8 byte floating point numbers and fixed
length character strings of 255 bytes or less is provided. The
INGRES system contains about 250,000 bytes of code, some of which
is overlayed into one of the three processes.

In this paper we indicate the design of an operational precom
piler which embeds the data sublanguage QUEL supported by INGRES
into the general purpose programming language "C" [RITC74a]. To
this end we describe QUEL in Section 2. Then in Section 3 we
briefly indicate the form of the precompiler and decisions made
concerning its construction. We also indicate the nature of two
applications written using this precompiler. Lastly in Section 4
we indicate some language problems associated with QUEL and QUEL
embedded in "C". These include:

a) dynamic schemas
b) no recursion
c) types and type checking
d) syntax especially in nested aggregation

II QUEL

QUEL (QUEry Language) has points in common with Data
Language/ALPHA [CODD713, SQUARE [BOYC73] and SEQUEL [BOYC74] in
that it is a complete [C0DD72] query language which frees the
programmer from concern for how data structures are implemented
and what algorithms are operating on stored data. As such it
facilitates a considerable degree of data independence [ST0N71*].

The QUEL examples in this section all concern the following rela
tion.

EMBEDDING SUBLANGUAGES -2- 10-23-75

EMPLOYEE

NAME DEPT SALARY MANAGER AG

Smith toy 10000 Jones 25

Jones toy 15000 Johnson 32

Adams candy 12000 Baker 36

Johnson toy 14000 Harding 29

Baker admin 20000 Harding 47

Harding admin 40000 none 58

Indicated here is an EMPLOYEE relation with domains NAME, DEPT,
SALARY, MANAGER and AGE. Each employee has a manager (except for
Harding who is presumably the company president), a salary, an
age, and is in a department.

A QUEL interaction includes at least one RANGE statement of the
form:

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables which
will be used as arguments for tuples. These are called TUPLE
VARIABLES. The purpose of this statement is to specify the rela
tion over wnich each variable ranges.

Moreover, an interaction includes one or more statements of the
form:

Command Result-name (Target-list)
[WHERE Qualification]

Here, Command is either RETRIEVE, APPEND, REPLACE, or DELETE.
For RETRIEVE and APPEND, Result-name is the name of the relation
which qualifying tuples will be retrieved into or appended to.
For REPLACE and DELETE, Result-name is the name of a tuple vari
able which, through the qualification, identifies tuples to be
modified or deleted. The Target-list is a list of the form

Result-domain = Function ...

Here, the Result-domain's are domain names in the result relation
which are to be assigned the value of the corresponding function.

The following suggest valid QUEL interactions. A complete
description of the language is presented in [HELD75a].

Example 2.1 Find the birth date of employee Jones

RANGE OF E IS EMPLOYEE

RETRIEVE INTO W (BDATE = 1975 - E.AGE)
WHERE E.NAME = 'Jones'

Here, E is a tuple variable which ranges over the EMPLOYEE rela
tion and all tuples in that relation are found which satisfy the

EMBEDDING SUBLANGUAGES -3- 10-23-75

qualification E.NAME = 'Jones'. The result of the query is a new
relation, W, which has a single domain, BDATE, that has been cal
culated for each qualifying tuple. If the result relation is
omitted, qualifying tuples are returned to the calling process.
If this process is the terminal monitor, it in turn prints then
on the user's terminal. Other front end processes may do what
they please with such tuples. Also, in the Target-list, the
'Result-domain =' may be omitted if Function is of the form
Variable.Attribute (i.e. NAME = E.NAME may be written as E.NAME
— see example 2.6).

Example 2.2 Insert the tuple (Jackson,candy,13000,Baker,?0)
into EMPLOYEE.

APPEND TO EMPL0YEE(NAME = 'Jackson', DEPT = 'candy',
SALARY = 13000, MGR = 'Baker', AGE = 30)

Here, the result relation EMPLOYEE is modified by addinrr the
indicated tuple to the relation. If less than all domains are
specified, the remainder default to zero for numeric fields and
null for character strings.

Example 2.3 Delete the information about employee Jackson.

RANGE OF E IS EMPLOYEE

DELETE E WHERE E.NAME r 'Jackson'

Here, the tuples corresponding to all employees named Jackson are
deleted from EMPLOYEE.

Example 2.4 Give a 10 percent raise to Jones

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1 * E.SALARY)
WHERE E.NAME = 'Jones'

Here, E.SALARY is to be replaced by 1.1*E.SALARY for those tuples
in EMPLOYEE where E.NAME = 'Jones'. (Note that the keywords IS
and BY may be used interchangeably with '=' in any QUEL state
ment.)

Also, QUEL contains aggregation operators including COUNT, SUM,
MAX, MIN, and AVG. Two examples of the use of aggregation fol
low.

Example 2.5 Replace the salary of all toy department employees
by the average toy department salary.

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY BY AVG(E.SALARY WHERE E.DEPT = 'toy'))

WHERE E.DEPT = 'toy'

Here, AVG is to be taken of the salary attribute for those tuples

EMBEDDING SUBLANGUAGES -4- 10-23-75

satisfying the qualification E.DEPT = toy . Note that
AVG(E.SALARY WHERE E.DEPT:: 'toy') is scalar valued and conse
quently will be called an AGGREGATE. More general aggregations
are possible as suggested by the following example.

Example 2.6 Find those departments whose average salary
exceeds the company wide average salary, both averages to be tak
en only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO HIGHPAY(E.DEPT) <nnnn\
WHERE AVG(E.SALARY BY E.DEPT WHERE E.SALARY > 10000)

>
AVG(E.SALARY WHERE E.SALARY > 10000)

Here, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) isn*n
AGGREGATE FUNCTION and takes a value for each value f^ E.DEPT.
This value is the aggregate AVG(E.SALARY WHERE E.SALARY>10000
AND E.DEPT = value). The qualification expression for the state
ment is then true for departments for which this aggregate Junc
tion exceeds the aggregate AVG(E.SALARY WHERE E.SALARY>10000).

In addition to the above QUEL commands to manipulate relations,
INGRES also supports a variety of utility commands including ones
to:

a) bulk copy data into and out of INGRES
relations from or to UNIX files

b) create and destroy relations
c) add and delete integrity constraints [ST0N75]
d) add and delete secondary indices [HELD75].
e) change the access method used to store a

given relation.

For a complete description of the currently operational INGRES
commands the reader is referred to [Z00K75].

Ill THE C PRECOMPILER

A precompiler has been constructed which embeds QUEL and all oth
er INGRES commands in the programming language C. This precom
piler performs the following functions:

1) inserts code in the user program to spawn at run time the
process structure shown in Figure 1. (Actually pipe B is two
interprocess communication pipes, one for data and one for termi
nation conditions. However, for simplicity of exposition they
will not be distinguished.)

EMBEDDING SUBLANGUAGES -5- 10-23-75

PROGRAM

"front

end"

process

INGRES
PROCESSES

(3)

The Forked Process Structure

Figure 1

2) looks for lines in the C program which do not begin with
"##". These are assumed to be valid C language statements and
are copied without modification to the output file.

3) looks for lines in the C program prefaced by a "//#". These
lines are processed by the precompiler and must be either a vari
able declaration or begin an INGRES command with an INGRES key
word. The choice of "##" was motivated by the use of "#" as a
compiler directive in C.

If a variable declaration is found, the variables defined are
noted as legal for inclusion in INGRES statements.

For a line containing an INGRES command a version of the
parser is invoked to parse the command looking for C-var
If none appear code is inserted to write the line unmodifi
pipe A. If a variable appears, code is inserted to wri
value down the pipe in its proper form prefaced by a type
nator so the lexical analyzer in INGRES can appropriate!
with the variable. The remainder of the line is passed i
dified form as above. The rationale for not completely
an INGRES line is given in Section 4.

INGRES

iables.

ed down

te its

desig-
y deal
n unrao-

parsing

The precompiler also inserts code to read PIPE B for completion
information and calls the procedure Ilerror. The user may define
Ilerror himself or else have the precompiler include a standard
version of Ilerror which prints the error message and continues.

The precompiler also notes the end of a command for allowed mul
tiline INGRES statements and whether the command will return data
through pipe B (that is, the command is a RETRIEVE with no result
relation name given). In this case the target list must be of
the form:

EMBEDDING -6- 10-23-75

C-variable = QUEL function ...

If data is to be returned, the precompiler, in addition to per
forming all the above steps, outputs code to do the following:

a) read pipe B for a tuple formated as type/value pairs, insert
ing values for the C-variables declared in the target list. If
necessary, values are converted to the correct type of the de
clared C-variable.

b) pass control to the block following the RETRIEVE. Following
the block it inserts code to go back to step a if there are more
tuples. In this way "piped" return [C0DD71] is supported and a
single C-block can be executed for each tuple. The current
precompiler recognizes the delimiters of a C-block by "#//{" and
"##}" respectively.

Two short examples illustrate the precompiler syntax.

Example 3.1 The following section of code implements a small
front end to INGRES which performs only one query. It reads in
the name of an employee and prints out the employee's salary in a
suitable format. It continues to do this as long as there are
more names to be read in. The functions READ and PRINT are as
sumed to have the obvious meaning.

main()

{
char NAME[20];
int SAL;
while (READ(NAME))

{
RANGE OF X IS EMP
RETRIEVE (SAL = X.SALARY) WHERE
X.NAME = NAME

{
PRINTC'The salary of ",NAME," is ",SAL);

}
}

}

Example 3.2 Read in a relation name and two domain names. Then
for each of a collection of values which the second domain is to
assume, do some processing on all values which the first domain
assumes. (We assume the functions READ and PROCESS exist and
have the obvious meanings.)

int VALUE;
U char RELNAME[133, DOMNAME[13], QUAL[80];
char D0MNAME_2[13]J
READ(RELNAME);
READ(DOMNAME);

EMBEDDING SUBLANGUAGES -7- 10-23-75

READ(D0MNAME_2);
RANGE OF.X IS RELNAME
while (READ(QUAL))

RETRIEVE (VALUE = X.DOMNAME)
WHERE X.D0MNAME_2 r QUAL
*

PROCESS(VALUE);

1
}

There are currently two applications written using the precom-
r. One Is a geo-data system called GEO-QUEL described in

[G075 . Basically it augments QUEL with display oriented
feTures. The designers estimated a factor of 50 code reduction
was achieved using the precompiler over what would be required in
"C" alone. Such factors should be realized ma wide variety of
applications that are largely data management (e.g. computer aid
ed design, computer aided instruction etc.). The second applica
tion was a C program to give a user interface appropriate to an
inventory control application. Both interfaces required less
thin 3man months of programming effort and it is *nvi8J°"!< *h£
a wide variety of user tailored "front ends" will eventually be
implemented in this fashion.

IV PROBLEMS WITH SUBLANGUAGES AND EMBEDDED SUBLANGUAGES

We note that QUEL (along with associated utility commands) embed
ded in C bears some resemblance in features to other very high
level languages, e.g., VERS and SETL. However, it was implement
ed primarily as a data base management system which involved the
following design decisions.

a) Relations are implemented in the file system via a variety
of access methods and not as core arrays.

b) Protection is being handled at the user language level
[ST0N7Ma] and in no way involves the UNIX protection sys
tem for files.

c) Integrity control schemes [ST0N75] are supported.
d) For protection reasons as well as because of address space

limitations, the system runs as multiple processes.

The following problems are present in QUEL or in QUEL embedded in
C. Some result from the above considerations.

EMBEDDING SUBLANGUAGES -8- 10-23-75

programming languages to allowing a user to create space for
variables at run time (such as is done in SIMULA). However, in
programming languages such variables are local to an invocation
of the program and space disappears when the program terminates.

In INGRES, relations created during execution do not disappear
when the program terminates (since the programmer may wish to use
such a relation again). In fact, INGRES keeps relations for a
period of time specified by a data base administrator and pro
vides a SAVE command should the user wish that they be kept
longer.

This causes several problems. If the relational schema is al
tered at precompile time at least four dilemmas occur:

a) It may be impossible to do the alteration because the
relation to be created at run time may depend on other
relations (created by other programs) which do not yet
exist in the schema (because the other programs have not
yet been precompiled).

b) There may be name conflicts; i.e., a user may be required
not to use the same name for a relation in different pro
grams.

c) DESTROY relname is a legal command, and in this case the
schema cannot be altered until run-time.

d) It may be impossible to alter the schema because changes
could easily depend on run-time values.

For instance, the precompiler supports the statements

READ(A);
RETRIEVE INTO A ()

If the schema is not altered until run time, the following prob
lem is evident: INGRES statements cannot be parsed until run time
since the legality of a command cannot be determined until then,
(e.g., RANGE OF E IS W gives a run time error if W does not ex
ist. This cannot be known at precompile time.)

Moreover, one can write programs such that the legality of an
INGRES command cannot even be determined at the start of program
execution. For example, in the program

READ(A);
if (A > 5)

{
CREATE W ()

}

RANGE OF E IS W

EMBEDDING SUBLANGUAGES -9- 10-23-75

the legality of the RANGE command cannot be determined until it
is executed.

Parsing during execution (as is done in INGRES) has an obvious
run time cost. For example, the following program will result in
parsing the RETRIEVE statement 1000 times:

for (i s 1; i < 1000; i = i + 1)
{

RETRIEVE ...

}

One approach to avoiding multiple parsing could be to name the
retrieve command in a definition and then call it with parameters
in a manner similar to the definition and invocation of MACRO's.
The following syntax could, for example, be supported.

DEFINE MYSTATEMENT(RELATION, DOMAIN, QUAL)
char RELATI0N[20], D0MAIN[20], QUAL[20]
int SAL

RANGE OF E IS RELATION

RETRIEVE (SAL = E.SALARY)
WHERE E.DOMAIN = QUAL

#// END MYSTATEMENT

MYSTATEMENT(MYRELATI0N, MYDOMAIN, MYQUAL)

In certain situations this might save multiple parsing. This
could happen if the definition was sent down pipe a, parsed, and
stored by INGRES in parsed form. Invocation would then simply
involve parameter validation. However, when the parameter list
contains a relation name (as above), reparsing the statement at
each call is unavoidable. The added complexity of distinguishing
the above cases was judged not worth the effort by the authors.
Restricting the allowable definitions to ensure no multiple pars
ing was considered unacceptable. Also, if definitions are not
local to the invocation of a program (as might be desirable),
some of the problems mentioned earlier reappear. As a result,
this approach was not followed.

The relational schema in INGRES can also be considered to include

a) Integrity constraints on relations
b) access control statements for relations

EMBEDDING SUBLANGUAGES -10- 10-23-75

c) view definitions

Algorithms to support (a)-(c) are given in [ST0N7**a, ST0N75] and
basically involve making modifications to a QUEL statement at the
source language level. If the precompiler makes these modifica
tions, the same sorts of problems discussed earlier in this sec
tion appear. (For example, an integrity constraint can be
changed between precompile time and execution time. Also dilemma
(d) above indicates that one cannot necessarily know at precom
pile time what integrity constraints to enforce.) Again, if
modifications are done at execution time (as in INGRES), the run
time overhead must be tolerated.

Other than substantially restricting the allowable operations,
(and as a result restricting the generality of the "front ends"
which are possible) the authors see no solution to this parse-
at-execution problem. One attempt at restriction to support
precompile-time-parsing is to forbid all commands which can
change the data base schema. These include RETRIEVE INTO,
CREATE, and DESTROY. Even this is not foolproof unless one for
bids these same commands when the interactive terminal monitor is
the front end process.

2) Recursion
There is no recursion in INGRES itself, (i.e. no INGRES commands
are implemented by invoking other INGRES commands. Secondary
indices could easily be treated this way if this feature exist
ed). Also, no recursion is allowed by the precompiler (i.e. the
C-block executed for each tuple cannot contain an INGRES com
mand.) There are, however, many data base applications in which
recursive algorithms for data access are very natural. A common
example is the bill of materials (or parts explosion) problem.
Here, the data base contains tuples describing every sub-assembly
and part in a product. The problem is to create a list of all
parts which are components of the major assembly, a sub-assembly,
a sub-sub-assembly and so on to an unknown depth. An equivalent
example in the employee relation would be to "find all employees
who work directly or indirectly for Harding".

Although recursion is allowed in C and many other programming
languages, it appears difficult to implement in programming sys
tems which span more than one process. Tuples are returned to a C
program through a pipe. Allowing a second QUEL command to be
executed before tuples from the first command are cleared from
the pipe will result in additional information at the end of the
pipe which is not available until all tuples from the first com
mand are read from the pipe.

One solution would appear to be to fork a second collection of
INGRES processes with their own pipes (i.e., call INGRES recur
sively). Since recursion could be fairly deep, the available
pipes could be soon exhausted. Moreover, pipes are much more
expensive to create than the execution of a subroutine call.

EMBEDDING SUBLANGUAGES -11- 10-23-75

Since recursive calls to the data base system do not seem feasi
ble, what is necessary is to include within INGRES the capability
for recursive data access. The data sublanguage must be extended
to have a primitive operation such as RETRIEVE* in the following
query:

/*find all employees who work for Harding
(directly or indirectly) */

RANGE OF E IS EMPLOYEE

RANGE OF A IS ANSWER
RETRIEVE* INTO ANSWER (NAME = E.NAME)

WHERE E.MANAGER = "Harding"
OR E.MANAGER = A.NAME

Here, RETRIEVE* must be defined so as to re-process the query
until the size of the result relation stops growing. No current
system has this capability and it is suggested as a important
problem for relational language designers to cope with.

3) Types and Type Checking
Conversion of types between the data base system and the C pro
gram acting as the front end presents a number of problems.
Since the precompiler cannot know what types various domains will
be at run time (for the same reasons as outlined in (1) above),
one of two approaches must be used.

The first approach is to insist that the type of a variable that
is used in the C program match the type of the value that is
returned from INGRES. Otherwise, an error could be generated.
This is clearly unacceptable, as it removes desirable data in
dependence. For example, it should make no difference to the C
program if INGRES stores a domain as a one or a two byte integer
even though the C program prefers to consider it as a two byte
integer.

The second approach (which is followed by the precompiler) is to
perform run time type conversion between all types of C variables
and all INGRES domain types.

In the current implementation the collection of types is not
extensible in INGRES. Similarly, C does not support extensible
types. Hence, the precompiler can include all necessary conver
sion routines. However, languages with extensible types have
obvious appeal and the same statement holds for data base sys
tems. Should such systems appear, they would be required to cope
with the dilemma illustrated by the following example.

Suppose the data base system supported the domain type COLOR =
{RED, BLUE, GREEN, YELLOW}. Suppose further that a user of the
host language defined a type C0L0R1 = {BLUE, VIOLET, GREEN, RED,
BLACK}. Obviously the conversion from one to the other is com
plex and requires a complete description of both COLOR and
C0L0R1. It is not clear how the precompiler can easily be made

EMBEDDING SUBLANGUAGES -12- 10-23-75

aware of both descriptions.

Moreover, consider the case where the data base system requires
user supplied conversion routines (for example for the domain
types DOLLARS and PESOS). This routine must be available to the
precompiler if it is required to convert one to the other (or
something else to either one). Moreover, if the user wishes to
define a new data type (say FRANCS), he must know the type of the
stored domain which he will be converting from in order to supply
the appropriate routine. Data independence is unavoidably sacri
ficed or the user must supply a complete collection of conversion
routines.

4) Syntax
There are various syntactical problems in QUEL. One concerns
aggregation in the language and involves the scope of tuple vari
ables. It will be illustrated by the examples to follow.

Example 4.1 Find the average salary of those employees who make
more than the average company salary.

RANGE OF E IS EMPLOYEE
RANGE OF F IS EMPLOYEE
RETRIEVE (COMP= AVG(E.SALARY WHERE E.SALARY >

AVG(F.SALARY))

It should be noted that the scope of each tuple variable is local
to the aggregate involved. However, when a BY clause is present
the scope of the variable used must be global as the following
example suggests.

Example 4.2 For each department find the average salary of
those employees who make more than the average salary of their
department.

RANGE OF E IS EMPLOYEE
RANGE OF F IS EMPLOYEE
RETRIEVE (COMP = AVG(E.SALARY BY E.DEPT

WHERE E.SALARY

AVG(F.SALARY WHERE F.DEPT=E.DEPT)),
DEPT = E.DEPT)

This command has several objectionable features.
a) It is difficult to understand even if the semantics of

aggregation are known.
b) In the first AVG, E is a local variable when used anywhere

but in the BY clause. Hence, the first E.DEPT is global
to the interaction, and is the same variable as the third
E.DEPT. On the other hand, E.SALARY is local to the
aggregation. This mixing of scopes is objectionable; how
ever, it cannot be solved simply by introducing a new dum
my variable. The following two statements are not

EMBEDDING SUBLANGUAGES -13- 10-23-75

semantically equivalent:

RANGE OF E IS EMPLOYEE

RETRIEVE (COMP = AVG(E.SALARY BY E.DEPT),
DEPT = E.DEPT)

RANGE OF E IS EMPLOYEE

RANGE OF E1 IS EMPLOYEE
RETRIEVE (COMP = AVG(E1.SALARY BY E.DEPT),

DEPT = E.DEPT)

For the example relation considered the first answer is:

COMP DEPT

13000 toy
12000 candy
30000 admin

while the second answer is:

COMP DEPT

18500 toy
18500 candy
18500 admin

This result is caused by the second expression being
evaluated on the cross product of E and E1.

Several fixes have been considered but rejected for one
reason or another.

c) the second E.DEPT which appears is not local to the second
aggregate because it appears in an outer aggregation.

A clean resolution of these objectionable features is clearly
desirable. The option of restricting aggregates to be simple
enough so the problem can go away is not very attractive. (For
example no nesting, no multivariable aggregations, and delete the
tuple variable everywhere but in the BY clause is one solution.)

V SUMMARY

In this paper we have described how the relational language QUEL
has been embedded in the programming language C and have dis
cussed problems with data sublanguages and embedded data sub
languages. Most of these problems are inherent to a data base
environment and are suggested as important topics for research.

REFERENCES

EMBEDDING SUBLANGUAGES -14- 10-23-75

[BOYC73] Boyce, R., et al, "Specifying Queries as Relational
Expressions: SQUARE", IBM Research, San Jose, Ca., RJ
1291.

[BOYC74] Boyce, R. and D. Chamberlin, "SEQUEL — A structured
English query language," Proc. of the 1974 ACM-SIGFIDET
Workshop on Data Description, Access and Control, Ann
Arbor, Michigan, May, 1974.

[C0DD70] Codd, E. F., "A Relational Model of Data for Large
Shared Data Banks," CACM, 13 (1970), pp. 377-387.

[C0DD71] Codd, E. F., "A DAta Base Sublanguage Founded on the
Relational Calculus," Proc. of the 1971 ACM-SIGFIDET
Workshop on Data Description, Access and Control, San
Diego, Ca., November 1971.

[C0DD72] Codd, E. F., "Relational Completeness of Data Base Sub
languages," Courant Computer Science Symposium 6, May
1972. ^ „

[C0DD74] Codd, E. F. and C. J. Date, "Interactive Support for
Non-Programmers: the Relational and Network
Approaches," Proc. of the 1974 ACM-SIGFIDET Workshop on
Data Description, Access and Control, Ann Arbor, Mich.,
May 1974.

[DATE74] Date, C. J. and E. F. Codd, "The Relational and Network
Approach: Comparison of the Application Programming
Interfaces," Proc. of the 1974 ACM-SIGFIDET Workshop on
Data Description, Access and Control, Ann Arbor, Mich.,
May 1974.

[G075] Go, A., M. Stonebraker, and C. Williams, "An Approach
to Implementing a Geo-Data System," Proceedings of the
Workshop on Data Bases for Interactive Design, Water
loo, Ontario, Canada, September 1975.

[HELD75] Held, G. and M Stonebraker, "Access Methods in the
Relational Data Base Management System — INGRES,"
Proceedings of ACM-PACIFIC-75, San Francisco, Ca.,
April 1975.

[HELD75a] Held, G., M. Stonebraker, and E Wong, INGRES — A Rela
tional Data Base System, Proceedings of the 1975 Na
tional Computer Conference, Anaheim, Ca., May 1975.

[JOHN74] Johnson, S. C, YACC — Yet Another Compiler-Compiler,
Bell Telephone Laboratory, Murray Hill, N.J.

[RITC74] Ritchie, D. and K. Thompson, "The UNIX Time-Sharing
System," CACM, 17 (1974), pp 365-375.

[RITC74a] Ritchie, D., "C Reference Manual", Bell Telephone La
boratories, Murray Hill, N.J., 1974.

[STON74] Stonebraker, M., "A Functional View of Data Indepen
dence," Proc. 1974 ACM-SIGFIDET Workshop on Data
Description Access and Control, Ann Arbor, Mich., May
1974.

[ST0N74a] Stonebraker, M., and E. Wong, "Access Control in a
Relational Data Base System by Query Modification",
Proc. 1974 ACM National Conference, San Diego, Ca.,
November 1974.

[STON75] Stonebraker, M., Implementation of Views and Integrity
Constraints in Relational Data Base Systems by Ouery

EMBEDDING SUBLANGUAGES -15- 10-23-75

Modification, Proc. 1975 SIGMOD Workshop on Management
of Data, San Jose, Ca., May 1975.

[ZOOK753 Zook, W., et al, INGRES Reference Manual, University of
California, Electronics Research Laboratory, Memorandum
ERL-M519, April 1975.

EMBEDDING SUBLANGUAGES -16- 10-23-75

	Copyright notice 1975
	ERL-564

