Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

9,

CUPiD: A GRAPHICS ORIENTED FACILITY FOR SUPPORT

OF NON-PROGRAMMER INTERACTIONS WITH A DATA BASE

by

Nancy Harriet McDonald

Memorandum No. ERL-M563

12 November 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720 '

CUPID: A Graphics Oriented Facility for Support of

lion-Programmer Interactions with a Data Base

Nancy Harriet Mchnaldl

Abstract

CUPID (Casual User Pictorial Interface Design) is a
facility desifned to support non-programner interactions
with a data base system. It is a front-end user interface
for ﬁhe relational. data base system, INGRES, and compiles
"pictures" 1into the query language, QUEL supported by

INGRES.

The thesis descriﬁes CUPID’s data sublancguare and its
definition capability. The data sublansuare is complete,
high level and picture oriented, depending almost entirely
on "menu-move" operations on a CRT terminal. Hence, users
have no need to type extensive English text and difficult
natural language processing can be completely avoided. The
defiﬁition feature serves tuwo purposes:

1. to resolve ambiguous interactions, and
2. to allow the user to define individual terms for local

and global purposes.

Since a major roal of this work is to analyze the
feasibility of a picture query languace, this thesis details
the working implementation and describes desien for exten-
sion of the system. In conjunction with the prototype im-
plementation, a human factors experiment was desiened and
conducted to compare the CUPID system to the moré formal
lanruage, QUEL. This experiment is described and the results
discussed. Subjects -learned both systems. Statistics were
tabulated on their performances and »preferences. The
results, presented here, indicate that CUPID is a viable

casual user systen.

Signature

Chairman of Committee

ACFKHOWLEDGHENTS

I anm pleased to express my deepest appreciation to Pro-
fessor :{. Stonebraker for his efforts in ruidinm my research
and in editin~ this thesis. I an also indebted to Professor
E. .one for nis helpful and supportive comments and to Pro-
fessor De Foley for his time spent and interest in this pro-
ject. I’d like to gaive special thanks to Professor P.
Varaiya for introducine me to the data base project and for

the confidence he expressed in nme.

During the implementatioﬁ of this work, Dr. H. lolmes
and other menbers of the Lawrence Berkeley Laboratory were
very patient and nelpful consultadts. And special rratitude
is due ny fellow students and staff members on the INGRES
oroject. Their comments, assistance and camaraderie were

most helpful and encouraring.

I am, as always, deeply rrateful to my husband, Gene
and our daughter, Pamela, for their lovina support and

understanding.

I would also like to thank IBIi and the Clepartment of
EECS at the University of California for the financial sup-
port riven this effort. Research was also supported by the National

Science Foundation Grant DCR75-03839.

TABLE OF CONTENTS

ABSTRACT.......'....'......’.....O.............1
ACKNOWLEDGMENTS ‘

Q..Q.....OQ......O.....000.....001

TABLE OF COrITEr‘:TS.......OOQ.........C.........lii

CHAPTER 1 - INtroductiofNeeceecessseeecccsceccesl
1.1 Background - INGRES and QUEL.ccceccoccecsseld
1.2 The Importance of the Human Interface.....8
1«3 Why a Picture Language?.cccccccsccccscsecssd

1.4 Overview Of TheSiSeeceeecessevecsccncsccssanall

CHAPTER 2 - Syntax..........................;..13
2.1 SYNnbOlSececeesccascsscscscsosscscscsscsscsnsll
2.2 General Format.cececsccssccsccacencccscacsll
2.3 Retrieval Examples...........;............16

2."' Update Examples...........'....'..........21

CHAPTER 3 - Definition Capability.ooooo-.00000025
3.1 Defining Algor’ithm........k..............o-26

3.2 Comparability Algorithm..ceceececceccccecee29

3.3 Definition RepresentationN.ccecececcccceses3l

i

CHAPTER u ; Implementation.....-...........-...3”

Hardware Configuration...............)....3&
Software ConficuratioN.cceeecsceccccssecses3’
HuMan FactorS.eeeececccscsssscsccsssscssssidl
Workin~g ImplementatioNeececececssccceseees5l
Implenentation RestrictionS.ceccecescessessbb

2lans for Further Implementation.eceeececees56

CHAPTER 5 - Human Factors Experiment....cccee..62

5.1
5.2
5.3
5.4
5.5

Experimental DESifiNlececcccscsssssacsnasesshl
Subjects..................................65
Experinentation..ceccscscsccccscscscscsssshbd
Discussion............................,...80

Concluding. Remar’ks........................83

CHAPTER 6- Conc(lusion..'......Q...............BS

6.1
6.2
6.3
6.4

Tne CUPID Lano,uap;eooo ® 9 © 0 00 00O " SO0 OO SO .85
Implementation. EEEEEREEREX NN A B B ER B B I I A B 4 .86
Exper‘imentation. "MEEEEREEXERE RN I N NI S B I BB N J .86

Implications.............Q................87

Appendix A - FORMAL SYNTAXeeeeoesoeecocesscesss89

Appendix
Appendix
Appendix
Appendix

Appendix

- IMPLEMENTED GRAM]4AR. ® ®© 000 e 00 0o o0 qu

- EXPLANATION FOR EXPERIMENT.eeeese.97

- CUPID'S TUTORIAL....000000000-0000128

m MmO QO o
|

-TEST QUERIES".........'...'......157

QUEL'S TUTORIAL.ceeceececcccsesess 100

iid

Appendix G - QUESTIONI‘]AIRE..-’-.Q.--.... so 0o ..159

Appendix I’I - LOGIN PROCEDURES.-......000'10.00000162

Refer‘ences...'.....0.....'......'.‘......I.....16“

Related BibliographyeececeecececcassscccccasssscslT0

iv

CHAPTER 1

Introduction

The main goal of this research is to explore the feasi-
bility of the picture query language system, CUPID (Casual
User Pictorial Interface Design). CUPID 1s a facility
designed to support non-progranmmer interactions with a data
base management system. CUPID contains a picture oriented
data sublanguage and a defintion capability. The 1language
is complete [CODD72], high level and depends almost entirely
on "menu-move" operations on a CRT ternminal. Very 1little
English text is typed by the user, thus avoiding difficult
natural language processing by the system. The definition
facility helps to resolve ambiguous 6perations and to allow

the user to define individual terms.

A prime concern is for the response of a casual user to
such an interface. Td this end, CUPID was

1) designed to have a simplistic, yet flexible, syntax
for ease of use
2) designed to contain a user definition capability for
ease of expression
3) implemented in part to present some of the major
featureé for actual performance and preference evaluation

4) compared to another query language system in a human

factors test

This chapter provides some background and motivation
for the CUPID project. Since the data base system, INGRES,
and the data sublanguage, QUEL, are important components of
and incentives for CUPID, a brief desdription of INGRES and
QUEL 1is presented in section 1.1 to help familiarize the
reader with some terminology and the underlying systems.
Sections 1.2 and 1.3 present the motivation for CUPID. In
section 1.2, the value of the human-machine .interface is
discussed along with an alternative approach (natural -
language). Section 1.3 1ists the benefits expected from ai
pictorial approach to the human-machine interface problem.
Finally, section 1.4 provides an overview of the remainder

of this dissertation.
1.1 Background- INGRES and QUEL

INGRES (Interactive Graphics and REtrieval
System)[MCDO?h,HELD?Sa,HELD?S,STON75a,NONG75,ZOOK75] is a
relational data baseA system which' is implemented on a
PDP-11/40 based hardware configuration at Berkeley. INGRES
runs as a normal user job on top of the UNIX operating sys-
tem developed at Bell Telephone Laboratories [RITC74a). The
implementation of INGRES 1is primarily programmed in "C"
[RITCT4], a high level language in which UNIX 1itself 1is

written. Parsing 1is done with the assistance of YACC

[JOHNT4]}, a compiler-compiler available on UNIX.

The advantages of a relational model for data base
management systems have been eloquently detailed 1in the
literature, [CODD70,CODD74,DATE74,DATE75] and hardly reqguire
further elaboration. The choice of the relational model was
particularly iﬁfluenced by (a) the high degree of data in-
dependence that such a model affords, and (b) the possibili-
ty of providing a high level and entirely procedure free
facility for data definition, retrieval, update, access con-

trol, support of views, and integrity verification.

INGRES runs as three processes which communicate via
the UNIX interprocess communication facility, together with
a fourth "front end" process. One of these front ends 1is an
interactive monitor which allows the. user to formulate,

edit, print and execute interactions 1in the data sub-

language, QUEL.

QUEL (QUEry Language) has points in common with Data
Language/ALPHA [CODD71], SQUARE [BOYC73] and SEQUEL [CHAM74]
in that it is a complete [CODD72] query language which frees
the programmer from concern for how data structures are
implemented and what algorithms are operating on stored

data. As such it facilitates a considerable degree of data

independence {[STONT4].

The QUEL examples in this section all concern the fol-

lowing relation.

NAME DEPT SALARY MANAGER

Smith' toy 10000 Jones
EMPL - Jones toy 15000 Johnson
Adams céndy 12000 Baker
Johnson toy 14000 Harding
Baker admin 20000 Harding
Harding adnin 40000 none

Indicated here is an EMPL relation with domains NAME, DEPT,
SALARY, and MANAGER. Each employee has a manager (except
for Harding who 1s presumably the company president), a

salary, and is in a department.

A QUEL interaction includes at least one RANGE state-

ment of the fornm:
RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables
which will be wused as arguments for tuples. These are
called TUPLE VARIABLES. The purpose of this statement is to

'specify the relation over which each variable ranges.

Moreover, an interaction includes one or more state-

ments of the form:

Command Result-name (Target-list)

WHERE Qualification

‘Here, Commmand 1is either RETRIEVE, APPEND, REPLACE, or

DELETE. For RETRIEVE and APPEND, Result-name is the name of
the relation which qualifying tuples will be retrieved into
or appended to. For REPLACE and DELETE, Result-name is the
name of a tuple variable which, through the qualification,
identifies tuples to be modified or deleted. The Target-

list is a 1list of the form
Result-domain = Function ...

Here, the Result-domain’s are domain names in the result
relation which- are to be assigned the value of the

corresponding function.

The following suggest valid QUEL interactions. A com-

plete description of the language is presented in [HELD75a].

Example A Find the manager of employee Jones.

RANGE OF E IS EMPL
RETRIEVE INTO W (MGR = E.MANAGER)
WHERE E.NAME = “Jones’

Here, E 1s a tuple variable which ranges over the EMPL rela-
tion and all tuples in that relation are found which satisfy
the qualification E.NAME = ‘Jones’. The result of the query
is a new relation, W, which has a single domain, MANAGER,
that has an entry for each qualifying tuple. If the result
relation is omitted, qualifying tuples are printed on the

user’s terminal or returned to the calling program. Also,

in the Target-1list, the “Result-domain =" (i.e MGR =) may

be omitted 1if Function is of the form; Variable.Attribute
(i.e. NAME = E.NAME may be written as E.NAME).

Example B Insert the tuple (Jackson,candy, 13000,Baker)
into EMPL.

APPEND TO EMPL(NAME = “Jackson’, DEPT = ‘candy’,

SALARY = 13000, MGR = ‘Baker’)

Here, the result relation EMPL is modified by adding the
indicated tuple to the relation. If less than all domains
are specified, the remainder default to zero for numeric

fields and null for character strings.

Example C Delete the information about employee Jack-

son.

RANGE OF E IS EMPL

DELETE E WHERE E.NAME = “Jackson’

Here, the tuples corresponding to all employees named Jack-

son are deleted from EMPL.

Also, QUEL contains aggregation operators including
COUNT, SUM, MAX, MIN, and AVG. Two examples of the . use of

aggregation follow.

Example D Replace the salary of all toy department

employees by the average toy department salary.

RANGE OF E IS EMPL

REPLACE E(SALARY BY AVG(E.SALARY WHERE E.DEPT =
‘toy”))
WHERE E.DEPT = “toy’

Here, the AVG is to be taken of the salary attribute for
those tuples satisfying the qualification E.DEPT = ‘“toy .
Note that AVG(E.SALARY WHERE E.DEPT= “toy°’) is scalar valued
and consequently will be called an AGGREGATE. More general
aggregations are possible as suggested by the following

example.

Example E Find those departments whose average salary
exceeds the company wide average salary, both averages to be

taken only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPL
’RETRIEYE INTO HIGHPAY(E.DEPT)
WHERE AVG(E.SALARY BY E.DEPT WHERE E.SALARY >
iOOOO)
>

AVG(E.SALARY WHERE E.SALARY > 10000)

Here, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is an
AGGREGATE FUNCTION and takes a value for each value of
E.DEPT. This value ‘is the aggregate AVG(E.SALARY WHERE
E.SALARY>10000 AND E.DEPT = value). The qualification ex-
pression for the statement is then true for departments for
which this aggregate function exceeds the aggregate

AVG(E.SALARY WHERE E.SALARY>10000).

For a complete description of the currently operational

INGRES commands, the reader is referred to [ZOOK75].

Initial user reaction to the early INGRES system indi-
cated that QUEL was not particularly user-friendly. Users
who were not familiar with computer programming had diffi-

culty adjusting to QUEL’s formalism. The next section pro-

vides some thoughts on this problem.

1.2 The Importance of the Human Interface

If the computer is to become an everyday tool of the
nonproféssional, the needs and desires of the casual user
must be considered. In the past "...narrow technical con-
siderations and immediate cost constraints dominated comput-
er technology..., in large part at the expense of human
ease, convenience and social effectiveness" (MART73]. It is
generally agreed that the cost of 1nstr§ction-execution
(hardware) 1is decreasing while the cost of programming
(software labor) is increasing. This strongly suggests more
effort should be expended in reducing the human labor needed

to interact with a computer.

Information retrieval and data base management are
areas which might benefit from easy human-machine interac-
tions. This author feels there are two approaches to facil-

itate such interactions.

1 providing the casual user with an English-like

dialog capability that uses artificial intelli-
gence methods for natural language processing
2. providing the user with a picture oriented

graphics language

_ The difficulties of the first approach are well sumnar-
ized by one of its proponents, E. F. Codd: "It ié very
unlikely that any two English-speaking persons understand
precisely the same . English" [cOoDDTU4a)]. Since English is
well known to be a‘non-finite state grammar, users have the
capacity for generating infinite sets of well and ill-fqrmed
utterances. This makes the processing of arbitrary English
textual input extremely difficult. Some specific problems

are:

a. typographic and spelling mistakes may be present
b. Erdish is a language full of ambiguity

c. a large vocabulary is involved

d. syntactic analysis is difficult

e. semantic analysis is very difficult
The next section provides the motivation for a graphic
language.

1.3 Why a Picture Language?

Some of the reasons a pictorial representation of a

query is more desirable than a linear representation such

as English include:

10

1 It is speculated that users will be more successful at
phrasing interactions in a picture language. A great deal
of information can often be more precisely, accurately

and clearly stated in two dimensions than in one.

2 Restricting the representation to a specific diagram
instead of allowing any number of words and phrases will
aid in making the picture languare a finite state gram-
mar. This will eliminate many of the anomalies and com-

plexities of the non-finite state grammar, English.

3 Punctuation errors and their resultant ambiguities will
be of minimal concern. CUPID’s syntax is simple and pre-

cise enough to need no punctuation.

4 Fewer typographical errors will occur because only a
very small portion of any query expressed by pictures
need be entered at the keyboard (all’other entries can bé
made via lightpen on a display device in ‘menu-move’
mode).A This should be contrasted to English> in which

virtually everything is typed on a keyboard.

5 The non-procedural and unordered manner of phrasing
should appeal to users who have no previous computer
experience. Generally, natural English requires a pro-

cedural and ordered expression due to its linear format.

6 Due to the addition of the preceeding five points and

the omission of points a - e of section 1.2, this author

1

expects a significant reduction of the 1implementation
effort over the effort necessary to implement a natural

language.

There has been very little work in the area of grapnhiec
languages. The graphics version of CSMP (Continuous System
Modelling Program) [WALS71] is an example of granhic model-
ling applied to simulation problems. The only effort, to
this author’s knowledge, in this direction in a data base
context is the work of Zloof [ZLOO75]. However, - as with
natural language processing, such difficulties as:

1._complex syntax allowirz arbitrary amounts of informa-
tion within a “box’
2. unlimited text strings
3. typographic and spelling error possibilitiés
present problems for the implementation of his proposal.
The system described here has points in common with that in

[ZLOO75) without the above drawbacks.

1.4 Qverview

The rest of this thesis 1is organized as follows.
Chapters 2 and 3 describe the language, CUPID. Chapter 2
presents the syntax through annotated examples of retrieval
and update operaiions. The third chapter presents the
design of a definition capability. This aspect of CUPID was
devised to provide wuser freedom in expressing and system

learning in understanding user defined terms. Algorithms for

12

(1)resoclution of ambiguities and (2) defining new terms are
detailed. Chapter 4 discusses various implementation con-
siderations and human factors desirn. The fifth chapter
describes the design and results of an experiment performed
to compare CUPID and QUEL from the user’s point of view.
Finally, the sixth chapter provides a summary and conclusion

along with some suggestions for further work in this area.

13

CHAPTER 2

Syntax

The goals of the CUPID syntax are:

simplicity
naturalness
ease of use
equivalency to QUEL

EwWwN -

In order to meet these goals, various picture representa-
tions were considered. The visual interpretation illustrat-
ed in this chapter is but one possibility. Due to the
powerful graphics modelling system, PICASSO [HOLM75], on
which the picture processing portion of CUPID resides, one

can experiment éasily with other possible picture represen-

tations.

2.1 Symbols

The major components of a picture query in the

representation chosen for the CUPID prototype are:

14

hexagon containing relation name

rectangle containing domain name

various shaped forms containing

Qo . relational(ro), arithmetic(ao),

and logical(lo) operators

horizontal heiagdn within which
constants are entered

upright diamond containing "?2"

pentagon containing aggregate(ago)
operator

,//// connecting line

A formal syntax of CUPID is provided in Appendix A. A brief

outline of the basic format follows.
2.2 General Format

Because CUPID is designed to be equivalent to QUEL, the
notions of "target 1ist" and "qualification" are maintained.

The general format of a CUPID query is a diagram.

I Relations and domains are represented by vertical

15

hexzzons (HEX) and rectangular boxes (BOX) respectively.
Each contains the desired name within it. A HEX is abutted
to the left of one or more connected BOXes. (all other
symbols are attached via lines). The juxtaposition.of the
HEX and the BOXes forms the basic CUPID unit that defines

which relations and domains are involved in a query.

.II Any item or expression with a vertical diamond contain-
ing a "?" (QBOX) attached is taken to be part of a target

list (i.e. those item(s) being targetted by the query).

III Portions of the diagram unattached to QBOXes are qual-
ifications of the target list.

IV Horizontal hexanmons (CONS) are reserved for typing in

constant values.

v Operators are connected to their respective‘operands'
(see Abpendix D for ordering constraints). Arithmetic and
aggregate operators may be linked to other operators. This
indicates that the result of the arithmetic or aggregate
operation 1s one operand for the next oﬁerator. Agrregate

operators have their own targets which may or may not be

gualified.

Examples of this format are provided in the following
sections. The pictures are photographs of actual CUPID
drawings as they appear on the GT42 screen. The eight

pointed star-like 1image 1in each 1is known as a "tracking

cross". This cross is used in conjunction with the lightpen

16

to select and place various elements of the picture (see

Appendix E for further details).
2.3 Retrieval Exampies

The following examples illustrate the retrieval mode of
the language in a sequence of increasinsly complex queries.
Updates will be described in the next section. Please note
the format of the examples emphasizes the difference between
English language queries and their CUPID equivalents as they

appear on the screen.

The data base referenced in all examples is a sample
warehouse system. PARTS(PARTS) are incominé from
SUPPliers(SUPP) and go out to customers via ORDERs. The
relations involved are:

PARTS(PNUM, MAT, QOH, SP)

SUPP(SNUM, SLOC)

ORDER(CNUM, PNUM, CLOC, QUAN)

PRICE(SNUM, PNUM, BP)
The PARTS relation contains part numbers (PNUM), material
(MAT), quantity on hand (QOH) and the selling price (SP) of
each part. The SUPP relation 1lists the supplier number
(SNUM) and the supplier location (SLOC). The domgins of the
ORDER relation include: customer number (CNUM), part rumber
(PNUM), customer location (CLOC), and the quantity (QUAN).
Finally, the PRICE relation records the supplier nuﬁber

(SNUM), part number (PNUM) and buying price (BP).

17

1. List the entire PARTS relation.

-0Ol'=

Note:

1 Words 1like "entire" can present problems in natural
language processing. _

2 The special character "?" indicates what the user
wishes to see (i.e. the target 1list).

3 The ordering of the domains is immaterial.

4 The sequence of sSteps the user takes 1in formulatins
the query 1is immaterial.

18

2. Find the total value (SELLING PRICE times QUANTITY-ON-
HAND) for each part.

* @@9

Note:

1 The English version is ambiguous without‘the paren-
thetic remark.

2 Only those domains referenced need be in the picture.

3. Get all PART#s whose QUANTITY-ON-HAND 1is greater than
300.

£

7

Note:

The addition of a qualification to the query allows the
only keyboard entry -- the constant (in the horizontal

hexagon).

same

Note:

19

4. Retrieve the PART#s whose destination and orisin are the

city.

6 I 08053 PNUM | CLOC

PRICH sNUM | PNUM

SUPP | sNuM | sLocC

The unmentioned intermediate relation may make process-
ing the English language version difficult. On the
other hand, should the CUPID picture be ‘improperly
drawn due to such an omission, straightforward algo-

rithms (presented in Chapter 3) can correct the prob-
len.

5. List PART#s whose SELLING PRICE 1s less than the averane
SELLING PRICE. '

Note:

1 Implied here is the cross-product of the PARTS rela-
tion with itself.

2 The SPp domain with the »?" attached is the target of

20

the agpgregate while the PNUM domain with the attached
"?" is the target of the entire query. This aggregate
operator (AVG) has no qualification; but the target-
of-the-query’s qualification is "SELLING PRICE 1less
than the average SELLING PRICE".

6. Find the average markup for each SUPPlier for those
PART#s whose BUYING PRICE exceeds the average BUYING PRICE.

Note:

—

i g

1 This last query involves an ag:sregate function.

2 Query 6 deaonstrates the nesting of aggregation. The
"average BUYING PRICE" is within the qualification of
the AVG denoting the "average markup".

3 The agegregate (AVG) with the attached "?" is the tar-
get of the entire query. The "?" on the minus operator
indicates . that the subtraction operation is this AVG's
target. The "by" linked to the SNUM denotes the ‘'"hy
clause" (as in QUEL). Everything else is considered
qualification.

21

2.4 Update Examples

Updates involve only a simple modification of the re-
trieval operations and will be described in this section.
The design for implementing update commands is detailed in
Chapter 4. Initially, the Query Form phase assumes a re-
trieval mode. The user must select a separate command,
UPDATE, to enter the update mode. The update mode contains
three additional commands, REPLACE, APPEND and DELETE. Here

we assume that the appropriate commands, REPLACE, APPEND and

DELETE are available at the right of the screen.

The following three examples show the picture répresen-

tation of a REPLACE, APPEND, and DELETE update.

22

1 Replace silver by copper wherever is occurs in the
MATERIAL column of the PARTS relation.

Note:

1 Targetted items are replaced by the attached con-
stant.

2 Column boxes and names must be repeated when the
qualification involves the targeted domain.

3 The replacing-value can be any expression.
4 This 1s a legal retrieve statement. The command -

REPLACE in the update mode makes it a replace state-
ment.

2 Append a new supplier to the PRICE table with the follow-

ing
500.

information: SUPPLIER#=120, PART#= 32, BUYING PRICE=

Note:

23

1 Appended values may be constants or expressions.

2 ﬁore than one tuple may be appended in a single query
by attaching constant boxes directly to the constant

boxes now present.

3 Remove suppliers located in Idaho from the SUPPlier table.

Note:

1 Since DELETE removes entire tuples, only a qualifica-
tion expression in needed.

2 This simple delete picture resembles an append update
in format. The command selected will differentiate.
In general, however, the delete picture may involve
other operators and more complex expressions.

The advantages of this syntax over either a natural

language system or a more formal language system are now

summarized.

1 n? unbounded text strings (as in an Engiish state-
ment

2 only constants are allowed to be entered from the
keyboard thus eximinating most '

a. typographic errors

b. spelling errors

3 easy parsing due to simple structure
y powerful (designed to be equivalent to QUEL)

5 user-friendly with menu-move operations

24

CHAPTER 3

Definition Capability

A definition capability is a mechanism which allows the
system to "learn " new concepts, i.e. demonstrate semantic
learning. Previous attempts to devise a general semantic
learner involved very large programs to recognize a small

subset of English within a small universe of discourse
| [COLE69,QUIL66,WINOT1,WO00D66]. In CUPID, the area of user
definition (and, thus the amount of semantic learning neces-
sary) 1is very restricted. Therefore, this system 1is not

only pragmatically viable, but also moderate in size.

To illustrate this facility of "learning" we utilize an

example. Suppose the user draws the following picture

?\

PARTS | PNUM

asking for a listing of '"east-coast parts". This query

presents two problems:

26

1 Defining the unknown term "east-coast" .

2 Resolving the misplacement of the constant "east-coast"
since it is not a known value for PNUM.

The following algorithms are applied to all pictures to

resolve both problems.

3.1 Defining algorithm
Algorithm I. For each constant do:
1) If constant is numeric, go to 3a.

2) If constant is non-numeric, then check User Definition
Table (see 3.3 Definition Representation section) for previ-
ously defined constants and present user with all esta-
blished definitions of the term. If one is acceptable to

user, use it and exit; otherwise:

3) Ask user to select a "type" (see Comment A) for the con-
stant from all known domain types and compare selected type
with type of the domain to which the new term is connected
(i.e. by a network composed only of connectors and opera-
tors).
Comnent A: The set of all domains is categorized at the
time the relation is created into comparable subsets by
the classification referred to here as "type". A compar-
ability matrix of all domains in a given data base is
generated for easy domain comparisons.
East-coast Example: Assuming the use of the data base

described in section 2.3, the following provides type
information:

27

Relation Domain . Type

PARTS PNUM alphanum(P#)
MAT alphabetic
QOH nuneric
SP noney

SUPP SNUM alphanum(S#)
SLOC geographic

ORDER CNUM alphanum(C#)
PNUM alphanum(P#)
CLOC geographic
QUAN nuneric

PRICE SNUM alphanum(S#)
PNUM alphanum(P#)
BP noney

The comparability matrix, in which ones indicate domains of
comparable type, would be:

—-TC='C
-] >
T OO
)
ZcCc=20n
oorwm
Zc=Z0
—_-ZXoc='v
Qoo
ZP>»COo
=

PNUM
MAT 1

QOH 1 1 .

SP 1 1
SNUM 1 1

SLOC ' | 1 1

CNUM 1

PNUM 1 1 1
cLOC 1 1

QUAN 1 1

SNUM 1 1

PNUM 1 1 1

BP 1 1

<
—~-ZTCZ'9

When the system asks for a type in the case of "east-

coast", assume the user chooses - geographic.

3a) If the types are comparable, perform a RETRIEVE (or

UPDATE) operation to see if the value exists for the given

domain.

28

1. Value exists, exit.

2. Value 1s not found -- tell user and offer a list of
comparable domains and ask if constant 1is a value for
some domain in this list or allow the user to exit from
the Define phase (indicating the null result was.accepted

as the answer).

1) If the user selects another domain, redraw the

figure with new domain and repeat the algorithm.

2) If user refuses a new domain, utilize a domain
type defining procedure (see Comment B) to define
the new term, then exit,

Comment B: A definine routine exists for each unique
domain type (this routine must be provided whenever a new
type is declared). Since "east-coast" is declared to be
of type "geographic”, a map of the U. S. mnight be
displayed and the user asked to circumscribe the area
meaning "east-coast". Some numeric typed domains might
require the user to specify an interval out of the domain
range. The last resort is enumeration, or tuple selec-
tion. The enumeration routine would present the user
with the values, tuple by tuple, out of the attached
domain. The user would 1indicate which values fit the
unique definition.

3b) If tvpes are not comparable, 1list all comparable
donains and ask user to select the correct one. Draw a new
picture and reexecute algorithm.

East-coast Example: In this case only the domains SLOC

from the SUPP relation and CLOC from the ORDER relation
are of type "geographic". Suppose the user really wanted

29

~to see the PHNUM of parts from "east-coast" suppliers. In
this case, he micht respond to step 3b) by indicating

SLOC. If so, the system will redraw the picture to re-
flect this.,

PARTS | PNUM

SUPP

This conclude$ the Definition Algorithm. At this point all
constants are correctly defined. The Comparability Algo-
rithm 1is then 1invoked to check that connecting (i.e. con-
hected by a network composed of connectors and operators

only) domains are of the same type.

3.2 Comparability Algorithm

Alsorithm II: For any two domains connected by a relational
or arithmetic operator, check if they are of the same type.

If so, exit; otherwise:
Besinning at either end of the connector:

1) List the domain type of the domain and all comparable

domains. Ask user to select the appropriate domain from

the list.

20

2a) If the user selects a comparable domain, redraw
the connection and reexecute the alsorithm.
East-coast Example: After two iterations of 1) and 2a)

(through the PRICE relation) the user should arrive at
the following picture:

PARTS| PNUM

PRICE | PNUM | SNUM

SUPP [SNUM | SLOC

IAST

This expresses the query - to find the part numbers of
parts supplied by east-coast suppliers.
2b) If the user insists on a non-conparable domain, process
the query allowing the normal software conversion to take

lace where possible. A system error may occur.

After Algorithms I and 1II, the query 1is processed.
Expressions with illeral syntax are caught by QUEL parsing

and error messages are returned to the user.

31

3.3 Definition Representation

While many definitions are peculiar to their respective
definer (user), some global learning can take place in an
attempt to provide efficiency for commonly used terms. For
this reason, a definition table exists containing the new
term, the user’s identification, the domain and relation
with which the new term 1s initially associated, the type,

and a pointer to where the definition is stored (Fig. 1).

In Fig. 1 the Type of Definition domain contains the
following information. The "0" indicates that a numeric
interval defining routine was used for the term "big". The
wqn is‘keyed to the enumeration routine used to define
"peculiar”. The four tuples from the EMP relation with 1°s
in the PECULIAR domain are the four NAMES deemed peculiar by
user 27. The "2" in the Type of Def. domain indicates a
geographic city selection routine was wused for the term
"east-coast"; while the other “east-éoast" term was defined

by an area circumscription routine as indicated by "3".

If enumeration was the method of definition, the defin-

itionvmay be stored as a relation with two domains:

1 a -duplicate of the associated domain from the original
relation

2 a binary valued domain to indicate which tuples of 1
fit the definition

For those definitions not accomplished through

32

enumeration, the meaning is stored as one or nore program

routines -~ in a manner not unlike Winograd's semantic

learner [WINOT1].

Certaihly, this 1is a fqrm of learnins from the past.
When a new user asks for "east-coast", the system can flash
the picture so defined and ask if that is what is meant. If
it is, the established definition 1is used -- if not, a new

definition of '"east-coast”™ will be developed and added to

the table.

Fig. 1 Definition Representation

User Definition Table

33

new ternm id type connected def. stored
domain/rel. type

! eastcoast ! 1 | geo |} sLoc/supp | 2 ! —

! big ! 43} num | POP/CEN i 0| . H

! eastcoast | 3 | geo

CLOC/ORDER! 3 ! !

! peculiar

i 271 alpnh

NAME/EMPL | 1 | !

PeculiarZ? Relation

Name Peculiar
tdones | 0 |
! Smith b1
| Brown !0 !
| Black P '
| George . H
! Farquar | 1 H

xoooooo;Qoa%%g

A

/

CHAPTER 4

Implementation

Despite hardware complications, great care was taken tc

implement CUPID as designed.

A major problem arose out of the decisions to use
PICASSO on the CDC 6000 computer for picture processing and

use INGRES and UNIX provided facilities on the PDP 11/4C

machine for data base and lansuage processing. In order to.

maintain the apparent simplicity necessary to a casual user
interface, the complex communications between the two
machines had to be made automatic and totally transparent to
the user. Once logged onto both machines (see Appendix H),
it is desirable that the user merely diagram the query,
observe the answer, and decide whether to 1issue another
query. The user should not be bothered by the intricasies
of the machine transfers. To this.end, a unique hardware
configuration was assembled together with a somewhat spe-

cialized software package.

4,1 Hardware

The computer configuration for CUPID (shown in Fip. 2°
consists of a CDC 6000 series computer linked to a PDP-11/4¢

computer through a DEC GT-42 graphics device and its

“

dedicated PDP-11/10 computer. Interactions (query drawir-
and editing) between the GT42 (PDP 11/10) and the CD:
machine take place at 9600 baud over a DEC DL11 interface.
Information (the output of the CUPID/PICASSO system) fron
the CDC machine to the PDP 11/40 first passes over the DL1-
interface into the PDP 11/10 where a resident monito:
directs the appropriate information to the PDP 11/40 over :
DEC DR11-c interface. The data base response returns to the

screen via the DR11-c.

Hardware

Fig. 2

PDP 11/4¢

- —- —

CDC 6600

—— - —

DR11c

e s - o ——

PDP GT 42 CRT and 11/10

o — R

37

4.2 Software

A great deal of thought was given to translating
PICASSO into the language "C" to run on the PDP-11. Due to
PICASSO’s elaborate data structures and heavy machine depen-
dencies, this task would have been too time consuming and

tedious for this study. Thus, the decision to use PICASSO
on the CDC machine.

The picture drawing and processing routines of CUPID
are written in Fortran for the BKY[LAWR74] operating system
of the CDC 6000. These Fortran routines are initiated from
PICASSO. In order to make use of PICASSO’s data structures,
file maintenance routines and library facilities, CUPID was
‘impleﬁented as part of the PICASSO system. CUPID’s initial
.routine, which directs the flow of control, is called as a
subroutine by PICASSO. Once 1invoked, CUPID direcﬁs the
operation, making calls to appropriate PICASSO subroutines
for assistance. PICASSO routines provide CUPID with an
in;eractive line drawing capability and analyéis facility
which outputs a text string corresponding to the picture.
CUPID routines manipulate this text string to perform some
syntax checking and partial parsing before passins the

string on to the PDP 11.

The GT-42 monitor, a PDP-11 assembly language program,
displays the pictures- and text necessary to formulate and
.execute a CUPID query. Once this is completed, the text

output of PICASSO/CUPID is detected by the GT-U42 monitor and

38

directed to the PDP-11/40 for final language processing and
eventual query response. The response is similarly detected

by the monitor and displayed on the screen for user viewins,

The final language processing (see Appendix B) is writ-
ten in the language "C" and operate on top of the UNIX time
sharing system. The PICASSO/CUPID text string is compiled
into QUEL wusing the compiler-compiler, YACC. The OUEL
statement 1is immediately passed into an already invoked

INGRES data base system. See Fig. 3.

39

Software

3

Fie,

!
|

monitor

GT42

!
!

PICASSO|

n——— - —

CUPID

- ——

INGRES

- =

| !
! BKY f
! !

- ——

oo = e

UNIX

]z

6000 -

——— G— -

40

4.3 Human Factors

At all times during implementation, human factors con-
siderations were paramount. The primary objectives were:
1 to make CUPID easy to use

2 to make CUPID easy to learn

To these ends the general screen configuration, flow of con-
trol, editing facility and "help" facility were designed to
be simple and forgiving. The general screen configuration
is shown in Fig. 4. There is a specially delineated portion
of the screen in which queries are drawn or information pro-
vided which is called the data space. Directly above the
data space 1is the instruction space where the name of the
phase is displayed along with prompting instructions to the
user. To the right of the data space is the command space

which provides the user with commands to direct the flow of

control.

41

. Fig.

General Screen Configuration

Instruction
Space

OOoOEENCOD naAageo

R - — - — - G Gt Rt Sart G W

Space

Data

- - - —— . -

42

Tne flow of control is diagrammed in Fig. S. Each block
in Fig. 5 represents a phase. Arrows indicate the entry and
exit points of each phase. An arrow emanating from the bot-
tom of a phase-block indicates the natural progression from
phase to phase in CUPID and is accomplished by selecting the
CONTINUE conmnand 6f the phase being exited. An arrow ori-
ginating from the side of a phase-block indicates a specific
command has been issued to direct the flow. 1In each case,
the command corresponds directly to the name of the phase to
be entered. All arrows emanating from the top of a phase-

block return the user to the beginning of CUPID, the VWelcome

Phase.

43

Fig. 5§ Flow of Control
— 1 1 1
[]] []]
] { { |
! Welcone 1€ —| Help !
! H ' i
] 1 []
‘ |
| Table H
! Select |
! ! ! { | |
| Eraselkk 3 Query 1< 5! Finishk—
! ! { Formulation| 1 '
—
! Updatel
]
]

]
Define!éd
{

Ly

The following photographs of an actual CUPID session
depict this flow and display the screen appearance at the

beginning of each phase.

7o PROCELD
y contime oce contix
"t wit T DAt amo

uELCONE TO CUPID -

THE CASURL USIR PICTORIAL INTTRTACE DESIGNH

T

Pic. 1 Welcome Phase
Entered at the start of CUPID and whenever the

QUIT command is issued.

Pic.

TFEEEE

—

2 Table Select Phase
Entered after issuing the CONTINUE command

of the Welcome Phase.

45

¥ e

==
e @] =] X
s <> o
o ey B o@ G
L soxe €0 5 op B

Pic. 3 Query Formulation Phase

Entered after invoking the CONTINUE command

the Table Select Phase.

of

46

: e
150 ABUT ALL TABLES cony
MLSITES S soc swell aunies hex

ML

vou MILL ST DRSING GUERIZS KIRT

D me

Pic. 4 Help Phase
This is the initial screen configuration.
Commands invoked within this phase may utilize
other screen configurations. One can enter this
phase by issuing the HELP command in the

Welcome or Query Form phase.

47

TRASE

CosegcTo

M1T OBJECT -1T BLINKS -MIT ERASE -1T GOZS- @d RELTURN

CMSING SwaoL
e
SYeoL

¥ -

SETURN

Pic. 5 Erése Phase

This is the basic editing facility of CUPID.

It is entered from the Query Form phase via ERASE.

48

AFTERAMIT ALTER < OWNGE LAST PICTURE
REDMt - DRI FROR SCRATON il
DEFING = TO DEFINE CONS
—— XEDI
DEPINE
eapl retotion WIT
inuad naee et legr iDEste lsdete : : E'E
18:ross. 8, S 1S90 199 1927 1948
13 eludrd. p. : %8B 199 1328 1960:
26:th08. b, : 13088 199 1538 197%:
32:eaythe. c T 9858 199 1929 1967
I3 hayes. ¢ 118108 1991 933 1963
3Sieudns. s i SeEe: »: 952 1974
S7:raveen. t. : 119838 26: 1988 1%7a:
5%:)enes. 8. : 12008 19 S20: 1969
90 wiily.). T WeE: 199 533: 1969
1Z9:thosas. t. S 10088 199: 19410 1962
157: jones. t. t 12808 193 549: 1968
199:bullok.) : 32800: 9 1520 1%29:
215:cotlin,) : ee: 18 1958 197!
438: dbrunet. p. : 17674: 129 1930 1989
B43: scheit. h. i 112040 26 1936 1956:
954: 10000 0, + 196488 129 1544 1970
13110 saith. p. . 3 952 1973
1330 onsted.r T orm: 13 o8P 1973
1523 zugni. 8 T 19068 12 15200 1949
163%:choy. @ : 111688 95 1547: 1970
Z398: Lace. 8 : 008 26 1949 1989
4%81:501tey. ¢ T 03?7 32: 1956 1975
S119: fervo.t. H s St £5: 1939 163!
¢ SZiI%tetlts. b, s 133748 33 1944 1969
e'onum

Pic. 6 - Finish Phase
Enter this phase from the Query Form

phase and the future Deflne Phase via

the command FINISH.

50

Points of human factors interest include:

1 Each phase (Welcome, Help, Table Select, Query Fcrmula-
tion, Erase, Finish) has a unique screen configuration
which 1includes the phase name. The user always knows

where he is within CUPID.

2 Brief, but helpful instructions at the top of the

screen prompt the user.

3 All phases except Erase and Define, cycle back to the
beginning (Welcome) through a QUIT command. This pro-

vides protection from premature, unwanted exiting.

4 The user can get aid from Help while formulating his

query without losing what he has already drawn.

5 Syntactic error checking in the Finish phase prevent
the query fron executing and erroneous data base access-
ing from occurring. If error diagnostics occur the user
hase the option to alter the present query or draw a new

one.

6 The screen configuration (Fig. 6) of the Query Form
phase is a combination of the general screen configura-
tion and an implicit "menu-move" area as in [EVAN69] for
selecting and placing names and symbols. The top of the
screen is the modelling space (labelled "query configura-
tion") into which CUPID symbols (from the bottom right)

are moved. The bottom left portion of the screen

51

contains preselecfed~re1ation and domain names. The only
keyboard interactions occur when constant values are

used.

Fig. 6 Query Form Screen

Query Fornm
Instruction Space

[]

.

] .

! query

’

{

E configuration

'

]
select select
names symbols

- T D D HED G P U= . SR ——— - =

300

o0 Mo W

53

4.4 Working Implementation

Due to the lack of any graphics routines in UNIX, the
decision was made to utilize tﬁose available in PICASSO.
Since this project was primarily a feasibility study, the
modeling capacity of PICASSO was extremely attractive. How-
ever, it was still necessary to spend one person-nonth
altering PICASSO to conform to CUPID’s design criteria. The

following list describes some of the major modifications.

1 A routine (CONNECT) was added to provide a "near-hit"
facility. Whenever a particular point of the screeh is
indicated by the user, this routine searches the data
structure for the closest point within a user specified
quantum. If such a point exists, then it is assumed to
be what the user meant; otherwise, a new point 1s added
to the data structure. This allows the wuser to be

slightly inaccurate without great frustration.

2 A routine (MENU) was added to provide uniform system
reaction to a user’s selection of a particular command in

the command space for PICASSO and CUPID.

‘3 The line drawing routine (PABLO) was modified to assume
the "connectop" drawing facility necessary in CUPID. The
boutine was more pgeneral than necessary, so appropriate
entry and exit points (and necessary related code) were

established to utilized only the required code.

4 Modifications to the editing facility (ERASER) provides

54

the specialized editing facility (the Erase Phase) for

CUPID.

The CUPID routines are invoked from PICASSO by select-
ing the PICASSO command, USER COM. These routines direct the
flow of control, provide a "help" facility and perform syn-
tax checking and further specialized analysis. These Fortran
routines constitute four person-months of effort. The major

routines include:

1 USERCMD - called from the PICASSO program, directs the
control of CUPID

2 BEGIN - provides the initial "welcoming" phase

3 HELP - initiates the "help" phase

4 EXAMPL and TABVIEW - present examples of queries and
information about all relations of the demonstration data
base in the "help" phase

5 TABSEL - provides the "table selection" phase

6 SCREEN - sets up the basic screen configuration for the
"query formulation™ phase

7 NAME, NAME1, SYMB and SYMB1 - display relation, domain
names and picture symbols and acknowledge the user’s
selection of same

8 PLACEQS - places names and/or symbols in the query
space |

9 ANALY - provides a text analysis of the picture

10 THREAD - threads the relations and their domains to-

gether via tuple variables

55

11 SYNCHK - does a simple syntax check for such things as
missing names, unconnected symbols and no térget items

12 ORDER - orders the text . corresponding to ‘"range"
statements and target list items to appear first in the
output string

13 QUAL - orders the qualifications

14 AGG - handlés aggregate operations

15 SEND -~ sends the appropriate information to the PDP
11/40

After the query has been formed it is passed on to the
PDP-11/46 for language processing. In this phase, the GT-42
assembly language monitor had to be expanded to handle a
second host computer over the DR11-c interface. Issues of
timing and buffering were dealt with. One person-month was
spent to find he most efficient usage of resources for this

machine-to-machine interface.

Finally, a formal grammar and the appropriate "C" code
(Appendix B) was written to transform the picture output
into a QUEL statement via the compiler-compiler, YACC. The
appropriate INGRES configuration was obtained thrbugh the
invocation of a set of UNIX shell commands. This aspect was

accomplished in three person-weeks.

56

4.5 Implementation Restrictions

In the retrieval mode, only logical operators and set
and aggregate functions remain to be implemented. General
logical AND operations (ANDing target list elements or qual-
ification elements) are implicit in a CUPID query. For
expediency, it was decided not to 1implement logical OR
operators. Also for expediency, set and aggregate functions
were omitted from the implementation. One tarpet list ele-
ment or qualification element can have, at most, two arith-
metic and/or relational operators because Fortran has no
facility for recursion. (In this prototype, two was deemed
a reasonable number of 1iterations to be coded by hand in
order to accomplish the needed recursion.) For the same rea-

son, aggregates in qualifications have been left for a fu-

ture exercise.

4.6 Plans for Further Implementation:

wdrk has begun to transport the picture processiﬁg;por-
tion of CUPID from the CDC machine to the PDP configura-
tion. PICASSO and the CUPID routines are being translated
into "C" from Fortran. The data structures are being total-
ly revised due to the change in word size. Also, the run-
ning program will likely be overlayed due to a smaller pro-
cess size available in UNIX. It is estimated to take one

person-year to complete this project. Once this is done,

further CUPID 1lmplementation can be expedited.

57

Updates, as described in Chapter 2, require a simple
addition to the Query Form phase. This addition will allow
the user to formulate the update exactly like a retrieval
and merely select the appropriate command- REPLACE, APPEND
or DELETE- to initiate the update. Designed, but not as yet
debugged is a macro-facility command for the Qﬁery Forn
phase, SAVEQ (and its counterpart RECALLQ), for naming, sav-
ing and recalling query diagrams. This facility will allow
the user to save commonly used queries for easy reexpres-
sion. The "examples" shown in the Help phase use the same
technique. Also designed for the Query Form phase, is a
command, FININTO (finish-into) which will provide the abili-
ty to retrieve into a relation instead of retrieving back to
the terminal. This parallels the QUEL "retrieve into" for-
mat. Finally, the Definition phase, whose purpose 1is

‘described in Chapter Three, has also been designed.

The design for 1implementing update commands involves
replacing the present REJECT (see picture 5) command in the
Queﬁy Form phase with the command UPDATE. When'a user
‘'selects UPDATE, three new commands - REPLACE, APPEND,
DELETE- will appear at the end of the command space. The
user then draws hié query, selects the appropriate update
command, then selects FINISH to process the update. This
procedure is purposely designed to be slightly more compli-
cated and less automatic than the retrieval procedure as a

means of protecting the user from making unwanted changes to

the data base.

58

To save a query picture the SAVEQ command will ask the
user to .type in a name for the query appearing on the
screen; to select a "reference" point of that diagranm .used
primarily for placing the diagram on the screen in RECALLQ;
the diagram will be stored and cataloged in a directory of
saved queries (DSQ). The user will be prompted when the
store operation has completed and asked to continue. The
screen will not change. This will allow the user to save
part or all of a query at any time while formulating it.
For example, saving the basic format (all HEXes, BOXes and
other symbols appropriately connected) without any relation
names, domain names or constants filled in, only requires
the user to fill these in without drawing the whole picture
each time. RECALLQ will work in an analogous manner to draw
a saved query. The user may wish to see a 1listing of his
DSQ. Another command 1s necessary in the HELP phase. LISTQ

would provide a 1list of this user’s DSQ.

When the user selects the command FININTO instead of
FINISH, he will be required to type in the name of a new
relation and hit FININTO agzain. The retrieval is performed
and the answer stored in the new relaﬁion. As in the QUEL
equivalent, a relation with the 1indicated name must not
already exist. This command acts 1like FINISH except the
result is not printed on the screen. The user knows that

the retrieval has been successfully performed when he sees

the INGRES prompt "continue".

59

The Definition phase entails more than the addition of
the command DEFINE "to the Query Form and Finish phases.
This facility requires a set of screen configurations. See

Fig. 7 for the details of this set.

Fig. 7 Define Phase Screen Configurations

Query Form -
Select term being defined

query
with tern
to be

defined DEFINE—

- e

—— LG e A AR G S —

—— —— — ————— -~ -

l
The system will ask the user to select the term
in the modelling space to be defined.

Type Select Q,,///////////
Defining (term)

What type? Select w/ltpen

list of types

|
[}
{
|
|
!
i
| selected type
!

The system will ask the user to select the
type from all available types.

Define (Type)

(instructions)

! ! REDEFINE
} defining b oeee

! routine’s ! RETURN

H screen |

| configuration|

| |

! |

]

There may be different screen configurations
for different routines. ’

The arrows emanate from the command and point
to the phase entered by issuing the command.

60

61

The wuser may enter the Define Phase from either the
Query Form phase or the Finish Phase. He may know that he
wishes to define a new term while drawing the query (in
Query Form) or he may be notified of an error caused by an
undefined term (in Finish). 1In either case, the same pro-
cedure is invoked. The system will ask the user to select
the "type" he wishes the term to be. This will produce the
Select Type phase and its screen configuration. This phase
is modeled after the Table Select phase. After selecting
the type, the system will enter a defining mode for that
type of data and pboceed through a series of system-user
interactions to develop a definition. Once the term 1is
defined, the system will return to the Query Form phase

where the user can continue, save, issue or edit the query.

62

CHAPTER 5

Human Factors‘EXpQriméntféf];*”

An experiment was designed to compare the two
languages, QUEL and CUPID. "In moet:previous experiments
conducted to compare . computer | languages
[REIS?s,Youn7u,SHNE7u,SIME73,WEiS73;sAcK701_'gubjects‘ per-
formance was tested on paper, ‘withoutf'eny human-machine
interaction. This author belieyee that the paper-tested
method is artificial and inappropriate.j'when 7teaching -and
testing a computerdlanguege, the‘enVinonnent'established by
the computer is extremely important.f7The‘mecnine's reaction
tQ human actions and errors affects human performance. This
environment can only be approximated if teaching and testing
is ‘done with paper and pencil., Moreover,pin,CUPID s case,

it was imperative that the entire sy tem"

used. CUPIDs
'two-dimensional language was ‘}‘ﬂ_ lesighe B.bé_dfgg@ioa
paper. Any attempt to immiv ;?ii' 25_”ruonéidtdeeign

without a computer would be neaningless;n This’experinent
was developed so that each 1anguage was taught and tested
entirely through 1nteractions' with -thevoomputer. It was
hoped that this methodology would pvovide ‘more realistic

results than previous experiments.

This cnapten describesdthe design-énd results of this

experiment. The experimental procedure is detailed along

63

with the principles of the experimental design. Finally,

" the results are discussed and conclusions dravwn.

5.1 Experimental Design

For each subject the fol;owing procedure was followed.
PART I
1 The subject was handed an EXPLANATION (Appendix C) pare
describing the experiment, its purpose, format, and some
notivating information.
1a The EXPLANATION was read aloud by the experimenter.
2 Qﬁestions of any kind were answered.
3 The subject was handed one tutorial and told to per-
form the exercises as it directs. The same'twelve queries
(t1,t2,...t12) are used in each tutorial (Appendices D
and E). The experimenter was nearby at all times but not
in the same roon. Questions concerning the -machinery
were answered, but questions dealing with an undersiand-
ing of the language were answered only in reference to
the tutorial.
4 He was asked to pose fourteen queries(q1,q92,...q14 -
in Appendix F) to test what was learned durine the tu-
torial session.
PART 1II
Follow the pattern of PART I with the other tutorial and

omit 1la.

PART III

64

The questionnairé (Appendix G) was handed to and complet-

ed by the subject.

This experimental design was based on six principles.
1 Direct Interaction with the Computer
Squects interacted directly with the system they were
testing, using the same terminal (DEC (T42 graphic

display). A log of all interactions was made for later

analysis.

2 Self-instruction

The experiment was as self-explanatory as possible, with
the subjects leérning each language via a written tutori-
al. This was done to reduce human intervention and pos-

sible bias.

3 Completeness
An attempt was made to cover as many different aspects of
the languages as possible, to compare subject reactions

to and performance on simple and difficult constructs.

4 Brevity

The experiment was kept as brief as possible to maintain

subject attention and interest.

~ 5 Separate Test Days
Testing of the two languages was done on separate days,
to maintain subject interest and reduce learning carry-

over from one language to another.

'

6 Random Order of Testing

The order in which the languages were presented alternas-

ed from subject to subject, to remove order biasing.

5.2 Subjects

Subjects were paid volunteers. Their professio:r:
ranged from housewife to doctor to student. Twelve were ou:
of school, five were undergraduates and five were graduat:
students. - Subjects’ ages ranged from 17 to 62. Out of tn:
22 subjects tested, 12 were unacquainted not only with dat:
base systems, but with computers entirely. These 12 "naive'
Subjects had never taken a computer course and knew no cor-
puter language before this experiment. Of the remaining te-
subjects, seven were unacquainted with data base systems
but knowledgeable of computers: they had taken at least _tw:
computer courses and knew Aat least one computer languar:
other than those tested here. The remaining three subject:
were "sophisticated" data base and computer users: they he:
taken at least five computer courses, knew at least thre:
languages, and knew more than a little about some data bas:
system. These three categories of subjects will be referre:

to as naive, casual, and sophisticated.

The number of sophistica;ed subjects 1is admitted:
small. Their reactions were interesting though not use:
when testing for statistical simgnificance. Such sophisticat-

ed subjects were 1in very short supply. Two of the thre:

bt

sophisticated subjects were INGRES/QUEL implementors an:

possibly biased toward QUEL.

llo attempt was made to control for educational 1level.
Subjects varied from high school drop out(1) to Ph.D candi-
dates(2). Four people had high school diplomas, two har
bachelors degrees, two are pursuing masters decrees and tw:
had some college credits. Educational levels for ths

remaining nine subjects is unknown.

5.3 Experimentation

QUEL and CUPID provide the ability to log the user anc
system interactions for a single session. As a method of
measuring the ease of use of the two systems, the logs o
tutorial sessions are examined and compared. Since the
queries(t1,...t12) posed during tutorial sessions were en-
tirely directed by the tutorial, the number of attempts’ an:
error statistices provide information about the simplicity cf
each system. Furthermore, we obtained information about the
learnability of the two systems by comparing attempt an:

error statistics from test-query (ql1,...q14) sessions.

NOTE: All error statistics were recorded from the point i-
time when the command was issued (not during the writing c-
drawing of the query). Therefore, one can assume that tr=
subject was relatively confident of the query when thecse

errors were observed.

6.','

Finally, preferences and other subjective data are

obtained from the questionnaires and examined.

1 A comparison of the ease of use.

For each of the twelve queries posed during tutorial ses-
sions, the number of errors was collected. Table 1
‘presents this 1nformation, for the three subject: ca-
tegories. Typographic errors have been aggregated out of

the total error statistics.

The twelve columns represent the twelve queries and are
appropriately labelled t1,t2,...t12. The rows are divid-
ed into three groups with each group being a type of
information collected. These groups include: the total
number‘of errors (any and all errors causing the aquery
not to be processed was counted as one error for that
attempt); the number of attempts (one attempt was tallied
for each "g" in QUEL and each FINISH command hit in
CUPID); and the number of typographic errors (éll spel-
ling errors out of the total errors). Each of these
three types has been subdivided to present the statistics
by subject category. Thus, the labels, N, C, S, and 7
are abbreviations for Naive, Casual, Sophisticated anc
Total. Each space in the table may contain two entries.
The statistics for the CUPID sessions are printed above

the QUEL statistics. Zeros have been suppressed.

68

Tabulated Data From Tutorial Sessions

TABLE 1

it1 1t2 1t3 1ty 1t5 1t6 1t7 !t8 !tg !t10!lt11!t12!

!
6 |

5

9

!
I
]
|

0

) '
i |
i 5 1

1

5 |
131

2

7

8

7

]
[}
1

N

S10423

]
[}
2 |

!
{
!

101 7
2

[}
{
]
|
l}
|
]
f

9
y

[]

I
by
11
I 2

13
P 7
|
{5

1

0

3
0

5
2

6
y

2
0

3
1

15
0
0

l2

!

c
5

jo saqwniN

I ————

1" [Te
n o

oo o—
" ~
1] -
n=r
[
n (Y}
" gV}
"=

0 o————
"

n O
n oy

1) ===
1] e~
" -
"~

I -

n (qV)
no

I} == ——
" QO
" -
(LI aad

N ==
"

1 o
"o

"noe
"o

| === | === |

] @ LS | 1} t~

It MNe |} - | w o

)| -~] | = n o

| = | mmmm | omm— || = -

] ~ 0 t~ " oy}

(= o | - | n oM

1 -] (=13 "o

— - - - -—— - - -] —-——

[} - | O n =

(I Ta NV | - | ~ nt~=

§ -~]] n o

| mew=—) == | == | =

] [QVI | - | n o]

I Ne | Ll | 0w =N

| -] | n oy

- - - - -—— - — .-ll'-l 1] o= -

] [| = | 1] [op

| T~ | O | @ HoOm

[- (] "nm

| === | === | mcoe || oo

| o™] n =

I NN~ w | ™M NN

| B]] n Qo

. - ——— . -—— oy - — -—— —— : - — - ——

] [Ta T | o | 1] o0}

1t~ - | ™M govm

[I]] ([qV]

| =—== | o | e) -

] = 1 N 1] L d

j Y | - w0 §e—-m

I N]] "nm™m

| ovom | == | == | =

] (=23 } (s g | " (o))

QO™ | O« | t~ oM

t~— | =] " ™M

- -— - .'l" -l"‘. N ————

] o 1 (] " (4V]

[T WV | (o200 | M o mMm

|~]] N

| e | cema | awee (|| m——-

1 o | [l | n ™M

1 N~ | - | TN mMm

|~ {] no

| mecmm | e | meee || -

] ™M) 1 1} ™M

1O | N~ ™M My

| - | -] "n oM

| e | e | e || m—-——

A T A
] 1 "

] Z] J] N

] I]

] [}]

]

]

W.*n_SNI.Q 90 uuﬁEDZ

] | ===- 1

[} | | 1] -
1 ™ &~ - n -
]] [} "oy

| m—=m | o= | e
] 1] 1" O
] w0 (o200 | (aVANT] -—
]] 1 "

| =—== | === | o= |} o=
]]] " n
] (o200 } = | (QUNN] -
] 1] 1]

| ——— | m—ae | m—-e || ~———
! 1] 1

1] =T (VI T] O
)]] "

| === = e (] m—-—
[}]] " (4]
t [aVI | O | w0 " -
]] (] "nmMm

| memm | mmee | e || ——-—
]]] "

' 1 - " -
] !] (0]

- - — - - —— - - e] w—— -
1 | | " N
] o | ™M L] -
] [}] "

| mcme | mmm= | o | m———
] 1] "

] [V | = 9 NN ®
]]] n

- —— - — - - — -] - -
] 1] " o™
] t~ 1 =T) (VIR —
]]] "

- ——o— | aao— - -— e] e
]] [] "

] t~ 1 -1 n @
|] | "

| m—ee | e | e—mee || e—e-
[}]] n '
] w1 ™ - n o
]]] "

| mme | e | e || m———
]]) "

] Ll | [| n -
I]] 1]

f ommm | ommm | mmme] =
|]] "
- R TS N IV I T o
| [}]

}] !

]] !

]

1

Sso0003 ‘odh| 3© JaqunN

total.

"naive", C="casual", Sz="sophisticated", T
t1...t12 denote the twelve gqueries posed.

N=

CUPID results - upper left
QUEL results - lower right

The most significant (By the Student’s t-Distribution:
t=5.07 which indicates that the probability of the null
hypothesis (i.e. no difference in the usability existed) is
less than .001. Hereafter, this probability will be denoted
by p). measurement of usability was the number of eérors
encountered during each subject’s session with the tutorial.
The results shown in Table 1 indicate that there were more
than twice as many errors in the QUEL testing as encountered
during CUPID sessions. These results were most stbiking in

the more difficult constructs (t6, t10, t11 and t12).

2 A comparison of learnability.

Results of subjects’ interactions during attempts to pose
the fourteen test queries, produced Table 2. The columns
of Table 2 represent the fourteen tesi queries
91,92,...914. The rows are grouped by the type of infor-
mation collected. Each query was analyzed for correct-
ness, number of attempts, and total number of errors,
by subject category. The correctness statistic 1is a
number from 0 to .the total number in that subject ca-
tegory. If all naive subjects posed the query correctly
at some time, a 12 would appear in the row headed by "N".
The number of attempts is tallied as in Table 1, as {is
the number of errors. (Note that more than one error
could be recorded for a given a.tempt.) These groups were

again subdivided into subject categories as discussed

. . - R ") . , } oo . Ty : T = . o)
‘ B o - . I . .
e , s ! :
R N ' . . . ,‘. r. ..,‘ . . 3 .
: . . ' . ;,“. 5 ..,, 5
- *) . RIENY ! - .
See ’ Y A. ~) - .. . \, . .
. L0 T v . DR
P ® . : .
; - N o .« . - . - , . ° ., - . . . o . ,. : . .
| . N . . . N . N PR N . . R . ; N .

71
111 11¢C
11} 8

110
6

112 11
10} 9

112 111
12}

12} 9

7

110 112 111

10} 10! 9

tal ig2 1q3 lq4 1q5 1q6 1q7 198 !q9 lq10)q11!q12!q13!a1tL
121

112 112 110 111

TABLE 2 Tabulated Data From Test-query Sessions
N

"
" ~

" {

"
(1] -J

[} [}] []] [} [}
] [} S A | [}] {)
=~ | N &L e = e} T nCcN 1L NC = | — 11O
>] "n e [V | 1 "n | ~— 1 1 n o
———— | mermm | meme | mmee | mmme | ecme || emen | mmee e we | e () -
] n o ™Mo] " (Ve |]] "
[Ta N (s g BN TR =2 N oV I BN TN i | c =T NON | - | [aaliN'} (VAT O
1 " e) — 1~] n o]] [} n=r
e e | mmme | e | mvee | mree e | ecae | e er | ecee || e
1 " ™M) [QVAN | N h &~ A | t f =
(Ta i | N NGOG~ |-COe= | N | ™M oo N | Ll | ~ ! ™Mo 9V}
] e 1 |] "nm | 1= [} 1 Qo
- —— . —-— -] e a—— - - gnm- - — — . - e || e -— - ———— . .'al —— — -——orm || ®- -
[] 1 w | = |] (1} wn]] "

O) MO~ | O | e 1 ™M BN (Tal | (QVIN | n t~
O] [[qV] [1t~ [} n o] |) n e~
- - -] - — - —— . -—— a—— - - e [- . - -— . - - - - | - -——

] 1} - | [aVINN]] " [»a B |] |]
t~ 1 M NN N) @ | Mo Ll | N 1 ™M
] "o e |1 Bl n o]] | [[9V]
———— | eeen e ee | eecae | eco e |oeee | cvew | ecee | eomee || e-e—
] " O | w0] n @ |] [] " =
= 9 N NOv | e |NO | - AN TTa X o] ~ (Tal | N HWN
(Yo] [9V] [I aud |~] n oMM } O 1 \O § - n e
e | ecan | ecee | ecee | ovee | oo (e | evas | v | e || -
[} 1] — | o [} n N] 1 "
O ! M BANN | N) ~ 1 M NN] — 1 " -
] "o § - [[1! "o] I] n
—m—— | eeee |emae | evee | emee | ecee || evee | ecee | aces | ccem || e—e-
] 1" o = 1] 1] ~]] " =
O | M e jJ N~ | o ST nmMmo | (o2 | ™ | N -
[} "n e [V}]] nm 1 m [] [K ol no .
e | emem— joven | emae | emae | emee ||acee | evae | ecan | ace— || e——-
] " N = |] " = ' 1 ! "
~ 1 M BN N t~ 1 ™M™ NN N] " N
| no | — 1t~ 1 n o !]] ‘
e | eme- ||eeee | emee | even | eemne |ewee | ccee | ecee | ecee] e—-——
1 " = 0 r |] " o !]] «©
= MU~ O™ | OO | w1t oo t~ o 1! ™M n ot
O] "~ | -~ § -~ I n "o (18] R] "=
———— | emen ||emee | emee | eree | emew || ceee | ecac | emee | e || e
[} " O | E~ i | [] " [To R | [}] (1} -
= 0 M UHUO v~ | T v | ~ 1 = u=r o) ~ ™m - -—
] nao | ~]] "o]]] [[Ve
- - - e || = -—— - -—— . - - - - -] e - - —— - - —— - - e || - -~
[]] @ | (oA 00 |] " o]]]
wn M IO O O | M nom| O) — | "not-
] "n o | -~ |~] "nom |]] "o~
———— | mmoe ||e—en | emee | tcee | ccae |rven | eccee | ecee | emew || e—e-
] " (3 | (Toluy | [] " O |] 1 "
~ 0 ™M ANN | MNe g ~ 1 I o = | 1 (VAN T] O
1 "o [o]] "n o [] |-] "n e
- —— — -t ——] = -—— - - - - - - — - me || - - . [- — - -— - (] e -——
| n N N] " =]] 1]
[l | M NN) NNy w | =L Hn NN [} L gl | - n (§Y)
[} n o | ~—]] n o]] 1 n
-—— m— — - e [- - - - -—— “ —— -] - —— ” -—— —— “ - a— “ ——— — "“ -—— -
] "]] [}
VU 1 o - g Z o J o V= Z Y o
] [}]]] [}]
B]
]]

Sa04s3 3© »QJEDZ

4o9s00) 479WNN sidwaly j°© 2qweN

while the

total.

QT...q1l4 represents the fourteen test queries posed.

encountered

"sophisticated", T
errors

In Table 2 the number of correct answers, the number of

subject was posing the fourteen test queries pgave some indi-

cation of the learnability of the two lansuages.

K="naive", Cz="casual", S
attempts, and the number of

72

a. Number correct
The majority of subjects answered more of the fourteen
test queries correctly in CUPID than in QUEL. Using the
tudent’s t-Distribution, this statistic was found to be
significant for p<.001 . The naive subjects énswered 13%
more queries correctly, while the casual users performed
(answered correctly) 12% better. The sophisticated sub-

jects did 5% better in CUPID.

b. Number of tries

There were more attempts (t=3.6 > t(.05)=3.01) made 1in
CUPID, especially when difficulties were encountered
(queries q5,96,99,q12,q14). Although the subjects were
instructed to pose a query a maximum of three times in
both languages, 20% of the subjects exceeded three at-
tempts in CUPID while 3% of the subjects exceeded three
attempts in QUEL. |

c¢. Number of errors

There were 20% more errors in queries issued with QUEL
than those issued with CUPID. This fact was found to be
significant (p< .01). Naive and casual subjects had less
trouble formulating more difficult queries (queries q3,
q4, q5, a7, a9, ,q12, qi14) in CUPID . The simpler

queries were almost all done correctly in one or two

tries.

3 Types of errors

Errors were further divided into three broad type

73

categories: syntax , semantic and typosgraphic. Due to the
large quantity of information, it was necessary to use a
table for each language. Tables 3A and 3B present the in-
formation recorded during CUPID and OQUEL sessions. Each
table follows the same format: columns represent the four-
teen test queries (q1,...q14) and rows are rrouped 1into
nunber of syntax errors, number of semantic errors and
number of typographic errors. These groups are subdivided
into subject categories (N, C, S, and T). Entries in the
syntactic and semantic groups include a number to indicate
the quantity and a two-letter abbreviation, as discu;sed
below, to further specify the errors.
In QUEL, syntax errors were categorized as:
PE - parenthesis error

MK - misplaced keyword
PP - other punctuation problems

CUPID s "syntax" errors included:
MS - misconnected symbols
MN - misplaced names or constants
FS - forgotten symbols

Since the semantics of the two languages are the same,
the three following categories of semantic errors applied to
both QUEL and CUPID.

TV - misunderstanding the tuple variable construct

L - misunderstandine linking between relations
AG - misunderstanding the argregate construct

T4

'q1 192 1q3 iq4 iq5 ig6 197 1q8 109 !1q10iq11iql2ig13iql¥)

TABLE 3A Types of Errors During CUPID Test-query Sessions

llllllllllll —) ——) ————
[N ol

] n\c
] n

21

[}
)
t
!
]
|
)
|
}
|
)
|

]
I
1
{
!
|
}
|
]
3

1 ———
"~
nom

11!
21}

"
N ————
"o~

1w m

"

12fs)1fs!1fs
]
]
!
]
[}
]
1
I
]
{
[]
f
[)
]
H
:

f

e e] we-— -
"nwnec
nEE
"n o
cmm—me || .- o———
n)
" G
n (qV]
e || - -——-—
0n nao 2]
LI [[
N 0N ™M
—— e || = - -~
"
"
]}
-—-— -] m— -— o-—
0 non 4]
n g (%
— nwn -
- |} o ——-——
"
"
n
''''' | mc—e— -
(I 7] 2]
n g ('™
"o Ld
- amen v || s m— -
nonc
" EE
1 IRl oad
—— e e (| o ——-—
nn 0
e n ('™
« h (48]
—— e || @ oo
n o
" e
" e
————] e ———
"
1"

31

]
|
!
L}
[}
|
[}
[}
[}
I
]
{
[}
|

12ms!
! 1nn!

]
fs!

I = -

!
!
'
|
'
|
|
f
!
!

"~
"t~
"

12ms !

]

]
'1fs)1fs|
{ 3ms|
| u1!

311
1

!

Ho—-———
"

u

"
-
"

"

"
"Ne-=-
"

"

"

" o——
"~

"n e

"

|
!
i
[}
|

]
]
[}
|
]
[
)
|
[}
]
]
{
!
|
1
!
]
[}
]
!
|
i
]
[
'
I

S

3
{2ms)
]

[]
]
i
[}
]
[]
|
|
]
]
i
v
]

1
{
]
|
]
{

- - - n—

S
S

11}

m m
A f

!1ms!

!

1
1

[Tp—

'
|
!
|
1
{
}
|

n c 1"~

no

u

| ==
(1} oY)
n 1]
1] &~
==
"

"

"

: e -
1]

n

"

: -
"

1]

n |)

21}

- -

| 3ag!

]
]
]
|
'
|
!
{

1
{
bag|

]
f
1
i
1
|
]
{
[}
f
]
i

1
(
'
'
!
|
'
[}
}
[
]
{
N
1

"
n
"
==
"
"
([]

1

—— v

"
2] "]

- -—

Suousj XVINAG syosyg PWNYWAG Syousgy CdAL

'S

]
I
c |
[]
t

(&

c

I
1
]

foreotten

total

fs

linkine problem;

misplaced nanej;

tuple variable problem; 1

"casual", S="sophisticated", T

misconnected symbol; mn

symbol; tv

N="naive", C
ag=aggregate problen.

Ql...q14 represent the fourteen test cueries posed.

mns

*waTqoud 9qedsadde=de lwagqoud BUTHUTT=T

‘wagqouad aTqeFJeBA dTdn3=Ag (walqoud uojjenzound
Jaygqo=dd ¢{puaomAax pooeTdsiwz)iu {JOaJdd sTsayjzusaed=ad
pasod safJaenb qs83 ussjqunoy aygq juasauadadg fibe°*Lb
*1e3o3=] ‘,pe3edfasyuydos,=5 ‘,Iensed,=) ‘,9ATeU,=N

- > T AR D G T G D T P S W D T S D I Y D D G G WP ED D P D CD R e D WP R P I Gn SR WD WD Gn R GE G G G S D D G . G - . - e

simigtL ity tiielgteletnied 1T
- - F T4 1 T T T It T it it O
IR T A2 T T T L DL L U2 P L
tz i et bl el PEL bRiLd 4 L) olF
L e1Lint 1 tz} inieleiniterel oG
Rt T S R T N T T A A S A 1 R B N
RCN T (R ¢ S N & S T & W S & (- -0 S S S T A -
1AQZ A2 AT AL 1a3E] ja3g] 1832} ! H f ' 3
T Tt it 2 2 i it i i i it i 22 2
e T - O e e A I R R R 3
I R A AN A R TN & W SN f S SN AN SN SN A 2 IS
R P S T A T P X1 A S A A "
lllllllllIllllllllllllllllllllllllllllllllll'Mll!lllllllllll b
LT e e N S e T R A B -2 O N B 2
1T (TE TL | fTL | | | (TE TL | | ! | 01 »
| 1A32 | ALY 1A3L AL ' i 1ALy d ' ! i v
R0 A T B LT O I T T N B A

AT B (NS -2 S -2 S SR HR s 4 SN o S S S N A | ¢
1a32) Iasglasl) dased dalg) a0

1 lddyjddy) 4 fddg} jddgy jddi}) |

S A T T A S T A S N A S SR S A
ledy | ledglady | led| jad| Jadi} }odg | odg | adg) adg) ! m
EE - T TS S TS ST TS TS ST T eSS S S S S S s Ssss sz s s s=z=2a== -4
i ' jddi | i ' i 1ddi | jddi | i ! ‘ i X
|)]]]] 1]] []]] [} t]

] [] !]]] 1] n]]]] [] W.
T R A T A o
- D - - - - D - D R G S S D R D R G D G R T D P D D S D S D G G CE I G D D D D S b G S G5 e - . . o]
T -
[} 1])] i 1]]]])])

1 i] 1 i] i i i i } i { 1 i
S e N £ T A R T TR T T e A
bbb dddyy oy gddzy oy b jddiy

[} §]]] i]] i]]]

] t [}])] { “] [}] “ ”] “ Z_
oo jadgiady | 1edi| fedy} |adgjedgjadg|ade| |

IniblELblzLblLLbloLb} 6b} gb} Lb} gbl gbl wb} €b) zb] Lb|

suolssag LAuasnb-3s9l T4ANd Jutang sJaoaaym uo sadAl gf 319vl

GL

76

The types of syantactic errors are not comparable, but
provide information about each 1language separately. The
majority (68%) of these errors in QUEL fell wunder the ca-
tegzory of ‘parenthesis error’; while the majority (64%) of

these errors in CUPID were classified as ‘misconnections’.

The tuple-variable type of error occurred only in QUEL;
48% of all errors in CUEL came from this misunderstandine.
Naive subjects who said in the questionnaire that they ex-
cell in English and related subjects had the greateét diffi-
culty 1learning this concept (97% of these errors). The two
naive subjects who had the greatest difficulty with QUEL

(even the simpler queries) did not seem to grasp this con-

cept.

Linking terms appeared to be easier to learn (queries
q4, a5, a9, q11, q12, q14) in CUPID. Although 50% of these
errors occurred in CUPID, more (98 correct attempts) of the
queries concerned were finally phrased correctly in - CUPID.
Only 77 correct queries were posed in QUEL sessions for the

same five queries. This result was found to be significant

at the .01 level.

The aggregate construct was a little more.difficult to
learn in CUPID (70% of the errors occuried during CUPID
interactions). The errors involving aggregates made . during
QUEL sessions were mainly (90%) due to to misunderstanding

or forpgettins to name the domain in which the aggresate

answer was to be placed.

77

-All but three of the total 60 typographic errors oc-

curred during sessions with QUEL.

4 Subjective results
To measure subjeciive reactions to both systems, question-
naires were analyzed, producing the information shown 1in
Table 4. In this case, the columns represent the subject
categories and are labelled accordingly, NAIVE, CASUAL and
SOPHISTICATE. The rows represent the following groups (and
subg;oups) of information.
a. Preference |
Subjects were asked which language théy preferred(CUPID
or QUEL), and what they liked and disliked apout each
language. Their preferences are quantified in the first
two rows of Table 4, but discussion of further reactions

1s deferred to a later section.,

b. Computer background.

Subjects were asked to list the number of computer sci-
ence courses taken and languéges learned. They were also
asked to state whether they knew nothing, a little, or a
lot about data bases before the experiment. This infor-
mation appears in rows 1labelled " courses", "
languages", and "knowdb", respectively. The last sub-
group ("knowdb") preéents the number of subjgcts who knew

"a little" or more about data base systems.

c. Aptitude

They were requested to state in which of three areas they

78

excell: English and related subjects, all subjects, or
math and related sciences. The correspondingz subgroups in

this category are "English™, "All", and "Hath".

d. Personal background.

The subject’s age and sex were requested and recorded in

rows of the same names.

‘e, Opinion of experiment.

Detailed opinions of the clarity of the experiment and
each tutorial were requested. Table Y4 presents this in-
formation in rows labelled: "Clear ex.", to show how many
people found the experimeht's instructiéns clear; "Clear
cup*, to displa& the number of subjects who thought the
CUPID tutorial was understandable; "Clear QUEL", to show
the number who found the QUEL tutorial clear; and "GTu2",
to indicate the number of subjects who had difficulties

with the hardware.

79

TABLE 4
{ NAIVE ! CASUAL { SOPHISTICATE

Tewro t 9 16 a1
QUEL [T T P Y
“¥ courses ! 0 1 1.5(ave) § A.3(ave) |
language! 0 | 1.0(ave) | k.2(ave) !
knowdb 1 0 % 0 1 3(well) |
TEnglisn } 8 1.3+ o 1
ALl [S
Math Vo 12 T
“Tage 1 31.2(ave) | 20.6(avg) | 22(ave) |
Sex Vuwer) eM1F 1 2M1F |
TClear ex. ! 12 4.1 %3
Clear cUP.! 10 L 7T 1.3 1
Clear QuEL! 10 ¢ 7 1 3 4
GTH2 R A

TabLe 4 collates subjects® opinions, reactions and
feelings. Séventy-tnree percent of the subjects preferred
CUPID to QUEL. Using a Chi-Square analysis, this statistic
produces ‘a xz=3.2, significant at the 10% level). Everyone
found the experiment élear and most said the tutorials were
easy to follow (99%). Most everyone, including the phree
people who had used CRT terminals before, found fault with

the hardware equipment, specifically the GT42 terminal

("lightpen 1lousy", “flakey machine", "sometimes too

80
sensitive, sometimes not sensitive enough").

5.4 Discussion

A measure of usability was obtained from subjects’ per-
formance during tutorial sessions and their stafed prefer-
ences on the questionnaires. Since the tutorials presented
the subject with a step by step procedure and each exact
interaction necessary, reasons for errors should be few. The
fact that fewer errors were encountered during CUPID' ses-
sions and 73% preferred CUPID, indicates that CUPID is

‘easier to use.

Subjeets’ interactions during sessions posing the four-
teen test queries gave a measure- of learnability. While
most of these results (Tables 2, 3A and 3B) speak for them-

selves; there are several additional points to be made.

1 'The statistics for the number-of—attempt (greater
 than 3 attempts per query happened more often in CUPID than
in QUEL) may indicate either that the subjects did'not
understand the instruqtions; or that they weré having such
"fun" they did not count their attempts; or that they

learned the language better from their mistakes.

2 The analysis of syntactic error provides no compari-
son information between the languages. However, it does
indicate areas of possible redesign to make each languace

easier to learn.

81

3 The number of tuple-variable errors in QUEL suggests
that the algebraic overtones of the tuple-variable construct
in QUEL 1is difficult to aécept or understand. Possibly,
CUPID’s subtler handling of the tuple variable and blatent

handling of ¢the 1linking mechanism makes linking relations

easier.

4 The primary confusion expressing aggregates in CUPID
seemed to be designating the target list of the aggregate
while the aggregate was 1itself part of ~a target list.
- Several subjects commented on the lack of detailed explana-
tion of aggregates 1in the tutorial which may account for

some of the difficulty there.

5 The CUPID typographic errors were probably due to a
particular PICASSO restriction (character strings must be

less than 10 characters long) which was noted in the tutori-

al.

6 It 1is possible to attribute some of the typographic
errors made in QUEL to unfamiliarity with the specific
terminal s keyboard (which is different from a standard
typewriter). However, the QUEL statement appears plainly on
the screen before the subject issues the query as doeg the
CUPID picture. Mistakes should be caught at that time.
The fact that more errors are made (or fewer errors are
noticed) in QUEL suggests that CUPID, the graphic language,
is either different enough to cause the subject to be extra

careful or visual enough to reduce error production and/or

to make errors nore obvious.

The following discussion is presented to provide a feel
for a comparison of the friendliness of the two languages.
The information was obtained from answers to the question-

naire.

When asked which language was preferred, 73% preferrec
CUPID (75% naive, 86% casual, 33% sophisticates). There is =z
relationship between those who preferred CUPID and subjectrs
‘who excel 1in English (84% excel in English) as well-as =
correspondence between CUPID devotees and subjects who know
fewer than two computer languages (87% knew no language).
Those subjects who excel in the mathematical abeas and sci-
ences and who have expebience with computer science(more

than two languages) preferred QUEL (90%).

It 1is not surprising that people with training in for-
mal computer languages should state a preference for QUEL.
However, half of these people performed better(more correct,

fewer errors) in CUPID.

.In general, subjects who liked QUEL, liked it because
it was more "mathmatical", "logical", and "easier to State"..
They didn’t like "formulating the query", ‘tuple variables’,
and having to specify range Statementsf The naive subject:
did not 1like typing in the queries, while the casual an:
sophisticate subjects did.

CUPID qualities which were generally 1liked includ:s

83
being "easier to visualize", neasier to formulate", "more
fun to do", and "easier to follow". HNegative comments in-

clude: "slower to draw than to type", "slow editing mechan-

ism", and "not complete”.

5.5 Concluding Remarks

Of the subject ool tested, there was a decided préfer-
ence for the graphic query language, CUPID. Four out of
five - subjects used CUPID easier than the query languare
QUEL; four out of seven subjects learned CUPID better(fewer
errors) than QUEL; three out of four subjects liked CUPID
better.

There 1is much more work to be done in the testing of
human- maddne interfaces. While this experiment was
designed to compare two specific language systems, it also
provides sonme 1mportant guidelines for future experimenta-
tion of this nature. Certainly the actual use of the two
systems in question gives more accurate reports on usability
and learnability. The variety of subject backgrounds gives
a broad spectrum of opinion. We hope to continue human fac-
tors tests involving these two systems to investigate timing
considerations, the imporiance of subjects' education lev-

els, and further comparisons of more refined versions of the

languages.

Perhaps this experiment lends some credence to the old,

_ ‘fémili'ar' saying that a’ipicture is worth 10,000 words.

85

CHAPTER 6
Conclusion

This dissertation has described the design, implementa-
tion and testing of a picture query language system, CUPIL.
In this chapter the highlichts of this work will be summar-

ized and directions for future research will be indicated.

6.1 The CUPID Language

In chapters 2 and 3 this thesis discussed the attri-
butes of the picture query language. 'In an attempt to make
this casual user interface easy to learn and easy to use, a

straightforward syntax and a flexible definition capability

was designed.

Tne semantics of the language was designed to be one-
to-one to the query language QUEL, while the syntax of CUPID
onmits the use of explicit punctuation and keywords.
Instead, the wuser diagrams his query with system provided
symbols and relation- domain names on a CRT graphic device
with a 1lightpen. Although'thg pictuie representation was
jJudiciously chosen, the potential for imaginative alterna-

tives provides an area for further research and experimenta-

tion.

In describing the definition capability, an algorithm

86

for handling type discrepancies was presented. '~ Also, an
algorithm for detecting and defining previously undefined

constants was detailed. In‘conjunction with this process,
the relational storage structure for rehresenting user de-
fined terms was déscribed. Since each unique "type" of data
may require its own unique definineg routine(s), it is ex-
pected that these defining routines present‘ an 1interesting
field for future work in the desisn and development of vari-

ous heuristic and other artificial intelligence techniques.

6.2 Implementation

The present implementation was detailed in Chapter U.
Also included in that chapter were implementation desirnns
fér several aspects of the CUPID system (including the de-
finition . capability) that are not presently implemented due-
to the unusual hardware configuration. It is expected that
once CUPID is converted to run entirely on the PDP-11,

further implementatioh will be expedited.

: 6,3 Experimentation

In Chapter 5 the design and results of a psychological
experimeht devised to compare CUPID to the keyword-oriented~
query language, QUEL was described. In testing human reac-
tions to a human-machine interface, it was extremely impor-

tant to conduct the experiment using the computer and the

87

systems in question. The results indicated that even total-
ly naive subjects learned CUPID easily and 73% of all sub-
jects preferred CUPID to QUEL.

In general, human factors experimentation may be a
fruitful érea for further research. Specifically, with
respect to CUPID, further investigations which could prove

very useful include:

1 conmparing timing considerations
comparing more advanced versions of the two systems
correlating aptitude, preference and correctness

correlating education level, preference and correctness

Mt =W N

performing protocol analyses with the two systenms

6.4 Implications
This project demonstrates a new approach to query
languages and provides a working prototype. 1Its implica-

tions may be far reaching, affecting:

(a) specialized application areas
(b) the programming language field

(c) the graphics industry

A pictorial interface may significantly enhance usabil-
ity of the computer in such application areas as report pgen-
erators, computer aided teachinms programs, and computer aid-

ed design facilities.

88
There is no need to limit picture 1languages to data

base management systems. Pictorial general purpose computer

languages can be developed, especially for the non-

programmer.

The concept that information can be expressed easily
and precisely by a picture language will provide incentive
for further gbaphics develpment. As picture 1interfaces
become mére popular than keyboard interfaces, better and

less expensive graphics hardware and software will be need-

ed.

In conclUsion, this work may be considered a feasibili-
ty study of a pictorial query language system. As such, .it
has shown that such'a system can be designed and implemented
in a reasonable amount of time (approximately one person-
year). Moreover, the system has proven, uﬁder comparative
testing, to be a plausible human-machine interface. Even in
it presgnt primitive implementation, CUPID is relatively
'easy' to use, easy to learn and appealiﬁg to casual users.
It remains for fqture research to pursue this concept and
investigate further additions and refinements in order to

provide further casual user pictorial interface designs.

89

Appendix A - Formal Syntax

The following 1is a formal description of CUPID's re-
trieval mode syntax. Although the update mode has the same
syntax, it utilizes different commands to denote the various

operations.

Notational meanings:

All closéd figures contain names, constants or CUPID

provided items. Constants are keyboard entries.

Each terminal symbol has a connecting point, designated
by °.°; other terms use thé connecting point of their
highest precedence binary operator. While only one connec-
tion point is shown in the following definitions, aesthetic

reascns cause us to use more than one point in implementa-

tion.

The special symbols devised to express picture posi-

tioning include:

a) al’b:. connected from a to b by a connecting 1line

(connector)

b) .a!?b: a is to the left of b and touches it direct-
ly

c) a-yb: a and b are anywhere in the query

d) aﬁ§;b: a 1s positioned to the left of b and not

connected by lines, but by contiguous picture parts.

The Grammar ‘ . o
box: . Doﬁain
Name

boxes: box | box boxes:

hex: Relation

Name

qbox: @

o o o |
lbop: . ,OR » R é{}h

rop

bop:

uop:

ldg:

LOG

92

set: _ S - - §

by : BY

aop:

&

aop2: ' 3. |
sop: '~ ! ENTER | |DIFF| o

tl1: box \! qbox d a_fcn ! abox

tl: tl1 Iotl1~tl

qual: luopJf qual | qualJ' lbop\lf clause |
clause

cléuse: a_fen % roplf a_fen | a_fen \% rop l/a_clause
set_clause | 1luop chlause

a_clause: a_fecn \lfr'op J/a__f‘cn

a_fen: attrib_fen | agegr_fen | ag2_fen |
a_f’anr bopVa_fen | logl/constsl/a_f‘cn !
uop l'a_f‘cn

attrib_fén: const | box

aggr_fcn1: aop‘lr asblob | aop ¥ sblob

sblob: set ‘l/set_f‘cn

asblob: tlR%qual

aggr_fcen: hex =boxes v byJ/ aggr_fen1 | agar_fenl
agé_f‘cn?: aop2 J’asblob

ag2_fen: hex=pboxes Vby J/ag2_f‘cn

attrib: bex

set_clause: set_fen ¥ ropvlf set_fecn

a3

set_fen: set_fen V sop ¥ set_fen | set_fenl |
set Vsblob |
a_seq: a_fen \/a__seq ! a_fen
set_fen1: setl asblob ! hex%a__seql« by | set L asbiob

que: hex=ajytl | hex2ytlaqual

94

Appendix B - Implemented Grammar

%term HEX

RETRIEVE 0BOX BOX NCONST
#term WHERE CONS GT- EQ LT NE
fterm MINUS TIMES DIV MAX MIN COUNT

#term PRINT SUM WHERE_AGG AND
Zterm SCONST PLUS AVG

%left MNAX '
%left TIMES

%{

int nlines, linect, fnam, output, ncons, nn, aopent
char buf[135][40];

struct qpid {

char #%*y;
int tk;
}s

struct qpid token{] {
"BOX", BOX,
"HEX", HEX,
"QBOX", QBOX,
"RETRIEVE", RETRIEVE,
"CONS", cons,
"WHERE", WHERE,
"WHERE_AGG", WHERE_AGG,
"AND",’ AND,
“GTv, GT,
" EQ" ’ EQ,
wLTw, LT,
“HNEY, NE,
"pPLUS", PLUS,
"MINUS", MINUS,
"TIMES", TIMES,
"pIV", DIV,
"MAX", MAX,
"MUMY MIN,
"CNT", COUNT,
"AVGH, AVG,
"SuUM"Y, SUM,
"PRINT", PRINT,
"SCONST", SCONST,
"NCONST", NCONST, -
0
};

%}

2%

prog: prog stmt | stmt:-

stmt: range retrieve | print;

range: HEX

print:

Xretrieve:

retrieve:
tl:

tlelm:
attrib:

null:
cons:

qual:
qual_agg:

where_agg:

printf(" range of ");

printf(" ¢s ",&buf{linect][20]);
printf(" is "); _
printf(" %s ",&buf[linect][10]);
printf("\n%); :

PRINT HEX = { |
printf(" print #s\n" ,&buf(linect](10]);

}
RETRIEVE = {
printf(" retrieve(")

};

xretrieve tl qual ;
tlelm = { \

b

tl comma tlelm = {

};
QBOX a_fen ;
BOX = {
if(buf(linect][30] != ‘0°)
printf(® x = »);
printf(" ¢s . #s",&buf(linect][20],
&buf(linect][10]);

};
zprintf(*)\n");

NCONST = {
for(nn=0; nn<10 ;nn++) {
if(bufl{linect][nn+10] == ° °)

.
’

buf(linect][nn+10] = °\o°
}

if(atoi(&buf(linect][10],&ncons) 1= 0)’
syserr("\ninteger conversion error\n");
printf(" %d ",ncons);

[}

H

SCONST = {

if(buf[linect][TO]!:'"')printf("\"");

for(nn=0;nn<10;nn++) {
if(buf[linect](nn+10]=="\0" !!
buf[linect])(nn+10]z=" ‘)break;

if(buf{linect][nn+10]>="A" &&
buf(linect][nn+10]<="2")
buf[linect][nn+10]=
buf[linect][nn+10]+'a'-'A';

}
write(1,&buf[linect](10],nn);
printf("\"”);

’ ?

where qualif | null;

where_asg clause H
qual_ape and1 where_agg clause H
WHERE_AGC = {

a6

if(aopent == 0){
printf("\n where ");
aopent = 1;.

}
xaop: AVG | MAX ! MIN | SUM | COUNT;
aop: xaop = { '
aopent = 0; - ;
if(buf(linect][0]==°C")
printf(" ¢ = count(");

else
printf(" %c =%s(",buf[linect](0],
?buf[linect][O]);
qualif: clause %prec MAX |
qualif and clause sorec TIMES;
where: WHERE = {
?rintf(") \nwhere "):
?
a_fen: a_fen1 |
. agg_fen;
a_fen1: .attrib_fen |
' a_fenl bop a_fen;
age_fen: agg1_fen zprintf(")\n");
aggl1_fen: aop a_fen qual_agg %prec MAX |
aop a_fcn;
attrib_fen: attrib |
cons; .
bop: PLUS ={ printf(" + "); }

]
MINUS ={ printf(" - "); } !
.TIMES = { printf(» ®)., } |
DIV ={ printf(" // "); };

clause: a_fen rop a_fen
rop: GT= { printf(" > v); } |
EQ= { printf(" = "); } |
LT= { printf(" < "); } |
NEz { printf(" t= "); };
. comma: =printf(" , ");
and: 2prec TIMES =printf(" and \n");
and1: AUD =zprintf(" \n and");

co

-]
include "/mnt/nancy/jin/yylex.c"
include "/mnt/nancy/jim/main.c"

97

Appendix C - Explanation for experiment

EXPLANATION

»The purpose of this experiment is to obtain your reactions
to two different ways we communicate with a computer. One
of the ways is called QUEL and the other is known as CUPID.
'Yoh can think of them as different languages you might use
to obtain information stored in a computer(this information

is often called a data base).

~The experiment consists of 3 parts:
1. You will be given a tutorial for bne of the
languages and asked to follow it and interact with the
nachine as it tells you. After completinm the tutorial
you will be " asked ’to‘ apply the language to somé

queries.

2. You will be given the tutorial for the other

language and asked to proceed as in 1.

‘3. You will be asked to complete a briéf questionnaire.

Try to follow each tutorial by yourself. If you do not

~understand something or need heLp please call Nancy

immediately(dial 2-5649 or 2-7520).

During some aspects of both languages you will be typinv in
letters and numbers and other characters. Erasing is dif-

ferent in the two languages:

98

In QUEL -
to erase a single character, type #

to erase the whole line, type €

In CUPID -
to erase a single character, hit the rub out key

to erase a whole line, hit the 1f (linefeed) key

Now you are ready to begin. The information you have stored
in the computer is shown on the wall té the rieht of the
terminal. The tutorials deal with the two tables labelled
?ARTS RELATION and SUPP RELATION. Their meanings will be
‘explained in the tutorials. The other two tables - EMPL and
DEPT - are tables that a department store administrator
might find interesting. The EMPL table contains the follow-
ing information: the emplayee number - (numb), the name
(name), the salary in dollars(sal), the manacer’s number
(mgr), the enployee’s birthdate year (bdate), the startine
date-year(sdate). The DEPT information contains the depart-
nent number (dumb), the name (name), the store number
(store), the floor number (floor), and the manaser’s humber

(mer).
For the tutorial --

imagine, if you will, that you are the‘head of an.automotive
store. You have information stored aboui the parts you seil
in the table PARTS and inforﬁation concerning‘where and how
you obtain these parts in SUPP. Assume the information is

stored as you see it listed. Each of the queries is meant

99

ot‘obtain'some portion of the information. To grasp what we
are attembting, think about how you might have to get theb
information if it were stored in a file>cabinet‘- one table
per drawer and one row of a table per sheet of papef in the

drawer.

100 °

 Appendix D - QUEL Tutorial

This document contains an introduction to the data base
- manarement system, INGRES, and in particular stresses. its
user language QUEL. It is meant to be read while interact-

ing with the INGRES syStem at a terminal.
Please proceed by typing the lines underlined. A cr (car-
riage return) must be entered after every line typed.

One’s first encounter with INGRES is to type the UNIX shell

command
quelrun data-base-nanme

which has the effect of turning you over to INGRES for sub-

sequent interactions. The actual sequence is:

%2quelrun nancy

[‘you type - quelrun nancy and cr(carriare return)]

Here, we have entered INGRES and specified that we are in-
terested in the data base “"nancy" which will have in it the
tables of interest to this document. After a momentary

‘pause the following will be returned to your terminal.

INGRES vers 4.0 login Tue Aug 26 20:02:34 1975

Set operators, Agrregate functions and X.ALL are not

101

implemented.
70

The first three lines constitute the current "dayfile" which
fives relevant information on the status of INGRES. The

statement "go" indicates INGRES is waitinag for your innut.

Now type
help "help"
\g

"help" is an INGRBS‘command which can deluge you with infor-
mation about the system. 1In this case, you wiil receive the
page from the INGRES reference manual which describes the
help command. "\g" is a statement to INGRES to execute the
"help" command without waiting for additional input from the

terminal. The response from INGRES is:

query formulation complete

HELP(X) ' U722/75 HELP(X)

NAME

help - get information about how to use INGRES

SYNOPSIS

HELP ("item-in-question"]

DESCRIPTION

HELP may be used to obtain information about any sectiot
of "this manual, the content | of the current dat:
base, or a specific relation in the data base,. dependin-
on the item- in-question. Omission of that argumer:
is functionally equivalent to HELP "help" .The othe-

legal forms are as follow:

HELP "section" - Produces .a copy of the 'specified sec- -
tion of the INGRES Programmer’s Manual, and prints i:

on the standard output device.

HELP "" - Gives information about all relations thea:

exist in the current database.

HELP "relname" - Gives information about the specifie:

relation, but in greater detail than would HELP ""

EXAMPLE
 HELP
HELP “quel"
HELP "v

HELP "empl"
SEE ALSO

DIAGHOSTICS

Unknown nane - The item-in-question could not 1z

recognized.

BUGS

- 103

Alphabetics appearing within the item-in-question

must be lower-case to be reconnized.

continue

The final line contains the word "contihue". This indicates

INGRES is ready to listen to you arain.

At this point it is important for you to realize that INGRES
maintains a workspace in which you formulate your interac-
tions. This workspaée is desirable so that you can correct
spelling errors and other mistakes which you may from time

to time make without having to type in your entire interac-

tion again.

At the present time your workspace contains

help "help"

If you type in "\g" once more, INGRES will simply execute
your workspace which will give you a second printout of what

you have just seen above.

In order to clear out our workspace we use the command

“"\r"as follows:

\r

—

70

OQur workspace now is empty. It is still possible to type in

104
"\g" as follows. However, it has no effect.

\g

query formulation complete :

continue

e will now try to exercise the "retrieve" command and will
do so on the data that now follows. To print the contents
of any relation (or téble if you are more comfortable with

that terminology), simply type:

print relation-name

If we type help"" we can obtain a list of relations in the
data base ndemo. One relation from this list is called

"parts", We can print this relation as follows:
Q1:

print parts

\e

query formulation complete

parts relation

!prum |pnanme 'color lwet lqoh ;
[]

HE R Dl el ol ol el ot itade kbt bt ettt]
' 1lantifreez !pink ! 10!} 1
H 2!lwrenaoh . iegray ! 20! 321
! 3!tires Iblack H 685! 2!
! Y4!ash-tray Iblack ' 4501 y!

105

{ 5101l lgray ! 11! 250!
! lchamois © lyellow | 5781 31
! 7lornament lwhite ' 15] 951
' !seatcover iblue ' 191 151
! 9!race-strp twhite H 21 350
' 10}wash-solv lelear ! 0! 143!
' 11! jacks : lgray 1 327! 0!
' 12}chrome tgray ! 4271 0!
! 13)ltape-play . Iblack ! 107! 0!
| 14}radio !black ! 147! 0!
continue

NoticeA that the "parts" relation has information about the
components in a hypothetical auto parts store. Each row of
this table (or tuple in this relation) contains information
on a given part including its part number (pnum), its part
name (pname), its color, its weight (wst), and the duantity

that are on hand (qoh).

Using a "retrieve" command we will be able to obtain por-
tions of this table which are of interest to us. (There is
alnost no limit on how large the tables can be; these exan-
ples are done on small ones so that this tutorial does vnot
become too large. 1In fact, the actual limit on the size of

a table is approximately 30,000,000 bytes for those who are

interested.)

To obtain information, we must first tell INGRES what table

it 1is that we wish to interogate. One way to do this mieht

be the command
I WANT TO TALK ABOUT parts

Although this is natural to the bepginner, INGRES makes you

do something slightly more complicated. This added

106

complexity 1is necessary so that one does not get inte trou-

ble with more complicated interactions.

The statenent required in INGRES is

range of variable-name is relation-name

Tne variavle-name is indicated to be. a surrorate for the

relation name specified. We can declare p to be this surro-

gate for "parts" as follows:

\r

—

£,0

range of p is parts

Notice that we first cleared our workspace éo that the whole

parts relation would not be printéd agai-.

liow, we can add a “"retrieve" cormmand which can be the fol-

lowinnm

retrieve p.pname

Q2: The interpretation is that we wish to obtain the pnane

column of the relation specified by the variable "p".

In order to ensure that we have typed -our interaction
correctly we may use the special command "\p". This will

simply print the contents of our workspace as follows:

\p

et

107

range of p is parts

retrieve p.pname

Since it appears to be a correct query we can execute it by

the "\g" command as follows:

\g

query formulation complete

PERIOD = “." : line 3, syntax error

continue

Unfortunately, we have made a syntax error. What 1is nmore
unfortunate is that INGRES is not always overly helpful in

showing us what it is.

The problem with this interaction is an arbitrary convention
in INGRES that whatever you wish to retrieve must be en-

closed in "()" ., We will correct our mistake by retypine

the query as follows:

\r

go

range of p is parts

retrieve (p.pname)

\g

query formulation complete
.pname
.................... !
.antifreez !
lwrench]
]
]

ltires

lash-tray
toil
ichanois
!ornament
| seatcover
irace-strp
lwash-solv
| jacks
|chrome
itape-play
iradio
~continue

—— e . —— - -

108

Everythine has now worked out all risht and we have obtained

the colunn of the parts table which contains the names of

the parts.

We can retrieve more than one column at once by simply indi-

cating a

Hence we could obtain part names and colors as follows.

f1qe]

range of p is parts

sequence of

retrieve (p.pname, p.color)

8

cuery fornulation complete

| pname
)

lantifreez
| wrench
itires
lash-tray
1oil
lchamois
jornament
|seatcover

!color

' gray
lvellow
lwhite
1blue

column

. ——— - ——— - -

names separated by a comma.

lrace-strp
iwash-solv
| jacks
lchrome
|tape-play
iradio
continue

lwhite
lclear
igray
iFray
iblack
!black

—— —— e — - = -

100

Notice in the printout each column contains the name of the

column so we do not get confused.
conn:lex results than sinmply the names of columns.

for example, we require the computation "1000-qoh.
er words, we wish to know for each part how many 1less

1000 we possess.

\r

—

go

range of pa is parts

retrieve (p.pname, computation=1000-p.qoh)

This can be stated as follows:

\g

query formulation complete

| pname

tantifreez
lwrench
itires
tash-tray
loil
lechamois
lornament
| seatcover
irace-strp
lwash-solv
| Jacks
lehrome
|tape-play
lradio
continue

{ conput |

Sometimes we require more
Suppose,
In oth-

than

110

liote that the heading on your printout is the first six
characters of the name "computation" which we have given to

the computed quantity "1000-qoh".

In order for INGRES to accept computed quantities you nmnust
always give them a name. This is simply done by pickinm 2
anam and putting it to the left of an equals sign in the

retieval.

It is important that you spell correctly any column names
which you use in an interaction, since INGRES has no spel-

ling correcter at the present time.

llote lastly that you need not put interaétions on three
lines as we have been doing. It is psually wise to space

your interactions so they are as readable as possible.

So far we have produced interactions which give us columns
of the "parts" relation. We now indicate how to obtain only
portions of columns. The basic mechanism 1is a "where"
clause which can be added onto the end of the interactions
we have been doine. If we wanted to see pnames and ccliors
for those parts whose color is pink we would do the follow-

ine:
Qu:

\r

0

111

range of p is parts

retrieve (p.pname, p.color) where p.color = "pink"
\g

query formulation complete

| pname lcolor !

]]

| Bbatbetedeindedededeindedateindedededededede b bt {

lantifreez | pink !

continue

The "where" clause limits the number of rows which are exam-
ined to only those which satisfy the qualification «iven
i.e. to those which satisfy "p.color="pink". Only antifreez

has this property so it is the only entry in the output.

We are now to the point where we are typineg enourh informa-
tion so that errors in typing are likely. It is very annoy-
ing to have fo reset the workspace and try acain every time
an error is encountered. Two mechanisms are supported in

INGRES to help with this problen.

1) INGRES accepts the symbol # to mean "backspace". Conse-~ -
quently, one can simply backspace and retype errors which
occur. One can backspace as many times as one wishes;
INGRES will continue to back up until it reaches the berin-
nihg of the current line. Subsequent backspaces will have
no effect. If a line has become so garbled that .the user
wishes to simply erase it and start typing arain one can use

the symbol € which means "erase the whole line"

2) More complicated corrections are often necessary than can

be done easily using mechanism 1). These are supported by

12

calling on the features of the UNIX propgram called the edi-.

tor. A tutorial on the editor is available in the UNIX
programmer ‘s manual. Here, we will sinply discuss two
features of this program. Since it is a very powerful pro-
sram, the serious INGRES programmer would be wise to study
that tutorial in more detail than the few exerpts we present

here.
Suppose we type in an incorrect query as follows:

\r
go

ranhe'of p 1s perts

retrieve p.pname

where p.pcolor = "pink="

This query has many errors and we might do better to start
over, but for the exercise we will use the editor which we

obtain by typing \e as follows:

\e

—

>>ed
The statement ">>ed" says now we are in the hands of the
UNIX editor and our workspace has been sent to it.‘

We can sequence through our program by tybing a line number

followed by a carriage return i.e.

—~d
-
A)

ranhe of p is perts

2

retrieve p.pname

3

where p.pcolor = "pink="

A

ranhe of p is perts
2

retrieve p.pnane

3

S—

where p.pcolor = "pink="

We have now looked at each line twice and are ready to fix

each one.

We do this with a substitute command. This has the form:
s/this character étring/that character strinpg/

The editor goes through the current line of our command and
finds the first instance of "this character strinz" and
replaces it with "that character strine". In this way wve

can find offending portions of our interaction and fix them.
First we do it for line 1.

1

s

ranhe of p is perts

s/ranhe/ranae/

s/perts/parts/

114

1

. ——

range of p 1is parts
After two substitutions, everythinz is fine.

Hotice that you only need to specify enough of "this charac-
ter string" so that the editor can correctly make the sub-

stitution.

"Also, 1if you simply put a "p" after the last "/ , the

current line will be automatically printed.

Notice 1lastly, that # and @ work the same way in the editor
as in INGRES.

We now proceed to fix the rest of our statement without

further conments.

2

retrieve p.pname
s/p/(p/

s/me/me)/p

retrieve (p.pname)

3

C—

where p.pcolor = "pink="

s/pc/c/

s/k=/k/p

where p.color = "pink"

1€

we have now fixed all lines and use the command "u" to send

the corrected statement back to INGRES as follows:

W

——

We now ilssue a "q" command to quit the editor and return tc

INGRES as follows:

G

—

<<monitor

The echo "<<monitor" is to remind you that you have returned

to INGRES.

It 1is wusuallly wise to make sure INGRES pgot vour corrected

interaction back from the editor correctly by typing "\p"

i.e.

\p

range of p is parts
retrieve (p.pname)

where p.color = "pink"

A "\g" will now execute the corrected command.

\g

query formulation conplete
| pname !
] . [}
ecmecccccccaiccccaca— '
lantifreez H
continue

116

‘The operators "not", "and" and "or" are supported in INGRES.

Users may simply use the operators remembering only to put a
space on either side of them. It is sometimes essential to
remember that the precedence of boolean operators is "not"
then "and" then "or". Users who wisﬁ to alter this opre-
cedence (or who do not'remember it)'may use parentheses to
precisely specify their meaning. The following interaction

gives an example of multiple boolean operators.
Q5:

\r

£0

ranze of'p is parts

retrieve (p.pname)’

where (p.color="pink" or p.color = "gray") and p.pnum < 10

\g
query formulation complete
| pname !
]

tantifreez
'wrench
lcil
continue

Three points should be carefully noted about the above in- :

teraction:

1) Character strings must be enclosed in double quote marks.

while numbers may be typed with no special deiimiters.

117

2) Note the operator "<" in the above interac-

tion. Valid relational operators include:

(equals to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than'or equal to)

!= (not equal to)

3) There 1s no limit to the complexity of the expressions
which can be.constructed using relational and boolean ex-

pressions.

We now do one last example concernine arithmetic operators
in QUEL. This example finds the pnames and qoh of parts

whose total weight (wﬁt times qoh) is less than 1000.
Q6:

\r

DI ——

g0

range of p is parts

retrieve (p.pname, p.qoh)where p.wrt¥p.qoh < 1000
\g

query formulation complete

118

! pname 1qoh E
]

[adadabadeb ettt et adead bt adada d]
lantifreez ' 1
'wrench ! 32}
loil 1 250
! seatcover ! 1514
lrace-strp { 3501
lwash-solv ' 143}
! jacks ' h
!chrome ! 0}
ltape-play ' 01
lradio ! 0!
continue

It should be noted that arithmetic operators can be used in
the qualification portion of an interaction as well as in
th2 portion indicating the desired information. Valid ar-

ithmetic operators include:

(addition)

+

- (subtraction)

¥ (multiplication)

/ (floating point division)
#* (exponentiation)

mod (integer division)

It should also be noted that any user can save any result of
an interaction by sinply specifyinrm the name of a relation
into which the answer should be placed. The followineg sus-
gests an equivalent way of obtainine the previous result.
First a prelation is created with the answer then the print

command is used to display the result.

\r

—

119

go

range of p is parts

retrieve into local(p.pname, p.qoh)where p.wsgt¥p.qoh < 1000
15— -

query formulation complete

continue

_15

go

print local

\g

query formulation complete

local relation
| pname : : qoh E
]

lchrome

| jacks
loil
irace-strp
lradio

| seatcover
{tape=-play
lwash-solv
lwrench
continue

w N
-~ (S K |
NWONOODODO —

pary
w =

Notice that local remains as a relation in the data base and
may be used in any future interactions by simply declarine a

range variable for it.

We turd now to interactions which involve more than one
relation at a time. It is in these interactions that OUEL

1s especially useful because of its ability to connect in-

formation in different relations.

120

First we print a second relation that will be used in the

'sequel.
Q7:

\r

go

print supp\g

query fornulation complete

supp relation
Esnum tpnum | jnum |shdt | quan
1003} 74-12-31!
1004}75-01-15}
1007!76-02-01}
1003!74-12-29!
1004}75-01-151 .
1007}76-02-01}
1003} 74-12-251
1004175-02-01}
1004} 74-12-20!
1004} 74-12-31}
1004}75-01-011
1007176-02-01]
1004}75-04-31}
1007!76-02-01}
1004}75-02-05)
1001175-01-10}
1002}75-01-10!
1003175-01-02]
1002!74-06-18!
1005{75-07-01}
1005!75-07-311}
1003!75-02-01!
1004}75-02-01}
1004}75-02-01}
1001475-03-15}
1002!75-03-15]
1004 7T4-11-22!
1001!75-04-31}
1002!75-03-31]
1001} 74-10-10}
1001}73=-12-31}
1002} 74-07-01!
1001!73-12-31}
1002} 74-05-31%!

-
ON —
DTN

-—— - - s = -
- —— - - - — - -

00 Co 0O Co 0o Co 00 00 €O Co 0o On o
DAONN NN = 2

- ok b b

NN NDODOOOOOIIV FLWVITVITUVITNIOIN ~ 20O
=

. (84}
NN O o
OVMOONWWNONEN OO - 2~

N0 D00

—— —— - - - = D - P Tm P s W R S e R SR M e S e

-t b 2

MNRODNHDOONOYNEN N
Py

f g g — 8V

-t
—h

—
W w il

-—

N
o
NN =22aNNOOE2NVEOEO—-W

-

Ottt a = NI
—d
o

F i g —g
=&
XS

4754
4751

- o - —— = = " = . - - - D G P S A MW e e e

ww

121

' 4751 | 31 1001}73-12-31} 2!
! 4751 4} 1002!74-05-31} 1
continue

This relation gives information on conditions under which
the hypothetical auto parts store can buy more parts. It
indicates the supplier number (Snum) from whom each part
(pnum) is available, the quantity (quan) in which it can be
ordered, the date (shdt) such an order could be shipped and
the job number (jnﬁm) to which such an order could be
charged. Notice that the column pnum appears in both the
parts relation and this relation. Using this information we
can "connect" the two relations. For example, we might want
to know the supplier numbers of suppliers who sell an-

tifreez.

One way to proceed is to interrogate the parts relation to

find the part number of antifreez as follows:

g0

range of p is parts

retrieve (p.pnum) where p.pname = "antifreez"

\g

The answer returned is:

qu2ry formulation complete
i pnum |

! 1
continue
Hence, part number 1 is antifreez. Then we could interro-
gate the supply relation seekinq the suppliers of part

number 1 as follows:
Q9:

\r.

go

range of s is supp

retrieve (s.snum) where s.pnum =1

\g

query formulation complete
|snum |

)
i
'
'
'
I
:
| 751
i
c

ontinue

Notice that suppliers 8 and 475 supply antifreez.

Hotice also that suppliers 8 and 475 are repeated more than
once. Because of the internal way that INGRES isvorganiZed,
much faster response time can be supported if the "answer"
is printed on the terminal with duplicate values sometimes
present. In this case, the user must look at the response
and note the duplications. On the other hand, should the

user wish the system to detect and delete the duplicates,

123

the wuser need only retrieve his answer into a temporary

relation and then print that relation. The instructions are

the following:

\r
g0

range of s is supp

retrieve into newsupp(s.snum) where s.pnum = 1

print newsupp

\g

query formulation complete

newsupp relation

!snum i
------ |
81
4753A
continue

In any case, it is rather inconvenient to have to issue two

retrieve commands to get the information we require.

What is even more inconvenient is the necessity of obtaining
the first output, namely the number 1, and then manually
substituting this into the second query. It would have been
extremely inconvenient if antifreez had had several part

numbers; we would have had to substitute them all.

‘Whenever you are in doubt concerning the meaning of a query
with more than one variable in it, always think of the two
step process described above and you will not go wrone.

With this in mind, convince yourself that the correct answer

124

(with duplicates) to our interaction above can also be found

using the following code.

Q10:

[} 7~
o "3

ranre of s is supp

ranme of p is parts

retrieve (s.snum) where s.pnum=p.pnum and p.pname="antifreez"

\g

So far 1in this document we have considered how to retrieve
portions of a relation (or relations) that are of interest.
The examples havé indicated the power of QUEL for retrieval
purposes. The only feature which has not yet been con-

sidered is aggrepation.

Ve now illustrate the use of this construct in two examples.
The following command finds the number of bart names from

the parts relation which are black.
211

\h

Fo

range of p is parts

retrieve (total=z count(p.pname where p.color = "black"))

\r

query formulation compiete
ltotal | .

125

continue

Notice that the ‘where’” clause here is inside the
pareritheses surrounding the target list. This is because.we
are using the ‘where’ clause to modify the acggresate COUNT
in the target list. If we wished a further qualification on
the entire query, we would have another ‘where’ clause at

the end.

The next command finds the sum of quantities of part number
2 able to be supplied before October 1, 1975.

Q12:

\r

70

range of s is supp

retrieve (s = sum(s.quan where s.pnum=2 and s.shdt<"75-10-1"))

\g

—

query formulation complete
] [}
1S 0
- '
! 448!
continue

The fcllowing points should be noted about ageregates:

a) agmregates have the form

agp-op(tarpet-1ist where qualification).

126

agr-o0p can be
nin
nax
count
sun

aveg (sum/count)

The target 1ist is the quantity for which the aggrecate is

desired using those tuples which satisfy the qualification.

b) There 1is no limit on the number of variables which can

appear in an aggrepgate.

c¢) Aznrepates can be nested, i.e. the target list and qual-

ification may themselves contain aggresates.

d) The "QUEL"™ section of the reference manual indicates cer-
tain illegal asgregations. For example, avg is only allowed
for quantitiesA which are numéric. An attehpt to find the
averége of a quantity that 1s alphanumeric (for exémple

pname) will result in an error.

e) An aggregate can appear anywhere in a QUEL interaction.

Another command which proves useful 1is the exit command

which is "\q", i.e.

\r

— -

g0

\g

——

127

This command will type a friendly rreeting on your terminal
and return you to the care of UNIX for any further process-

ing you may wish to do. The current preetine is the follow-

ing:

query formulation complete
INGRES vers 4.0 logout
Tue Aug 26 20:05:22 1975

goodbye - come again

The only other way to "bail out" of INGRES 1is to hit the
"pub out" key. This should only be used in emergency (for
exanmple to abort a printout which is much too long). It has

the effect of returning you directly to UNIX.

128

Appendix E - CUPID Tutorial

Thié document contains an introduction to the data base
manarenent sysfem, INGRES, and in particular stresses one of

ts user language CUPID; the Casual User Pictorial Interface
Design. You will be retrieving information from a database
via query-diasrams. To “"draw" such a diagram, you merely
select the appropriate symbols from a ‘menu’ of pre-drawn
symbols ; connect them by either juxtoposition or connector
lines; fill in the table and column names through mnore

‘menu’ selection; and type in constant value when needed.

This manual is meant to be read while interactinsg with the
INGRES system ‘at a DEC GT42 graphics terminal. It will be
assuned that you are sitting in front of an already invoked
version of CUPID. IfAso, a welcoming message should appear
on the screen (the invokines procedure wili be described in

another document).

GRAPHIC TERMINOLOGY

Some rraphic terminology is appropriate at this time. The
lightpen (abbreviated -LTPEN) is the silver-colored.pen-like
-instrument hanring to the right of the screen. CUPID is
desirned to necissitate a minimal amount of typing (or key-

board interaction); therefore, most of your actions will

utilize the lightpen. The word HIT is used to mean a lieht-

pen selection. There are two types of HITs:

1 Touching the item on the screen with the tio of the
lightpen. Since the lichtpen is lirsht-sensitive, you

can select a word, line, or symbel in this way.

2 Placing the lightpen on the tracking-cross(8-pointed
star-like figure on the screen) and dragrine the
tracking-cross(t-c) to the place on the screen you wish
to.select, then depressing the CTRL key and while hold-

ing that key down, type an "a"(CTRL-a).

REMEMBER: You can use either method 1 or 2 to select a
lighted part of the screen; but, you must use method 2

to select a blank position.

Both of the;e operations will result in a beep from the
machine and the appearance of a’small cross very near the
hit position which 1indicates tﬁe hit was reqiéterea.l As
soon as you hear the beep, pull the lightpen away from the
screen (if you are using the t-c, you may betract the LTPEN

as soon as the t-c 1is in place, even before depressin~ the

CTRL-a).

" Please notice the screen configquration. There 1s an area
circumscribed with a large rectangle (the welcome messase 1s
inside). Most of your actions will take place within the

rectangle, instructions will appear above the rectansle, and

130

control commands will appear to the rlsht of the rectanale.

You will be hitting commands also.

LTPEN Exercise

Now try out the lightpen. Téuch.LTPEN to the screen-{rent-
ly) where you see the word HIT 1. It will blink if your hit
was acéurate. If it doesn’t blink try acain of drars the t-c
on top of HIT 1 and type CTRL-a. When it blinks, drar the
t-c to a blank portion of the screen (withiﬁ the rectancle)
and depress CTRL-a. Now you should see HIT 2 and you can
try to hit it, make it blink, then place a new tarret else-
where. When either you or IT have had enough, hit the com-
mand HELP.

NOTE: If you happen to make a double hit (your new
target will overwrite the blinking one) just proceed as
“"thoush the old one were.not there. But be aware of‘the.pos-_
sibility of' double hits due to the lishtpens sensit;vity.»
Ifr this annoys ybu, turn the‘brightness (knob at the upper

rignt) down.

HELP

llow you see }before you the screen set-up for drawin= vour
queries. You Qill be selectine names at the bottom left
portion of the screen(name-space); you will be selectin~
symbols(the BOXes and HEXes ,etc.) fron tie bottom

right(symbol-spéce); and vyou will be putting them together

into a query in the top half of the screen(query-space).

We shall work with only a few of the help commands Hit ALL
to see information about all tables in the database ("nancy"
is this database). When you have finished readin~ the in-

formation, hit RETURHN to get back into the help-mode.

Now hit EXAMPLE to see some example queries. Pase throurh

several examples with the MORE command.

Note the form of the query in CUPID. Hexagons (containine
table names) are abutted to the left of boxes (containins
column names). The vertical diamonds with "?" inside are
connected by iines to the items (tarret items) you wish to
éee displayed; horizontal hexagons are reserved for typine
in values. The operators (arithmetic-squares, relational-
horizontal diamonds) are straisht forward; Arrreration
operators (pentagons) are explained in more detail 1later.
Please note that only the HEXes and BOXes are juxtoposed,

all other symbols are connected via specific lines (connec-

tors).

When you are finished perusing the examples, hit RETURN to
return to the HELP mode.

Once back in the HELP mode, hit CONTINUE to proceed into the

query formulation phase.

Query formulation consists of two phases:

132

1) Table Selection

2) Query Drawing

TABLE SELECTION

Yoq start ﬁhe query fornmulation bykselecting the tables you
wish to use. Hit "parts" and "supp". The selected table
names Will appear at the bottom of the screen as you select
them. If you get any names other than the two desired (or
multiple copies), hit the command REMOVE, then hit the table
name to bé removed in the selected area aﬁ the bottom of the
screen (it will be scratched out). You must hit the éommand

REMOVE for each name you wish to delete.
Hit COHNTINUE to proceed to Query Drawing.

QUERY DRAUING

The commands that you see on the risght side of the screen

are:

CONNECTOR: For each connecting line between symbols, hit
CONNECTOR, then hit one symbol’s attacher poinu(i.e.
the short 1line extending from the symbol), then the
second symbol s attacher point. If you wish to zo
around -a s&mbol, or merely draw a "curved" connector,
continrue making hits as'you wish the 1line to ‘"curve".
To draw 2 different connectors(i.e. disconnected

lines), you must hit the command CONNECTOR before

beginnint the second line.

ERASE: Thils routine will redraw the query (eliminatinge
the bottom half of the screen). It will ask what you
wish to erase (Connector, lame, or Symbol); you hit the
appropriate word cn the right; the screen is redrawn:
you hit the item to be erased:

for connectors- hit the first drawn endpoint
for names- hit the lower 1left ©point of the first
character
(NAME refers to any sirine of characters-
.'i.e. table or column names or constant values)
for symbols- HEX and BOX, hit upper left corner;
all others, hit the center of the symbol;
the item hit should blink(keep trying until it . does);
then hit the command ERASE and the screen will be
redrawn without the erased item; either hit RETURN to
return to complete the qﬁery or hit one of the three
types of items to be erased next. |

HELP: The HELP command allows one to obtain help while
drawing a query.

REJECT: To reject an item (either a name or symbol) after
selecting it but before placing it in the query space
(after placine you must ERASE), hit REJECT; then the
item to be rejected; then proceed.

CONSTANT: To place a constant in a CONS (horizontal hex),
hit CONSTANT, then type the value and a carriare re-

turn; then place the value inside the CONS-hex; then

134

proceed.

FINISH; Hit FINISH to process query. A new screen confi-
guration will appear in anticipation of thz answer to
your .query. After hitting FINISY either

1. the cuery will be processed and the answer will
appear

2. error messages will tell you the tvpe of piostori-
al syntax error

you made

3. you may be asked to "define" the constant value
used The three commands you will be hittine are: ALTER
to change some aspect(s) of the query just drawn;
REDRAW to draw a totally new diagram; and DEFINE to
enter the define phase for defining a constant value
(to be discussed in another document).

REDRAW: The REDRAW command will clear the query space to
allow you to draw a new query.

QUIT: Hit this command to return to the first screen
configuration of CUPID. This will allow you to redo
the TABLE SELECTION phase or exit entirely.

Before beginning to issue queries there are a few points of

procedure.

1 HEXagons must ve placed in the query space before BOXes
which must be next to the HEXes. When placing a BOX

next to a HEX or another BOX, point to the upper right

135

corner of the existing iten.

2 HEXes and BOXes and CONSes must be on the . picture
before selecting and placing either names or con-
siantsto be put in then.

3 A symbol must be placed in the query space before draw-
ing a connector to it. Connectors must be drawn to and
from attacher points. There are from 2 to 4 short lines
which jut out of each symbol; the free end of these

lines are the attacher points.

Several examples follow.

In' this first query, you will be guided in a step by step
manner, however, in all other queries, the completed picture
will be shown to you and you will be expected to reproduce

it in any manner.

Q1: Retrieve the entire parts table.

First select a HEX with the LTPEN by either method described
earlier The HEX will flash. Now brint the t-c to a clear
part of the query space and type CTRL-a. The HEX should
appear there. (If this doesn’t happen, try asain -or hit
the ERASE command, then hit the RETURMN cormmand without eras-

ing --this may help. Electronic problems sometimes make

this messy. Do not get frustrated.)

Select a BOX similarly. It will flash; bring the t-c up to

the upper right corner of the HEX; type CTRL-a; the BOX

136

should now appear beside the HEX. Repeat this process until
you have 5 BOXes attached together and to the risht of the
single HEX.

Now fill in the table and columns names. Point the LTPEN at
the table name- PARTS; it will flash; bring the t-c to ooint
inside the HEX; type CTRL-a; the name-PARTS should then
appear inside the HEX. If this doesnot hapben try movin~ it
by moving the t-c and typing CTRL-a again. Continue pnlacine

all of the column names in BOXes, one to a BOX.

Select the "9"-symbol to indicate which columns you wish to
see. Bring the t-c to a place in the top half of the screen
convenient to connect the "?" from the first BOX; type

CTRL-a. Proceed selecting and placing until you have 5

"2n’s on the screen

Connect one BOX to one "?" by hitting‘the command CONNECTOR;
hit one endpt of the connector (an attacher point of either
the BOX or "?") The line should appear to connect the sym-

bols completely. Repeét this procedure 5 times. Your 'pic-
ture should look like:

. I A .

PARTS [PNUM |PNAME COLOR\ WGT \aoa\

¢

137

Now hit the command FINISH.

The result should be:

'pnum |pnane lcolor lwit 1qoh i
[]

@@ E ST IR T D T T D T 5 0 I 5 Sh 5 5 5 G G G 00 5 0 M - - - - -)
' 1lantifreez ! pink ! 10! 1
' 2iwrench lgray ! 20! 321
H 3ltires 'black ' 685! 2!
! lash-tray Iblack ' 450} !
' 51011 teray | 11 250!
! ‘6 ichamois lyellow | 5781 31
! 7Eornament Ewhite E :53 25;
! 8!seatcover | blue ! 91 51
! 9!race-strp 'white ! 2! 350!
H 10}wash-solv lclear ' 0! 143}
! 11! jacks 'gray ! 327! 0!
! 12!chrome leray H 4271 0!
! 13!tape-play 'black ! 107!} 0!
! 14}radio 'black ' 147! o!
continue

NOTE: The word continue and a beep will always follow the
response. Please wait until this occurs before drawinec your

next query.

Notice that the "parts" table has information -about the com-
ponents in a hypothetical auto parts supply store. Each
row of this table (or tuple in this relation) contains in-
formation on a given part including its part number (pnum),
its part name (pname), its color, its weight (wet), and the

quantity that are on hand (qoh).

Now you are ready to draw the next query. Hit ALTER to
correct, change or add to the last query drawn; hit REDRAY

to draw a picture from scratch; hit QUIT to get to the first

138

screen configuration (this will allew yocu to proceed from
the beginning and Step throurh the TABLE SELECTION phase
again). The DEFINE command presently acts like the QUIT

command.
l1it REDRAW.

Q1.5 A short-hand diagram for that query is:

PARTS

Using a CUPID picture we will be able to obtain portions of
this téble which are of interést to us. (There is almost no
1imit on how large the tables can be; these examples are
done on small ones so that this tutorial does not become too
large. In fact, the actual limit on the size of a table 1is
approximately 30,000,000 bytes for those who are interest-
ed.)

Qz: Retrieve PNAMEs out of the PARTS table.

PNAME

—_—————d

|wrench
itires
lash-tray
loil
ichamois
lornament
| seatcover
irace-strp
lwash-solv
| jacks
lchrome
|tape-play
'radio
continue

Everything
column of

parts.

139

——— . P WP P D TS v WGP TR GEED Yh WS SnA G we e =

has worked correctly and we have obtained the

the parts table which contains the names of the

We can retrieve more than one column at once(as in Q1) by

simply indicating a sequence of boxes containing column

names with attached "?" diamonds. At this point you may

either hit

the command ALTER or REDRAW.

Q3: Thus, to obtain~part names and colors we draw:

PARTS |PNAME | .coLor

140

(LY

147

Epname lcolor E
| Badesbaiaded i dntdndabataded el badadad ol Ll L 2]
tantifreez lpink !
{wrench | gray H
itires “1black !
tash-tray Iblack H
loil lgray !
{chamois iyellow |
lornament 1white !
| seatcover Iblue !
jrace-strp lwhite '
|wash-solv iclear H
| jacks lgray H
lchrome | gray |
|tape-play iblack !
lradio Iblack !
continue

So far we have produced interactions which ¢ive us colunmns
of the "parts" table. We now indicate how éo obtain only
portions of columns. The basic mechanism is td connect
appropriate limiting operators and any constant values to

the BOXes targeted with "?"-symbols.

Q4: If we wanted the previous query only performed for those

parts whose color is pink we would do the following:

. PINK
PARTS | PNAME| COLOR |

-
=
AV]

An explanation of how to place the word - pink - is in the

followine lIOTE on the next pare.

:pname jcolor H

]
e eecccccacccccccccc e —————— !
lantifreez ipink !
continue

These limiting operators reduce the number of rows which are
examined to only those which satisfv the cualification ~iven
i.e. to those which satisfy the part of the aquery not sin-

;led out with "?" -or:

-

T . —_—

Only - antifreez has this property so it is the onlv entry in

the output.

NOTE: ToA place the word ‘pink” in the CONS-hox; hit the
command CONSTANT; type - pink - and a ‘er“(carriace return);
now place the t-c inside the CONS and‘depress CTRL-a. The
first le;ter of every constant value must be entirely in tne

symbol.

Q5: Obtain the pnames of parts which are eray and wWwhose

pnun is less than 10.

(4

143

1 1 1

PARTS | PNAME cox.opl PNUM

€D

£
3
o
3
0Q
o 4

continue

Three points should be carefully noted about the above in-

teraction:

142

1) liote the relational operator LT in the above interac-

tion. Valid relational operators include:

<jg;> (equals to)

<j§£> (less than)
<i::> (greater than)

@ (less than or equal to-not implemented}
<:::> ‘ <::§> (greater than or equal to-not imple-‘

mented)

NE (not equal to)

2) There is no limit to the complexity of the expressions
which can be consructed using relational and boolean expres-:
sions, theoretically since the present implementation is

restricted.

3) A1l of the relational operators except <<:§> and <<E§
are ordered operators. This means that whatever is connect-
ed on the left is the first operand and the itenm connectez

on the right is the second.

14

(2]

Q6: We now do an exanple concerning arithmetic operators in
CUPID. This exanmple finds pname anc qoh of parts whose total

weight (wgt times qoh) is less than 1000.

X 1

@ PNAME[waT | QOH

iwrench
C1oil

| seatcover
irace-strp
lwash-solv
| jacks
lchrome
!tape-play
iradio
continue

It should be noted that arithmetic operators can be used in
~the tarrcet list ("?") portion of an interaction as well as

in the qualification portion

Note also that any operations (even a "7"-symbol) you may
wish done to the result of an arithmeiic operation is ‘hune’
off of the operator [as in the picture part meanins less

than 1000].

146

Valid arithmetic operators include:
[+] (addition)

[-] (subtraction)

(multiplication)

(division)

[] (exponentiation)--not implemented

Wle turn now to interactions whiech involve nore than one
table at a time. It is in these interactions that CUPID is
especially useful because of its ability to connect informa-

tion in different tables.

Q7: First we print a second table that will be used in the

sequel.

147

supp relation

!snum |pnum |jnum |shdt | quan i
e T EE S P .
! 8! 11 1003}74-12-31} 1
! 81! 11 1004}75-01-15] 1
: 8! 1! 1007!76-02-01" 1!
; 8‘ 2! 1003{74-12-29} 128}
i 85 2§ 1004}75-01-15) 256!
! 8! 2! 1007!76-02-01! 1024!
5 85 6§ 1oo3g7u-12-255 ﬁg
L 81 8 toouiviiace0l s
! 8! 9! 1004!74-12-31! 500!
‘ 8! 11! 1004!75-01-01! 2!
! 85 11; 1007176-02-01! 31
‘ 8! 12! 1004!75-04-31! 3!
: 8: 12! 1007!76-02-01} 2!
! 9: 5! 1004}75-02-05 400!
: 2o= 5: 1001}75-01-10! 20!
: 20‘ 5‘ 1002’75-01-10: 75|
by 51 1003!75-01-02! 50!
: 62: 35 1002!74-06-18] 31
67! Bl 1005!75-07-01! 1!
' 67! 5! 1005!75-07-31! 20!
! 122! 7V 1003!75-02-01! 144!
' 122 71 1004{75-02-01! 48!
! 122! 9! 1004}75-02-C1! 144!
' 131} 8! 1001}75-03-15! 2!
i 1315 8! 1002!75-03-15| 1)
' 131} 8! 1004}74-11-22} y!
! 131! 9} 1001!75-04-31! 200!
L1311 9! 1002!75-03-31! 100!
' yio! 6! 1001!74-10-10! 2!
! 475 11 1001!73-12-31! 1!
| 4751 11 1002{74-07-01} 1"
! 475 2! 1001{73-12-31} 32!
! 475} 2} 1002!74-05-31! 32!
! 4751 31 1001}73-12-31} 21
! 4751 41 1002)74-05-31) 1!
sontinue

This table gives informatioh on conditions under which the
hypothetical auto parts store can buy more parts. It indi-
cates the supplier number (snum) from whom each part (pnunm)
"is available, the quantity (quan) in which it can be or-

dered, the date (shdt) such an order could be shipped and

148

the job number (jnum) to which such an order could be
charged. Notice that the column pnum appears in both the
parts table and this table. Using this information we can
"connect" thé two tables. For example, we mirgsht want to

know the supplier numbers of suppliers who sell antifreeze.

08: One way to proceed is to interrogate the parts table to

find the part number of antifreeze as follows:

1

PARTS | PNUM \PNAME‘ EE?
j EQ

The answer returned is:
!pnum !
]

continue

Hence, part number 1 is antifreeze.

Q9: Then we could interrogate the supply table seekinr the

SUPP [SNUM | PNUM

e

149

suppliers of part number 1.

ontinue

Notice that suppliers §, 475 supply antifreeze.

Notice also that suppliers 8 and 475 are repeated more than
once. Because of the internal way that INGRES is orpanized,
rnuch faster response time can be supported if the "answer"
is printed on the terminal with duplicate values sometimes
present. In this case, the user nust look at the resnonse
and note the duplications. On the other hand, should the
user wWish the system to detect and delete the dublicates,
the user need onliv retrieve his answer into a temporary
relation and then print that relation. At this time the
appropriizte protucol for CUFID has not been implemented. Ue

must live with duplicates.

150

It is rather inconvenient to have to issue two query formu-

lations to gzet the information we require.

What is even nore inconvenient ié the necessity of pptaininz
the first output, namely the number 1, and then manually
substituting this into the second query. It would have been
extremely inconvenient if the antifreeze had had several

part numbers; we would have had to substitdte then all.

‘e

151

.010: The following indicates one way around this inccnveni-

ence.

-4 4

PARTS| PNUM PNAME‘

EQ EQ

SUPP [PNUM | snuMm ez

Resultins in the following:

ontinue

So far in this document we have considered how %to retrieve
portions of a table (or tables) that are of interest.. The
examples have indicated the power of CUPID for retrieval
purposes. The only feature which has not yet been con-

sidered is ageregation.

152

We now illustrate tkhe:u‘ser"of this .constr'u‘ct in two :examples'.)

4

Q11: The following command finds tie number of part names
>

from the parts table which are black.

PARTS | PNAME | COLOR BLACK

CNT

continue

You should note that there are two "?"-symbols and onlv one
column of result. This is due to information necessary to
perform aggresation. Fach anmrrerate operator needs a tar-
seted (*?"-symbol attached) ROX. The arsererate mav also
kneed some untargetted #BOXes (known as qualification).
Notice the line' connectine the aagrerate operator CNT to

the box containine COLOR. This indicates that the qualifi-

cation of “color = black’ modifies the agrrepate and not the

whole query(if the connector where not there). Without that

154

connecting 1line, we would have obtained the count of PHAMEs

for each time the color of an item is black - or the result
would have shown 14 listed 4 times. You might like to try
If so, just erase the connector and reis-

"this query also.

‘sue the aquery.

1]

155

Q12: The next command finds the sum of quantities of part

number 2 to be supplied before October 1, 1975.

{suPp |PNUM QUAN‘ﬁHDT}

SUM

NOTE: Due to the speciél type of information in coiumn SHDT (dat:zs)

you must type "75-10-01 with the first character beinrg " .

continue

The following points should be noted about aggreqates:

a) asgregate operators include:

minimum
max imum
[:::] coupt
[:::] sum
avg’ average(sum/count)

b) There are illegal aggregations. For example, ave is only
" allowed for quantities which are numeric. An attempt to
find tne average of a quantity that is alphanumeric (for

example pname) will result in an error.
¢) An aggrepgate can appear anywhere in a CUPID interaction.

d) Aggregate operators may be (1) attached at one end only
- meaning any qualification does not refer to the argrenate;
or (2) attached to boxes at several points - meanins the
box not marked with a "?" starts the qualification referrin-

to the angregate only.

e) The resulting column heading is a CUPID renerated headinr

' using letters of the azgregate operator’s name.

4]

fy

157

Appendix F - Test queries

Now you are ready to test your skills. Try to formulate the

following queries and retrievé the appropriate information.

Try your best, but do not worry if you can not do some.
Give ‘yourself a maxinmum of three attempts at each aquery,
then go on to the next. Remember, this is not a test of

yOou=--=wWe are tésting the systenms,

The two tables are briefly described in the EXPLANATION

pare.

1 List the whole EMPL tablé.

2 Display the NAMEs from EMPL table whose SALs are rreater
than 10000.

3 Retrieve the COUNT of NAMEs in the EMPL table.

y Get the NAMEs out of EMPL who are in a DEPT in the DEPT
table

which is on FLOOR= 2 (link via MGR).
5 F2nd the MGR out of EMPL whose NAME is associated with
a SAL greater than 10000.
List all DEPTs whose FLOOR is less than 3.
Find the SAL of Choy,W. after multiplyineg it by 2 .

Shcw DEPTs and their respective F..OORs.

O O N o

Ge: people who work for Thomas,T.
10 Find the maximum salary .

11 Find the floor where Evans,M. works .

12 List_thoSe employees who make more than their manapers.

13 Where are éarrings sold?

14 How many people work in store 7 2

158

w o

159

Appendix G - Questionnaire
QUESTIONNAIRE

1 Which language did you like better?
QUEL CUPID
2 Was QUEL’s tutorial clear?

Yes No

If NO, please detail:

3 Yas CUPID’s tutorial clear?

Yes No

If NO, please detail:

4 Were the instructions for the experiment clear?

Yes No

5 Have you ever used this kind of terminal (CRT) before?

Yes lo

6 Did you have any difficulties with this terminal?

Yes Ho

7

If yes explain further

what aspects of QUEL did you like-

What aspects of QUEL did you dislike-

Wnat aspects of CUPID did you like-

What aspects of CUPID did you dislike-

Circle the area in which you excel (based on

grades, or some comparable measure).
ENGLISH and related subjects
ALL subjects

MATH and related sciences

10 How lonz have you lived in U. S.

1

All your life No. of years

How old are you? yrs.

160

SAT scores,

143

167
12 How many compdter Scignce courses havé you téken?
numbér of courses
13 Hdw»mudh do you know about data bésé sys;ems?

none o a little know
INGRES well
(or other)

14 What programming languaces are you familiar with?

none list .

15 Sex: female -

male

162

Appendix H - Login procedures

The following two procedures detail the steps involved
to bring up both parts of the CUPID system. They need not
be done in this order, but both parts must be in operation
before any queries are issued. Whatever follows type: 1is
to be typed and followed by a "er" [carriace return]. That
followinz 1ltpen: 1s to .be invoked by takins a hit with the
lishtpen. All else are system responses. Comments by this
author are bracketted by [].

1 The UNIX-INGRES language processor,

[log into UNIX]

type: cupid nancy [or="cupidrun nancy" to get a lon]
Your database is nancy

70

[please wait until the "go" before proceedinr]
2 The PTSS-PICASSO picture processor.

[log onto the CDC machine]
OK-"EDIT

type: “load,logcup

B

LOAD COMPLETE, ENTERING "EDIT

OK-"EDIT

type: “run

'BEGIN EDIT

type: cupid;r

HOW TYPE <SEMICOLOMN>G TO COMPILE Anp EXECUTE
type: ;g

[be patient, this may take a‘few minutes]
PICASSO screen configuration will appeab'
ltpen: hit USER COM [lower rieht]

[now you should sée the CUPID welcominr messace]

The following two procedures will exit you from both

parts of the CUPID system. The conventions are the same as

above.

1 The UNIX-INGRES language processor.

type: "rub out" [hit the key marked "rub out"]

interrupted

164

[you are now out of INGRES and in UNIX]

type: "“CTRL-d" [depress the key marked "CTRL" and while

holding it down, type a d]

[you are now off the UNIX-INGRES system entirely]

va

2 The PTSS-PICASSO picture processor.

[if you do not see the CUPID wgléominq messaze on the
screen]

ltpén: hit QUIT .[until you see the welcomine messane])
ltpen: hit bUIT

PICASSO screen configuration appears

ltpen: hit FINISHED

FINISHED screen configuration appears

type: skip

BEGIN EDIT -

type: quit;r

‘e

NOW TYPE <SEMICOLON>G TO TERMINATE JOB

type: ;g

<

165

References

BOYC73 Boyce, R. & et. al., "Specifyin= Queries as Relation-
al Expressions: SCUARE," IBM Research; San Jose,
Ca., RJ 1291, Oect. 1973.

CHAM74 Chamberlin, D. & Boyce, R., "SEQUEL: A Structured
Enclish Query Lanmuare," Proc. 1974 ACM=SIGFINET
Workshop on Data Description, Access and Control,
Ann Arbor, Mich., May 1974,

CoObD70 Codd, E.F., "A Relational lModel of Data for Larce
Shared Data Banks," CACM, Vol. 13 Ho. 6, ovp.
'377-387, June, 1970.

CODD71 Codd, E.F., "A Data Base Sublansuare Founded on the
Relational Calculus,"” Proc. 1971 ACH-SIGFIDET
Workshop on Data Description, Access and Control,
San Diego, CA, Nov. 1971.

CoDD72 Codd, E.F., "Relational Completeness of Data Base
Sublanauaqes," Courant Computer Science Symposium
6, May 1972.

CODD74 Codd, E.F. & Date, C.J., "Interactive Support for
lHon-Programmers, The Relational and Network
Approaches," Proc. 1974 ACM-SIGFIDET Workshop on
Data Description, Access and Control, Ann Arbor,
Mich., tiay 1974.

CODD74a Codd, E.F., "Seven Steps to Rendevous with the Casu-
al User," Proc. IFIP TC-2 Working Conference on

Data Base Management Systems, Cargese, Corsica,

166

Apr. 1974,
COLE69 Coles, L.S., "An On-Line Question-Answerins Svsten
with Natural Languace and Pictorial Input," Proc.

ACM 23rd Natl. Conf., 1969.

DATE74 Date, C.J. & Codd, E.F., "The Relational and MNetwork

Approaches: Comparison of the Aplication Prénram-
ming Interfaces," Proc. 1974 ACHM-SIGFIDET Workshop
on Data Description, Access and Control, Ann Arbor,
Mich., May 1974.

EVAN69 Evangilisti, C.J. & Morse, S.P., "Graphical Modellins
.using Contexﬁually Implied Functions," personal
communication.

[ELD7S5 Held, G.D. & Stonebraker, M., "Storage Structures and

Access Methods in the Relational Data Base lanare-~

ment System, INGRES," Proc. ACHM-Pacific 75 Conf.,

Apr. 1975.

HELC75a Held, G.D. & Stonebraker, M. & Wone, E., "INGRES - A
Relational Data Base Management System," Proc; 1975
NCC, AFIPS Press, 1975.

.HOLMYS Holmes, H. H., "Graphics Modeling Techniques in Con-
puater ¢Aided Desisn," Ph.D. Thesis, EECS Dent.,
University of California, Berkeley, Plec., 1@76.

JOHN7Y4 Johnson, S.C., "YACC, Yet Another Compiler-Compiler,"
UHIX Programmer s lanual, Bell Telephone Labs, !Mur-
ray Hill, N.J., July 1974.

LAWR74 Lawrence Berkeley Laboratory Computing Facility, "BKY

- Users Introduction," Internal Documeritation, LBL,

ve

“©

18

167

April 26, 1974.

HART73 Martin, J. y "Desimn of Man-Computer Dialongues,"
Prentice-Hall, Inc., Englewood Cliffs, MNew Jersey,
1973.

MCDO74 McDonald, l. & Stonebraker, M. % Wong, E., "Prelin-
inary Specification of INGRES," University of Cali-
fornia, Electronics Research Laboratory, Memorandum
No. M435-436, April 1974.

QUIL66 Quillian, M.R., "Semantic Memory," Ph.D. Thesis,
Carnegie-Mellon Univ., Pittsburgh, Pa., Feb., 1066,

REIST5 Reisner, P. & Boyce, R.F. & Chamberlin, D.D. ,

"Human factors," Human factors evaluation of two

data base query lancuames-Square and Seaquel

~ RITCTY Ritchie, D.M;, "C Reference llanual," UNIX

Programmer s Hanual, Bell Telephone Labs, Murray
Hill, N.J. July 1974,
RITC74a Ritchie, D. & Thompson, K., "UNIX Proeranmner’s Hanu-
al," Bell Telephone Labs, Murray Hill, H.J. June
1975
SACK70 Sackman, H. , "Man-Computer Problem Solvin=~," Auer-
bach Publishers, Princeton, lew Jersey, 1970.
SHNE7H Shneiderman, B. & Ho, Mao-Hsia, "Two Exploratorv
Experiments in Progranm Comprehension," Technical

Report HKo. 27, Computer Science Dept., Indiana

University, 1674,
CTMET3 Sime, M.E. & Green, T.R.G. & Guest, D.J. , "Psycho-

logical Evaluation of Two Conditional Constructions

165

Used 1in Proeramnins Lan~uames ," International

Journal of Man-Machine Studies, 1973, vol. 5,
105-113.'

STOHT74 Stonebraker, M. & Yone, E., "Access. Control 'in a
Relational Data Base Manaﬂement. Systeri by Cuery
liodification," Proc. 1074 ACM lational Conferenc:,
San Diero, Ca., Mov. 1674

STOH75a Stonebraker, M.R., "Gettinm Started in INGRES - A
Tutorial," University of California, Berkeley, RRL
Nem. lio. ERL-MS51E, Apr. 1075.

WALS71 Walsh, W.J., "CSMP User’s Manual," (unpublished),
Univ. of Cal., Berkeley, 1971.

WEIS73 Weissman, L., "Psychological Complexity of Comnutér
Programs: An Initial Experiment," Technical Report
CSRG-26, Computer Systens Research Group, lUniversi-
ty of Toronto, Toronto, Canada, 197RX.

WINO71 WVinograd, T., "Procedures as a Renresentation for

Data in a Computer Pro~ram for Understandin~ !atur-

al Languare," Revised Ph.D. Dissertation, M.I.T.,
Jan., 1971.

JONG?75 Wenz, E., "Decomposition - OQuery Processin~ in
INGRES," Private Communication, ttay 1975,

WOODO6 Woods, W.A., "Semantic Interpretation of En~lisnh
Questions §n a Structured Data Bnse," Rep. NSF-17,
1967, Computer Lab, Harvard Univ., Caabrid-e,
Mass., Auz., 1966.

YOUNT74 . Youns, E.A. , "Human FErrors in Prorrannmin=z,”

[t 4

‘5

169

International Journal of lan-Hachine Studies, 1957%&,
vol. 6, 3G1-376. |

ZL0075 Zloof, M.M., "Cuery by Lxample,™ Proc. 1975 HCC, DD.
431-43%, AFIPS Press, Hay JQTS.

ZOOK75 Zook, W. et. al., "IKGRES - Reference lanual,"

University of California, Berkeley, FRL len. llo.

(94

ERL-4519, Aor. 1075.

170

Related Bibliorraphy

APTETC Apter, NM.J., The Computer Simulation of Rehavior,

llarper and Fow, llew Yor:, 1970.
CoDC71t Codd, E.F., "lNormalized Data Base Structufes: A
| Brief Tutorial," Proc. 1971 ACH-SIGFIPET Workshon
on Data Description, Access and Control, San Mero,

CA, Hov. 1971.

DATE7TS Date, C.J.,__An :;ntroduction to Database Svstens,
Addison-Wesley Publishin-~ Company, Iﬁc., Readin~,
Mass., 1975.
EARLTC EArley, J., "Toward an Understandinm of Pata Struc-
| tures," Proc. 1970 ACH-SIGFIDET Workshop

EARL73a Earley, J., "Relational Level Data Structures for

Procramming Lanquares," Computer Science Dent.,

Univ. of Calif., Berkeley, !llArch, 1973.

ElIGL7T2 debate, "Enclish as a Query Lanouanre," debate, Proec.
ACH Nat. Conf., New York, 1072,

liUMA70 journal, "Human Factors." Vol. 12, Ulo. 2., np.
165-214, 1970.

KLIN73 Klineer, A., "llatural Lan~uaze, Lineuistic Procecs-
ine, and Speech Understandin~: Recent Research and

future Goals," R-1377-ARPA, Dec., 19712.

KHUT6E Knuth, P.E., The Art of Computer Proqramminq,'Vols. 1
and 3, Addison-Wesley, Readin=~, Mass., 1968.

MACK73 Maeri, P., "BUDG: Berkeley Urban Data System," FRL

()

171

Tech. leno U412, University of Cal., Berkeley,
Hov., 1973.

1iIJS72 Wijssen, G.M., "Comnon Data Fase Lanzucwes,"-Data
Base of SIGBDF, Vol, 4, No. 4, YWinter, 1072,

NILS71 Nilsson, N.J., Problem-Solvin~ iethods in Artificial

Intellirence, licGraw-ilill Book Ceo., New York, 1071

CLLEAQ Olle, 7.iU. (chm), "The Larre Data Base, Its Orraniza-
‘tion and User Interface," Plata Base of SIGBDF, Vol,
1, No. 3, Fall, 19609,

ROTH72 Rothnie, J.B., "The Desisn of Generalized -ﬁata
lanazement Systems," Ph,Il, Dissertation, Dept. of
Civil En<r., M.I.T., 1972.

ROTH72a Rothman, S. & Mossnann, C., Computers and Society,

Science Research AssociAtes, Ine., Chicaso, 1072,

SLAGT1 Slaerle, J.R., Artificial Intellirence: The Keuristic

quqﬁamminq Approach, lcCraw-4i11 BRBook Co., lew

York, 1971.

VEINTY wéinberq, G.li., The Psycholory of Computer Prorran-

ming, lew York, VYan Nostrand Reinhold Conranvy,

1971.

	Copyright notice 1975
	ERL-563
	ERL-563 (1 of 3)
	ERL-563 (2 of 3)
	ERL-563 (3 of 3)

