

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

•9,

CUPID: A GRAPHICS ORIENTED FACILITY FOR SUPPORT

OF NON-PROGRAMMER INTERACTIONS WITH A DATA BASE

by

Nancy Harriet McDonald

Memorandum No. ERL-M563

12 November 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CUPID: A Graphics Oriented Facility for Support of

Hon-Programmer Interactions with a Data Base

Nancy Harriet McDonald

Abstract

CUPID (Casual User Pictorial Interface Design) is a

facility designed to support non-programmer interactions

with a data base system. It is a front-end user interface

for the relational data base system, INGRES, and compiles

"pictures" into the query language, QUEL supported by

INGRES.

The thesis describes CUPID's data sublanguage and its

definition capability. The data sublanguage is complete,

high level and picture oriented, depending almost entirely

on "menu-move" operations on a CRT terminal. Hence, users

have no need to type extensive English text and difficult

natural language processing can be completely avoided. The

definition feature serves two purposes:

1. to resolve ambiguous interactions, and

2. to allow the user to define individual terms for local

and global purposes.

Since a major goal of this work is to analyze the

feasibility of a picture query language, this thesis details

the working implementation and describes design for exten

sion of the system. In conjunction with the prototype im

plementation, a human factors experiment was designed and

conducted to compare the CUPID systen to the more formal

language, QUEL. This experiment is described and the results

discussed. Subjects learned both systems. Statistics were

tabulated on their performances and preferences. The

results, presented here, indicate that CUPID is a viable

casual user system.

Signature.
Chairman of Committee

ACKNOWLEDGMENTS

I am pleased to express my deepest appreciation to Pro

fessor l\. Stonebraker for his efforts in aiding ny research

and in editing this thesis. I an also indebted to Professor

E. .ion": for nis helpful and supportive comments and to Pro

fessor D. Foley for his tine spent and interest in this pro

ject. I'd like to give special thanks to Professor P.

Varaiya for introducing me to the data base project and for

the confidence he expressed in me.

«

During the implementation of this work, Dr. H. Ilolnes

and other members of the Lawrence Berkeley Laboratory were

very patient and helpful consultants. And special gratitude

is due my fellow students and staff members on the INGRES

project. Their comments, assistance and camaraderie were

most helpful and encouraging.

I am, as always, deeply grateful to my husband, Gene

and our daughter, Pamela, for their loving support and

understanding.

I would also like to thank IBM and the Department of

EECS at the University of California for the financial sup

port given this effort. Research was also supported by the National

Science Foundation Grant DCR75-03839.

TABLE OF CONTENTS

ABSTRACT 1

ACKNOWLEDGMENTS i

TABLE OF CONTENTS ii

CHAPTER 1 - Introduction. 1

1.1 Background - INGRES and QUEL 2

1.2 The Importance of the Human Interface 8

1.3 Why a Picture Language? 9

1.1 Overview of Thesis 11

CHAPTER 2 - Syntax 13

2.1 Symbols 13

2.2 General Format 11

2.3 Retrieval Examples 16

2.1 Update Examples 21

CHAPTER 3 - Definition Capability 25

3.1 Defining Algorithm 26

3.2 Comparability Algorithm 29

3.3 Definition Representation 31

ii

CHAPTER 1 - Implementation ..31

1.1 Hardware Configuration 31

1.2 Software Configuration 37

1.3 Human Factors **°

1.1 Working Implementation 53

1.5 Implementation Restrictions 56

1.6 Plans for Further Implementation 56

CHAPTER 5 - Human Factors Experiment 62

5.1 Experimental Design 63

5. 2 Subjects 65

5. 3 Experimentation 66

5.1 Discussion 80

5.5 Concluding Remarks 83

CHAPTER 6 - Conclusion 85

6.1 The CUPID Language 85

6.2 Implementation 86

6.3 Experimentation 86

6.1 Implications 87

Appendix A - FORMAL SYNTAX 89

Appendix B - IMPLEMENTED GRAMMAR 91

Appendix C - EXPLANATION FOR EXPERIMENT 97

Appendix D - QUEL'S TUTORIAL 100

Appendix E - CUPID'S TUTORIAL 128

Appendix F - TEST QUERIES 157

iii

Appendix G - QUESTIONNAIRE... 159

Appendix H - LOGIN PROCEDURES 162

References 161

Related Bibliography 170

iv

CHAPTER 1

Introduction

The main goal of this research is to explore the feasi

bility of the picture query language system, CUPID (Casual

User Pictorial Interface Design). CUPID is a facility

designed to support non-programmer interactions with a data

base management system. CUPID contains a picture oriented

data sublanguage and a defintion capability. The language

is complete [C0DD72], high level and depends almost entirely

on "menu-move" operations on a CRT terminal. Very little

English text is typed by the user, thus avoiding difficult

natural language processing by the system. The definition

facility helps to resolve ambiguous operations and to allow

the user to define individual terms.

A prime concern is for the response of a casual user to

such an interface. To this end, CUPID-was

1) designed to have a simplistic, yet flexible, syntax

for ease of use

2) designed to contain a user definition capability for

ease of expression

3) implemented in part to present some of the major

features for actual performance and preference evaluation

1) compared to another query language system in a human

factors test

This chapter provides some background and motivation

for the CUPID project. Since the data base system, INGRES,

and the data sublanguage, QUEL, are important components of

and incentives for CUPID, a brief description of INGRES and

QUEL is presented in section 1.1 to help familiarize the

reader with some terminology and the underlying systems.

Sections 1.2 and 1.3 present the motivation for CUPID. In

section 1.2, the value of the human-machine interface is

discussed along with an alternative approach (natural

language). Section 1.3 lists the benefits expected from a
pictorial approach to the human-machine interface problem.
Finally, section 1.1 provides an overview of the remainder

of this dissertation.

1.1 Background- INGRES and QUEL

INGRES (Interactive Graphics and REtrieval

System)[MCD071,HELD75a,HELD75,STON75a,WONG75,ZOOK75] is a
relational data base system which is implemented on a

PDP-11/10 based hardware configuration at Berkeley. INGRES

runs as a normal user job on top of the UNIX operating sys

tem developed at Bell Telephone Laboratories [RITC7la]. The

implementation of INGRES is primarily programmed in "C«
[RITC71], a high level language in which UNIX itself is
written. Parsing is done with the assistance of YACC

[J0HN71]}, a compiler-compiler available on UNIX.

The advantages of a relational model for data base

management systems have been eloquently detailed in the

literature, [C0DD70,C0DD71,DATE71,DATE75] and hardly require

further elaboration. The choice of the relational model was

particularly influenced by (a) the high degree of data in

dependence that such a model affords, and (b) the possibili

ty of providing a high level and entirely procedure free

facility for data definition, retrieval, update, access con

trol, support of views, and integrity verification.

INGRES runs as three processes which communicate via

the UNIX interprocess communication facility, together with

a fourth "front end" process. One of these front ends is an

interactive monitor which allows the user to formulate,

edit, print and execute interactions in the data sub

language, QUEL.

QUEL (QUEry Language) has points in common with Data

Language/ALPHA [C0DD71], SQUARE [BOYC73] and SEQUEL [CHAM71]

in that it is a complete [C0DD72] query language which frees

the programmer from concern for how data structures are

implemented and what algorithms are operating on stored

data. As such it facilitates a considerable degree of data

independence [ST0N71].

The QUEL examples in this section all concern the fol

lowing relation.

EMPL

NAME DEPT SALARY MANAGER

Smith toy 10000 Jones

Jones toy 15000 Johnson

Adams candy 12000 Baker

Johnson toy 11000 Harding

Baker admin 20000 Harding

Harding admin 10000 none

Indicated here is an EMPL relation with domains NAME, DEPT,

SALARY, and MANAGER. Each employee has a manager (except

for Harding who is presumably the company president), a

salary, and is in a department.

A QUEL interaction includes at least one RANGE state

ment of the form:

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables

which will be used as arguments for tuples. These are

called TUPLE VARIABLES. The purpose of this statement is to

specify the relation over which each variable ranges.

Moreover, an interaction includes one or more state

ments of the form:

Command Result-name (Target-list)

WHERE Qualification

Here, Commmand is either RETRIEVE, APPEND, REPLACE, or

DELETE. For RETRIEVE and APPEND, Result-name is the name of

the relation which qualifying tuples will be retrieved into

or appended to. For REPLACE and DELETE, Result-name is the

name of a tuple variable which, through the qualification,

identifies tuples to be modified or deleted. The Target-

list is a list of the form

Result-domain = Function ...

Here, the Result-domain's are domain names in the result

relation which are to be assigned the value of the

corresponding function.

The following suggest valid QUEL interactions. A com

plete description of the language is presented in [HELD75a].

Example A Find the manager of employee Jones.

RANGE OF E IS EMPL

RETRIEVE INTO W (MGR = E.MANAGER)

WHERE E.NAME = 'Jones'

Here, E is a tuple variable which ranges over the EMPL rela

tion and all tuples in that relation are found which satisfy

the qualification E.NAME = 'Jones'. The result of the query

is a new relation, W, which has a single domain, MANAGER,

that has an entry for each qualifying tuple. If the result

relation is omitted, qualifying tuples are printed on the

user's terminal or returned to the calling program. Also,

in the Target-list, the 'Result-domain =' (i.e MGR =) may

be omitted if Function is of the form; Variable.Attribute

(i.e. NAME = E.NAME may be written as E.NAME).

Example B Insert the tuple (Jackson,candy,13000,Baker)

into EMPL.

APPEND TO EMPLCNAME = 'Jackson', DEPT = 'candy',

SALARY = 13000, MGR = 'Baker')

Here, the result relation EMPL is modified by adding the

indicated tuple to the relation. If less than all domains

are specified, the remainder default to zero for numeric

fields and null for character strings.

Example C Delete the information about employee Jack

son.

RANGE OF E IS EMPL

DELETE E WHERE E.NAME = 'Jackson'

Here, the tuples corresponding to all employees named Jack

son are deleted from EMPL.

Also, QUEL contains aggregation operators including

COUNT, SUM, MAX, MIN, and AVG. Two examples of the use of

aggregation follow.

Example D Replace the salary of all toy department

employees by the average toy department salary.

RANGE OF E IS EMPL

REPLACE E(SALARY BY AVG(E.SALARY WHERE E.DEPT =

'toy'))

WHERE E.DEPT = 'toy'

Here, the AVG is to be taken of the salary attribute for

those tuples satisfying the qualification E.DEPT = 'toy'.

Note that AVG(E.SALARY WHERE E.DEPT= 'toy') is scalar valued

and consequently will be called an AGGREGATE. More general

aggregations are possible as suggested by the following

example.

Example E Find those departments whose average salary

exceeds the company wide average salary, both averages to be

taken only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPL

RETRIEVE INTO HIGHPAY(E.DEPT)

WHERE AVG(E.SALARY BY E.DEPT WHERE E.SALARY >

10000)

>

AVG(E.SALARY WHERE E.SALARY > 10000)

Here, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is an

AGGREGATE FUNCTION and takes a value for each value of

E.DEPT. This value is the aggregate AVG(E.SALARY WHERE

E.SALARY>10000 AND E.DEPT = value). The qualification ex

pression for the statement is then true for departments for

which this aggregate function exceeds the aggregate

AVG(E.SALARY WHERE E.SALARY>10000).

8

For a complete description of the currently operational

INGRES commands, the reader is referred to [ZOOK75].

Initial user reaction to the early INGRES system indi

cated that QUEL was not particularly user-friendly. Users

who were not familiar with computer programming had diffi

culty adjusting to QUEL's formalism. The next section pro

vides some thoughts on this problem.

1.2 The Importance of the Human Interface

If the computer is to become an everyday tool of the

nonprofessional, the needs and desires of the casual user

must be considered. In the past "...narrow technical con

siderations and immediate cost constraints dominated comput

er technology..., in large part at the expense of human

ease, convenience and social effectiveness" [MART733- It is

generally agreed that the cost of instruction-execution

(hardware) is decreasing while the cost of programming

(software labor) is increasing. This strongly suggests more

effort should be expended in reducing the human labor needed

to interact with a computer.

Information retrieval and data base management are

areas which might benefit from easy human-machine interac

tions. This author feels there are two approaches to facil

itate such interactions.

1 providing the casual user with an English-like

dialog capability that uses artificial intelli

gence methods for natural language processing

2. providing the user with a picture oriented

graphics language

The difficulties of the first approach are well summar

ized by one of its proponents, E. F. Codd: "It is very

unlikely that any two English-speaking persons understand

precisely the same English" [C0DD7la]. Since English is

well known to be a non-finite state grammar, users have the

capacity for generating infinite sets of well and ill-formed

utterances. This makes the processing of arbitrary English

textual input extremely difficult. Some specific problems

are:

a. typographic and spelling mistakes may be present

b. English is a language full of ambiguity

c. a large vocabulary is involved

d. syntactic analysis is difficult

e. semantic analysis is very difficult

The next section provides the motivation for a graphic

language.

1.3 Why a Picture Language?

Some of the reasons a pictorial representation of a

query is more desirable than a linear representation such

as English include:

10

1 It is speculated that users will be more successful at

phrasing interactions in a picture language. A great deal

of information can often be more precisely, accurately

and clearly stated in two dimensions than in one.

2 Restricting the representation to a specific diagram

instead of allowing any number of words and phrases will

aid in making the picture language a finite state gram

mar. This will eliminate many of the anomalies and com

plexities of the non-finite state grammar, English.

3 Punctuation errors and their resultant ambiguities will

be of minimal concern. CUPID's syntax is simple and pre

cise enough to need no punctuation.

1 Fewer typographical errors will occur because only a

very small portion of any query expressed by pictures

need be entered at the keyboard (all other entries can be

made via lightpen on a display device in 'menu-move'

mode). This should be contrasted to English in which

virtually everything is typed on a keyboard.

5 The non-procedural and unordered manner of phrasing

should appeal to users who have no previous computer

experience. Generally, natural English requires a pro

cedural and ordered expression due to its linear format.

6 Due to the addition of the preceeding five points and

the omission of points a - e of section 1.2, this author

11

expects a significant reduction of the implementation

effort over the effort necessary to implement a natural

language.

There has been very little work in the area of graphic

languages. The graphics version of CSMP (Continuous System

Modelling Program) [WALS71] is an example of graphic model

ling applied to simulation problems. The only effort, to

this author's knowledge, in this direction in a data base

context is the work of Zloof [ZL0075]. However, as with

natural language processing, such difficulties as:

1. complex syntax allowing arbitrary amounts of informa

tion within a 'box'

2. unlimited text strings

3. typographic and spelling error possibilities

present problems for the implementation of his proposal.

The system described here has points in common with that in

[ZL0075] without the above drawbacks.

1.1 Qverview

The rest of this thesis is organized as follows.

Chapters 2 and 3 describe the language, CUPID. Chapter 2

presents the syntax through annotated examples of retrieval

and update operations. The third chapter presents the

design of a definition capability. This aspect of CUPID was

devised to provide user freedom in expressing and system

learning in understanding user defined terms. Algorithms for

12

(^resolution of ambiguities and (2) defining new terms are

detailed. Chapter 1 discusses various implementation con

siderations and human factors design. The fifth chapter

describes the design and results of an experiment performed

to compare CUPID and QUEL from the user's point of view.

Finally, the sixth chapter provides a summary and conclusion

along with some suggestions for further work in this area.

13

CHAPTER Z

Syntax

The goals of the CUPID syntax are:

1 simplicity
2 naturalness

3 ease of use
1 equivalency to QUEL

In order to meet these goals, various picture representa

tions were considered. The visual interpretation illustrat

ed in this chapter is but one possibility. Due to the

powerful graphics modelling system, PICASSO [H0LM75], on

which the picture processing portion of CUPID resides, one

can experiment easily with other possible picture represen

tations.

2.1 Symbols

The major components of a picture query in the

representation chosen for the CUPID prototype are:

<$> 0 /q\

hexagon containing relation name

rectangle containing domain name

various shaped forms containing
relational(ro), arithmetic(ao),
and logical(lo) operators

horizontal hexagon within which
constants are entered

upright diamond containing "?"

11

pentagon containing aggregate(ago)
operator

connecting line

A formal syntax of CUPID is provided in Appendix A. A brief

outline of the basic format follows.

2.2 General Format

Because CUPID is designed to be equivalent to QUEL, the

notions of "target list" and "qualification" are maintained.

The general format of a CUPID query is a diagram.

I Relations and domains are represented by vertical

15

hexagons (HEX) and rectangular boxes (BOX) respectively.

Each contains the desired name within it. A HEX is abutted

to the left of one or more connected BOXes. (all other

symbols are attached via lines). The juxtaposition of the

HEX and the BOXes forms the basic CUPID unit that defines

which relations and domains are involved in a query.

II Any item or expression with a vertical diamond contain

ing a "?" (QBOX) attached is taken to be part of a target

list (i.e. those item(s) being targetted by the query).

III Portions of the diagram unattached to QBOXes are qual

ifications of the target list.

IV Horizontal hexagons (CONS) are reserved for typing in

constant values.

V Operators are connected to their respective operands

(see Appendix D for ordering constraints). Arithmetic and

aggregate operators may be linked to other operators. This

indicates that the result of the arithmetic or aggregate

operation is one operand for the next operator. Aggregate

operators have their own targets which may or may not be

qualified.

Examples of this format are provided in the following

sections. The pictures are photographs of actual CUPID

drawings as thoy appear on the GT12 screen. The eight

pointed star-1Ike image in each is known as a "tracking

cross". This cross is used in conjunction with the lightpen

16

to select and place various elements of the picture (see

Appendix E for further details).

2.3 Retrieval Examples

The following examples illustrate the retrieval node of

the language in a sequence of increasingly complex queries.

Updates will be described in the next section. Please note

the format of the examples emphasizes the difference between

English language queries and their CUPID equivalents as they

appear on the screen.

The data base referenced in all examples is a sample

warehouse system. PARTS(PARTS) are incoming from

SUPPliers(SUPP) and go out to customers via ORDERs. The

relations involved are:

PARTS(PNUM, MAT, QOH, SP)
SUPP(SNUM, SLOC)
ORDER(CNUM, PNUM, CLOC, QUAN)
PRICE(SNUM, PNUM, BP)

The PARTS relation contains part numbers (PNUM), material

(MAT), quantity on hand (QOH) and the selling price (SP) of

each part. The SUPP relation lists the supplier number

(SNUM) and the supplier location (SLOC). The domains of the

ORDER relation include: customer number (CNUM), part trumber

(PNUM), customer location (CLOC), and the quantity (QUAN).

Finally, the PRICE relation records the supplier number

(SNUM), part number (PNUM) and buying price (BP).

17

1. List the entire PARTS relation.

*
(SSmn Ihat Imh Isp I

-or-

*

Note:

1 Words like "entire" can present problems in natural
language processing.

2 The special character "?" indicates what the user
wishes to see (i.e. the target list).

3 The ordering of the domains is immaterial.

1 The sequence of steps the user takes in formulating
the query is immaterial.

18

2. Find the total value (SELLING PRICE times QUANTITY-ON-
HAND) for each part.

*

Note:

1 The English version is ambiguous without the paren
thetic remark.

2 Only those domains referenced need be in the picture.

3. Get all PARTES whose QUANTITY-ON-HAND is greater than
300.

*

Note:

The addition of a qualification to the query allows the
only keyboard entry — the constant (in the horizontal

hexagon) •

19

1. Retrieve the PART#s whose destination and origin are the
same city.

W [0RDEB|PNI CLOC
*

PRICEJSNUW | PNUM

|SUPP|SNUH |SLOC

Note:

The unmentioned intermediate relation may make process
ing the English language version difficult. On the
other hand, should the CUPID picture be improperly
drawn due to such an omission, straightforward algo
rithms (presented in Chapter 3) can correct the prob
lem.

5. List PART#s whose SELLING PRICE is less than the average
SELLING PRICE.

(mj] JfjuTJ *

*
Note:

1 Implied here is the cross-product of the PARTS rela
tion with itself.

2 The SP domain with the "?" attached is the target of

20

the aggregate while the PNUM domain with the attached
"?" is the target of the entire query. This aggregate
operator (AVG) has no qualification; but the target-
of-the-query's qualification is "SELLING PRICE less
than the average SELLING PRICE".

6. Find the average markup for each SUPPlier for those
PARTES whose BUYING PRICE exceeds the average BUYING PRICE.

Note:

1 This last query involves an aggregate function.

2 Query 6 demonstrates the nesting of aggregation. The
"average BUYING PRICE" is within the qualification of
the AVG denoting the "average markup".

3 The aggregate (AVG) with the attached "?" is the tar
get of the entire query. The "?" on the minus operator
indicates that the subtraction operation is this AVG's
target. The "by" linked to the SNUM denotes the "by
clause" (as in QUEL). Everything else is considered
qualification.

21

2.1 Update Examples

Updates involve only a simple modification of the re

trieval operations and will be described in this section.

The design for implementing update commands is detailed in

Chapter 1. Initially, the Query Form phase assumes a re

trieval mode. The user must select a separate command,

UPDATE, to enter the update mode. The update mode contains

three additional commands, REPLACE, APPEND and DELETE. Here

we assume that the appropriate commands, REPLACE, APPEND and

DELETE are available at the right of the screen.

The following three examples show the picture represen

tation of a REPLACE, APPEND, and DELETE update.

22

1 Replace silver by copper wherever is occurs in the
MATERIAL column of the PARTS relation.

PftBTSfHOT |WRT |

Note:

1 Targetted items are replaced by the attached con
stant.

2 Column boxes and names must be repeated when the
qualification involves the targeted domain.

3 The replacing-value can be any expression.

1 This is a legal retrieve statement. The command -
REPLACE in the update mode makes it a replace state
ment.

2 Append a new supplier to the PRICE table with the follow
ing information: SUPPLIER#=120, PART#= 32, BUYING PRICE=
500.

~W~
PRIC PW» |BP JSMUW |

<^> <T^>

23

Note:

1 Appended values may be constants or expressions.

2 More than one tuple may be appended in a single query
by attaching constant boxes directly to the constant
boxes now present.

3 Remove suppliers located in Idaho from the SUPPlier table.

*

Note:

1 Since DELETE removes entire tuples, only a qualifica
tion expression in needed.

2 This simple delete picture resembles an append update
in format. The command selected will differentiate.
In general, however, the delete picture may involve
other operators and more complex expressions.

The advantages of this syntax over either a natural

language system or a more formal language system are now

summarized.

1 no unbounded text strings (as in an English state
ment)

2 only constants are allowed to be entered from the
keyboard thus eximinating most

a. typographic errors

b. spelling errors

3 easy parsing due to simple structure

1 powerful (designed to be equivalent to QUEL)

5 user-friendly with menu-move operations

21

25

CHAPTER 3

Definition Capability

A definition capability is a mechanism which allows the

system to "learn " new concepts, i.e. demonstrate semantic

learning. Previous attempts to devise a general semantic

learner involved very large programs to recognize a small

subset of English within a small universe of discourse

[COLE69,QUIL66,WIN071,WOOD66]. In CUPID, the area of user

definition (and, thus the amount of semantic learning neces

sary) is very restricted. Therefore, this system is not

only pragmatically viable, but also moderate in size.

To illustrate this facility of "learning" we utilize an

example. Suppose the user draws the following picture

£AST-CQAS7

asking for a listing of "east-coast parts". This query

presents two problems:

26

1 Defining the unknown terra "east-coast" .

2 Resolving the misplacement of the constant "east-coast"
since it is not a known value for PNUM.

The following algorithms are applied to all pictures to

resolve both problems.

3.1 Defining algorithm

Algorithm I. For each constant do:

1) If constant is numeric, go to 3a.

2) If constant is non-numeric, then check User Definition

Table (see 3.3 Definition Representation section) for previ

ously defined constants and present user with all esta

blished definitions of the term. If one is acceptable to

user, use it and exit; otherwise:

3) Ask user to select a "type" (see Comment A) for the con

stant from all known domain types and compare selected type

with type of the domain to which the new term is connected

(i.e. by a network composed only of connectors and opera

tors) .

Comment A: The set of all domains is categorized at the
time the relation is created into comparable subsets by
the classification referred to here as "type". A compar
ability matrix of all domains in a given data base is
generated for easy domain comparisons.

East-coast Example: Assuming the use of the data base
described in section 2.3, the following provides type
information :

Relation Doma:

PARTS PNUM

MAT

QOH
SP

SUPP SNUM

SLOC

ORDER CNUM

PNUM

CLOC

QUAN

PRICE SNUM

PNUM

BP

Type

alphanura(P#)
alphabetic
numeric

money

alphanum(S#)
geographic
alphanum(C#)
alphanum(P#)
geographic
numeric

alphanum(S#)
alphanum(P#)
money

27

The comparability matrix, in which ones indicate domains of
comparable type, would be:

P M Q S s S C P C Q S P B

N A 0 P N L N N L U N N P

U T H U 0 U U 0 A U U

M M C M M C N M M

PNUM 1 1 1

MAT 1

QOH 1 1

SP 1 1

SNUM 1 1

SLOC 1 1

CNUM 1

PNUM 1 1 1

CLOC 1 1

QUAN 1 1

SNUM 1 1

PNUM 1 1 1

BP 1 1

When the system asks for a type in the case of "east-

coast", assume the user chooses - geographic.

3a) If the types are comparable, perform a RETRIEVE (or

UPDATE) operation to see if the value exists for the given

domain.

28

1. Value exists, exit.

2. Value is not found — tell user and offer a list of

comparable domains and ask if constant is a value for

some domain in this list or allow the user to exit from

the Define phase (indicating the null result was accepted

as the answer)•

1) If the user selects another domain, redraw the

figure with new domain and repeat the algorithm.

2) If user refuses a new domain, utilize a domain

type defining procedure (see Comment B) to define

the new term, then exit.

Comment B: A defining routine exists for each unique
domain type (this routine must be provided whenever a new
type is declared). Since "east-coast" is declared to be
of type "geographic", a map of the U. S. might be
displayed and the user asked to circumscribe the area
meaning "east-coast". Some numeric typed domains might
require the user to specify an interval out of the domain
range. The last resort is enumeration, or tuple selec
tion. The enumeration routine would present the user
with the values, tuple by tuple, out of the attached
domain. The user would indicate which values fit the
unique definition.

3b) If types are not comparable, list all comparable

domains and ask user to select the correct one. Draw a new

picture and reexecute algorithm.

East-coast Example: In this case only the domains SLOC
from the SUPP relation and CLOC from the ORDER relation
are of type "geographic". Suppose the user really wanted

29

to see the PNUM of parts from "east-coast" suppliers. In
this case, he might respond to step 3b) by indicating
SLOC. If so, the system will redraw the picture to re
flect this.

EAST-COAST

This concludes the Definition Algorithm. At this point all

constants are correctly defined. The Comparability Algo

rithm is then invoked to check that connecting (i.e. con

nected by a network composed of connectors and operators

only) domains are of the same type.

3.2 Comparability Algorithm

Algorithm II: For any two domains connected by a relational

or arithmetic operator, check if they are of the same type.

If so, exit; otherwise:

Beginning at either end of the connector:

1) List the domain type of the domain and all comparable

domains. Ask user to select the appropriate domain from

the list.

?0

2a) If the user selects a comparable domain, redraw

the connection and reexecute the algorithm.

East-coast Example: After two iterations of 1) and 2a)
(through the PRICE relation) the user should arrive at
the following picture:

EAST-COAST

This expresses the query - to find the part numbers of
parts supplied by east-coast suppliers.

2b) If the user insists on a non-conparable domain, process

the query allowing the normal software conversion to take

place where possible. A system error may occur.

After Algorithms I and II, the query is processed.

Expressions with illegal syntax are caught by QUEL parsing

and error messages are returned to the user.

31

3.3 Definition Representation

While many definitions are peculiar to their respective

definer (user), some global learning can take place in an

attempt to provide efficiency for commonly used terms. For

this reason, a definition table exists containing the new

term, the user's identification, the domain and relation

with which the new term is initially associated, the type,

and a pointer to where the definition is stored (Fig. 1).

In Fig. 1 the Type of Definition domain contains the

following information. The "0" indicates that a numeric

interval defining routine was used for the term "big". The

"1" is keyed to the enumeration routine used to define

"peculiar". The four tuples from the EMP relation with 1's

in the PECULIAR domain are the four NAMES deemed peculiar by

user 27. The "2" in the Type of Def. domain indicates a

geographic city selection routine was used for the term

"east-coast"; while the other "east-coast" term was defined

by an area circumscription routine as indicated by "3".

If enumeration was the method of definition, the defin

ition may be stored as a relation with two domains:

1 a duplicate of the associated domain from the original
relation

2 a binary valued domain to indicate which tuples of 1
fit the definition

For those definitions not accomplished through

32

enumeration, the meaning is stored as one or nore program

routines - in a manner not unlike Winograd's semantic

learner [WIN071].

Certainly, this is a form of learning from the past.

When a new user asks for "east-coast", the system can flash

the picture so defined and ask if that is what is meant. If

it is, the established definition is used — if not, a new

definition of "east-coast" will be developed and added to

the table.

Fig. 1 Definition Representation

User Definition Table

new term id type

eastcoast 1 geo

big 43 nura

eastcoast geo

peculiar | 27 alph

Peculiar27 Relation

Name Peculiar

!Jones 0 i

I Smith 1 !

| Brown 0 i

i Black 1 !

i George 1 !

S Farquar 1 {

connected def. stored
doraain/rel. type

33

?L

CHAPTER 4

Implementation

Despite hardware complications, great care was taken tc

implement CUPID as designed.

A major problem arose out of the decisions to use

PICASSO on the CDC 6000 computer for picture processing and

use INGRES and UNIX provided facilities, on the PDP 11/40

machine for data base and language processing. In order to

maintain the apparent simplicity necessary to a casual user

interface, the complex communications between the two

machines had to be made automatic and totally transparent to

the user. Once logged onto both machines (see Appendix H),

it is desirable that the user merely diagram the query,

observe the answer, and decide whether to issue another

query. The user should not be bothered by the intricasies

of the machine transfers. To this end, a unique hardware

configuration was assembled together with a somewhat spe

cialized software package.

4.1 Hardware

The computer configuration for CUPID (shown in Fig. 2X

consists of a CDC 6000 series computer linked to a PDP-11/4C

computer through a DEC GT-42 graphics device and its

dedicated PDP-11/10 computer. Interactions (query drawin-

and editing) between the GT42 (PDP 11/10) and the CD:

machine take place at 9600 baud over a DEC DL11 interface.

Information (the output of the CUPID/PICASSO system) fron

the CDC machine to the PDP 11/40 first passes over the DL1*

interface into the PDP 11/10 where a resident monitor

directs the appropriate information to the PDP 11/40 over i

DEC DR11-c interface. The data base response returns to the

screen via the DR11-C.

Fig. 2 Hardware

! CDC 6600 ! PDP 11/4C

! DL 11| DR11c'

PDP GT 42 CRT and 11/10

37

4.2 Software

A great deal of thought was given to translating

PICASSO into the language "C" to run on the PDP-11. Due to

PICASSO's elaborate data structures and heavy machine depen

dencies, this task would have been too time consuming and

tedious for this study. Thus, the decision to use PICASSO

on the CDC machine.

The picture drawing and processing routines of CUPID

are written in Fortran for the BKY[LAWR74] operating system

of the CDC 6000. These Fortran routines are initiated from

PICASSO. In order to make use of PICASSO's data structures,

file maintenance routines and library facilities, CUPID was

implemented as part of the PICASSO system. CUPID's initial

routine, which directs the flow of control, is called as a

subroutine by PICASSO. Once invoked, CUPID directs the

operation, making calls to appropriate PICASSO subroutines

for assistance. PICASSO routines provide CUPID with an

interactive line drawing capability and analysis facility

which outputs a text string corresponding to the picture.

CUPID routines manipulate this text string to perform some

syntax checking and partial parsing before passing the

string on to the PDP 11.

The GT-42 monitor, a PDP-11 assembly language program,

displays the pictures and text necessary to formulate and

execute a CUPID query. Once this is completed, the text

output of PICASSO/CUPID is detected by the GT-42 monitor and

38

directed to the PDP-11/40 for final language processing and

eventual query response. The response is similarly detected

by the monitor and displayed on the screen for user viewing.

The final language processing (see Appendix B) is writ

ten in the language WC" and operate on top of the UNIX time

sharing system. The PICASSO/CUPID text string is compiled

into QUEL using the compiler-compiler, YACC. The QUEL

statement is immediately passed into an already invoked

INGRES data base system. See Fig. 3.

Fig. 3 Software

I CUPID |
i to QUEL!
i i
i i

1
i
i

1

! 1
! INGRES I"
i i
i i

i i

I UNIX !
! 1

1 !
! 11/40 I
I I

GT42

monitor ,

39

! CUPID

BKY

6000

40

4.3 Human Factors

At all times during implementation, human factors con

siderations were paramount. The primary objectives were:

1 to make CUPID easy to use

2 to make CUPID easy to learn

To these ends the general screen configuration, flow of con

trol, editing facility and "help" facility were designed to

be simple and forgiving. The general screen configuration

is shown in Fig. 4. There is a specially delineated portion

of the screen in which queries are drawn or information pro

vided which is called the data space. Directly above the

data space is the instruction space where the name of the

phase is displayed along with prompting instructions to the

user. To the right of the data space is the command space

which provides the user with commands to direct the flow of

control.

Fig. 4 General Screen Configuration

Instruction
Space

C

o

m

m

a

n

d

S

P

a

c

e

41

42

The flow of control is diagrammed in Fig. 5. Each block

in Fig. 5 represents a phase. Arrows indicate the entry and

exit points of each phase. An arrow emanating from the bot

tom of a phase-block indicates the natural progression from

phase to phase in CUPID and is accomplished by selecting the

CONTINUE command of the phase being exited. An arrow ori

ginating from the side of a phase-block indicates a specific

command has been issued to direct the flow. In each case,

the command corresponds directly to the name of the phase to

be entered. All arrows emanating from the top of a phase-

block return the user to the beginning of CUPID, the Welcome

Phase •

43

Fig. 5 Flow of Control

Erase \k-

'

f *' >

^_ .

4, J * i

J Welcome i/ * T?r1

1

p !
•
i

i<\ y\ iiuj.

\'

i i

! Table | >
I Select | /

r /

M Query !<
i Formulation

>j Finish K—»

Define!*-*

44

The following photographs of an actual CUPID session

depict this flow and display the screen appearance at the

beginning of each phase.

St 2Et» wit curio
CONTINUE

ICLCOC TO curID •

tw CASuM. uses rtcToaiM. ixrexmcc design

*

Pic* 1 Welcome Phase

Entered at the start of CUPID and whenever the

OUIT command is issued.

TMU SLCT

mHT TML HMOS TKEV UtU *mt* HUM
""" TOSCWTCH OKX Of TKX StUCTIONS MIT BWOVt

CONTINUE

Pic. 2 Table Select Phase

Entered after issuing the CONTINUE command

of the Welcome Phase.

45

5a*o
o- -<• -o -^>

0- O- {£)- <2-

KELT

REJECT

CCNSTflMT

riNISM

Pic. 3 Query Formulation Phase

Entered after invoking the CONTINUE command of

the Table Select Phase.

46

Smvu sno** sow swnx ouoies
CONTINJE

Pic. 4 Help Phase

This is the initial screen configuration.

Commands invoked within this phase may utilize

other screen configurations. One can enter this

phase by issuing the HELP command in the

Welcome or Query Form phase.

47

HIT OBJECT -IT BLINKS -NIT EMSE -IT COBS- AND RETUM
EJMSIHC swaot

CMICCTO

SVNJOL

Pic. 5 Erase Phase

This is the basic editing facility of CUPID.

It is entered from the Query Form phase via ERASE.

48

voua IXSII.T IS rORTNCOnlNS • K rwnort

*r7E"/WT KMM4 - MMH rtON SCSMTOt
DCrtNE • TO DtrlMt CONS
"iht - ™ ""* "* *r<r,f"—

ii»l r.l.Mo*

I*
IS
M
V
S3:
55
37
55:
m:

129:
isr:
m:
Ei 5:

043
9*4:
ill*:
1330:
ises:
1639:
aw:
4301
5119
5219

eentinv
•

rocs.*.
•#Mr«.».
lira....
c.yth«.c.
•>•«••-«.
•wane...

raww. t.
j*Mf.B.
•Illy, j.
thOMS.t.
jon«f.t.
bullok.j.
col Iin. J.
brutwt.p.
•ch.it.h.

INM.I.

Mlth.p.
gnstad.r.

twfMl.a.
cho«...
IKt.i,
mii.u. c.

|Jf.rro.t.
ill*, b.

IS9M: 199! 1927: 1945:
9M0: 199*. I9te: 1930:

1991 I9S*: 197*:

9SB»I 199! 1929: 1967!

ioim: 199! 1931: 1963:
saw: st: last: I9T4:

119*3: 2«: 1999: 1974:

itM*: 199: 1920: 1969:
199: 1939: 1969:

IMM 199: 1941: 1962:
120M 199: 194*: I9M:
32008 •: i9to: 1920:

TOM to: I9M: 1971:
17674 IE9: 1930: 1939:

11204 26: 1936: 1936:

I5C4I i»: 1944! 1970:

MM 33: I95t: 1973:

0779 is: I9se: 1971:

19068 its: I9ts: 1949!

IIIM *s: I947S 1970:
7M0 tc: I9M: 1999:
•377 3t: I93C: 1975!

iscei 53: 1939: 1963:
13374 33: I944I 1959:

*

Pic. 6 Finish Phase

Enter this phase from the Query Form

phase and the future Define Phase via

the command FINISH.

49

50

Points of human factors interest include:

1 Each phase (Welcome, Help, Table Select, Query Formula

tion, Erase, Finish) has a unique screen configuration

which includes the phase name. The user always knows

where he is within CUPID.

2 Brief, but helpful instructions at the top of the

screen prompt the user.

3 All phases except Erase and Define, cycle back to the

beginning (Welcome) through a QUIT command. This pro

vides protection from premature, unwanted exiting.

4 The user can get aid from Help while formulating his

query without losing what he has already drawn.

5 Syntactic error checking in the Finish phase prevent

the query from executing and erroneous data base access

ing from occurring. If error diagnostics occur the user

har. the option to alter the present query or draw a new

one.

6 The screen configuration (Fig. 6) of the Query Form

phase is a combination of the general screen configura

tion and an implicit "menu-move" area as in [EVAN69] for

selecting and placing names and symbols. The top of the

screen is the modelling space (labelled "query configura

tion") into which CUPID symbols (from the bottom right)

are moved. The bottom left portion of the screen

51

contains preselected relation and domain names. The only

keyboard interactions occur when constant values are

used.

Fig. 6 Query Form Screen

Query Form
Instruction Space

query

configuration

select

names

I select
| symbols

! C
I o
! m

i S
! p
I a
t c

52

53

4.4 Working Implementation

Due to the lack of any graphics routines in UNIX, the

decision was made to utilize those available in PICASSO.

Since this project was primarily a feasibility study, the

modeling capacity of PICASSO was extremely attractive. How

ever, it was still necessary to spend one person-month

altering PICASSO to conform to CUPID's design criteria. The

following list describes some of the major modifications.

1 A routine (CONNECT) was added to provide a "near-hit"

facility. Whenever a particular point of the screen is

indicated by the user, this routine searches the data

structure for the closest point within a user specified

quantum. If such a point exists, then it is assumed to

be what the user meant; otherwise, a new point is added

to the data structure. This allows the user to be

slightly inaccurate without great frustration.

2 A routine (MENU) was added to provide uniform system

reaction to a user's selection of a particular command in

the command space for PICASSO and CUPID.

3 The line drawing routine (PABLO) was modified to assume

the "connector" drawing facility necessary in CUPID. The

routine was more general than necessary, so appropriate

entry and exit points (and necessary related code) were

established to utilized only the required code.

4 Modifications to the editing facility (ERASER) provides

54

the specialized editing facility (the Erase Phase) for

CUPID.

The CUPID routines are invoked from PICASSO by select

ing the PICASSO command, USER COM. These routines direct the

flow of control, provide a "help" facility and perform syn

tax checking and further specialized analysis. These Fortran

routines constitute four person-months of effort. The major

routines include:

1 USERCMD - called from the PICASSO program, directs the

control of CUPID

2 BEGIN - provides the initial "welcoming" phase

3 HELP - initiates the "help" phase

4 EXAMPL and TABVIEW - present examples of queries and

information about all relations of the demonstration data

base in the "help" phase

5 TABSEL - provides the "table selection" phase

6 SCREEN - sets up the basic screen configuration for the

"query formulation" phase

7 NAME, NAME1, SYMB. and SYMB1 - display relation, domain

names and picture symbols and acknowledge the user's

selection of same

8 PLACEQS - places names and/or symbols in the query

space

9 ANALY - provides a text analysis of the picture

10 THREAD - threads the relations and their domains to

gether via tuple variables

55

11 SYNCHK - does a simple syntax check for such things as

missing names, unconnected symbols and no target items

12 ORDER - orders the text corresponding to "range"

statements and target list items to appear first in the

output string

13 QUAL - orders the qualifications

14 AGG - handles aggregate operations

15 SEND - sends the appropriate information to the PDP

11/40

After the query has been formed it is passed on to the

PDP-11/40 for language processing. In this phase, the GT-42

assembly language monitor had to be expanded to handle a

second host computer over the DR11-C interface. Issues of

timing and buffering were dealt with. One person-month was

spent to find he most efficient usage of resources for this

machine-to-machine interface.

Finally, a formal grammar and the appropriate "C" code

(Appendix B) was written to transform the picture output

into a QUEL statement via the compiler-compiler, YACC. The

appropriate INGRES configuration was obtained through the

invocation of a set of UNIX shell commands. This aspect was

accomplished in three person-weeks.

56

4.5 Implementation Restrictions

In the retrieval mode, only logical operators and set

and aggregate functions remain to be implemented. General

logical AND operations (ANDing target list elements or qual

ification elements) are implicit in a CUPID query. For

expediency, it was decided not to implement logical OR

operators. Also for expediency, set and aggregate functions

were omitted from the implementation. One target list ele

ment or qualification element can have, at most, two arith

metic and/or relational operators because Fortran has no

facility for recursion. (In this prototype, two was deemed

a reasonable number of iterations to be coded by hand in

order to accomplish the needed recursion.) For the same rea

son, aggregates in qualifications have been left for a fu

ture exercise.

4.6 Plans for Further Implementation

Work has begun to transport the picture processing por

tion of CUPID from the CDC machine to the PDP configura

tion. PICASSO and the CUPID routines are being translated

into "C" from Fortran. The data structures are being total

ly revised due to the change in word size. Also, the run

ning program will likely be overlayed due to a smaller pro

cess size available in UNIX. It is estimated to take one

person-year to complete this project. Once this is done,

further CUPID implementation can be expedited.

57

Updates, as described in Chapter 2, require a simple

addition to the Query Form phase. This addition will allow

the user to formulate the update exactly like a retrieval

and merely select the appropriate command- REPLACE, APPEND

or DELETE- to initiate the update. Designed, but not as yet

debugged is a macro-facility command for the Query Form

phase, SAVEQ (and its counterpart RECALLQ), for naming, sav

ing and recalling query diagrams. This facility will allow

the user to save commonly used queries for easy reexpres-

sion. The "examples" shown in the Help phase use the same

technique. Also designed for the Query Form phase, is a

command, FININTO (finish-into) which will provide the abili

ty to retrieve into a relation instead of retrieving back to

the terminal. This parallels the QUEL "retrieve into" for

mat. Finally, the Definition phase, whose purpose is

described in Chapter Three, has also been designed.

The design for implementing update commands involves

replacing the present REJECT (see picture 5) command in the

Query Form phase with the command UPDATE. When a user

selects UPDATE, three new commands - REPLACE, APPEND,

DELETE- will appear at the end of the command space. The

user then draws his query, selects the appropriate update

command, then selects FINISH to process the update. This

procedure is purposely designed to be slightly more compli

cated and less automatic than the retrieval procedure as a

means of protecting the user from making unwanted changes to

the data base.

58

To save a query picture the SAVEQ command will ask the

user to type in a name for the query appearing on the

screen; to select a "reference" point of that diagram used

primarily for placing the diagram on the screen in RECALLQ;

the diagram will be stored and cataloged in a directory of

saved queries (DSQ). The user will be prompted when the

store operation has completed and asked to continue. The

screen will not change. This will allow the user to save

part or all of a query at any time while formulating it.

For example, saving the basic format (all HEXes, BOXes and

other symbols appropriately connected) without any relation

names, domain names or constants filled in, only requires

the user to fill these in without drawing the whole picture

each time. RECALLQ will work in an analogous manner to draw

a saved query. The user may wish to see a listing of his

DSQ. Another command is necessary in the HELP phase. LISTQ

would provide a list of this user's DSQ.

When the user selects the command FININTO instead of

FINISH, he will be required to type in the name of a new

relation and hit FININTO again. The retrieval is performed

and the answer stored in the new relation. As in the QUEL

equivalent, a relation with the indicated name must not

already exist. This command acts like FINISH except the

result is not printed on the screen. The user knows that

the retrieval has been successfully performed when he sees

the INGRES prompt "continue".

59

The Definition phase entails more than the addition of

the command DEFINE to the Query Form and Finish phases.

This facility requires a set of screen configurations. See

Fig. 7 for the details of this set.

Fig. 7 Define Phase Screen Configurations

Query Form
Select term being defined

•
1 1
I
1
1
t
1

1
1
1
•

query

with term

to be

defined

1
i

1
i
i

1
DEFINE

1
1
1
1
(

i
i

1

i
i
i

!
The system will ask the user to select the term
in the modelling space to be defined.

Type Select
Defining (term)
What type? Select w/ltpen

Hist of types

! selected type

The system will ask the user to select the
type from all available types.

Define (Type)
(instructions)

defining
routine's
screen I

configuration|

REDEFINE-

RETURN-

There may be different screen configurations
for different routines.

The arrows emanate from the command and point
to the phase entered by issuing the command.

60

61

The user may enter the Define Phase from either the

Query Form phase or the Finish Phase. He may know that he

wishes to define a new term while drawing the query (in

Query Form) or he may be notified of an error caused by an

undefined term (in Finish). In either case, the same pro

cedure is invoked. The system will ask the user to select

the "type" he wishes the term to be. This will produce the

Select Type phase and its screen configuration. This phase

is modeled after the Table Select phase. After selecting

the type, the system will enter a defining mode for that

type of data and proceed through a series of system-user

interactions to develop a definition. Once the term is

defined, the system will return to the Query Form phase

where the user can continue, save, issue or edit the query.

62

CHAPTER 5 \ \ ^
• . ' .".,t- • .', . .. i':-' 'V ..••••

_'•(' .,, _! '".'•-•.'' >: -4 •."'• . ' •

.'>•}• •'''.. ' :' •.-.-• '

Human Factors Experiment "

An experiment was designed to compare the two

languages, QUEL and CUPID. In most previous experiments

conducted to compare computer languages

[REIS75,YOUN74,SHNE7i*,SIME73,WEIS73,SACK70] subjects' per

formance was tested on paper, without any human-machine

interaction. This author believes that the paper-tested

method is artificial and inappropriate. When teaching and

testing a computer language, the environment established by

the computer is extremely important. The machine's reaction

to human actions and errors affects human performance. This

environment can only be approximated if teaching and testing

is done with paper and pencil* Moreover, in CUPID's case,

it was imperative that the entiresystem |e used. CUPID's

two-dimensional language was hot t(3e^igned!tp be drawn on

paper. Any attempt to iran&fiip^^ design

without a computer would be njeanin^

was developed so that each language was taught and tested

entirely through interactions with the computer. It was

hoped that this methodology would provide more realistic

results than previous experiments.

This chapter describes the design and results of this

experiment. The experimental procedure is detailed along

63

with the principles of the experimental design. Finally,

the results are discussed and conclusions drawn.

5.1 Experimental Design

For each subject the following procedure v/as followed.

PART I

1 The subject was handed an EXPLANATION (Appendix C) page

describing the experiment, its purpose, format, and some

motivating information.

1a The EXPLANATION was read aloud by the experimenter.

2 Questions of any kind were answered.

3 The subject was handed one tutorial and told to per

form the exercises as it directs. The same twelve queries

(t1,t2,...t12) are used in each tutorial (Appendices D

and E). The experimenter was nearby at all times but not

in the same room. Questions concerning the machinery

were answered, but questions dealing with an understand

ing of the language were answered only in reference to

the tutorial.

4 He was asked to pose fourteen queries(q1,q2,...q14 -

in Appendix F) to test what was learned during the tu

torial session.

PART II

Follow the pattern of PART I with the other tutorial and

omit 1a.

PART III

64

The questionnaire (Appendix G) was handed to and complet

ed by the subject.

This experimental design was based on six principles.

1 Direct Interaction with the Computer

Subjects interacted directly with the system they were

testing, using the same terminal (DEC GT42 graphic

display). A log of all interactions was made for later

analysis.

2 Self-instruction

The experiment was as self-explanatory as possible, with

the subjects learning each language via a written tutori

al. This was done to reduce human intervention and pos

sible bias.

3 Completeness

An attempt was made to cover as many different aspects of

the languages as possible, to compare subject reactions

to and performance on simple and difficult constructs.

4 Brevity

The experiment was kept as brief as possible to maintain

subject attention and interest.

5 Separate Test Days

Testing of the two languages was done on separate days,

to maintain subject interest and reduce learning carry

over from one language to another.

6 Random Order of Testing

The order in which the languages were presented alterna:-

ed from subject to subject, to remove order biasing.

5.2 Subjects

Subjects were paid volunteers. Their profession

ranged from housewife to doctor to student. Twelve were oir.

of school, five were undergraduates and five were graduate

students. Subjects' ages ranged from 17 to 62. Out of tn*

22 subjects tested, 12 were unacquainted not only with dat.i

base systems, but with computers entirely. These 12 "naive'

subjects had never taken a computer course and knew no com

puter language before this experiment. Of the remaining t«r?

subjects, seven were unacquainted with data base systems

but knowledgeable of computers: they had taken at least tw:

computer courses and knew at least one computer languar*

other than those tested here. The remaining three subject*

were "sophisticated" data base and computer users: they h^:

taken at least five computer courses, knew at least thre*

languages, and knew more than a little about some data bas*

system. These three categories of subjects will be referre:

to as naive, casual, and sophisticated.

The number of sophisticated subjects is admitted!.*

small. Their reactions were interesting though not use:

when testing for statistical significance. Such sophisticat

ed subjects were in very short supply. Two of the thr€r

6?

sophisticated subjects were INGRES/OUEL inplenentors an:

possibly biased toward QUEL.

No attempt was made to control for educational level.

Subjects varied from high school drop out(1) to Ph.D candi

dates^). Four people had high school diDlomas, two ha:

bachelors degrees, two are pursuing masters degrees and tw:

had some college credits. Educational levels for the

remaining nine subjects is unknown.

5.3 Experimentation

QUEL and CUPID provide the ability to log the user anc

system interactions for a single session. As a method of

measuring the ease of use of the two systems, the logs of

tutorial sessions are examined and compared. Since the

queries(t1,...t12) posed during tutorial sessions were en

tirely directed by the tutorial, the number of attempts* an:

error statistics provide information about the simplicity of

each system. Furthermore, we obtained information about the

learnability of the two systems by comparing attempt an:

error statistics from test-query (q1,...q14) sessions.

NOTE: All error statistics were recorded from the point i:

time when the command was issued (not during the writing c-

drawing of the query). Therefore, one can assume that tfe

subject was relatively confident of the query when there

errors were observed.

Finally, preferences and other subjective data are

obtained from the questionnaires and examined.

1 A comparison of the ease of use.

For each of the twelve queries posed during tutorial ses

sions, the number of errors was collected. Table 1

presents this information, for the three subject ca

tegories. Typographic errors have been aggregated out of

the total error statistics.

The twelve columns represent the twelve queries and are

appropriately labelled t1,t2,...t12. The rows are divid

ed into three groups with each group being a type of

information collected. These groups include: the total

number of errors (any and all errors causing the query

not to be processed was counted as one error for that

attempt); the number of attempts (one attempt was tallied

for each 'V in QUEL and each FINISH command hit in

CUPID); and the number of typographic errors (all spel

ling errors out of the total errors). Each of these

three types has been subdivided to present the statisticr

by subject category. Thus, the labels, N, C, S, and 7

are abbreviations for Naive, Casual, Sophisticated anc

Total. Each space in the table may contain two entries.

The statistics for the CUPID sessions are printed above

the QUEL statistics. Zeros have been suppressed.

TABLE 1 Tabulated Data From Tutorial Sessions

8
s-

o

w

£

-4-

E

J)

E

VJJ

o
a.

E

•z

N

N

T

M

t1

11

t2 |t3 !t4

13 |5
7 ! 8 ! 7

0 |1 13
2 ! 6

0 |0 \X
1!0|4

110
1 I 11! 10| 17

16 |12 115 118
13! 19! 20! 19

12 |7 !8 110
7 ! 10 13

5 I3 13 I2*
3 ! 4

33 !22
23! 33

I 3 I 7

!26 ~\32
! 32! 39

t5

21

14

t6

13

16

!17
! 25

19
12! 10

t7 !t8

0 !2

0 13
1 ! 7

0 |2

17
17

12 |14
13! 17

' no
8 I 14

31
31

I3 13 16
I 3 I 3 I 8

!29 !22 130
! 38! 24| 39

1 ! 5 I 7 I 7 ! 2 ! 9 I
!1
I 2

0 I 3 ! 1 ! 4

! 1 ! 2

11i

! 4 ! 3 ! 1 I 6

11
! 2 I

t9 !t10

0 |2
0 ! 9

1 !2
4 ! 9

1 |0
2 | 4

2 |4
6 ! 22

12 115
12! 21

8 19
11! 16

4 13
5 ! 7

24 127
28! 44

I 9

4 ! 4

I 2 ! 2

t11}t12

!1
5 ! 6

1 lo
10! 7

1 11
2 I 2

4~~J2""
17! 15

14 |13
171 18!

8 !7 I
17! 14!

4 |4 |
5 ! 5 I

26

39

24

37!

1 I
3 !

!3
I 1 ! 9 ! 8 | 131 8 I 121 1 I 13! 6 I 15! 161 11!

N="naive", C="casual", S="sophisticated", T=total.
t1...t12 denote the twelve queries posed.

CUPID results - upper left
QUEL results - lower right

68

69

The most significant (By the Student's t-Distribution:

t=5.07 which indicates that the probability of the null

hypothesis (i.e. no difference in the usability existed) is

less than .001. Hereafter, this probability will be denoted

by p). measurement of usability was the number of errors

encountered during each subject's session with the tutorial.

The results shown in Table 1 indicate that there v/ere more

than twice as many errors in the QUEL testing as encountered

during CUPID sessions. These results were most striking in

the more difficult constructs (t6, t10, t11 and t12).

2 A comparison of learnability.

Results of subjects' interactions during attempts to pose

the fourteen test queries, produced Table 2. The columns

of Table 2 represent the fourteen test queries

q1,q2,...q14. The rows are grouped by the type of infor

mation collected. Each query was analyzed for correct

ness, number of attempts, and total number of errors,

by subject category. The correctness statistic is a

number from 0 to the total number in that subject ca

tegory. If all naive subjects posed the query correctly

at some time, a 12 would appear in the row headed by "N".

The number of attempts is tallied as in Table 1, as is

the number of errors. (Note that more than one error

could be recorded for a given a-tempt.) These groups were

again subdivided into subject categories as discussed

70

above.

71

TABLE 2 Tabulated Data From Test-query Sessions

!q1 |q2 |q3 !q4 !q5 !q6 !q7 !q8 Jq9 Iq10!q11 Iq12!q13!oH

M !12 !12 no !11 !10 112 111 |12 !11 !12 }11 no |11 He
! 12! 10! 10| 9 ! 7 ! 12| 9 ! 12! 9 ! 10! 9 ! 6 ! 11! 8

"a c !7 !7 !7 !6 |6 |7 !5 !7 !6 !7 |6 |6 |5 !6
t !7!7!5!4|4!7!6!6|4|7!6!5!5!4

U - !3 13 13 !3 13 13 12 !3 13 13 13 !3 '! 3 !3
i 3!3!3!3i3!3!3!3!3!2!3!3!2!3!2

f !22 !22 |20 !20 |19 !22 |18 |22 }20 }22 |20 I1<TT19"! 1B~"
•Z ^ ! 22! 20} 18! 16! 14| 22\ 19! 21! 16! 21! 18| 131 20! H

N 112 |13 116 !14 |18 112 !22 J12 |19 |13 118 |19 115 !22
jo S 121 15! 19! 14! 14! 14| 14! 12! 15! 12! 14| 12! 13! H

% 17 !7 !10 !7 110 |7 19 l7 112 |8 |7 115 17 !15
^ U!8!7!8!7I9!7!9!7!9|8|8!12!9!9

^ c13 13 i* 13 15 13 13 ?3 14 T3 13 !*» IM 13j 5!1*!i*!3!4!5!3!i*l3l4!3!3!3!4!4
! - \22 !23 !30 !24 |33 ?22 !33 ~\22 J35~i24~ J28"i38~"!2rT 140~"
Z T 1 24| 26! 30! 25! 28| 24! 27! 221 181 23! 25! 27! 26! 2~

N 1 ! 16 16 13 ! 13 I 18 |1 !6 |3 11 112
N ! ! 4 I 6 I 7 ! 7 ! 2 ! 9 ! ! 7 I 1 !. 5 ! 14! 1 | 0

S r ! 11 13 I 11 I !2 ! |6 11 11 !4 |2 !8
i5c!1! I 1 I 3 I 8 I ! 3 ! 1 I 5 ! 2 ! 2 ! 7 ! 3 ! 4

0 s ! 11 11 I ! ! 11 I 111 ! 11 11 1
£ s ! 1 ! 2 I I 1 I 3 I I 2 I I 2 I ! I 3 I 2 I 1

{ 1 ji Tio"T6 T4~"T 76 T Tii~T2""T7 TS'̂ TS T20""
2 T I 2 ! 6 I 7 I 11! 18! 2 ! 14} 1 | 14| 3 ! 7 ! 24| 6 | H

Nr"naive", C="casual", S="sophisticated", Tstotal.
qT...q14 represents the fourteen test queries posed.

In Table 2 the number of correct answers, the number of

attempts, and the number of errors encountered while the

subject was posing the fourteen test queries gave some indi

cation of the learnability of the two languages.

72

a. Number correct

The majority of subjects answered more of the fourteen

test queries correctly in CUPID than in QUEL. Using the

Student's t-Distribution, this statistic was found to be

significant for p<.001 . The naive subjects answered 13*

more queries correctly, while the casual users performed

(answered correctly) 12% better. The sophisticated sub

jects did 5% better in CUPID.

b. Number of tries

There were more attempts (t=3.6 > t(.05)=3«01) made in

CUPID, especially when difficulties were encountered

(queries q5,q6,q9,q12,ql4). Although the subjects were

instructed to pose a query a maximum of three times in

both languages, 20% of the subjects exceeded three at

tempts in CUPID while 3% of the subjects exceeded three

attempts in QUEL.

c. Number of errors

There were 20% more errors in queries issued with QUEL

than those issued with CUPID. This fact was found to be

significant (p< .01). Naive and casual subjects had less

trouble formulating more difficult queries (queries q3,

q4, q5, q7, q9, ,q12, q14) in CUPID . The simpler

queries were almost all done correctly in one or two

tries.

3 Types of errors

Errors were further divided into three broad type

73

categories: syntax , semantic and typographic. Due to the

large quantity of information, it was necessary to use a

table for each language. Tables 3A and 3B present the in

formation recorded during CUPID and QUEL sessions. Each

table follows the same format: columns represent the four

teen test, queries (q1 ,.. ,ql4) and rows are grouped into

number of syntax erroro, number of semantic errors and

number of typographic errors. These groups are subdivided

into subject, categories (N, C, S, and T). Entries in the

syntactic and semantic groups include a number to indicate

the quantity and a two-letter abbreviation, as discussed

below, to further specify the errors.

In QUEL, syntax errors were categorized as:
PE - parenthesis error
MK - misplaced keyword
PP - other punctuation problems

CUPID's "syntax" errors included:
MS - misconnected symbols
MN - misplaced names or constants
FS - forgotten symbols

Since the semantics of the two languages are the same,

the three following categories of semantic errors applied to

both QUEL and CUPID.

TV - misunderstanding the tuple variable construct
L - misunderstanding linking between relations
AG - misunderstanding the aggregate construct

74

TABLE 3A Types of Errors During CUPID Test-query Sessions

Iq1 |q2 !q3 !q4 !q5 !q6 Iq7 !q8 !q9 |q10!ql 1 Iq12Iq13!q14!

! I I !lms|1ms! !3ms| !2ms| 12ms I I !2ms|
IN ! I I |1mn! ! I I I I |1mn| I !3nnJ

! I |2fs| |1fs| ! I llfsllfsl |2fs!lfs|1fs|

! I 1ms I I |1ms| I 2ms I }3ms| I 1ms I 2ms I 2ms I 2ms I
ic I I ! ! ! ! ! I ! I ! ! ! !2mn!

2 ! I ! ! ! ! ! ! I |1fs| I I |2fs!

2 i i i i i • i i i i • i i i i
a i i i i i i i i i i i i i i i

^ is ! I ! I ! I ! I ! ! I I I ! !
£ ! I !lfs| ! ! llfs! |2fs| I Mfsllfs! I

\ I |1ms| |1ms|2ms| !5ms| I5ms I I 3ms I2ms I2ms J4rr:S I
>o |T ! | | |1mn| I I I I I |1mn| j |5mn!

I I I3fs| !lfs| |1fs| |3fs|2fs| |1fs|2fs|3fs!

„ !N I I I I 21! 11! I ! ! 4i| ! 31! 11! ! "1!
% ! ! i^ag! !!!!!!!!!!!
t*

Ujc I I I ! I ! I I I 31! ! ! 21! ! 21!
! ! !3ag! I I I I I ! I I ! ! !

z !S I I I ! 1 ! ! I 1 I ! I I ! !
<r ___._- __ _..

£ IT I ! I I 21! 1lj I I ! 71! 1 311 31! ! 611
^ ! ! !7ag| ! 1 I ! 1 ! ! ! ! I I

IN I I I | ! ! ! I I 1 I I I I I I

2 ic I I I I • | I !1| I 1 I I I l l |

u is i I i I ! i || III I I 7 1

£ 11 i I 1 1 l (1 I I 1 I 1 i l l

Nr"naiveM, C="casual", S="sopnisticated", Trtotal
q1...q14 represent the fourteen test aueries posed,
msrmisconnected symbol; mn=misplaced name; fs=forgotten

symbol; tv=tuple variable problem; l=linking problem;
ag=aggregate problem.

7
5

T
A
B
L
E

3
B

T
y
p
e
s

o
f

E
r
r
o
r
s

D
u
r
i
n
g

Q
U
E
L

T
e
s
t
-
q
u
e
r
y

S
e
s
s
i
o
n
s

Iq
1

Iq
2

!q
3

!q
4

|q
5

!q
6

!q
7

Iq
8

!q
9

Iq
lO

Iq
1

1
!q

1
2

!q
1

3
!q

1
4

I

I
|2

p
e
!2

p
e
!2

p
e
|2

p
e
!

*
Ip

e
i

11
p

e
l

|1
p

e
|2

p
e
!

I
I

1
m

1
1

1
1

1
1

1
1

1
1

1
1

I
I

1
1

N
j

j
(

?
|

i
|

j
(

i
i

i
(

i
i

!
!

ll
p

p
i

!
!

I2
p

p
|

I
I

U
p

p
I

!
I

!

I
I

|
|1

p
e
1

1
pe

I
I

!1
p

e
I

I
!

I
!

!
I

i
r

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
1

U
1

(
1

1
j

1
1

1
(

t
1

1
l

1
1

$
!

!
!

!
U

p
p

I
!
!
!
!
!
!
!
!
!

0 i3
!

I
i

I
I

i
I

I
I

I
I

I
I

U
pe

!
1

o
1

1
1

1
1

1
1

1
1

1
I
I

1
1

1
i

o
i

(
i

(
i

i
i

i
i

i
i

i
i

r
i

*
I
I
I
!

I1
p

p
!

U
p

p
I

I
!

!
U

p
p

I
!

!

>
!

|2
p

e
!2

p
e
|3

p
e
|

3
p

e
|

!1
p

e
|

1
p

e!
1

p
e

|
}1

p
e
|2

p
e
!

!l
p

e
|

f/>
i

t
•

i
>

•
t

i
i

i
i

i
i

i
i

i
i

i
l
l

i
i

i
i

i
i

i
i

i
t

i
i

i
i

I
I

Il
p

p
!

|2
p

p
!

I3
p

p
I

!
!

|1
p

p
!1

p
p

!
!

!

!
!

!
I

|1
tv

{
|2

tv
|

|2
tv

|
|1

tv
!
3

tv
|

!2
tv

|
IN

!
I

I
I

1
1

!
1

1
!

1
I

I
2

1
!

1
2

1
|

51
1

1
2

1
!

1
1

M
a

g
!

I
I

I
I

1
M

a
g

!
I

I
|2

a
g

|

*
!

I
!

1
M

tv
!

I
I

M
tv

M
tv

!
M

tv
|2

tv
!

|
g

IC
|

I
I

I
11

!
31

!
1

!
!

11
1

1
11

!
31

!
!

11
!

S
1

1
M

ag
!

I
1

!
I

1
!

!
1

!
Il

ag
l

QL
.

.
.

.

^
!
!
!
!
!
!

M
tv

l
!

M
tv

!
!

1
I

!
j

IS
I

I
I

I
1

1
1

!
1

1
1

!
!

!
!

I
1

1
!

!
I

|
1

!
1

!
!

1
!

!
1

M
ag

!
!

I
I

!
1

I
I

!
!

|2
tv

|
J3

tv
j

!3
tv

{
M

tv
|4

tv
|2

tv
!2

tv
!

n
lT

I
!

I
I

21
!

51
!

I
11

!
!

31
!

I
31

!
91

i
1

31
!

!
!

!2
a

g
|
I
I
I
!
!
!
!
!
!

!3
a

g
|

g
IN

I
I

2
!

2
I

4
I

3
!

2
!

4
I

|
2

I
I

I
4

I
1

|
3

!
§

|c
!

1"
I

I
I

1
!

4
I

I
3

!
!

3
I

1
!

1
!

3
!

1
!

2
!

C
t .

}S
I

1
I

2
I

I
1

I
1

I
!

!
I

2
1

!
I

1
I

2
I

I

>
:
!
T

|
2

|
4

!
2

!
6

!
8

|
2

!
7

!
|
7

|
1

!
1

!
8

|
4

|
5

!

N
=
M
n
a
i
v
e
"
,

C
=
"
c
a
s
u
a
l
"
,

S
=
"
s
o
p
h
i
s
t
i
c
a
t
e
d
"
,

T
=
t
o
t
a
l
.

q
1
,
,
.
q
1
4

r
e
p
r
e
s
e
n
t

t
h
e

f
o
u
r
t
e
e
n

t
e
s
t

q
u
e
r
i
e
s

p
o
s
e
d
.

p
e
=
p
a
r
e
n
t
h
e
s
i
s

e
r
r
o
r
;

n
k
=
m
i
s
p
l
a
c
e
d

k
e
y
w
o
r
d
;

p
p
=
o
t
h
e
r

p
u
n
c
t
u
a
t
i
o
n

p
r
o
b
l
e
m
;

t
v
=
t
u
p
l
e

v
a
r
i
a
b
l
e

p
r
o
b
l
e
m
;

l
=
l
i
n
k
i
n
g

p
r
o
b
l
e
m
;

a
g
=
a
g
g
r
e
g
a
t
e

p
r
o
b
l
e
m
.

76

The types of syntactic errors are not comparable, but

provide information about each language separately. The

majority (68?) of these errors in QUEL fell under the ca

tegory of 'parenthesis error'; while the majority (64?) of

these errors in CUPID were classified as 'raisconnections'.

The tuple-variable type of error occurred only in QUEL;

48? of all errors in QUEL came from this misunderstanding.

Naive subjects who said in the questionnaire that they ex-

cell in English and related subjects had the greatest diffi

culty learning this concept (97% of these errors). The two

naive subjects who had the greatest difficulty with QUEL

(even the simpler queries) did not seem to grasp this con

cept.

Linking terms appeared to be easier to learn (queries

q4, q5, q9, q11, q12, ql4) in CUPID. Although 50? of these

errors occurred in CUPID, more (98 correct attempts) of the

queries concerned were finally phrased correctly in CUPID.

Only 77 correct queries were posed in QUEL sessions for the

same five queries. This result was found to be significant

at the .01 level.

The aggregate construct was a little more difficult to

learn in CUPID (70? of the errors occurred during CUPID

interactions). The errors involving aggregates made during

QUEL sessions were mainly (90?) due to to misunderstanding

or forgetting to name the domain in which the aggregate

answer was to be placed.

77

All but three of the total 60 typographic errors oc

curred during sessions with QUEL.

4 Subjective results

To measure subjective reactions to both systems, question

naires were analyzed, producing the information shown in

Table 4. In this case, the columns represent the subject

categories and are labelled accordingly, NAIVE, CASUAL and

SOPHISTICATE. The rows represent the following groups (and

subgroups) of information.

a. Preference

Subjects were asked which language they preferred(CUPID

or QUEL), and what they liked and disliked about each

language. Their preferences are quantified in the first

two rows of Table 4, but discussion of further reactions

is deferred to a later section.

b. Computer background.

Subjects were asked to list the number of computer sci

ence courses taken and languages learned. They were also

asked to state whether they knew nothing, a little, or a

lot about data bases before the experiment. This infor

mation appears in rows labelled "# courses", "//

languages", and "knowdb", respectively. The last sub

group ("knowdb") presents the number of subjects who knew

"a little" or more about data base systems.

c. Aptitude

They were requested to state in which of three areas they

78

excell: English and related subjects, all subjects, or

math and related sciences. The corresponding subgroups in

this category are "English", "All", and "Math".

d. Personal background.

The subject's age and sex were requested and recorded in

rows of the same names.

e. Opinion of experiment.

Detailed opinions of the clarity of the experiment and

each tutorial were requested. Table 4 presents this in

formation in rows labelled: "Clear ex.", to show how many

people found the experiment's instructions clear; "Clear

CUP", to display the number of subjects who thought the

CUPID tutorial was understandable; "Clear QUEL", to show

the number who found the QUEL tutorial clear; and "GT42",

to indicate the number of subjects who had difficulties

with the hardware.

79

TABLE 4

NAIVE CASUAL ! SOPHISTICATE

CUPID 9 6 1 !

QUEL 3 1 2 I

courses !

uage!

b 1

0 1. 5(avg) ! 4.3(avg) !

lang 0 I 1. 0(avg) ! 4.2(avg) !

knowd 0
i
i 0 3(well) !

English I 8 i 3 0 I

All 4 i
t 2 I 2 ' . I

Math ! o 1 2 ! 1 !

Age ! 31.2(avg)
i
i 20.6(avg) I 22(avg) I

Sex I 4M 8F ! 6M 1F ! 2M 1F I

Clear ex.

CUP.

QUEL

! 12 7 ! 3 !

Clear ! 10 7 ! 3 I

Clear I 10 7 ! 3 !

GT42 I 11 7 ! 3 I

Table 4 collates subjects' opinions, reactions and

feelings. Seventy-three percent of the subjects preferred

CUPID to QUEL. Using a Chi-Square analysis, this statistic

produces a X =3.2, significant at the 10? level). Everyone

found the experiment clear and most said the tutorials were

easy to follow (99?). Most everyone, including the three

people who had used CRT terminals before, found fault with

the hardware equipment, specifically the GT42 terminal

("lightpen lousy", "flakey machine", "sometimes too

80

sensitive, sometimes not sensitive enough").

5.4 Discussion

A measure of usability was obtained from subjects' per

formance during tutorial sessions and their stated prefer

ences on the questionnaires. Since the tutorials presented

the subject with a step by step procedure and each exact

interaction necessary, reasons for errors should be few. The

fact that fewer errors were encountered during CUPID ses

sions and 73? preferred CUPID, indicates that CUPID is

easier to use.

Subjects' interactions during sessions posing the four

teen test queries gave a measure of learnability. While

most of these results (Tables 2, 3A and 3B) speak for them

selves j there are several additional points to be made.

1 The statistics for the number-of-attempt (greater

than 3 attempts per query happened more often in CUPID than

in QUEL) may indicate either that the subjects did not

understand the instructions; or that they were having such

"fun" they did not count their attempts; or that they

learned the language better from their mistakes.

2 The analysis of syntactic error provides no compari

son information between the languages. However, it does

indicate areas of possible redesign to make each language

easier to learn.

81

3 The number of tuple-variable errors in QUEL suggests

that the algebraic overtones of the tuple-variable construct

in QUEL is difficult to accept or understand. Possibly,

CUPID's subtler handling of the tuple variable and blatent

handling of the linking mechanism makes linking relations

easier.

4 The primary confusion expressing aggregates in CUPID

seemed to be designating the target list of the aggregate

while the aggregate was itself part of a target list.

Several subjects commented on the lack of detailed explana

tion of aggregates in the tutorial which may account for

some of the difficulty there.

5 The CUPID typographic errors were probably due to a

particular PICASSO restriction (character strings must be

less than 10 characters long) which was noted in the tutori

al.

6 It is possible to attribute some of the typographic

errors made in QUEL to unfamiliarity with the specific

terminal's keyboard (which is different from a standard

typewriter). However, the QUEL statement appears plainly on

the screen before the subject Issues the query as does the

CUPID picture. Mistakes should be caught at that time.

The fact that more errors are made (or fewer errors are

noticed) in QUEL suggests that CUPID, the graphic language,

is either different enough to cause the subject to be extra

careful or visual enough to reduce error production and/or

to make errors more obvious.

The following discussion is presented to provide a feel

for a comparison of the friendliness of the two languages.

The information was obtained from answers to the question

naire.

When asked which language was preferred, 73? preferrec

CUPID (75? naive, 86? casual, 33? sophisticates). There is s

relationship between those who preferred CUPID and subjects

who excel in English (84? excel in English) as well as a

correspondence between CUPID devotees and subjects who knov

fewer than two computer languages (87? knew no language).

Those subjects who excel in the mathematical areas and sci

ences and who have experience with computer science(more

than two languages) preferred QUEL (90?).

It is not surprising that people with training in for

mal computer languages should state a preference for QUEL.

However, half of these people performed better(more correct,

fewer errors) in CUPID.

In general, subjects who liked QUEL, liked it because

it was more "mathraatical", "logical", and "easier to state".

They didn't like "formulating the query", 'tuple variables',

and having to specify range statements.' The naive subject:

did not like typing in the queries*, while the casual an:

sophisticate subjects did.

CUPID qualities which were generally liked include

83

being "easier to visualize", "easier to formulate", "more

fun to do", and "easier to follow". Negative comments in

clude: "slower to draw than to type", "slow editing mechan

ism" , and "not complete".

5.5 Concluding Remarks

Of the subject pool tested, there was a decided prefer

ence for the graphic query language, CUPID. Four out of

five • subjects used CUPID easier than the query language

QUEL; four out of seven subjects learned CUPID better(fewer

errors) than QUEL; three out of four subjects liked CUPID

better.

There is much more work to be done in the testing of

human- maddne interfaces. While this experiment was

designed to compare two specific language systems, it also

provides soiue important guidelines for future experimenta

tion of this nature. Certainly the actual use of the two

systems in question gives more accurate reports on usability

and learnability. The variety of subject backgrounds gives

a broad spectrum of opinion. We hope to continue human fac

tors tests involving these two systems to investigate timing

considerations, the importance of subjects' education lev

els, and further comparisons of more refined versions of the

languages.

Perhaps this experiment lends some credence to the old,

.84

familiar saying that a picture is worth 10,000 words.

85

CHAPTER 6

Conclusion

This dissertation has described the design, implementa

tion and testing of a picture query language system, CUPID.

In this chapter the highlights of this work will be summar

ized and directions for future research will be indicated.

6.1 The CUPID Language

In chapters 2 and 3 this thesis discussed the attri

butes of the picture query language. In an attempt to make

this casual user Interface easy to learn and easy to use, a

straightforward syntax and a flexible definition capability

was designed*

The semantics of the language was designed to be one-

to-one to the query language QUEL, while the syntax of CUPID

omits the use of explicit punctuation and keywords.

Instead, the user diagrams his query with system provided

symbols and relation- domain names on a CRT graphic device

with a lightpen. Although the picture representation was

judiciously chosen, the potential for imaginative alterna

tives provides an area for further research and experimenta

tion.

In describing the definition capability, an algorithm

86

for handling type discrepancies was presented. Also, an

algorithm for detecting and defining previously undefined

constants was detailed. In conjunction with this process,

the relational storage structure for representing user de

fined terms was described. Since each unique "type" of data

may require its own unique defining routine(s), it is ex

pected that these defining routines present an interesting

field for future work in the design and development of vari

ous heuristic and other artificial intelligence techniques.

6.2 Implementation

The present implementation was detailed in Chapter 4.

Also included in that chapter were implementation designs

for several aspects of the CUPID system (including the de

finition capability) that are not presently implemented due

to the unusual hardware configuration. It is expected that

once CUPID is converted to run entirely on the PDP-11,

further implementation will be expedited.

6.3 Experimentation

In Chapter 5 the design and results of a psychological

experiment devised to compare CUPID to the keyword-oriented

query language, QUEL was described. In testing human reac

tions to a human-machine interface, it was extremely impor

tant to conduct the experiment using the computer and the

87

systems in question. The results indicated that even total

ly naive subjects learned CUPID easily and 73? of all sub

jects preferred CUPID to QUEL.

In general, human factors experimentation may be a

fruitful area for further research. Specifically, with

respect to CUPID, further investigations which could prove

very useful include:

1 comparing timing considerations

2 comparing more advanced versions of the two systems

3 correlating aptitude, preference and correctness

4 correlating education level, preference and correctness

5 performing protocol analyses with the two systems

6.4 Implications

This project demonstrates a new approach to query

languages and provides a working prototype. Its implica

tions may be far reaching, affecting:

(a) specialized application areas

(b) the programming language field

(c) the graphics industry

A pictorial interface may significantly enhance usabil

ity of the computer in such application areas as report gen

erators, computer aided teaching programs, and computer aid

ed design facilities.

88

There is no need to limit picture languages to data

base management systems. Pictorial general purpose computer

languages can be developed, especially for the non-

programmer.

The concept that information can be expressed easily

and precisely by a picture language will provide incentive

for further graphics develpraent. As picture interfaces

become more popular than keyboard interfaces, better and

less expensive graphics hardware and software will be need

ed.

In conclusion, this work may be considered a feasibili

ty study of a pictorial query language system. As such, it

has shown that suph a system can be designed and implemented

in a reasonable amount of time (approximately one person-

year). Moreover, the system has proven, under comparative

testing, to be a plausible human-machine interface. Even in

it present primitive implementation> CUPID is relatively

easy to use, easy to learn and appealing to casual users.

It remains for future research to pursue this concept and

investigate further additions and refinements in order to

provide further casual user pictorial interface designs.

89

Appendix A - Formal Syntax

The following is a formal description of CUPID's re

trieval mode syntax. Although the update mode has the same

syntax, it utilizes different commands to denote the various

operations.

Notational meanings:

All closed figures contain names, constants or CUPID

provided items. Constants are keyboard entries.

Each terminal symbol has a connecting point, designated

by '.'; other terms use the connecting point of their

highest precedence binary operator. While only one connec

tion point is shown in the following definitions, aesthetic

reasons cause us to use more than one point in implementa

tion.

The special symbols devised to express picture posi

tioning include:

a) alb: connected from a to b by a connecting line

(connector)

b) aa^b: a is to the left of b and touches it direct

ly

c) a^b: a and b are anywhere in the query

d) a^^b: a is positioned to the left of b and not

connected by lines, but by contiguous picture parts.

The Grammar

box: Domain

Name

boxes: box ! box boxes

hex:

const :<C Constant

qbox:

lbop: A 1 M

90

91

luop: ^J0f7

rop: <E0> | <NE> j <GT> ! <LT> {

<GE> I<G>

bop: \T\ H ! B I 0

uo p«- 0 e

log: LOG

set:

by:

aop:

aop2:

sop:

/SET /

BY

INTER

92

I MAX I (MIN
\7 n7

03

tl1: box v qbox I a_fcn r qbox

tl: tl1 I tli^tl

qual: luop^ qual | qualJ'lbop ^ clause I

clause

clause: a_fcn I rop I' a_fcn | a_fcn V rop]/a_clause !

set_clause I luop >Kclause

a_clause: a__fcn vrop v a_fcn

a_fcn: attrib_fcn | aggr_fcn | ag2__fcn |

a__fcn sr bop^a_fcn | log]'const 4/a_fen |

uop^a__fcn

attrib_fcn: const | box

aggr_fcn1: aop >l asblob I aopvsblob

sblob: set vset_fcn

asblob: tl^qual

aggr_fcn: hex ^boxes v by 1/ aggr_fcn1 | aggr_fcn1

ag2_fcn1: aop2^asblob

ag2_fcn: hex^boxes ^by J/ag2_fcn

attrib: box

set_clause: set_fcn I ropv set^fen

set_fcn: set__fcn 4- sopl' set_fcn | set_fcn1 |

set Asblob

a_seq: a_fcn i^a_seq I a_fcn

set_fcn1: set 4/asblob I hex^a^seqi by i/ set t asblob

que: hex^tl } hex^tl^-qual

94

Appendix B - Implemented Grammar

?term HEX RETRIEVE QBOX BOX NCONST
?term WHERE CONS GT' EQ LT NE
?term MINUS TIMES DIV MAX MIN COUNT
?term PRINT SUM WHERE AGG AND
?term SCONST PLUS AVG

?left MAX

?left TIMES

?{
int nlines, linect, fn am, output, neons, nn, aopcnt ;
char buf[135][40];

struct qpid {
char *w;
int tk;
};

struct qpid token[] {
"BOX", BOX,
"HEX", HEX,
"QBOX", QBOX,
"RETRIEVE", RETRIEVE,
"CONS", CONS,
"WHERE", WHERE,
"WHERE AGG", WHERE AGG,
"AND",~ AND,
"GT", GT,
"EQ", EQ,
"LT", LT,
"NE", NE,
"PLUS", PLUS,
"MINUS", MINUS,
"TIMES", TIMES,
"DIV", DIV,
"MAX", MAX,
"MUM", MIN,
"CNT", COUNT,
"AVG", AVG,
"SUM", SUM,
"PRINT", PRINT,
"SCONST", SCONST,
"NCONST",
0

NCONST,

?}
);

??
prog: prog stmt I stmt;
stmt: range I retrieve | print;
range : HEX = {

95

printf(" range of ");
printf(" ?s ",&buf[linect][201):
printf(" is ");
printf(" ?s ",&buf[linect][10]);
printf(«\n");

};
print: PRINT HEX = {

printf(" print ?s\n",&buf[linect][10]);

xretrieve: RETRIEVE = {
printf(" retrieve(");

);
retrieve: xretrieve tl qual ;
tl: tlelra = {

} I
tl comma tlelm = {

tlelm: QBOX a_fcn ;
attrib: BOX r {

if(buf[linect][30] != 'o')
printf(" x = ");
printf(« ?s . ?s",&buf[linect][20]f
&buf[linect][10]);

};

null: =printf(")\n");
cons: NCONST r {

for(nn=0; nn<10 ;nn++) {
if(buf[linect][nn+10] == ' ')
buf[linect][nn+10] = '\0' :

}

if(atoi(&buf[linect][10],&ncons) !=o)
syserr("\ninteger conversion error\n")-

printf(» ?d ",neons);

SCONST = {

if(buf[linect][10]!='»')printf("\"")•
for(nn=0;nn<10;nn++) {

if(buf[linect][nn+10]=r'\0' ||
buf[linect][nn+10]==' ')break;

if(buf[linect][nn+10]>='A' &&
buf[linect][nn+10]<='Z')

buf[linect][nn+10]=
buf[linect][nn+10]+'a'-'A';

write(1,&buf[linect][10],nn):
printf("\"»»);

qual: where qualif | null;
qual_agg: where_agg clause |

qual_agg andl where_agg clause
where_agg: WHERE_ACC = {

xaop:

aop:

qualif:

where:

a_fcn:

a_fcn1:

agg_fen:
agg1_fcn:

attrib_fcn

bop:

clause:

rop:

if(aopcnt == 0){
printf("\n where ")
aopcnt = 1;

}
}

AVG I MAX I MIN I SUM | COUNT;
xaop = {
aoDcnt =0;
if(buf[linect][0] =='C)
printf(" c = count(");

else

printf(" ?c =?s(",buf[linect][0],
&buf[linect][0]);
}

clause ?prec MAX I
qualif and clause
WHERE = {

printf(") \nwhere ");
};

a_fcn1 I
agg_fen;
attrib_fcn |
a_fcn1 bop a_fcn;
agg1_fcn rprintf(")\n");
aop a_fcn qual_agg ?prec MAX
aop a_fcn;
attrib |

cons *

PLUS r{ printf(" + "); } I
MINUS ={ printf(" - "); } !
TIMES = { printf(" « "); } I
DIV ={ printf(" //");};
a_fcn rop a__fcn ;
GT= { printf(" > "); }
EQ= { printf(" = "); }
LT^ { printf(" < "); }
NEs { printf(" !r "); }

");

?Drec TIMES

=printf(" ,
?prec TIMES
AND =printf("

=printf("
\n and");

and \n")
comma:

and:

andl:
c a

include

include

"/mnt/nancy/jim/yylex.c"
"/mnt/nancy/jim/main.c"

96

97

Appendix C - Explanation for experiment

EXPLANATION

The purpose of this experiment is to obtain your reactions

to two different ways we communicate with a computer. One

of the ways is called QUEL and the other is known as CUPID.

You can think of them as different languages you might use

to obtain information stored in a computer(this information

is often called a data base).

The experiment consists of 3 parts:

1. You will be given a tutorial for one of the

languages and asked to follow it and interact with the

machine as it tells you. After completing the tutorial

you will be asked to apply the language to some

queries.

2. You will be given the tutorial for the other

language and asked to proceed as in 1.

3* You will be asked to complete a brief questionnaire.

Try to follow each tutorial by yourself. If you do not

understand something or need help please call Nancy

immediately(dial 2-5649 or 2-7520).

During some aspects of both languages you will be typing in

letters and numbers and other characters. Erasing is dif

ferent in the two languages:

98

In QUEL -

to erase a single character, type #

to erase the whole line, type €

In CUPID -

to erase a single character, hit the rub out key

to erase a whole line, hit the If (linefeed) key

Now you are ready to begin. The information you have stored

in the computer is shown on the wall to the right of the

terminal. The tutorials deal with the two tables labelled

PARTS RELATION and SUPP RELATION. Their meanings will be

explained in the tutorials. The other two tables - EMPL and

DEPT - are tables that a department store administrator

might find interesting. The EMPL table contains the follow

ing information: the employee number (numb), the name

(name), the salary in dollars(sal), the manager's number

(mgr), the employee's birthdate year (bdate), the starting

date-year(sdate). The DEPT information contains the depart

ment number (numb), the name (name), the store number

(store), the floor number (floor), and the manager's number

(mgr).

For the tutorial —

Imagine, if you will, that you are the head of an automotive

store. You have information stored about the parts you sell

in the table PARTS and information concerning where and how

you obtain these parts in SUPP. Assume the information is

stored as you see it listed. Each of the queries is meant

99

ot obtain some portion of the information. To grasp what we

are attempting, think about how you might have to get the

information if it were stored in a file cabinet - one table

per drawer and one row of a table per sheet of paper in the

drawer.

100

Appendix D - QUEL Tutorial

This document contains an introduction to the data base

management system, INGRES, and in particular stresses its

user language QUEL. It is meant to be read while interact

ing with the INGRES system at a terminal.

Please proceed by typing the lines underlined. A cr (car

riage return) must be entered after every line typed.

One's first encounter with INGRES is to type the UNIX shell

command

quelrun data-base-narae

which has the effect of turning you over to INGRES for sub

sequent interactions. The actual sequence is:

?quelrun nancy

[you type - quelrun nancy and cr(carriage return)]

Here, we have entered INGRES and specified that we are in

terested in the data base "nancy" which will have in it the

tables of interest to this document. After a momentary

pause the following will be returned to your terminal.

INGRES vers 4.0 login Tue Aug 26 20:02:34 1975

Set operators, Aggregate functions and X.ALL are not

101

implemented.

go

The first three lines constitute the current "dayfile" which

gives relevant information on the status of INGRES. The

statement "go" indicates INGRES is waiting for your input.

Now type

help "help"

"help" is an INGRES command which can deluge you with infor

mation about the system. In this case, you will receive the

page from the INGRES reference manual which describes the

help command. "\g" is a statement to INGRES to execute the

"help" command without waiting for additional input from the

terminal. The response from INGRES is:

query formulation complete

HELP(X) 4/22/75 HELP(X)

NAME

help - get information about how to use INGRES

SYNOPSIS

HELP ["item-in-question"]

DESCRIPTION

HELP may be used to obtain information about any sectio:

of this manual, the content of the current dats

base, or a specific relation in the data base,. dependin-

on the item- in-question. Omission of that argumer.-.

is functionally equivalent to HELP "help" .The othe-

legal forms are as follow:

HELP "section" - Produces a copy of the specified sec

tion of the INGRES Programmer's Manual, and prints i:

on the standard output device.

HELP "" - Gives information about all relations tha:

exist in the current database.

HELP "relname" - Gives information about the specifier

relation, but in greater detail than would HELP "" .

EXAMPLE

HELP

HELP "quel"

HELP ""

HELP "empl"

SEE ALSO

DIAGNOSTICS

Unknown name - The item-in-question could not ».-.*

recognized.

BUGS

103

Alphabetics appearing within the item-in-question

must be lower-case to be recognized.

continue

The final line contains the word "continue". This indicates

INGRES is ready to listen to you again.

At this point it is important for you to realize that INGRES

maintains a workspace in which you formulate your interac

tions. This workspace is desirable so that you can correct

spelling errors and other mistakes which you may from time

to time make without having to type in your entire interac

tion again.

At the present time your workspace contains

help "help"

If you type in "\g" once more, INGRES will simply execute

your workspace which will give you a second printout of what

you have just seen above.

In order to clear out our workspace we use the command

"\r"as follows:

\r

go

Our workspace now is empty. It is still possible to type in

104

"\g" as follows. However, it has no effect.

Vg

query formulation complete

continue

We will now try to exercise the "retrieve" command and will

do so on the data that now follows. To print the contents

of any relation (or table if you are more comfortable with

that terminology), simply type:

print relation-name

If we type help"" we can obtain a list of relations in the

data base ndemo. One relation from this list is called

"parts". We can print this relation as follows:

Q1:

print parts

\g

query formulation complete

parts relation

pnum Ipnarae

1{antifreez
2!wrenoh
3!tires
4 Jash-tray

Icolor |wgt !qoh

Ipink
!gray
Iblack
Iblack

10! 1

20! 32

685! 2

450! 4

! 5 oil

! 6 chamois

! 7 ornament

! 8 seatcover

! 9 race-strp
! 10 wash-solv

! 11 jacks
I 12 chrome

13 tape-play
! 14 radio

continue*

gray 1 250

yellow 578 3
white 15 95
blue 19 15
white 2 350
clear 0 1*3
gray 327 0

gray 427 0

black 107 0

black 147 0

105

Notice that the "parts" relation has information about the

components in a hypothetical auto parts store. Each row of

this table (or tuple in this relation) contains information

on a given part including its part number (pnum), irs part

name (pname), its color, its weight (wgt), and the quantity

that are on hand (qoh).

Using a "retrieve" command we will be able to obtain por

tions of this table which are of interest to us. (There is

almost no limit on how large the tables can be; these exam

ples are done on small ones so that this tutorial does not

become too large. In fact, the actual limit on the size of

a table is approximately 30,000,000 bytes for those who are

interested.)

To obtain information, we must first tell INGRES what table

it is that we wish to interogate. One way to do this miffht

be the command

I WANT TO TALK ABOUT parts

Although this is natural to the beginner, INGRES makes you

do something slightly more complicated. This added

106

complexity is necessary so that one does not get into trou

ble with more complicated interactions.

The statement required in INGRES is

range of variable-name is relation-name

The variable-name is indicated to be a surrogate for the

relation name specified. We can declare p to be this surro

gate for "parts" as follows:

\r

go

range of p is parts

Notice that we first cleared our workspace so that the whole

parts relation would not be printed agai;.

Now, we can add a "retrieve" command which can be the fol

lowing

retrieve p.pname

Q2: The interpretation is that we wish to obtain the pname

column of the relation specified by the variable "p".

In order to ensure that we have typed our interaction

correctly we may use the special command "\p". This will

simply print the contents of our workspace as follows:

\P

107

range of p is parts

retrieve p.pname

Since it appears to be a correct query we can execute it by

the "\g" command as follows:

\E

query formulation complete

PERIOD = *.' : line 3, syntax error

continue

Unfortunately, we have made a syntax error. What is more

unfortunate is that INGRES is not always overly helpful in

showing us what it is.

The problem with this interaction is an arbitrary convention

in INGRES that whatever you wish to retrieve must be en

closed in "()" . We will correct our mistake by retyping

the query as follows:

\r

go

range of p is parts

retrieve (p.pname)

\g

query formulation complete
pname

antifreez

wrench

tires

ash-tray
oil

chamois

ornament

seatcover

race-strp
Iwash-solv
jacks
chrome

tape-play
radio

continue

108

Everything has now worked out all right and we have obtained

the column of the parts table which contains the names of

the parts.

We can retrieve more than one column at once by simply indi

cating a sequence of column names separated by a comma.

Hence we could obtain part names and colors as follows.

03:

\r

£0

range of p is parts

retrieve (p.pname, p.color)

query formulation complete
pname {color

antifreez Ipink
wrench Igray
tires Iblack
ash-tray Iblack
oil 'gray
chamois Iyellow
ornament Iwhite
seatcover Iblue

race-strp
wash-solv

jacks
chrome

tape-play
radio

continue

white

clear

gray

gray

black

black

109

Notice in the printout each column contains the name of the

column so we do not get confused. Sometimes we require more

complex results than simply the names of columns. Suppose,

for example, we require the computation "1000-qoh". In oth

er words, we wish to know for each part how many less than

1000 we possess. This can be stated as follows:

\r_

go

range of pa is parts

retrieve (p.pname, computation=1000-p.qoh)

\g

query formulation complete

pname

antifreez

wrench

tires

ash-tray
oil

chamois

ornament

seatcover

race-strp
wash-solv

jacks
chrome

tape-play
radio

continue

coraput

999
968
998
996
750

997
905

985
650
857
1000

1000

1000

1000

110

Note that the heading on your printout is the first six

characters of the name "computation" which we have given to

the computed quantity "1000-qoh".

In order for INGRES to accept computed quantities you must

always give them a name. This is simply done by picking a

nam* and putting it to the left of an equals sign in the

retieval.

It is important that you spell correctly any column names

v/hich you use in an interaction, since INGRES has no spel

ling correcter at the present time.

Mote lastly that you need not put interactions on three

lines as we have been doing. It is usually wise to space

your interactions so they are as readable as possible.

So far we have produced interactions which give us columns

of the "parts" relation. We now indicate how to obtain only

portions of columns. The basic mechanism is a "where"

clause which can be added onto the end of the interactions

we have been doing. If we wanted to see pnames and colors

for those parts whose color is pink we would do the follow

ing:

Q4:

\r

go

111

range of p is parts

retrieve (p.pname, p.color) where p.color r "pink"

\g

query formulation complete
pname [color

antifreez Ipink
continue

The "where" clause limits the number of rows which are exam

ined to only those which satisfy the qualification given

i.e. to those which satisfy "p.color="pink". Only antifreez

has this property so it is the only entry in the output.

We are now to the point where we are typing enough informa

tion so that errors in typing are likely. It is very annoy

ing to have to reset the workspace and try again every time

an error is encountered. Two mechanisms are supported in

INGRES to help with this problem.

1) INGRES accepts the symbol # to mean "backspace". Conse

quently, one can simply backspace and retype errors which

occur. One can backspace as many times as one wishes;

INGRES will continue to back up until it reaches the begin

ning of the current line. Subsequent backspaces will have

no effect. If a line has become so garbled that the user

wishes to simply erase it and start typing again one can use

the symbol 0 which means "erase the whole line"

2) More complicated corrections are often necessary than can

be done easily using mechanism 1). These are supported by

112

calling on the features of the UNIX program called the edi

tor. A tutorial on the editor is available in the UNIX

programmer's manual. Here, we will simply discuss two

features of this program. Since it is a very powerful pro

gram, the serious INGRES programmer would be wise to study

that tutorial in more detail than the few exerpts we present

here.

Suppose we type in an incorrect query as follows:

\r

go

ranhe of p is perts

retrieve p.pname

where p.pcolor = "pinks"

This query has many errors and we might do better to start

over, but for the exercise we will use the editor which we

obtain by typing \e as follows.:

\e

>>ed

The statement ">>ed" says now we are in the hands of the

UNIX editor and our workspace has been sent to it.

We can sequence through our program by typing a line number

followed by a carriage return i.e.

1

11?

ranhe of p is perts

2

retrieve p.pname

J!_

where p.pcolor = "pink="

ranhe of p is perts

2

retrieve p.pname

3

where p.pcolor = "pink="

We have now looked at each line twice and are ready to fix

each one.

We do this with a substitute command. This has the form:

s/this character string/that character string/

The editor goes through the current line of our command and

finds the first instance of "this character string" and

replaces it with "that character string". In this way we

can find offending portions of our interaction and fix them.

First we do it for line 1.

,1

ranhe of p is perts

s/ranhe/range/

s/perts/parts/

114

1

range of p is parts

After two substitutions, everything is fine.

Notice that you only need to specify enough of "this charac

ter string" so that the editor can correctly make the sub

stitution.

Also, if you simply put a "p" after the last "/" , the

current line will be automatically printed.

Notice lastly, that # and § work the same way in the editor

as in INGRES.

We now proceed to fix the rest of our statement without

further comments.

retrieve p.pname

s/p/(p/

s/me/me)/p

retrieve (p.pname)

3

where p.pcolor = "pink="

s/pc/c/

s/k=/k/p

where p.color = "pink"

11

We have now fixed all lines and use the command "w" to send

the corrected statement back to INGRES as follows:

w

We now issue a "q" command to quit the editor and return tc

INGRES as follows:

9

<<monitor

The echo "<<monitor" is to remind you that you have returned

to INGRES.

It is usuallly wise to make sure INGRES got your corrected

interaction back from the editor correctly by typing "\p"

i.e.

\P

range of p is parts

retrieve (p.pname)

where p.color = "pink"

A "\g" will now execute the corrected command

\g

query formulation complete
pname

antifreez

continue

116

The operators "not", "and" and "or" are supported in INGRES.

Users may simply use the operators remembering only to put a

space on either side of them. It is sometimes essential to

remember that the precedence of boolean operators is "not"

then "and" then "or". Users who wish to alter this pre

cedence (or who do not remember it) may use parentheses to

precisely specify their meaning. The following interaction

gives an example of multiple boolean operators.

Q5:

\r

go

range of p is parts

retrieve (p.pname)

where (p.color="pink" or p.color = "gray") and p.pnum < 10

\g

query formulation complete
pname

antifreez

wrench

oil

continue

Three points should be carefully noted about the above in

teraction:

1) Character strings must be enclosed in double quote marks

while numbers may be typed with no special delimiters.

117

2) Note the operator "<" in the above interac

tion. Valid relational operators include:

= (equals to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

!= (not equal to)

3) There is no limit to the complexity of the expressions

which can be.constructed using relational and boolean ex

pressions.

We now do one last example concerning arithmetic operators

in QUEL. This example finds the pnames and qoh of parts

whose total weight (wgt times qoh) is less than 1000.

Q6:

\r

go

range of p is parts

retrieve (p.pname, p.qoh)where p.w»rt*p.qoh < 1000

query formulation complete

pname qoh

antifreez 1

wrench 32
oil 250
seatcover 15
race-strp 350
wash-solv 1 143
jacks 0

chrome : o
tape-play : o
radio ! o

continue

118

It should be noted that arithmetic operators can be used in

the qualification portion of an interaction as v/ell as in

the portion indicating the desired information. Valid ar

ithmetic operators include:

+ (addition)

(subtraction)

* (multiplication)

/ (floating point division)

** (exponentiation)

mod (integer division)

It should also be noted that any user can save any result of

an interaction by simply specifying the name of a relation

into which the answer should be placed. The following sug

gests an equivalent way of obtaining the previous result.

First a relation is created v/ith the answer then the print

command is used to display the result.

\r

119

go

range of p is parts

retrieve into locaKp.pname, p.qoh)where p.wgt*p.qoh < 1000

query formulation complete

continue

^r

go

print local

\g

query formulation complete

local relation

pname qoh

antifreez 1

chrome 0

jacks 0

oil 250

race-strp 350
radio 0

seatcover 15
tape-play 0

wash-solv 143
wrench ! 32

continue

Notice that local remains as a relation in the data base and

may be used in any future interactions by simply declaring a

range variable for it.

We turn now to interactions which involve more than one

relation at a time. It is in these interactions that OUEL

is especially useful because of its ability to connect in

formation in different relations.

120

First we print a second relation that will be used in the

sequel.

07: .

\r

go

print supp\g

query formulation complete

supp relation
isnum Ipnum !jnum Ishdt |quan !

I 8! 1! 1003174-12-31! 1!
! 8| 1! 1004175-01-15! 1!
! 8! 1! 1007176-02-01! 1!
I 8! 2! 1003174-12-29! 128!
! 8| 2! 1004175-01-15! 256!
! 8! 2! 1007176-02-01! 1024!
! 8! 6! 1003174-12-25! 2!
I 8! 6! 1004175-02-01! 4!
I 8! 8! 1004174-12-20! 5

I 8! 9! 1004174-12-31! 500

I 8! 11' 1004175-01-01 2

! 8' 11 1007176-02-01 3
I 8 12 1004175-04-31 3
! 8 12 1007176-02-01 2

! G 5 1004175-02-05 400

I 20 5 1001175-01-10 20

I 20 ! 5 ' 1002175-01-10 75

I 41 ! 5 i 1003175-01-02 • 50
I 62 ! 3 ! 1002174-06-18 3
I 67 ! 4 I 1005175-07-01 ! 1
! 67 ! 5 ! 1005(75-07-31 I 20
I 122 ! 7 ! 1003175-02-01 I 144
I 122 ! 7 ! 1004J75-02-01 I 48
I 122 ! 9 ! 1004175-02-01 I 144

I 131 I 8 I 1001V75-03-15 ! 2
! 131 ! 8 ! 1002175-03-15 ! 1
! 131 ! 8 I 1004174-11-22 ! 4
! 131 I 9 I 1001175-04-31 I 200

I 131 ! 9 I 1002175-03-31 I 100
I 440 ! 6 I 1001174-10-10 I 2
! 475 I 1! 1001173-12-31 ! 1
! 475 ! 1 I 1002174-07-01 I 1
I 475 I 2 I 1001173-12-31 ! 32
! 475 ! 2 I 1002174-05-31 I 32

I 475! 3! 1001173-12-31! 2\
I 475! 4! 1002174-05-31! 1!
continue

121

This relation gives information on conditions under which

the hypothetical auto parts store can buy more parts. It

indicates the supplier number (snurn) from whom each part

(pnura) is available, the quantity (quan) in which it can be

ordered, the date (shdt) such an order could be shipped and

the job number (jnum) to which such an order could be

charged. Notice that the column pnum appears in both the

parts relation and this relation. Using this information we

can "connect" the two relations. For example, we might want

to know the supplier numbers of suppliers who sell an

tifreez.

One way to proceed is to interrogate the parts relation to

find the part number of antifreez as follows:

Q8:

\r

go

range of p is parts

retrieve (p.pnum) where p.pname = "antifreez"

\g

The answer returned is:

quory formulation complete
pnum

1

continue

Hence, part number 1 is antifreez. Then we could interro

gate the supply relation seeking the suppliers of part

number 1 as follows:

Q9:

\r

go

range of s is supp

retrieve (s.snum) where s.pnum =1

\6

query formulation complete
snum

8

8

8

5

475
continue

47:>

Notice that suppliers 8 and 475 supply antifreez.

Notice also that suppliers 8 and 475 are repeated more than

once. Because of the internal way that INGRES is organized,

much faster response tine can be supported if the "answer"

is printed on the terminal with duplicate values sometimes

present. In this case, the user must look at the response

and note the duplications. On the other hand, should the

user wish the system to detect and delete the duplicates,

123

the user need only retrieve his answer into a temporary

relation and then print that relation. The instructions are

the following:

\r

go

range of s is supp

retrieve into newsupp(s.snum) where s.pnum = 1

print newsupp

\g

query formulation complete

newsupp relation

snuro

8

475
continue

In any case, it is rather inconvenient to have to issue two

retrieve commands to get the information we require.

What is even more inconvenient is the necessity of obtaining

the first output, namely the number 1, and then manually

substituting this into the second query. It would have been

extremely inconvenient if antifreez had had several part

numbers; we would have had to substitute them all.

Whenever you are in doubt concerning the meaning of a query

with more than one variable in it, always think of the two

step process described above and you will not go wroncr.

With this in mind, convince yourself that the correct answer

124

(with duplicates) to our interaction above can also be found

using the following code.

Q10:

\r

CO

range of s is supp

ran^e of p is parts

retrieve (s.snum) where s.pnum=p.pnum and p.pname="antifreez"

\g

So far in this document we have considered how to retrieve

portions of a relation (or relations) that are of interest..

The examples have indicated the power of QUEL for retrieval

purposes. The only feature which has not yet been con

sidered is aggregation.

We now illustrate the use of this construct in two examples*

The following command finds the number of part names from

the parts relation which are black.

011: .

\r

go

range of p is parts

retrieve (totals count(p.pname where p.color = "black"))

\g

query formulation complete
{total I

i i
i------i

! . li
continue

125

Notice tnat the 'where' clause here is inside the

parentheses surrounding the target list. This is because we

are using the 'where' clause to modify the aggregate COUNT

in the target list. If we wished a further qualification on

the entire query, we would have another 'where' clause at

the end.

The next command finds the sura of quantities of part number

2 able to be supplied before October 1, 1975.

Q12:

\r

go

range of s is supp

retrieve (s = sum(s.quan where s.pnum=2 and s.shdt<"75-10-1"))

\S

query formulation complete
s

448
continue

The following points should be noted about aggregates

a) aggregates have the form

agg-op(target-list where qualification).

126

agg-op can be

min

max

count

sum

avg (sum/count)

The target list is the quantity for which the agrrreqate is

desired using those tuples which satisfy the qualification.

b) There is no limit on the number of variables which can

appear in an aggregate.

c) Aggregates can be nested, i.e. the target list and qual

ification may themselves contain aggregates.

d) The "QUEL" section of the reference manual indicates cer

tain illegal aggregations. For example, avg is only allowed

for quantities which are numeric. An attempt to find thp

average of a quantity that is alphanumeric (for example

pname) will result in an error.

e) An aggregate can appear anywhere in a QUEL interaction.

Another command which proves useful is the exit command

which is "\q", i.e.

\r

go

\q

127

This command will type a friendly greeting on your terminal

and return you to the care of UNIX for any further process

ing you may wish to do. The current greeting is the follow

ing:

query formulation complete

INGRES vers 4.0 logout

Tue Aug 26 20:05:22 1975

goodbye - come again

The only other way to "bail out" of INGRES is to hit the

"rub out" key. This should only be used in emergency (for

example to abort a printout which is much too long). It has

the effect of returning you directly to UNIX.

128

Appendix E - CUPID Tutorial

This document contains an introduction to the data base

management system, INGRES, and in particular stresses one of

its user language CUPID, the Casual User Pictorial Interface

Design. You will be retrieving information from a database

via query-diagrams. To "draw" such a diagram, you merely

select the appropriate symbols from a 'menu' of pre-drawn

symbols ; connect them by either juxtoposition or connector

lines; fill in the table and column names through more

'menu' selection; and type in constant value when needed.

This manual is meant to be read while interacting with the

INGRES system at a DEC GT42 graphics terminal. It will be

assumed that you are sitting in front of an already invoked

version of CUPID. If so, a welcoming message should appear

on the screen (the invoking procedure will be described in

another document).

GRAPHIC TERMINOLOGY

Some graphic terminology is appropriate at this time. The

lightpen (abbreviated -LTPEN) is the silver-colored pen-like

instrument hanging to the right of the screen. CUPID is

designed to necissitate a minimal amount of typing (or key

board interaction); therefore, most of your actions will

120

utilize the lightpen. The word HIT is used to mean a liqht-

pen selection. There are two types of HITs:

1 Touching the item on the screen with the tin of the

lightpen. Since the li^htpen is li^ht-sensitive, you

can select a word, line, or symbol in this way.

2 Placing the lightpen on the trackin^-cross(8-pointed

star-like figure on the screen) and dras^inr; the

tracking-cross(t-c) to the place on the screen you wish

to select, then depressing the CTRL key and while hold

ing that key down, type an "alf(CTRL-a).

REMEMBER: You can use either method 1 or 2 to select a

lighted part of the screen; but, you must use method 2

to select a blank position.

Both of these operations will result in a beep from the

machine and the appearance of a small cross very near the

hit position which indicates the hit was registered. As

soon as you hear the beep, pull the lightpen away from the

screen (if you are usin» the t-c, you may retract the LTPEN

as soon as the t-c is in place, even before depressing the

CTRL-a).

Please notice the screen configuration. There is an area

circumscribed with a larp^e rectangle (the welcome message is

inside). Most of your actions will take place within the

rectangle, instructions will appear above the rectangle, and

130

control commands will appear to the right of the rectangle.

You will be hitting commands also.

LTPEN Exercise

Now try out the lightpen. Touch LTPEN to the screen (gent

ly) where you see the word HIT 1. It will blink if your hit

was accurate. If it doesn't blink try again or drag the t-c

on top of HIT 1 and type CTRL-a. When it blinks, drag the

t-c to a blank portion of the screen (within the rectangle)

and depress CTRL-a. Now you should see HIT 2 and you can

try to hit it, make it blink, then place a new target else

where. When either you or IT have had enough, hit the com

mand HELP.

NOTE: If you happen to make a double hit (your new

target will overwrite the blinking one) .just proceed as

though the old one were not there. But be aware of the pos

sibility of double hits due to the lightpens sensitivity.

If this annoys you, turn the brightness (knob at the upper

right) down.

HELP

Now you see before you the screen set-up for drawing your

queries. You will be selecting names at the bottom left

portion of the screen(name-space); you will be selecting

symbols(the BOXes and HEXes ,etc.) from the bottom

right(synbol-space); and you will be putting them together

131

into a query in the top half of the screen(query-space).

We shall work with only a few of the help commands Hit ALL

to see information about all tables in the database ("nancy"

is this database). When you have finished reading the in

formation, hit RETURN to get back into the help-mode.

Now hit EXAMPLE to see some example queries. Page through

several examples with the MORE command.

Mote the form of the query in CUPID. Hexagons (containing

table names) are abutted to the left of boxes (containing

column names). The vertical diamonds with "?" inside are

connected by lines to the items (target items) you wish to

see displayed; horizontal hexagons are reserved for typing

in values. The operators (arithmetic-squares, relational-

horizontal diamonds) are straight forward. Aggregation

operators (pentagons) are explained in more detail later.

Please note that only the HEXes and BOXes are juxtoDosed,

all other symbols are connected via specific lines (connec

tors).

When you are finished perusin.g the examples, hit RETURN tc

return to the HELP mode.

Once back in the HELP mode, hit CONTINUE to proceed into the

query formulation phase.

Query formulation consists of two phases:

132

1) Table Selection

2) Query Drawing

TABLE SELECTION

You start the query formulation by selecting the tables you

wish to use. Hit "parts" and "supp". The selected table

names will appear at the bottom of the screen as you select

them. If you get any names other than the two desired (or

multiple copies), hit the command REMOVE, then hit the table

name to be removed in the selected area at the bottom of the

screen (it will be scratched out). You must hit the command

REMOVE for each name you wish to delete.

Hit CONTINUE to proceed to Query Drawing.

QUERY DRAWING

The commands that you see on the right side of the screen

are:

CONNECTOR: For each connecting line between symbols, hit

CONNECTOR, then hit one symbol's atta<?her poinx.(i.e.

the short line extending from the symbol), then the

second symbol's attacher point. If you wish to go

around a symbol, or merely draw a "curved" connector,

continue making hits as you wish the line to "curve".

To draw 2 different connectors(i.e. disconnected

lines), you must hit the command CONNECTOR before

133

beginning the second line.

ERASE: This routine will redraw the query (eliminating

the bottom half of the screen). It will ask what you

wish to erase (Connector, Name, or Symbol); you hit the

appropriate word en the right; the screen is redrawn:

you hit the item to be erased:

for connectors- hit the first drawn endpoint

for names- hit the lower left point of the first

character

(NAME refers to any string of characters-

i.e. table or column names or constant values)

for symbols- HEX and BOX, hit upper left corner;

all others, hit the center of the symbol;

the item hit should blink(keep trying until it .does);

then hit the command ERASE and the screen will be

redrawn without the erased item; either hit RETURN to

return to complete the query or hit one of the three

types of items to be erased next.

HELP: The HELP command allows one to obtain help while

drawing a query.

REJECT: To reject an item (either a name or symbol) after

selecting it but before placing it in the query space

(after placing you must ERASE), hit REJECT; then the

item to be rejected; then proceed.

CONSTANT: To place a constant in a CONS (horizontal hex),

hit CONSTANT, then type the value and a carriage re

turn; then place the value inside the CONS-hex; then

proceed.

FINISH; Hit FINISH to process query. A new screen confi

guration will appear in anticipation of the answer to

your.query. After hitting FINISH either

1. the query will be processed and the answer will

appear

2. error messages will tell you the type of pictori

al syntax error

you made

3. you may be asked to "define" the constant value

used The three commands you will be hitting are: ALTER

to change some aspect(s) of the query just drawn;

REDRAW to draw a totally new diagram; and DEFINE to

enter the define phase for defining a constant value

(to be discussed in another document).

REDRAW: The REDRAW command will clear the query space to

allow you to draw a new query.

QUIT: Hit this command to return to the first screen

configuration of CUPID. This will allow you to redo

the TABLE SELECTION phase or exit entirely.

Before beginning to issue queries there are a few points of

procedure.

1 HEXagons must be placed in the query space before BOXes

which must be next to the HEXes. When placing a BOX

next to a HEX or another BOX, point to the upper right

135

corner of the existing item.

2 HEXes and BOXes and CONSes must be on the picture

before selecting and placing either names or con-

stantsto be put in them.

3 A symbol must be placed in the query space before draw

ing a connector to it. Connectors must be drawn to and

from attacher points. There are from 2 to 1 short lines

which jut out of each symbol; the free end of these

lines are the attacher points.

Several examples follow.

In this first query, you will be guided in a step by step

manner, however, in all other queries, the completed picture

will be shown to you and you will be expected to reproduce

it in any manner.

Q1: Retrieve the entire parts table.

First select a HEX with the LTPEN by either method described

earlier The HEX will flash. Now bring the t-c to a clear

part of the query space and type CTRL-a. The HEX should

appear there. (If this doesn't happen, try again -or hit

the ERASE command, then hit the RETURN command without eras

ing —this may help. Electronic problems sometimes make

this messy. Do not get frustrated.)

Select a BOX similarly. It will flash; bring the t-c up to

the upper right corner of the HEX; type CTRL-a; the BOX

136

should now appear beside the HEX. Repeat this process until

you have 5 BOXes attached together and to the ri<>:ht of the

single HEX.

How fill in the table and columns names. Point the LTPEN at

the table name- PARTS; it will flash; bring the t-c to ooint

inside the HEX; type CTRL-a; the name-PARTS should then

appear inside the HEX. If this doesnot happen try movin^ it

by moving the t-c and typing CTRL-a again. Continue placing

all of the column names in BOXes, one to a BOX.

Select the ^"-symbol to indicate which colunms you wish to

see. Bring the t-c to a place in the top half of the screen

convenient to connect the "?" from the first BOX; type

CTRL-a. Proceed selecting and placing until you have 5

"?"'s on the screen

Connect one BOX to one "?" by hitting the command CONNECTOR;

hit one endpt of the connector (an attacher point of either

the BOX or "?") The line should appear to connect the sym

bols completely. Repeat this procedure 5 times. Your pic

ture should look like:

Pakts PNUn PNAME COLOR v\j$T \C10&

Now hit the command FINISH.

The result should be:

pnum !pname color !wgt jqoh

1{antifreez pink 10! 1

2'wrench gray 20! 32
3'tires black 685 2

4!ash-tray black 450 4

5!oil gray 1 250

6{chamois yellow 578 3
7(ornament white 15 95
8|seatcover blue 1*5 15
9Jrace-strp white 2 350
10}wash-solv clear 0 1 14^
11J jacks Igray ! 327 ' 6
12!chrome !gray ! 427 0

13|tape-play [black ! 107 0

14!radio !black ! 147 ! 0

13*

continue

NOTE: The word continue and a beep will always follow the

response. Please wait until this occurs before drawing your

next query.

Notice that the "parts" table has information about the com

ponents in a hypothetical auto parts supply store. Each

row of this table (or tuple in this relation) contains in

formation on a given part including its part number (pnum),

its part name (pname), its color, its weight (wgt), and the

quantity that are on hand (qoh).

Now you are ready to draw the next query. Hit ALTER to

correct, change or add to the last query drawn; hit REDRAW

to draw a picture from scratch; hit QUIT to get to the first

138

screen configuration (this will allow ycu to proceed from

the beginning and step through the TABLE SELECTION phase

again). The DEFINE command Dresently acts like the QUIT

command.

Hit REDRAW.

Q1.5 A short-hand diagram for that query is:

Using a CUPID picture we will be able to obtain portions of

this table which are of interest to us. (There is almost no

limit on how large the tables can be; these examples are

done on small ones so that this tutorial does not become too

large. In fact, the actual limit on the size of a table is

approximately 30,000,000 bytes for those who are interest

ed.)

Q2: Retrieve PNAMEs out of the PARTS table.

pname

antifreez

wrench

tires

ash-tray
oil

chamois

ornament

seatcover

race-strp
wash-solv

jacks
chrome

tape-play
radio

continue

139

Everything has worked correctly and we have obtained the

column of the parts table which contains the names of the

parts.

We can retrieve more than one column at once(as in 01) by

simply indicating a sequence of boxes containing column

names with attached "?" diamonds. At this point you may

either hit the command ALTER or REDRAW.

140

Q3: Thus, to obtain part names and colors we draw:

pname

antifreez

wrench

tires

ash-tray
oil

chamois

ornament

seatcover

race-strp
wash-solv

jacks
chrome

tape-play
radio

continue

color

pink
gray

black

black

gray

yellow
white

blue

white

clear

gray

gray

black

black

141

So far we have produced interactions which give us columns

of the "parts" table. We now indicate how to obtain only

portions of columns. The basic mechanism is to connect

appropriate limiting operators and any constant values to

the BOXes targeted with "?"-symbols.

Q4: If we wanted the previous query only performed for those

parts whose color is pink we would do the following:

14?

An explanation of how to place the word - pink - is in the

following NOTE on the next na^e.

pname

antifreez

continue

'color

IDink

These limiting operators reduce the number of rows which are

examined to only those which satisfv the cualification -riven

i.e. to those which satisfy the part of the auery not sin

gled out with "?" -or:

Only antifreez has this property so it is the only entry in

the output.

NOTE: To place the word 'Dink' in the CONS-nox; hit the

command CONSTANT; type - pink - and a 'cr'(carriage return);

now place the t-c inside the CONS and depress CTRL-a. The

first letter of every constant value must be entirely in the

symbol.

Q5: Obtain the pnames of parts which are gray anl whose

pnum is less than 10.

pname

wrench

oil

continue

143

Three points should be carefully noted about the above in.

teraction:

141-

1) Note the relational operator LT in the above interac

tion. Valid relational operators include:

<^EG> (equals to)

<LT> (less than)

<G£> (greater than)

<^LT> <v^>-> (less than or equal to-not implemented)

<^Gj> ^s^i^ (greater than or equal to-not imple

mented)

<^NE> (not equal to)

2) There is no limit to the complexity of the expressions

which can be consructed using relational and boolean expres

sions, theoretically since the present implementation is

restricted.

3) All of the relational operators except <^9^> and ^^
are ordered operators. This means that whatever is connect

ed on the left is the first operand and the item connectec

on the right is the second.

145

Q6: We now do an example concerning arithmetic operators in

CUPID. This example finds pname and qoh of parts whose total

weight (wgt times qoh) is less than 1000.

pname qoh

antifreez 1
wrench 32
oil 250
seatcover 15
race-strp 350
wash-solv 143
jacks 0

chrome 0

tape-play 0

radio 0
continue

It should be noted that arithmetic operators can be used in

the target list ("?") portion of an interaction as well as

in the qualification portion

Note also that any operations (even a "'/"-symbol) you may

wish done to the result of an arithmetic operation is 'hung'

off of the operator [as in the picture part meaning less

than 1000].

Valid arithmetic operators include:

E

B

0

addition)

subtraction)

multiplication)

division)

exponentiation)—not implemented

146

We turn now to interactions which involve more than one

table at a time. It is in these interactions that CUPID is

especially useful because of its ability to connect informa

tion in different tables.

Q7: First we print a second table that will be used in the

sequel.

supp relation

{snum !pnum !jnum Ishdt !cuan !

! 8! 1! 1003174-12-31! 1!
5 8! 1! 1004J75-01-15! 1!
! 8! 1! 1007576-02-01! 1!
! 8! 2! 1003*74-12-29! 128!
! 8! 2| 1004J75-01-15! 256!
! 8! 2| 1007576-02-01! 1024J
! 8| 6! 1003!74-12-25! 2!
! 8! 6! 1004575-02-01! 4!

! 8! 8! 1004J74-12-20J 5!
! 8! 9! 1004!74-12-?1! 500!
! 8S 11! 1004(75-01-01! 2

! 8! 11! 1007576-02-01! 3
! 8| 12j 1004575-04-31! 3

! 8 12 1007!76-02-01 2

! 9 5' 1004J75-02-05 400

! 20 5 1001575-01-10 20

! '20 5 1002575-01-10 75

! 41 5 1003575-01-02 50

! 62 3 1002574-06-18 3
! 67 4 1005575-07-01 » 1

! 67 5 1005575-07-31 1 20

! 122 7 ! 1003575-02-01 ! 144
j 122 ! 7 ! 1004575-02-01 ! 48
! 122 ! 9 ! 1004 575-02-01 ! 144

! 131 ! 8 ! 1001575-03-15 ! 2
! 131 ! 8 ! 1002575-03-15 ! 1
! 131 ! 8 { 1004574-11-22 ! 4
! 131 ! 9 5 1001575-04-31 ! 200

! 131 ! 9 { 1002575-03-31 ! 100
! 440 ! 6 5 1001574-10-10 ! 2
! 475 ! 15 1001573-12-31 5 1
! 475 ! 15 1002574-07-01 5 1
! 475 ! 2 5 1001573-12-31 5 32
! 475 ! 2 { 1002574-05-31 5 32
! 475 ! 3{ 1001573-12-31 5 2
! 475 ! 4 } 1002574-05-31 5 1
continue

147

This table gives information on conditions under which the

hypothetical auto parts store can buy more parts. It indi

cates the supplier number (snum) from whom each part (pnum)

is available, the quantity (quan) in which it can be or

dered, the date (shdt) such an order could be shipped and

148

the job number (jnum) to which such an order could be

charged. Notice that the column pnum appears in both the

parts table and this table. Using this information we can

"connect" the two tables. For example, we might want to

know the supplier numbers of suppliers who sell antifreeze.

08: One way to proceed is to interrogate the parts table to

find the part number of antifreeze as follows:

The answer returned is:

pnum

1

continue

Hence, part number 1 is antifreeze.

ANTlFKee?:

09: Then we could interrogate the supply table seeking the

suppliers of part number 1.

snum

8

8

8

475
475

continue

Notice that suppliers 8, 475 supply antifreeze.

149

Notice also that suppliers 8 and 475 are repeated more than

once. Because of the internal way that INGRES is organized,

much faster response time can be supported if the "answer"

is printed on the terminal with duplicate values sometimes

present. In this case, the user must look at the response

and note the duplications. On the other hand, should the

user wish the system to detect and delete the duplicates,

the user need only retrieve his answer into a temporary

relation and then print that relation. At this time the

appropriate protocol for CUPID has not been implemented. We

must live with duplicates.

150

It is rather inconvenient to have to issue two query formu

lations to get the information we require.

What is even more inconvenient is the necessity of obtaining

the first output, namely the number 1, and then manually

substituting this into the second query. It would have been

extremely inconvenient if the antifreeze had had several

part numbers; we would have had to substitute them all.

151

Q10: The following indicates one way around this inconveni

ence.

Resulting in the following:

snum

8

8

8

475
475

continue

ANTlFRtfcet

So far in this document we have considered how to retrieve

portions of a table (or tables) that are of interest. The

examples have indicated the power of CUPID for retrieval

purposes. The only feature which has not yet been con

sidered is aggregation.

152

We now illustrate the use of this construct in two examples.

153

Q11: The following command finds the number of part names

from the parts table which are black.

continue

You should note that there are two "?"-symbols and only one

column of result. This is due to information necessary to

perform aggregation. Each aggregate operator needs a tar

geted (:'?"-symbol attached) BOX. The aggregate may also

need some untargetted //BOXes (known as qualification).

Notice the line connecting the aggregate operator C!!T to

the box containing COLOR. This indicates that the qualifi

cation of 'color = black' modifies the aggregate and not the

whole query(if the connector where not there). Without that

154

connecting line, we would have obtained the count of PNAMEs

for each time the color of an item is black - or the result

would have shown 14 listed 4 times. You might like to try

this query also. If so, just erase the connector and reis

sue the query.

155

Q12: The next command finds the. sum of quantities of part

number 2 to be supplied before October 1, 1975.

NOTE: Due to the special type of information in column SHDT (dates)

you must type "75-10-01 with the first character beinp " .

448

continue

The following points should be noted about aggregates

a) aggregate operators include

sum

LVg J

minimum

maximum

count

sum

average(sum/count)

156

b) There are illegal aggregations. For example, avg is only

allowed for quantities which are numeric. An attempt to

find the average of a quantity that is alphanumeric (for

example pname) will result in an error.

c) An aggregate can appear anywhere in a CUPID interaction.

d) Aggregate operators may be (1) attached at one end only

- meaning any qualification does not refer to the aggregate;

or (2) attached to boxes at several points - meaning the

box not marked with a "?" starts the qualification referring

to the aggregate only.

e) The resulting column heading is a CUPID generated headinr

using letters of the aggregate operator's name.

Appendix F - Test queries

Now you are ready to test your skills. Try to formulate the

following queries and retrieve the appropriate information.

Try your best, but do not worry if you can not do some.

Give yourself a maximum of three attempts at each query,

then go on to the next. Remember, this is not a test of

you we are testing the systems.

The two tables are briefly described in the EXPLAHATIOi:

page.

1 List the whole EMPL table.

2 Display the NAMEs from EMPL table whose SALs are greater

than 10000.

3 Retrieve the COUNT of NAMEs in the EMPL table.

4 Get the NAMEs out of EMPL who are in a DEPT in the DEPT

table

which is on FL00R= 2 (link via MGR).

5 Ftnd the MGR out of EMPL whose NAME is associated with

a SAL greater than 10000.

6 List all DEPTs whose FLOOR is less than 3.

7 Find the SAL of Choy,W. after multiplying it by 2 .

8 Shew DEPTs and their respective K.OORs.

9 Ge~ people who work for Thomas,T.

10 Find the maximum salary .

11 Find the floor where Evans,M. works .

12 List those employees who make more than their managers.

13 Where are earrings sold?

14 How many people work in store 7 ?

158

Appendix G - Questionnaire

QUESTIONNAIRE

1 Which language did you like better?

QUEL CUPID

2 Was QUEL's tutorial clear?

Yes No

If NO, please detail:

3 Was CUPID's tutorial clear?

Yes No

159

If NO, please detail:

4 Were the instructions for the experiment clear?

Yes No

5 Have you ever used this kind of terminal (CRT) before?

Yes Mo

6 Did you have any difficulties with this terminal?

Yes No

160

If yes explain further

7 What aspects of QUEL did you like-

What aspects of QUEL did you dislike-

8 What aspects of CUPID did you like-

What aspects of CUPID did you dislike-

9 Circle the area in which you excel (based on SAT scores,

grades, or some comparable measure).

ENGLISH and related subjects

ALL subjects

MATH and related sciences

10 How long have you lived in U. S.

All your life No. of years

11 How old are you? yrs.

12 How many computer science courses have, you taken?

number of courses^

13 How much do you know about data base systems?

none a little know

INGRES well

(or other)

14 What programming languages are you familiar with?

none list

15 Sex: female,

male

16

162

Appendix H - Login procedures

The following two procedures detail the steps involved

to bring up both parts of the CUPID system. They need not

be done in this order, but both parts must be in operation

before any queries are issued. Whatever follows type: is

to be typed and followed by a "cr" [carriage return]. That

following ltpen: is to be invoked by taking a hit with the

lightpen. All else are system responses. Comments by this

author are bracketted by [].

1 The UNIX-INGRES language processor,

[log into UNIX]

type: cupid nancy [or-"cupidrun nancy" to get a log]

Your database is nancy

go

[please wait until the "go" before proceeding]

2 The PTSS-PICA.SSO picture processor.

[log onto the CDC machine]

OK-~EDIT

type: "load,logcup

163

LOAD COMPLETE, ENTERING "EDIT

OK-~EDIT

type: "run

BEGIN EDIT

type: cupid.jr

NOW TYPE <SEMICOLOM>G TO COMPILE AND EXECUTE

type: ;g

[be patient, this may take a few minutes]

PICASSO screen configuration will appear

ltpen: hit USER COM [lower right]

[now you should see the CUPID welcoming message]

The following two procedures will exit you from both

parts of the CUPID system. The conventions are the same as

above.

1 The UNIX-INGRES language processor.

type: "rub out" [hit the key marked "rub out"]

interrupted

164

[you are now out of INGRES and in UNIX]

type: "CTRL-d" [depress the key marked "CTRL" and while

holding it down, type a d]

[you are now off the UNIX-INGRES system entirely]

2 The PTSS-PICASSO picture processor.

[if you do not see the CUPID welcoming message on the

screen]

ltpen: hit QUIT [until you see the welcoming message]

ltpen: hit QUIT

PICASSO screen configuration appears

ltpen: hit FINISHED

FINISHED screen configuration appears

type: skip

BEGIN EDIT "

type: quit;r

NOW TYPE <SEMICOLON>G TO TERMINATE JOB

type: ;g

165

References

BOYC73 Boyce, R. & et. al., "Specifying Queries as Relation

al Expressions: SCUARE," IBM Research, San Jose,

Ca., RJ 1291, Oct. 1973.

CHAM74 Chamberlin, D. & Boyce, R., "SEQUEL: A Structured

English Query Language," Proc. 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control,

Ann Arbor, Mich., May 1974.

C0DD70 Codd, E.F., "A Relational Model of Data for Large

Shared Data Banks," CACM, Vol. 13 No. 6, Dp.

377-387, June, 1970.

C0DD71 Codd, E.F., "A Data Base Sublanguage Founded on the

Relational Calculus," Proc. 1971 ACM-SIGFIDET

Workshop on Data Description, Access and Control,

San Diego, CA, Nov. 1971.

C0DD72 Codd, E.F., "Relational Completeness of Data Base

Sublanguages," Courant Computer Science Symposium

6, May 1972.

CODD74 Codd, E.F. & Date, C.J., "Interactive Support for

Non-Programmers, The Relational and Network

Approaches," Proc. 1974 ACM-SIGFIDET Workshop on

Data Description, Access and Control, Ann Arbor,

Mich., May 1974.

CODD74a Codd, E.F., "Seven Steps to Rendevous with the Casu

al User," Proc. IFIP TC-2 Working Conference on

Data Base Management Systems, Cargese, Corsica,

166

Apr. 1974.

COLE69 Coles, L.S., "An On-Line Question-Answering System

with Natural Language and Pictorial Input," Proc.

ACM 23rd Natl. Conf., 1969.

DATE74 Date, C.J. & Codd, E.F., "The Relational and Network

Approaches: Comparison of the Aplication Program

ming Interfaces," Proc. 1974 ACM-SIGFIDET Workshop

on Data Description, Access and Control, Ann Arbor,

Mich., May 1974.

EVAN69 Evangilisti, C.J. & Morse, S.P., "Graphical Modelling

using Contextually Implied Functions," personal

communication•

IIELD75 Held, G.D. & Stonebraker. M., "Storage Structures and

Access Methods in the Relational Data Base Manage

ment System, INGRES," Proc. ACM-Pacific 75 Conf.,

Apr. 1975.

HELD75a Held, G.D. & Stonebraker, M. & Wont, E., "INGRES - A

Relational Data Base Management System," Proc. 1075

NCC, AFIPS Press, 1975.

HOLM75 Holmes, H. H., "Graphics Modeling Techniques in Con-

ptiter -Aided Design," Ph.D. Thesis, EECS Dent.,

University of California, Berkeley, Dec, 1975.

J0HN74 Johnson, S.C., "YACC, Yet Another Compiler-Compiler,"

UUIX Programmer's Manual, Bell Telephone Labs, Mur

ray Hill, N.J., July 1974.

LAWR74 Lawrence Berkeley Laboratory Computing Facility, "BKY

- Users Introduction," Internal Documentation, LBL,

167

April 26, 1974.

MART73 Martin, J. , "Design of Man-Computer Dialogues,"

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1973.

MCD074 McDonald, N. & Stonebraker, M. ?< Wong, E., "Prelim

inary Specification of INGRES," University of Cali

fornia, Electronics Research Laboratory, Memorandum

No. M435-436, April 1974.

QUIL66 Quillian, M.R., "Semantic Memory," Ph.D. Thesis,

Carnegie-Mellon Univ., Pittsburgh, Pa., Feb., 1066.

REIS75 Reisner, P. & Boyce, R.F. & Chamberlin, D.D. ,

"Human factors," Human factors evaluation of two

data base query languages-Square and Seauel

RITC74 Ritchie, D.M., "C Reference Manual," UNIX

Programmer's Manual, Bell Telephone Labs, Murray

Hill, N.J. July 1974.

RITC74a Ritchie, D. & Thompson, K., "UNIX Programmer's Manu

al," Bell Telephone Labs, Murray Hill, M.J. June

1975

SACK70 Sackman, H. , "Man-Computer Problem Solving," Auer-

bach Publishers, Princeton, New Jersey, 1970.

SHNE74 Shneiderman, B. & Ho, Mao-Hsia, "Two Exploratory

Experiments in Program Comprehension," Technical

Report No. 27, Computer Science Dept., Indiana

University, 1974.

STME73 Sime, M.E. & Green, T.R.G. & Guest, D.J. , "Psycho

logical Evaluation of Two Conditional Constructions

irs

Used in Programming Languages ," International

Journal of Man-Machine Studies, 1^73, vol. 5,

105-113.

STON74 Stonebraker, M. & Wong, E., "Access. Control in a

Relational Data Base Management System by Query

Modification," Proc. 1974 ACM National Conference,

San Diego, Ca., Nov. 1974

STON75a Stonebraker, M.R., "Getting Started in INGRES - A

Tutorial," University of California, Berkeley, FHL

Mem. No. ERL-M518, Apr. 1975.

WALS71 Walsh,. W.J., "CSMP User's Manual," (unpublished),

Univ. of Cal., Berkeley, 1971.

WEIS73 Weissman, L., "Psychological Complexity of Computer

Programs: An Initial Experiment," Technical Report

CSRG-26, Computer Systems Research Group, Universi

ty of Toronto, Toronto, Canada, 1073.

WIN071 Winograd, T., "Procedures as a Representation for

Data in a Computer Program for Understanding Natur

al Language," Revised Ph.D. Dissertation, M.I.T.,

Jan., 1971.

V/ONG75 Wong, E. , "Decomposition - Query Processing in

INGRES," Private Communication, May 1075.

WOOD66 Woods, W.A., "Semantic Interpretation of English

Questions on a Structured Data B.-,se," Rep. NSF-17,

1967, Computer Lab, Harvard Univ., Cambrid-e,

Mass., Aug., 1966.

YOUN74 Young, E.A. r "Human Errors in Programming,"

160

International Journal of Man-Machine Studies, 1974,

vol. 6, 361-376.

2L0075 Zloof, M.M., "Ouery by Lxample," Proc. 1975 !IC'C, op.

431-43&, AFIPS Press, May 1975.

ZOOK75 Zook, W. et. al., "INGRES - Reference Manual,"

University of California, Berkeley, FHL Men. No.

ERL-M519, Apr. 1075.

170

Related Bibliography

APTE70 Apter, M.J., The Computer Simulation of Behavior,

Harper and Row, New York, 1070.

C0DD71b Codd, E.F., "Normalized Data Base Structures: A

Brief Tutorial," Proc. 1971 ACM-SIGFIDET Workshop

on Data Description, Access and Control, San Me^o,

CA, Nov. 1971.

DATE75 Date, C.J., An Introduction to Database Svr.tens,

Addison-Wesley Publishing Company, Inc., Reading,

Mass., 1975.

EARL70 EArley, J., "Toward an Understanding of Data Struc

tures," Proc. 1970 ACM-SIGFIDET Workshop

EARL73a Earley, J., "Relational Level Data Structures for

Programming Languages," Computer Science Dent.,

Univ. of Calif., Berkeley, MArch, 107^.

ENGL72 debate, "English as. a Query Language," debate, Proc.

ACM Nat. Conf., New York, 1072.

NUMA70 journal, "Human Factors;" Vol. 12, No. 2., pp.

165-214, 1070.

KLIN73 Klinger, A., "Natural Language, Linguistic Process

ing, and Speech Understanding: Recent Research and

Future Goals," R-1377-ARPA, Dec, 197^.

KNUT68 Knuth, P.E., The Art of Computer Programming. Vols. 1

and 3, Addison-Wesley, Reading, Mass., 1068.

MACR73 Maori, P., "BUDS: Berkeley Urban Data System," ERL

171

Tech. Memo M412, University of Cal., Berkeley,

Nov., 1973.

NIJS72 Nijssen, G.M., "Common Data Base Lanrtusges," Data

Base of SIGDDF, Vol. 4, No. 4, Winter, 1^72.

NILS71 Nilsson, N.J., Problem-Solvin** tlethods in Artificial

Intelligence, McGraw-Hill Book Co., New York, 1971

0LLE69 Olle, T.W. (chm), "The Larre Data Base, Its Organiza

tion and User Interface," Data Base of SIGBDF, Vol.

1, No. 3, Fall, 1969.

R0TH72 Rothnie, J.B., "The Design of Generalized Data

Management Systems," Ph.D. Dissertation, Dept. of

Civil Engr., M.I.T., 1972.

R0TH72a Rothman, S. & Mossnann, C., Computers and Society,

Science Research AssociAtes, Inc., Chicago, 1°72.

GLAG71 Slagle, J.R., Artificial Intelligence: The Heuristic

Programming Approach, McGraw-Hill Book Co., New

York, 1071.

WLIN71 Weinberg, G.M., The Psychology of Computer Program

ming , New York, Van Nostrand Reinhold Companv,

1971.

	Copyright notice 1975
	ERL-563
	ERL-563 (1 of 3)
	ERL-563 (2 of 3)
	ERL-563 (3 of 3)

