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1. Introduction

Although similar ideas were used in the study of second order conditions

as far back as the 1930's (see e.g. Hestenes [11]) , primal-dual methods, in

their current form, are derived from more recent proposals by Hestenes [12],

Powell [25], and somewhat later Haarhoff and Buys [10]. Specifically, in

the case of problems of the form min{f(x)|g(x) =0}, they depend on an

interesting property of the Lagrangian f(x) + cUg(x)U + <A,g(x) > of the

equivalent problem min{f(x) + cllg(x)U |g(x) = 0}. Namely, for Xsuitably

chosen and c large enough the local minimizers of this Lagrangian are also

local minimizers of the original problem. Because primal-dual methods reduce

an equality constrained minimization problem to an unconstrainedone, somewhat

like penalty function methods, but without the accompanying ill conditioning

of ordinary penalty function methods, they Jiave attracted a great deal of

attention (see Buys [5], Polyak and Tret'yakov [24], Miele et al. [17],

[18], [19], [20], Tripathi and Narendra [30], Rupp [29], Bertsekas [2],

[3], [4], Fletcher [6], [7], Fletcher and Lill [9], Martensson [16], and

Mukai-Polak [21]). There are at present two types of primal-dual

methods: Those that compute estimates of the multiplier X discretely

(e.g. as described by Hestenes [12] and Powell [25]), and those that use

some continuous function A(x) for A, as in Fletcher [6], and Mukai-Polak

[21], To avoid confusion, we shall refer to the latter as methods of

multipliers and to the former as primal-dual method. Martensson [16] has

established an important difference between primal-dual and multiplier

type methods; viz. in multiplier methods a sufficiently large c ensures

that a local minimizer of the original problem satisfies second order

necessary conditions for a minimizer of the derived (augmented) Lagrangian,

while in primal-dual type methods this is not always so. Thus, multiplier
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methods appear to have an advantage.

Although primal-dual and multiplier methods have also been proposed

for problems of the form min{f(x)|g(x) » 0, h(x) <_ 0} (see Buys [5],

Rockafellar [26], [27], [28], Arrow, Gould and Howe [1] ,Mangasarian [15],

Wierzbicki [31], Fletcher [8], Lill [13]), none of these methods are

entirely satisfactory, because they either fail to incorporate a scheme

for automatically selecting a correct value for the penalty coefficient

or they involve "inner" unconstrained minimization at each iteration,

which is computationally quite costly. In this paper we present a quad-

ratically convergent method which does not suffer from either of these

two drawbacks. It is based on three elements: (i) the little known fact

that (as is shown in the paper) the introduction of slack variables does

not preserve Kuhn-Tucker points, but it does preserve points satisfying

second order necessary conditions, (ii) an automatic scheme for selecting

the penalty coefficient c in a multiplier method for problems with equality

constraints, described in [21] and [23], and (iii) a new second order

unconstrained minimization algorithm, described in [22], which permits

us to "avoid" saddle and inflection points of the problem with slack

variables. Our computational experience with this method is quite favorable,

2. Slack Variables and Convexified Lagrangians

Consider the following minimization problem:

min{f(x)|g(x) = 0, h(x) ^ 0} (1)

where f: (Rn + R1, g: IRn - (Rm and h: Rn + Rp, with m <n, are

three times continuously differentiable and h(x) 4 0 is used to denote

hJ(x) £ 0, j = 1,2,...,p.
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We begin by recalling a few standard results.

Definition 1; We shall say that x* € ll^n is a feasible point if g(x ) =

0 and h(x*) 4 0, and we shall say that x* € Rn is a regular point if

Vgj(x*), j= 1,2,...,m, Vhi(x*),+ iG J(x*) ={j^x*) =0} are linearly

independent. n

Note that as defined above, a regular point need not be a feasible

point. Next, we need to reproduce the statements of second order conditions

of optimality (see e.g. [14]). Let the Lagrangian I: Rn x IRm x HP -* 1R

be defined by

£(x,y,v) = f(x) + <y,g(x) > + <v,h(x) > - (2)

with f, g, h as in (1). Then,

Lemma 1: Suppose that a regular feasible point x is a local minimizer

for (1). Then there exist a u* G Rn and a v* G Rp, v* > 0, such that

and

|| (x*,u\v*) =0 (3)

<v*,h(x*) > = 0 (4)

32Mx*,u*,v*) >Q (5)
3x

t
We denote components of a vector by superscripts and we shall treat

j * t
gradients as column vectors throughout: VgJ(x ) = ^ 'x ' etc.

oX

tt
We indicate the positive semidefiniteness of a matrix A by A > 0 and

its positive definiteness by A > 0.
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on the tangent subspace

.J/„*T(x*) * {y| 28^ y=o; SSS^JL h=0, 3EJ(x*) } (6)

Lemma 2: Suppose that x' is a regular feasible point and that there

exist a y* G R and a v* G (RP, v* >, 0 such that (3) and (4) are satisfied

and —=• (x*,y*,v*) > 0 on the subspace
8x

T'(x*) A{y| ^-y=0; ^^ =̂0, 3GJ^x'.v*)} (6)

with J (x*,v*) = {j G J(x*)|v*J > 0}, then x* is a strong local minimizer

for (1). *

Definition 2: We shall say that a regular feasible point x* E n satisfies

SONC if it satisfies the conclusions in Lemma 1; i.e., for some y*, v* ^ 0,

(3)-(6) holds. We shall say that a regular feasible point x* G B> satisfies

NSOSC if it satisfies the conditions in Lemma 2, and is nondegenerate in the

sense that T(x*) = T'(x*). n

Next, we turn to the use of slack variables. Let f: P\ -»• In »

i: Rn+P + R^P and I: Rn+P xR*^ - R1 be defined by

f(z) = f(x) (7)

/g(x) \
i(z) -[ (8)

\h(x) +s(y)/

£(z,A) = f(z) + <A,i(z) > (9)

tSONC stands for second order necessary conditions and NSOSC stands for
nondegenerate second order sufficiency conditions.
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where z = (x,y) (x G R ,y G Rp) and s: RP -»• RP is defined by s (y) =
• 2

(y ) , i = 1,2,...,p. Now consider the derived problem .

min{f(z)|i(z) = 0} (10)

First we note that Definition 1 and Definition 2 as well as Lemmas 1 and

2 apply to Problem (10) as well (replace g by g and remove h from (1)).

Hence we shall use them in conjunction with both of these problems. Next,

we state an obvious result.

4e "k is
Proposition 1: (i) If z = (x ,y ) is, respectively, feasible, regular, or

optimal for Problem (10), then x is, respectively, feasible, regular, or

optimal for Problem (1). (ii) If x* is, respectively, feasible, regular,

or optimal for Problem (1), then z* =(x*,y*), with y*^ =vfh^(x*)|, j=

l,2,...,p, is, respectively, feasible, regular, or optimal for Problem

(10). °

Now, suppose that x* is a feasible Kuhn-Tucker point for (1), i.e.

for some multipliers y* and v* ^ 0, V A(x*,y*,v*) = 0, and <v*,h(x ) > =

0. Then, setting A* = (u*,v*), y*j =/hj(x*), j= 1,2,...,p, and z* =

(x*,y*), we get V £(z*,A*) = 0. Next, suppose that z* = (x*,y*) is a
z

feasible point satisfying the Lagrange condition for (10), i.e., for some

*- (y*,v*), Vz*(z*,A*) =
* l-/__*\ \ _ rt t„*. *- 1..J- 1.1.-4- ..*

multiplier A* = (y ,v*), V £(z*,A*) = 0. It is easy to see that this

implies that <v ,h(x*) > = 0, but we cannot conclude that v ^ 0. Hence,

x* is not necessarily a Kuhn-Tucker point for (1).

However, the following results do hold.

Lemma 3: A point x is a regular feasible point satisfying SONC for problem

(1) if and only if z* = (x*,y*), with y*j =/-hj(x*), j=1,2,...,p, is a

regular feasible point satisfying SONC for problem (10).
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Proof: First, the fact that x* is a regular feasible point for (1) if

and only if z* (as defined) is a regular feasible point for (10) was

established in Proposition 1.

Next, suppose that a regular feasible point x satisfies SONC for

(1), with multipliers u*, v* >_ 0. Then, setting y*J = V-hJ(x*), j=

1,2,..,p, z* = (x*,y*) and A* = (y*,v*), we find (cf (12) below) that

3l(z*,A*)/8z = 0, since v Jy J = 0, j = 1,2,...,p, and that

9 -k "k

3 t(z ,X )

3z2

3 &(x ,n »v )

3x

2N:

(ID

where N* =diag (v*1, v*1,..., v*P), is positive semidefinite on f(z*) =

{cl^f^-^o}.
We now turn to the more difficult part of the proof. Suppose that

z* = (x*,y*) is a regular feasible point satisfying SONC for (10), with

amultiplier A* = (y*,v*). As we have already established, x* is aregular

feasible point for (1). Next,

V I(z*,X*) =
z

Vf(x*) 3g(x*)T
3x

0

ah(x*)T \r *
8x "^

3s(y*)
ay

= o (12)

* *Hence we obtain that Vx*(x*,u*,v*) =0and that <y,v >=0, and therefore,

that <v*,h(x*) > = 0. Also, the matrix

32&(z*,X*) _
3z2

/.

\

32^(x*,u*,v*)
3x2

2N
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is positive semidefinite on T(z*) - (c| ^jZ ' Z> - 0}. Since N is
aZ

A T — *
diagonal and, with c = (£,n), since the vectors (0,...0,nJ,0...0) G T(z )

for all j such that v * # 0, we must have v* >^ 0. Finally, setting £ = (£,n),

we see that g^ 5=0, implies that
dZ

^-C-0 (14a)

1M2!IC +I2g!in =0 (14b)

Now (14b) implies that (3hJ(x )/3x)£ = 0 for all j G j(x ), and therefore

(14a,b) imply £G T(x*) ,for all Ce T(z;*), and hence 32A(x*,y*,v*)/3x* >. 0

on T(x*), so that x satisfies SONC for (1). This concludes our proof. n

The following result is obvious in the light of the arguments used

to prove Lemma 3.

it
Lemma 4: A point x is a regular feasible point satisfying NSOSC for

problem (1), if and only if z* = (x*,y*), with y*j =/-h^(x*), j= l,2,..,p,
+

is a regular, feasible point satisfying NSOSC for Problem (10). H

This concludes our investigation of the relationships between

Problems (1) and (10).

3. The Modified Lagrangian.

As is customary in primal-dual methods, we substitute for the Problem'

— 1 — 2 —
(10), the family of equivalent problems P : min{f(z) + -r cUg(z)H |g(z) = 0},

C £.

where c ^ 0, and whose Lagrangian is

t
The nondegeneracy part of NSOSC is obviously satisfied trivially for
Problem (10), since it has no inequality constraints.
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Lc(z,A) =£(z,X) +| c!li(z)il2 (15)

We recall [14] that if z is a regular optimal point for (10) and

A is the corresponding Lagrange multiplier, then z is regular and optimal

f°r pc and x is the corresponding multiplier, for anyc >_ 0. Furthermore
32£(z X) 9 L (z,A)

while 2 need not be Positive definite, r— > 0 for all c
3z 3z

sufficiently large. This convexifying property,as we shall later see, can

be utilized both to ensure satisfactory convergence and to obtain quadrate

convergence of an algorithm. First, however, we make the following

Assumption 1: All the feasible points for Problem 1 are regular. n

From now on, we shall always assume that Assumption 1 is satisfied.

We now define ^k G R p to be the set of regular points for the

Problem (10), i.e. H2 = {z| 8W has maximum rank}. It is clear that
1 dZ

K is an open set containing all the feasible points for the Problem (10)

(see Proposition 1).

As was also done in [7], [16] and [21], for all z G ^p we shall make

A in (15) a well defined function of z, as follows:

A(z) =arg min{Hv £(z,A)II2|a G Rn+P}
z

T\_1
--(iiisi. iiisi- *lMv?(z) (16)

\ 3Z dZ dZ

Proposition 2: The function A: ^k •*• R^^ is twice continuously

differentiable and for all z ^H2,

3A(z) __/3g(z) 3J(z)T) [3g(z) 32£(z,A(z))
3z. "" \ 3z 3z / [ 3z 2
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m+p 2_

£V vJ(z,A(z))T^f] (17)
j-l

where e. is the jth column of the (m+p)x(m+p) identity matrix.

Proof: By assumption, f and g are three times continuously differentiable.

It therefore follows from (16) that A is twice continuously differentiable.

To obtain (17), we note that

m+p

3z VzI(z,A(z)) =̂ 6j !S_i2i VzI(Z)X(z)) wo (18)

Differentiating the right hand side of (18) and making use of the fact

that a2t(«,M«» =iii»i^ we obtain (17). „
2 3z

3A
As was also done in [7], [16] and [21], with A defined by (16), for

any c > 0, we define ip : R -*• IK by ty (z) = L (z,A(z)), i.e.,

*CU) =A(z,A(z)) +\ clli(z)02 (19)

We note that

T - T

V*c(z) =Vz£(z,A(z)) +^g- i(z) +c|8||i- i(z) (20)

2

d^c(2) _32&(z,A(z)) 3g(z)T 3A(z) 3A(z)T 3g(z)
„ 2 „ 2 3z 3z •3z 3z
3z 3z

Tfl Ip _

+c^iI^+V?(z)M|i+ciLii^| . (21)
T™7 «• 3z 3z J
J=l

Finally, we establish a number of relationships between Problem (10)

-10-
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and the family of unconstrained problems, parametrized by c > 0,

min{ipc(z)|z G<£)} (22)

The following result is obvious in view of (16) and (20).

Proposition 3: If z* G I^n p is a regular feasible point for Problem (10)

satisfying, for some A*, V £(z ,A*) = 0, then A* = A(z*) and V* (z*) = 0 for
z c

all c. •> 0. **

Proposition 4: If z* G Rn p is a regular feasible point for (10)

satisfying, respectively, SONC or NSOSC, with multiplier A*, then A* =

A(z ) and there exists a c >_ 0 such that z* satisfies, respectively,

SONC or NSOSC for Problem (22), for all c > c*.

Proof: Since by Proposition 3, A = A(z*) and Vi/> (z ) = 0, we only need
32iJ> (z*)C

ie C
to show that there exists a c such that >_ 0 (> 0, respectively)

3z*
JL — JL

for all c ^ c . Thus, since g(z ) = 0, we need to show that

9\(z*> 32Uz*,A(z*) ,35(z*)T 3A(z*)
3z 3z

^^-^^-H) (23,

for all c sufficiently large. Since this result has already been established

by Martensson [16], we are done. n

Proposition 5: For every compact subset Q ^-^k» there exists a c G Fj
s

such that for all c > c , if z* G 2 satisfies, respectively, SONC, or

NSOSC, for Problem (22), then z* is a regular feasible point for (10),
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satisfying, for (10), respectively, SONC, or NSOSC.

Proof: Let C) be a compact subset of^P. Since all the matrices, below,

are continuous, there exists a c > 0 such that for all z G C^ for all
s

c > c ,
— s

Now

detrcI +(iiM3ii2i_) ilisIlAfci.] ,0 • (24)
L \ 3z 3z / 3z 3z J

suppose that c > c and z* G Q is such that Vij; (z*) « 0. Then, since
— s

2&$r^- v^(z,A(z)) =0 for all zG<£>, it follows from (20) that
3z z

0.Mgl ^ . SgL [ng£ i(z*} +eM^ i(z*}] (25)

Hence,

It now follows from (24) that g(z*) = 0 and hence, (20) implies that
32* (z*)

V £(z*,A(z*)) = 0. Finally, suppose that =-=— >, 0 (> 0). Then from
Z 9z

(23), we conclude that 3A<z >MZ )? >_ 0 (> 0) on T(z*) ={c| **** }C=0}.
3z

This completes our proof. n

Lemmas 3 and 4 enable us to translate the above results into a

relationship between Problems (1) and (22), as follows.

Theorem 1: (i) If x* G (FJn is a feasible, regular point satisfying,

respectively, SONC, or NSOSC for Problem (1), then z* = (x ,y ), with

y*j = V^tr5 (x*), j = l,2,..,p, is in <Q and there exists a c* ^ 0 such

that z* satisfies, respectively, SONC, or NSOSC, for Problem (22) for all

c > c .
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(ii) For every compact subset fi C £p there exists a c > 0 such that for
s —

a11 c1 cs> if a z* = (x*,y*) G g satisfies, respectively, SONC, or
JL

NSOSC, for Problem (22), then x is a feasible regular point satisfying,

respectively, SONC, or NSOSC, for. Problem (1). *

The above result shows that, provided we succeed in producing c large

enough, we can obtain a solution to (1) by solving (22). An algorithm

which achieves this will now be described.

4. The Algorithm:

Our algorithm is based on an Algorithm Model, first presented in [23].

Let {c.}.=0 be any strictly monotonically increasing sequence such that

c. > 0 and c. -> » as j •> ». Let 8.(0 = \b (•); let A be the set of all

z = (x,y), such that the x are feasible points for Problem (1) satisfying

SONC and y** =V-b? (x), j= l,2,..,p; and let A., j = 0,1,2,..., be the

set of points in lF\n+p satisfying SONC for Problem (22) with c=c. The

Algorithm Model below makes use of a sequence of testing functions t.:

R*+P _> [R1 and 0f iteration maps A.: Rn+P - Rn+P.

Algorithm Model

Data: zQ GRn+P .

Step 0: Set i = 0, j = 0.

Step 1: If t.(z.) ^0, go to step 2; else go to step 4.

Step 2: Compute C = A.(z ).

Step 3: If 9.(S) < 0.(z.), set z . = £, i = i+1 and go to step 1; else stop,
J J •*- ITJ.
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Step 4: Set w.. = z., set j = j+1 and go to step 1. n

We find in [23] the following result.

Theorem 2: (i) Suppose that for each j, j = 0, 1, 2,..., and any z ¥• A.,

there exist an e(z) > 0 and a 6(z) < 0 such that for all z\ satisfying

Hz'-zll <_ e(z) and z" = A. (zf),

e..(z") - e^z1) <6(z) (27)

(ii) The functions t.(«) are continuous for j = 0,1,2,... .

(iii) For j =0,1,2,..., {z G A.|t.(z) <0}Ci,

(iv) For every z G <Q there exists aj* and an e* >0such that t.(z) <_ 0
for all j >_ j* for all zsuch that Hz-z*U <. e*.

(v) The sequence {z.} constructed by the Algorithm Model is contained in

a closed set Q C ^f^.

Under these assumptions, (i) if the algorithm model constructs a

finite sequence {Wj> and {z±} is infinite, then every accumulation point

of {z } is in A; (i) if {z.} is finite, then the last element of {z }
x i

is an A; (iii) if {w.} is infinite, then {w.} has no
-i J

accumulation points.

Thus, to construct an algorithm, we must invent a sequence of testing

function {t.(*)} which can then be used in conjunction with any convergent

iteration function A. for solving Problem (22) with c = c. Although the

choice is not unique, we propose to use t.(«) defined as follows (cf. [21]):

i

tj (z) I _<ii||^ /M|i M|2lj i(z) >V9j (2) >+Yii(l) |2f (28)
f
That is, satisfying condition (i) of Theorem 2.
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where y > 0 is a preselected constant. Thus, t.(z) tests the angle

between V0.(z) and the Newton direction for solving g(z) = 0. Obviously,

the t.(-) are continuous, so hypothesis (ii) of Theorem 2 is satisfied.

Next, suppose that z G A. and t.(z) <_ 0. Then V0.(z) = 0 and hence, from

(28) g(z) = 0, i.e. z is a regular feasible point for (10). Furthermore,

from the arguments used in the proof of Proposition 4, we conclude that z

satisfies SONC for (10). In view of the established relationships between

(1) and (10), we now conclude that z G A, i.e., with t_. (•) defined as in

(28), assumption (iii) of Theorem 2 holds. Next, expanding (28), since

d%(z' VI(z,A(z)) = 0, we obtain
dZ Z

tj(z) =r»i(Z)»2 -<(^f Sgll)"1. *£-vy.) >

and, hence, clearly, given any z* G^J, there exists a j* > 0 and an

e* >0 such that t.(z) £ 0 for all j >_ j* and all zG ^P. such that

Hz-z*H <_ £*. Thus, the functions t.(-) defined in (28), satisfy all

the appropriate assumptions of Theorem 2. For the maps A we propose to

use the iteration function of the extended Newton Method developed in [22].

It can be concluded from the results in [22] that the A. as will be defined

below, and the 0. and A. satisfy assumption (i) of Theorem 2. Consequently,

the conclusions of Theorem 2 apply to the algorithm below.

Algorithm:

00

Parameters: a G (0,1), 3 e (0,1), 0 < e << 1, a sequence {c.}._0,

(c n > c. Vj, c. •+ °° as j -*• °°), and an initial guess zn.
j+l J J u

-15-



Step 0: Set i=0, j=0.

Step 1: (t,(-) is defined as in (28).) If t^ (z^ £ 0, go to step 2;

else go to step 11.

Comment: The map A. is defined by steps 2-10 , below.

Step 2: Solve the. following direction finding problem for a minimizer v^

(f).(z.) =min{ 4<v,H.(z )v >|<V0 (z ),v > <_0, IM <1}

where

A32I(zi,A(zi)) 3i(z±)T 3A(z±) 3A(Zi)T 3i(z±)
Hj ^zi* = ~"~2 + 3z 3z + 3z 3z
J 3z

+ c.
J

ai(Z,)T ag<0 "**
DZ-+ 2^8 (Zi]3z

k=l

*2i\*±)
3z

Step 3: If <f>.(z.).< 0, go to step 7; else go to step 4.

Step 4: If V0.(z.) = 0, stop; else go to step 5.

Step 5: If |det H.(z.)| < e. go to step 7; else, go to step 6

-1.
itep 6: Set u = - H.(z.) V0.(z.) and go to step 8.

itep 7: Set u. = - V0.(z.) + v..
—c— l jN i l

itep 8: If <u., H.(z.)u. > < 0, set A_ = 1; else set A_
—c— i j i l — 0 0

k. >_ 0 is the smallest integer satisfying

3±<- <V0j(z±),u± >/ <u±,H (zi)ui >

-16-

= 3 where

(30)

(31)

(32)



Step 9: Compute the smallest integer I. _> 0 such that

' *iAQ3 X<V0j(z±),ui >

\ (a/1) (u-.H.^u.)

0j(z±+ AQ3 u±) -6 (z±) <a

A.

Step 10: Set z . = z. + An3 u., set i = i+1 and go to step 1.

Step 11: Set w _ = z., set j = j+1 and go to step 1. n

The following theorem follows immediately from Theorem 2.

(33)

Theorem 3: Suppose that the Algorithm does not jam up in step 2, i.e. ,

the entire, sequence it has constructed is in ^(2. Under this assumption,

(a) (i) if {w.} is finite and {z.} is infinite, then every accumulation

point of {z.} satisfies SONC for Problem (1); (ii) if {z±} is finite, then

its last element satisfies SONC for Problem (1); (iii) if {w.} is infinite,

then {w.} has no accumulation points.
J

(b) if {w.} is finite, {z,} is infinite and has an accumulation point
j i

thz* satisfying NSOSC for Problem (1), then z. •> z* as i ->• », wi

Hz., -z il/ilz.-z*H •+ 0 as i -> «. Furthermore, if the functions f, g and
l+l i

ie
h in (1) are three times Lipschitz continuously differentiable at z ,

then there exists an M > 0 and an i_ such that

"z.^-z*" <Mllz.-z*ll2 for all i>in (34)
i+1 — l — 0

Conclusion

All of the theoretical results in this paper are predicated upon the

constructed sequences remaining within the regularity set^K?. Thus, just

-17-



like a number of other very successful methods, such as Newton's method,

the Variable Metric method and conjugate directions methods, to

mention a few, it may fail from time to time on a specific problem. How

ever, our limited computational experience indicates that this will

happen rather infrequently and that the excellent properties of our

method, in the cases where it does not fail, certainly justify its use.

-18-
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