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ABSTRACT

The problem is considered of regulating in the face of parameter

uncertainty the output of a linear time-invariant system subjected to

disturbance and reference signals. This problem has been solved by other

researchers. In this paper a new and simpler algebraic solution is given.
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1. Introduction

This paper deals with the regulation of the linear multivariable

system modeled by the equations

x, = A-x. + A3x_ + B-u (1)

i2 = A2x2 (2)

y = ClXl + C2x2 (3)

z « D^ + D2x2. (4)

Here x_ is the plant state vector, u the control input, x? the vector

of exogenous signals, y the vector of measurements available for control,

and z the output to be regulated. The vectors u, x-, x?, y, and z belong

to fixed finite-dimensional real linear spaces

q», %, <X2. QJ,^ (5)

respectively, and the time-invariant linear maps in (1) to (4) are

defined on the appropriate spaces as follows:

Ai! %. '* %> c±:% +% Di: ^i ^6 w-i.2)

A3 !̂ 2 *%' \ •• ql *&!.

The vector A.,x2 in (1) represents a plant disturbance, and the vector

D2x2 in (4) represents a reference signal which the plant output -D-x-

is required to track. Equation (2) then models the class of disturbance

and reference signals (e.g. steps, ramps, sinusoids).

Control action is to be provided by a compensator processing the

measurements y(»)» generating the control u(.), and modeled by



x = A x + B y
c c c c

u = F x + G y.
c c c

(6)

(7)

Here the compensator state vector x belongs to a finite-dimensional

real linear space Q( , and the linear maps A ,B , F , G are time-

invariant. It is convenient to consider a compensator formally as a

5-tuple

(Q( ,A ,B ,F ,G )
' c c c c c

where

••%+%• B :1)*0C,

c c c -^

There are two control objectives: closed loop stability and output

regulation. Consider a fixed compensator (Q( ,A ,B ,F ,G ), and define

the closed loop state vector, state space, and linear maps

*L

*l

B, =

X
.. c

, <v<v<x,

A^+B.G C- B-F
1 1 c 1 1 c

BC. A
c 1 c

•'V*,.

A3+BlGcC2'
L BcC2 J

=<X2 ^L

DL =[Dl0] : <XL - 2>"

From (1), (3), (4), (6), and (7) the closed loop Is described by

*L = Vl. + V2

(8a)

(8b)

(8c)

(8d)

(9)



z= DL*L + D2X2 * (10)

Closed loop stability means that A^ is stable, that is ^(A.) C <E , and

output regulation means that z(t) •*• 0 as t -»• » for all x_(0) and x2(0).

The compensator is called a synthesis if it provides closed loop stability

and output regulation.

The spaces (5) are assumed to have fixed bases; so we regard A-jA^,...

in (1) to (4) as linear maps or as real matrices, depending on the context.

Similarly, in specifying a compensator, we shall suppose that a basis for

9C is specified; so we regard A , B , F , G also as real matrices.

Now consider a fixed synthesis (Q( ,A ,B ,F ,G ). An n-dimensional

data point *-P G 1R is a list of n numbers selected from among the

elements of the plant matrices A-, A , B together with the compensator

matrices A , B , F , G . A property of points in 1R is said to be

stable at ^P if it holds throughout some open neighbourhood of ^p. We

say that the synthesis is structurally stable at ^p if closed loop

stability and output regulation are both properties which are stable at

^P. Clearly closed loop stability is astable property (if A^ is stable

it remains so under small perturbation), so the synthesis is structurally

stable at H^ iff output regulation is a stable property at^-p. The

requirement of structural stability evidently reflects an uncertainty of

some system parameters or the desire to achieve a degree of insensitivity

to slow drift in certain parameters.

Our object in this paper is to solve two problems.

Problem 1 Find computable necessary and sufficient conditions (in terms

of the given data A-, A~, B,, A2, C_, C2, D-, D ) for the existence of

a synthesis. Give an algorithm to compute a synthesis when these conditions

hold.



By a computable condition we mean one for which a verifying algorithm

exists.

Problem 2 This is Problem 1 with 'synthesis1 replaced by 'structurally

stable synthesis.'

These or similar problems have been treated by many researchers,

among whom we mention S. P. Bhattacharyya [1,2], E. J. Davision [3,4],

0. M. Grasselli [5], C. D. Johnson [6,7], P. C. Muller [8], J. B. Pearson

[9], 0. A. Sebakhy [10], H. W. Smith [11], W. M. Wonham [12,13], and

P. C. Young [14]. In our view the algebraic solutions presented in this

paper are simpler than previous solutions. With the exception of some

technical facts, the treatment given here is self-contained.

2. Technical Preliminaries

Notation ]R (resp. <D) denotes the field of real (resp. complex)

numbers. (E (resp. <ST) is the closed right-half (resp. open left-half)

complex plane. We use the standard notation of linear algebra: if

A :sX -»-9C is a linear transformation (map, for short), ImA is its

image, Ker A its kernel, a(A) its complex spectrum, and A|Q/ is the

restriction of A to r\). The dimension of a Ls denoted by &CX) • For

linear spaces ^W and 0, 'P = 0 means ^Q and \) are isomorphic and

Hom<££>, £) is the linear space of all maps ^P -*• fi • For maps Mand N,

M = N means M and N are similar (M=T~ NT for some isomorphism T). While

any linear space Q( is initially real, we shall introduce without comment

its complexification. For example if A :9( •* 9C and X£ a(A) Cc then

Ker (A-A) is a complex subspace of the complexification of A. IR [s]

(resp. <D[s]) is the ring of polynomials in s with coefficients in IR

(resp. <E). For polynomials a(s) and 3(s), a|0 means a divides 3. We



abbreviate degree to deg and greatest common divisor to gcd. Finally,

for n > 1, n is the set {1,...,n}.

We now recall some characterizations of stabilizability and

detectability. For this consider a triple (C,A,B):

c :Q(+qj, a t9c*9c, b :qjuqc

Let

o\f= H Ker (CA1)
i>0

be the unobservable subspace of (C,A),

<A|lmB> = £ A^mB
i>0

the controllable subspace of (A,B), and Q( (A) the unstable subspace of

A. (See [13].) Then the pair (C,A) is detectable iff

lAI n9(+(A) = 0,

or equivalently

KerC H Ker(A-A) =0 (A G (D+);

and the pair (A,B) is stabilizable iff

9(+(A) C<A|lmB> ,

or equivalently

tyi » Im(A-A) + ImB (AG (C+) .

Throughout this paper the following are standing assumptions:



a(A2)CC+ (n)

ImCl + ImC2 =QJ (12)

ImD1 =^ (13)

(A1,B ) is stabilizable (14)

(C1,A1) is detectable. (15)

Assumption (11) involves no loss of generality, for any stable

exogenous modes can be included in the plant description as they affect

neither closed loop stability nor output regulation. Assumption (12)

also involves no loss of generality, for if (12) does not hold initially

we may redefine QJ to be ImC1 +ImC2. Similarly we may assume that

ImD1 +ImD2 =^. (16)

But a necessary condition for output regulation is clearly

ImD2 C lmD1 ; (17)

so (13) follows from (16) and (17). Finally, we claim that (14) and

(15) are necessary for closed loop stability. Indeed, if AT is stable
Li

then

0(L =Im(AL-A) (A G(c+) ;

hence in particular, from (8b),

rX± =Im^+BjG^-A) +ImOJjF ) (A G<E+)

and



Ker(B C-) H Ker(A1+B.G C--A) =0 (A G <c+).
cl' x 1 1 c 1

These conditions imply respectively

9C =InKA-j-A) +ImB (A G<£+)

KerC1 HKer(A1-A) =0 (A G<c+),

which are equivalent to (14) and (15). To summarize, then, (11) to (15)

either involve no loss of generality or are necessary for the existence

of a synthesis.

We next introduce the mathematical setting in which we shall solve

Problems 1 and 2. For any linear space H2, define

Q =HomOC,,^).

For any map A :Q( +9C, define A :Q( -+ ~\ by

AX =AX -XA2 (X GQ().

Finally, for any map C :vC -** y where Q( and (J are distinct, define

C:<X +<U by

CX = CX (X GQ() .

As an application of this notation we have.the following very useful

characterization of output regulation.

Lemma 1

Suppose AJ is stable. Then the output z in the system

*L - Vl, + BLX2

x2 = A2X2



z = D x + Drtx
L*L + V2

is regulated iff

±h\ =D2 •

or equivalently

— —.

BL
G Im

4

Ld2J UJ

By (19) we mean of course that

(18)

(19)

BL =hh' D2 =hh

for some X G 9( .
i-i L

The closed loop transfer matrix in the above system is

V-*L>"\ +°2-

If A^ is stable, output regulation is therefore equivalent to the condition

lim s[DL(s-AL)""1BL +D2](s-A )~l =0. (20)
s-K)

Thus conditions (18) and (20) are equivalent. The conciseness of (18)

shows the power of the present algebraic approach. Notice that for

constant exogenous signals, that is A« = 0, (18) and (20) both become

\\\ mV

Lemma 1 is a restatement of Lemma 1 of [15]. We reprove it here

for completeness.



Proof of Lemma 1

If we define

x =
s

"x "1
XL

A-
.a.-^Sa

A =
s _0

"••1 : 9C -<X
s s

=[»,V =#.*Ss L L 2

then the system is described simply by

i =Ax ,z = Dx
s s s s s

So output regulation holds iff

<Xt<0 C Ker D»-s s

Since

a(AL) H 0(A2) =0

A. is invertible. Define

and

Q » 0 I0
:^X -9C

where L (resp. I2) is the identity on Q( (resp. Q(2). Then

Vl " \A2 ° BL

and so

(21)

(22)



Q_1AsQ \ °
0 A„

Thus

9(!(AJ =Q Im
s s

"0"
= Im

~~h~
UJ Li2J

Hence from (21) output regulation holds iff

hh = V

or from (22)

-1,

WB' = D'L "2

Using (8) in (19) we obtain immediately the

10

Corollary

A compensator (QC >A ,B ,F ,G ) which provides closed loop stability
c c c c c

also provides output regulation iff

A3+BlGcC2

BcC2

" A.+B.G C.
—1 —1—c—1

B.F
—1—c

G Im
*A A

—c

h 0

We remark that if y = z, which is to say

qj =<§ , Cl =dx , c2 - d2 ,

then (23) reduces to

p3] Ai B,F "
—1—c

0 G Im 0 A
—c

Ld2^ Lp-i 0

(23)

(24)
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As our final technical preliminary we condense the system description

(1) to (4) by defining

rxp
x =

A =

L.x,
.%•%_•%

rAi V
Lo a2J : <X +% B- LO

: qjU#

C= [C± C2] : QOQJ, D=[Dx D2] : 9( +̂ .

Then (1) to (4) become

x = Ax + Bu, y = Cx, z = Dx.

3. Solution of Problem 1

Before solving Problem 1 we pose a simpler problem; namely, we

consider pure gain controllers of the form

u = F x + F2x2

instead of dynamic compensators. Substituting (25) into (1) and

rewriting (2) and (4) we obtain

X]L = (A1+B1F1)x1 + (A3+B1F2)x2

x2 - A2x2

z = D^ + D2x2 .

(25)

(26a)

(26b)

(26c)

Problem 0 Find necessary and sufficient conditions for the existence

of F1 :0C1 -•rU and F2 :0C2 +QI so that Ax +B^ is stable and the

output z in (26) is regulated.
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We shall call such a pair (FrF2) apure gain synthesis. Problem 0

is easily solved as follows.

Proposition 1 (Solution of Problem 0)

A pure gain synthesis exists iff

r- —\ f— —\

A3
G Im

Ax Bx
•

Jl] J>1 °j
Proof

(27)

(Necessity) Let (F^F^ be a pure gain synthesis. Applying Lemma 1 with

AL = A± + BlPlf BL = A3 + BlF2, DL - D

we find that

VB1F2

and hence

VB1F2

- 2 J

G Im

G Im

h+hh

L. ^-1 -J

~A B
-1 ~1

lA °

which clearly implies (27).

(28)

(29)

(Sufficiency) We assume that (27) holds and shall construct suitable F

and F2. First, select F- so that A+BF is stable. From (27) then

V¥i h
G Im

l D9_J L h
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and hence F exists such that (29) holds. Using (28) and (29) we

conclude from Lemma 1 that (Fi»F2) provides output regulation. *

We now proceed to solve Problem 1. However we shall make an additional

assumption, namely

(C,A) is detectable< (30)

This can be justified in the following manner. Let

u\\ = H Ker(CA±)
i>0

be the unobservable subspace of (C,A) and 0( (A) the unstable subspace

of A. Since (C- ,A-) is detectable, the undetectable subspace ^l H A (A)

of the pair (C,A) is independent of vC1

Oln9(+(A) n9(i =o.

Hence we may decompose y( as

where Q(0 =v^At nQ^+(A) and 9C is any complement. Corresponding to this

decomposition of Q(, A, B, C, and D have representations of the form

Al A3 0 Bl
0 A2 0 0

_o R V- ^o_

[°1 \ 0] [D1 52 V

respectively. Here the pair



Al A3
[clC2],

0 A
2-1

is detectable and

A -

A2

A2 0

-R A2J

These representations correspond to the system

x1 = A1x1 + Ax + B-u

X2 ~ A2X2

x2 = A2x2 + Rx2

y = ClXl + C2x2

z =D^ + D2x2 + D2x2.

Ola)

(31b)

(31c)

(31d)

(31e)

14

It is readily apparent from (31) that a necessary condition for output

regulation is L = 0; that is

o\|nQ(+(A) C Ker D. (32)

Conversely, if (32) is assumed then in (31) x2 is a superfluous exogenous

signal: it is decoupled from the plant, the measurements y, and the output z,

To summarize, (32) is necessary for the existence of a synthesis;

so we assume (32). The undetectability of (C,A) corresponds to a redundant

description of the exogenous signal; so we assume (30). Since (30)

trivially implies (32), we need only assume (30).



Theorem 1 (Solution of Problem 1)

Assume (30). A synthesis exists iff

15

G Im

\ h
(27bis)

L"2 J iA °

We observe that a synthesis exists iff a pure gain synthesis exists,

For the system at hand, (27) apparently corresponds to the 'steady-state

invertibility condition1 of [3] and to the 'decomposability condition*

of [12]. The proof of Theorem 1 is in three parts: first we prove

necessity of (27), then present a synthesis algorithm, and finally show

that the algorithm does indeed yield a synthesis.

Proof of Theorem 1 (Necessity)

If (Q( ,A ,B ,F ,G ) is a synthesis then by the Corollary to

Lemma 1 (23) holds. Hence in particular

A3+BlGcC2
G Im

L 2

C Im

This implies (27).

Aj+BjG C, B-F
—1—c

h 0

—\

k h

Hi 0

r

In view of assumption (30) an obvious synthesis procedure is the
"x

following: Use an observer to generate an estimate x =
'x.""

state x =

iA
of the system

x = Ax + Bu, y = Cx.

cl

Lxc2J
of the

Then apply the control u • ^^d + F2Xc2 where ^Fi»F2^ ls a pure gain



synthesis. This is accomplished by the

Synthesis Algorithm (SA)

Step 1. Let Q(c =OC and select B :Qj+Q( so that A-B Cis stable.
Step 2. Select F± :Q( +^\[ so that A+BF is stable.

Step 3. Select F2 :£Y -»• <\{ so that

rA3+BlF2n \+hh

16

G Im (29bis)
D. - ^1

Step 4. Set F = [F-.FJ, A = A-B C+BF , G = 0.
c 1' 2 c c c c

Proof of Theorem 1 (Sufficiency)

Obviously Steps 1 and 2 of SA are possible, and if (27) holds we

can choose F« to satisfy (29) just as we did in the proof of Proposition 1,

So it remains to show that (Q(,A ,B ,F ,0) is a synthesis.

Writing

we have

Hence

B =
c

A =
c

*L

cl

L-Bc2->
rOj +^ea

ArBcici+BiFi VBclC2+BlF2

"Bc2Cl

B C,
— c 1

B.F
1 c

c -J

Wi

A2-Bc2C2

BiFi B1F2
ArBclCl A3"BclC2

-Bc2Cl VBc2C2

(33)



Wi B-F
1 c

A-B C
c .J

thus A. is stable.*L

and

To show that output regulation holds let

\ - (a^b^)-1 (a3+bxf2) eq(i

X =
c

1

-I

<x

It is easily checked using (29) and (33) that

A„ = AnX. + B.F X
3 —11 —1—c c

BC =B C.X- + A X
c 2 —c—1 1 —c c

D2 =hh '

(34)

(35a)

(35b)

(35c)

Thus (23) holds. Output regulation now follows from the Corollary to

Lemma 1. "

17

A synthesis as computed by SA employs a full order dynamic observer

of the state x. Such a synthesis may be inefficient in the sense of

employing more integrators than is necessary. A reduced order synthesis

may be obtained by using either a minimal order observer of the state

x or a minimal order observer of Fx where F = [FiF2] is a pure gain

synthesis.

A synthesis procedure of the latter type (see [16] and [17])

amounts to choosing 0( of minimal dimension such that there exist maps
c
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H'<XC*<XC. K=^J-q<c. T : <X +<XC

fc =q<c-qj, gc 8qjH.qj

with the properties

H is stable

TA - HT = KC

F T + G C = F.
c c

It is routine to verify that a synthesis is then (C( ,A ,B ,F ,G ) where

A = H + TBF , B = K + TBG .
c c c c

4. The Structure of a Feedback Synthesis

We shall say that a synthesis is of feedback type if the compensator

processes the regulated output z; that is, if y = z. Our object now is

to point out a basic feature of a feedback synthesis as obtained by SA.

Proposition 2

Assume (27), (30), and y =» z, and consider a synthesis 0(.A >B >F »G )

obtained by SA. There is a monomorphism V :*\- -•'a such that the

following diagram commutes:

A

9C -<X

V (36)

U A

% ^x2
U

it
A monomorphism is an injective morphism, i.e. a one-to-one linear
transformation.
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The interpretation of (36) is that Aq incorporates a copy of A£;

precisely,

A llmV = A.,
c' 2

The use of a copy of A2 in A is explicit in the controllers of

Johnson [7] and Davison [3].

Proof of Proposition 2

Using the notation introduced in the proof of Theorem 1 (Sufficiency),

if C, = D, and C0 = D0 we find from (35b) and (35c) that AX = 0. Since
11 2 2 c c

X is injective (see (34)) it suffices to take V = X . •
c c

The above controller feature is not a result of using SA. Indeed,

every feedback synthesis has this feature.

Proposition 3

Assume (27). (30), and y = z. For any synthesis (Q^A^B^F,^)

there is a monomorphism V :QL -*• Q( such that (36) commutes.

Proof

Let <Q( ,A ,B ,F ,G ) be any synthesis. From the Corollary to

Lemma 1we know that (24) holds; that is, there exist X1 eV^i and

V G Q( such that
-~c

A3 =A^Aj^V (37a)

0 = A V-VA„ (37b)
c 2

D2 =DA . (370

It remains to show that V is injective.
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For a proof by contradiction suppose that Ker V $ 0. From (37b)

KerO^A1) DKer V (i>0);

hence (V,A ) is not observable. So there exist X G a(A0) and x0 G 0( ,
/. 2 2 2

x2 ? 0, such that

Vx2 = 0, A2x2 = Xx2.

Set x1 =-X^ G9C1# Then from (37a) and (38)

(A1-X)x1 + A3x2 = (A1-X)x1 + (A1X1-X1A2)x2 = 0;

and from (37c)

D1X1 + D2X2 = °

Consequently

0 *

J<2_

G Ker

(38)

which contradicts (30). *

Proposition 3 is not true if the assumption y = z is dropped, as

the following example shows.

Example

Consider a first order stable plant whose output is to follow a

step reference signal:

xl
-X..+U

X2
= 0

z
=

~X1+X2*
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Suppose the reference signal is available for measurement:

y = x£.

It is easily checked that (27) and (30) hold. A synthesis is obtained

by the feedforward control u = y: a dynamic compensator is not necessary.

The closed loop transfer function is s/(s+l). Thus the feedforward

connection has, without dynamics, provided the necessary closed loop

zero at s = 0 to cancel the reference signal pole at s = 0. Synthesis

by feedforward is considered more generally by Davison [18].

5. Solution of Problem 2

Problem 2 is solved by Theorems 2a and 2b.

Theorem 2a

A synthesis which is structurally stable at A3 exists only if

<X =A1 Ker 1^ + ImB1. (39)

It is not difficult to show that (39) is equivalent to the condition

0CX «(A^X) Ker D± +ImB]L (X Go(A2))

which in turn is equivalent to

Im

ArX Bl

LD1 °
=9ti*^ (x G(J(A2))

This latter condition is the one which arises in the work of Davison [4]

and Wonham [13].



Proof of Theorem 2a

If ^c,Ac,Bc,Fc,Gc^ is asvnthesis which is structurally stable
at A3 then, by the Corollary to Lemma 1, (23) is a property which is

stable at A . From (23) we have

— —
~-

™"

A3+BlGcC2
G Im

VMA B,F
—1—c

D2 h 0

-_ — — —

~h h
C Im •

D. 0

(40)

4* ^m^

Letting Di :^ "»" Q^ be any right inverse of D- we find from (40) that

a3+b1gcc2-a1(d;d2)-

0

equivalently

G im
k h

lA °

A3+BlGcC2""-l(DlD2) G ~lKeT ^l+I^'B-l• (41)

Now clearly (41) is a property which is stable at A GQ( only if (39)

holds. *

22

Our object now is to prove a converse of Theorem 2a; that is, to

show that (39) is a sufficient condition. For this, however, we need an

additional assumption. Recall from [15] the definition that z is

readable from y if there is a map Q :wt) -*• ~fi such that z = Qy, which is

to say D1 = QC- and D„ = QC2. It was shown in [15] (Theorem 1) that a

necessary condition for structural stability (at a suitable data point)

is that z be readable from y. Hence we here assume this.

If such Q exists we can imbed \ in IJ :write



Qj=qA/*^

for a suitable linear spaceQA/* Then

ci =
1 E2

-Dl-
,c2-

-D2-

for suitable maps E. : QC. +C\\) (1=1,2), and

y °

where w = E..X.. + Ex ^[\). Here Q is the natural projection

QAi $ C^">(^* Now for acompensator (Q( ,AC»BC»FC»GC) define

b = b ioa;, B = B i^
cw c1 vv/ cz c1 U

G = G 1^1,1/, G = G
cw c1 v cz c

Then the overall system equations are

xl = A1X1 + A3X2 + B1U

x2 - A2x2

w = E^ + E2x2

z - D^ + D2x2

x = A x +B w + B z
c c c cw cz

u=Fx +G w + G z.
c c cw cz

The compensator is now formally a 7-tuple

23
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(CV ,A ,B ,B ,F ,G ,G ).
^c c' cw cz c cw cz

Theorem 2b

Assume that z is readable from y and that (39) holds. Then there

is a synthesis in which B = 0, G =0, and G =0 and which is
•* cw cw ' cz

structurally stable at (A19Ao9B19B ,F ).
* i J ± cz c

Notice that the data point (A-,AQ,B1,B ,F ) includes the plant

data (A1,Ao,B1) together with the nonzero compensator data excluding

A : small arbitrary perturbations in A cannot be permitted if output

regulation is to be maintained. Notice also that the compensator is

of feedback type processing only the output z (B =0, G =0).

The format of the proof of Theorem 2b is the same as the proof of

Theorem 1 (Sufficiency): first we give a synthesis procedure and then

show that the resulting compensator has the required properties. For

the synthesis procedure we need some notation.

Let

<X2 =<±) <X21
Z i=l L

be a rational canonical decomposition (red) of a« relative to k^. Thus

QC is A2-invariant (iGjk), A2± =A21'^2± ±S cyclic (*•%>> the miniraal
polynomial (mp) of A divides that of A2 ±+1 (iGk-1), and the mp of

A , is the same as that of A . Let q = dQpO and define

vC =^?k^* "^^2k (<l-fold direct sum)

and

A2e :9(2e^2e' A2e^2k =A2k"

Thus A is the q-fold direct sum of the lurgest cyclic component of A9.
2e *•



Now if a is any one of the subscripts l,...,k,e and ^ is any linear

space, define

^-HomCq^).

Similarly if A : Q+QL define A : QL -*-9i„ by
ci a a

4Xa =^a " XaA2a <V^>'
and if C: 9^ -"^J define C :Q( +tya by

C X = CX
—a a a a a

Structurally Stable Synthesis Algorithm (SSSA)

Step 1. Define 9( =9^ *9(2e and select A3e :Q(2fi -• 9^ so that
(D ,A ) is detectable. Here

A =
e

rAl A3e

0 A2eJ

: 9, +9C
e e

oe= H^O] i<5C.+^.

The next four steps consist in obtaining a synthesis via SA for

the system
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xl = Alxl + A3eX2e + V

x2e " A2eX2e

y » z = D1x1.

(42a)

(42b)

(42c)

Step 2. Let 9( =9( and select B^ :^ -• <XC so that Ae - BczDe is
c ' "e

stable.

STep 3. Select ¥1 :9^+QJ so that Aj+B^ is stable,

Step 4. Select F2e :9(2e +Q,( so that



A3e+BlF2e"
G Im

. o _

A. +Bn F. "
—le —le—le

-le
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(43)

Step 5. Set F = [F F ], A = A -B D +B F , B = 0, G = 0, G = 0.
c 1 le c e c e e c cw cw cz

Here

B =
e

B,

L°J
'^+90

Before proceeding we require some technical facts. We first recall

the notion of a generic property (see [13]). For any field K a property

II of points in IK is generic if the set of points where II fails lies

in a proper algebraic variety in Kn. Suppose H is generic on fln; that

is, II fails only on a proper variety in <E . Then II is generic when

restricted to ]Rn. To see this let ^P = (p ,...,p ) be a representative

point in (C . If II is generic on <C there is a nonzero polynomial

<Ks..,...,s ) G <E[s ,. ..,s 1
in in

such that n fails only at points *-P G (Cn where <J»(p,,...,p ) = 0. Factor

<f> as

<f)(s1,.. .,sn) = ^^(s1>...,s )+ i $2(si**a*»8n)

where <j>. G 3R[s_,...,s ] (j=l,2). Now § and <j>« are not both identically

zero; hence

2 2^ = <f>! + <t>2 G m[s1,...,sn]

is not identically zero. Now n fails atT-^ G ]Rn only if ip(p1,...,P )= 0,

Hence II is generic on IR .



27

Next we require

Lemma 2

Let A :9^ "*• 9C A :SX. -• Sa be maps with invariant factors

a.(s) (i^), a.(s) (iGm) respectively. Define L :Hom(9(»90 ">* Hom6X'9()

LX = AX - XA.

Then

(a) d(Ker L) = £ deg gcd(a ,a ).
i.j 3

(b) There exists a monomorphism V G Ker L iff

"i'Vm+i (i^}-

Part (a) is immediate from Theorem 1, p. 219 of [19]. Part (b)

can be derived from this Theorem, however it has been proved by Corfmat

and Morse ([20], Lemma 1 ).

As a simple application of Lemma 2b we find that if

i=l x

is a red of 0i relative to A, then for each 1 G m-1 there is a

monomorphism V. :9C "*"9(i+i such that the following diagram commutes:

Al9ci+1
9C

i+l •%i+l

U Aiqc, J
<X -<X
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Proof of Theorem 2b

We first show that when (39) holds SSSA can be carried out, and

second that the resulting compensator provides the required structural

stability. As the proof is fairly long it is divided into four steps.

(i) We shall prove that Step 1 of SSSA is possible. Since (D ,A )

is detectable

d[(A1-X)Ker D^ - d(Ker D^ =d^^-q (X G a(A2e)).

(44)

Furthermore (D ,A ) is detectable iff
e e

(A~ ,A« ) is observable (45)

and for each X G a(A )

A Ker(A2e-X) H (A1~X)Ker D1 = 0. (46)

Now by construction A« has q cyclic components in a red. And

since D- is surjective, q_< d(9C,)» These two facts show that (45) is

a generic property of A . Similarly, (44) together with the fact

d[Ker(A2e-X)] =q (X G a(A2e))

shows that (46) is a generic property of complex A- and hence of real

A. for each X G a(A ). Since the conjunction of a finite number of

generic properties is generic, we find that

(D ,A ) detectable
e e

is a generic property of A . Hence Step 1 of SSSA is accomplished by

'almost any' A-e :9C2e "*"9(1«



(ii) Obviously Steps 2 and 3 are now possible, so we show that

Step 4 is.

From (39) we have

2* • 4kKer 4k+ *«*

and hence

9C = A, Ker Dn + ImB- ;
^le —le —le —le

equivalently

^le "Wle» Ker file +^le'

Thus there exists F_ gQ( such that
2e _e

A0 + BnF0 G (A, +B- F, )Ker D. ,
3e 1 2e ^-le —le—le —le

which is equivalent to (43).

We have now shown that SSSA can be carried out. Furthermore we

know from the proof of Theorem 1 that

*L

A, B-F
1 1 c

B D. A
_ cz 1 c

(47)
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is stable. So it remains to show that output regulation is a property

which is stable at (A^A^B^B^F,).

(iii) We claim that

and

Ker B =0 (48)
—cze



ImA H imB = 0. (AQ\
—ce —cze v**-7/

To establish this recall that (9( ,A ,0,B ,F ,0,0) is a synthesis

for system (42) and that (D ,Ae) is detectable. Hence Proposition 2

implies the existence of a monomorphism V :9C •*• 9C such that
e 2e c

AcVe " VeA2e- <5°>

Since A2e has exactly q invariant factors each of which is the mp of

A2, we conclude from (50) and Lemma 2b that the mp of A« divides at

least q invariant factors of A ,
c'

Since A^ is stable

^Le = lmhz • <51>

From (47) this implies that

9( = ImA + ImB
— ce —ce —cze

which in turn implies

^ck •**ck +^czk- (52)

Now let {a .(s)} be the invariant factors of A and a„(s) the mp
ci c z

of A„. Applying Lemma 2a we have

d(Ker Ack) = £ deg gcd (<*ci»a2)'

Then, since a. divides at least q a ,fs,
2 ci

d(Ker Ack) >q•deg a2 =q-d(9(ck). (53)

30
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However

- d<£).doq<2k>

=q-d(9(2k)- (54)

So from (52), (53), and (54)

**e**& <55)

and

Im A,HIm B^ fc = 0. (56)

Now (55) implies that Ker B . = 0, which implies (48); and (49) follows

from (56). This proves the claim.

(iv) Returning to (51) we know in view of (47) that for any

Rle G9Cle there exist Xle e9Cie and Xce G9(ce s"ch that

R = A, X, + B, F X
le -le le -le-ce ce

0 = B D, X, + A X .
—cze—le le —ce ce

But from (48) and (49) this implies

9L = A. Ker D, + B. F Ker A
'^le —le —le —le—ce —ce

from which there follows

^ik - Atk ** 2ik +*iAk Ker 4k- (57)

Now for each iGk A2± is imbedded in A2fc in the sense that A2kV± « viA2i



for some monomorphism V± :(X1± ^9^^- Abrief computation using this
fact and (57) yields

%1± -• A1± Ker Du +B^ Ker A^ (i%)

and hence

9L =An Ker D, + B^ Ker A .
— 1 —1 —1 —1 c —c

(58)

We conclude the proof by showing that (24) is. stable at

(A1,A3,B1,Bcz,Fc). Clearly (58) is stable at this data point, so it

suffices to show that (24) follows from (58).

t
If D1 is any right inverse of D then (24) is equivalent to

A3-Al(D^D2r
0

0

Im

^i iA
0 A

-Hi 0

and this is equivalent to

A. - A.(D.D_) G An Ker D. + B-F Ker A .
J —1 1 z —1 —1 —1—c —c

But this follows from (58).
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6. The Structure of a Structurally Stable Synthesis

We observed in Section 4 that a feedback synthesis incorporates in

A a copy of A . For the structurally stable feedback synthesis obtained

by SSSA a stronger statement is true: A incorporates a q-fold reduplication

of the maximal cyclic component of A«. More precisely, from (50) we have

Proposition 4

Assume that z is readable from y and that (39) holds, and consider
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a structurally stable synthesis computed by SSSA. There is a monomorphism

V :9C "*" 9( such that the following diagram commutes:

B =0

V

u
2e

l2e

•9C

u
-9C2e

To complete the parallel of this section with Section 4 we state

without proof the following counterpart of Proposition 3: Assume z is

readable from y and (39) holds. Let (9(c'A<fBcw,Bcz,Fc,Gcw,Gcz) be a

structurally stable synthesis. Then there is an A -invariant subspace

£p C9( and amonomorphism Ve :9(2e +9^c =OCjl^ such that the
following diagram commutes.

(59)

Here P is the canonical projection and A the induced map in the factor
c c

space. We have stated this result informally, omitting the data point

at which the synthesis is structurally stable. For a precise statement

and proof the reader is referred to [15], Proposition 3 and Theorem 2.
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7. Concluding Remarks

It is expected that the algebraic approach employed in this paper

would prove useful in a regulator problem for linear decentralized

systems.

The synthesis theory presented in this paper deals with systems in

state-space form. Uncertainty about the system is then taken to be

uncertainty about parameters in the matrices in the state-space

description. There is an implicit assumption here that the state-space

description is derived from physical laws rather than from a realization

of an input-output impulse response. This is because the function

(suitably defined) which maps an impulse response to its state-space

realization is not continuous in the natural topologies, and hence

'slight uncertainty* about the impulse response need not correspond to

'slight uncertainty' about the state-space description. An important

open problem therefore is a synthesis theory for systems modeled by

input-output maps.
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