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ABSTRACT

The multilayer routing problem is introduced and its relation to the

single-row, single-layer routing problem is illustrated. An easily imple-

mentable sufficient condition on the routability of a net list over a

single row of nodes is presented. The solution is given by a constructive

forward marching procedure and the result is superior to that which was

obtained by So [1]. The implementation algorithm is programmed on CDC 6400

computer. The nature of the optimum criterion relating to single-row

routability is investigated and a necessary and sufficient condition is

given to characterize the nature of optimality. Some necessary conditions

are also presented which can be used to evaluate the sufficient condition

and served as a lower bound for the channel capacity in the routing problem.

The experimental results and necessary conditions together suggest that our

sufficient condition is reasonably close to the optimum.

The more general routing problem is illustrated and possible future

research areas are discussed.
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1. Introduction.

In this paper we deal with the problem of multilayer routing which

was first introduced by H.C. So of the Bell Telephone Laboratories^ .

The problem is of central importance in the design of large and complex

electronic systems due to the high density packaging requirement. The

essence of the problem is to interconnect functional or circuit modules

with hundreds or thousands of terminals by means of printed conductors

which are layed on a multilayer board. It is assumed that the board has

fixed geometries, i.e., each layer has fixed plated-through holes, uniformly

spaced on a rectangular gird. Conductor pins (drilled-through holes to

reach all layers) and vias (plated-through holes to be used for inter

connection between layers) alternating on each row are provided. This

is illustrated in Fig. 1. Thus functional or circuit modules with predeter

mined placement can be mounted, for example, on top of the multilayer board.

The problem is then to interconnect terminals of the modules according to

specifications by means of pins and vias of the multilayer board with printed

conductors layed on each layer. It should be noted that, on each layer,

conductor paths form a planar graph. Therefore the routability is of no

problem in the absence of any constraint. However, due to various inherent

physical and strategical constraints it is necessary to use miltilayers;

and to reach from one layer to another, we route conductor paths through

vias.

There are various kinds of physical constraints associated with the

problem, typically: the size of the multilayer board, the feasible number

of layers, the minimum width of the conductor path, and the necessary

separation between two adjacent parallel conductor paths. Therefore, a key

question is whether a given problem can indeed be realized with a specified
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multilayer board; and if it cannot be realized, whether there is an optimal

realization for obtaining a maximum degree of interconnections. Or, the

problem could be formulated in another way: for a given interconnection

specification, what is an optimal design of a multilayer board to facilitate

hundred percent routing? In this connection, So has made an important con

tribution. By reducing the multilayer problem to a single-row, single-layer

problem, he was able to make an estimate on routability for any given problem,

He also developed sufficient conditions and algorithms for routing which

guarantee routability for the single-row, single-layer case. His results

are however far from optimum; nevertheless, it should be pointed out that,

prior to his work, all techniques have been empirical in nature and essen

tially based on cut and try [2-6].

In this paper we shall restrict most of our attention to the single-row,

single-layer routing problem. We will present a sufficient condition as

well as algorithms which lead to a significant improvement over So's work.

As a matter of fact, our results yield realizations which include that of

Sofs as a least optimum special case. We also have developed a number of

necessary conditions which have lead us to believe that our sufficient

condition is reasonably close to the optimum.

In Section 2, we present the general multilayer problem through an

example and demonstrate how it can be reduced to a single-row, single-

layer problem. We then introduce key definitions for the single-row,

single-layer problem along with some physical and strategic constraints.

The relation with the single-row, multilayer problem is next illustrated.

In Section 3, we present our fundamental routing algorithm for the single-

row, single-layer problem. The algorithm ensures routing for any problem
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if we do not impose physical constraints on routing channel capacity.

The algorithm is key to the results in Section 4 which gives a sufficient

condition for routability with channel capacity constraints. In Section

5, a necessary and sufficient condition and a number of necessary conditions

for routability on the single-row, single-layer problem are derived. In

Section 6, we conclude the paper with a simple example on the single-row,

multilayer problem and demonstrate how the sufficient and necessary conditions

for the single-row, single-layer problem might be used.

2. The Multilayer Problem and Its Relation to the Single-Row, Single-

Layer Problem.

Consider a backplane with a fixed rectangular array of pins and vias

as shown in Fig. 2a. For convenience, we designate each pin or via accord

ing to its location, i.e., row and column. Thus b5 signifies that the pin

is located at the intersection of b-th row and 5-th column. Suppose that

the problem is to route a specified net list L = {N^N^N^ where Nx =

{a1,b5,e9}, N2 ={c^c.^} and N3 = {a7,c5,d?,e5}. This implies that pins

a., b_, and e^ in net N.. are to be interconnected, and so are the pins in

N and N~, respectively. A possible realization is shown in Fig. 2b. As

shown in the figure, we have adopted a special strategy, that is, we depend

on horizontal conductor paths to connect pins and vias which lie strictly

in a row and we use only vertical conductor paths on a separate layer, as

indicated by dotted lines, to connect pins or vias which lie on the same

column. This scheme was called the unidirectional routing by So. It has

the distinct advantage that it is strategically sound because it is amenable

to a systematic study and it rules out the necessity of considering various

other possible alternatives in routing. Furthermore, intuitively, the scheme
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is basically economic and can handle many simple circuits interconnections

with two layers only. Finally, it is seen that, with this, the general

multirow, multilayer problem has essentially been reduced to a single-row,

single-layer problem.

In this example, from the realization shown in Fig. 2b, we may consider

that the problem has been reduced to seven simple single-row, single-layer

problems with respect to rows a, b, c, d and e, and columns 2 and 8 as

follows:

row a {a^a^K {a_,ag}

row b *b2,b5*' *b3,b7*
row c {c-,c«fC3}, {cc,Cg}

row d {d2,d5>, {d_,dg}

row e {e.,eg}, {e5,eQ}

column 2 {a^b^^}, ^c2»^2^

column 8 ^a8,c8,(i8,e8^

Note that in the single-row specification, pins and vias are treated in the

same way as individual nodes. Of course, in this simple example, the solu

tions for routing the single-row, single-layer problems are already given

as shown. However, had we started with a realistic problem, the resulting

single-row, single-layer problems would be more complicated. In order to

acquire a better understanding of the single-row, single-layer problem, we

need to introduce some definitons first. We shall do so again through an

example.

Consider the example as shown in Fig. 3a where nodes a1 through a^

are evenly spaced on a row R. They represent either pins or vias of the

multilayer board. A net N. is defined as a set of nodes indicating common
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potential, which are to be connected by conductor path on a plane. A net

lj-st L is a set of disjoint nets, which implies that no two nets share the

same node. Thus in Fig. 3a, L = {N^N^N^N,} and the four nets are N- =

*al,a5*' N2 = ta2,a9*» N3 = *a3»a6* and N4 = {a4>a7»ag}' For ease in dis
cussion, we shall use a graph representation of a net list as shown in

Fig. 3b. Thus Fig. 3a gives a physical realization of the net list in

Fig. 3b. It should be emphasized that in Fig. 3b horizontal and vertical

connecting lines are not conducting paths; they only prescribe the inter

connection specifications. The advantage of using the graphical represen

tation of a net list is that it gives, besides the interconnection specifi

cation a succinct exhibit of some key invariant properties such as density

and cut number which are to be introduced later. In this paper we shall

rely on the graph representation of a net list in defining some necessary

terminologies.

We next describe the physical implementation of a given net list to

fulfill certain constraints. In Fig. 3a we marked the space between R and

the upper boundary the upper street U, and similarly, the lower street W.

From the discussion in the Introduction, it is clear that there is an upper

limit of the number of conductor paths parallel to R which can be routed in

each street. This number is called the upper channel capacity for the upper

street and the lower channel capacity for the lower street. In addition,

the maximum number of parallel conductor paths which can be routed between

two neighboring nodes is called the between-nodes channel capacity. Further

more, for practical and strategic reasons we shall restrict the interconnection

pattern in the same way as So. First, only rectilinear paths are allowed, i.e.,

paths contain only horizontal and vertical conductor segments as in Fig. 3a.

Secondly we will not allow forward and backward zigzagging conductor paths
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as in Fig. 4. (Upward and downward zigzagging is allowed and is used in

N, of Fig. 3a.)

A physical implementation of a net list, which satisfies the above

constraints is called a realization of net list L over the nodes on single

row R. Thus Fig. 3a is a realization of the net list L in Fig. 3b provided

that the lower channel capacity is at least three and both the upper

channel capacity and the between-nodes capacity are at least one. Let us

define the unit interval (a,b) on R as the interval between two consecutive

nodes a and b. For a given realization the maximum number of conductor

paths in the upper street over all unit intervals is called the upper-

street congestion, C(U); similarly we define the lower-street congestion,

C(W) and the between-nodes congestion, C(V). For the example in Fig. 3a,

C(U) = C(V) =1 and C(W) = 3. It is important in practice to find realiza

tion which have small congestion numbers so that limits imposed by channel

capacities can be met. Figure 5 shows an alternate realization of the net

list in Fig. 3a with C(U) = C(W) = 2 and C(V) = 1.

In practice, the upper channel capacity and the lower channel capacity

of a multirow, multilayer board are usually the same; therefore, in order

to use the channels most effectively, we would like to have physical reali

zations with street congestion C(U) ~ C(W). In the remaining portion of

this paper we shall assume C(U) = C(W) in deriving sufficient and necessary

conditions, and we shall denote by M the street congestion, i.e. C(U) = C(W)

= M. It is clear that street congestion for a realization depends not only

on the routing but also on the structure of the given net list. Suppose

that the street congestion for the best possible realization exceeds the

channel capacity of the board, what should then be done. Obviously, we

could use multilayers. To illustrate, let us assume that the channel
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capacity for the example above is one. The problem needs to be solved is

then to decompose the net list into two so that the problem can be realized

with two layers. One possible solution for this problem is to have L- =

{N ,N,} and L = {N2,N }, we then obtain a possible realization with two

layers as shown in Fig. 6. Note that the street congestions for both layers

are equal to one.

It is seen from this example, for a given single-row problem, we need

in general to decompose the net list specification from a multilayer to that

of the single-layers. Various methods of decomposition can be used; however,

so far, we have not found an optimum method of decomposition. In Section 6,

we shall give another example to illustrate the problem. In the next three

sections, we will restrict our discussion to the single-row, single-layer

case.

3. Sequential Routing Without Channel Capacity Constraints.

In this section we introduce a sequential routing method for the single-

row, single-layer problem. For consistency, the method will always start

from left to right in routing each net and we will show that the routing

paths will never encounter blockage with the method. Our method depends in

a critical way on the three types of nodes which are encountered in the

process of routing. In realizing a given net list, nets are sequentially

routed. Nodes associated with those nets which have not previously been

routed are classified as type A. Nodes which have already been connected

with conductor segments in the upper street are called type B; and, similarly

in the lower street, type C. These are illustrated in Fig. 7. In order to

proceed further, we need to introduce formally the following definitions:

Definition 1: A net N is said to be over an interval [c,d], if the
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net contains at least two nodes n and n ,i.e. n^ n € N, such that

n <c<d<n.. In the case where c = d, then n. < c = d < n , we say that
i — — j i J

net N is over the node c or d.

Definition 2: A net N is said to be routed in the upper (lower) street,

U(W) if the following holds: (i) the vertical conductor segment incident

with each node in net N is routed in U(W), (ii) over nodes of type A and

C(B), the portions of conductor path realizing net N are in U(W), and (iii)

over nodes of type B(C), the portions of conductor path realizing net N are

in W(U).

Remark: It is necessary to use vertical conductor segments between

nodes to interconnect horizontal conductor segments on different streets

as shown in the example of Fig. 8.

Definiton 2 leads to a method of realization of a given net list.

It is implicit from the definition that, in routing a current net N over

an interval, the path depends on the status of all nodes in the interval

at that moment. For example, in Fig. 8 the net ®1 = {a^a^} is routed

in U. Thus the vertical segments incident to a1 and a1Q are in U. The

path starts with a1 in U, switches to W over node a2 and then switches back

to U over node a., etc., because a2 is of type B and a^ is of type C. The

process continues in this fashion until every node has been reached.

It is intuitively clear that, for any given net list, once the routing

order of the nets in the net list is chosen and every net is assigned to a

specified street, all nets in the list can be routed. The topological

structure pertaining to the net list is of no particular significance.

We are now in a position to state the following theorem and routing algorithm.

Theorem 1 With no restriction on street congestions, any net list L

can be successfully realized over a single row R such that (i) any net may
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be preassigned to either street in the sense of Def. 2 and (ii) all nets

can be routed in any predetermined order.

Routing Algorithm: Given a net list L with each net in the list

assigned to be in a specific street X(X=U or W) and all nets are ordered in

the sequence to be routed. Let n be the total number of nets in L and N± be

a net in L to be routed in street X.

Step 0: i «- 0, NQ «- <j>

Step 1: If i •*• n, stop, end.

Otherwise, set i «- i+1.

x X oStep 2: Pick N. from L, route N. according to Definition 2.

Step 3: Go to Step 1.

Proof of Theorem 1: It suffices to show that, based on the routing

algorithm, any net which has been previously routed will not block any

conductor path of the nets to be routed. Let us assume that there is a

blockage as shown in Fig. 9. Let N1 be a net which has already been routed

and assume that it blocks the conductor path of net N as shown, so it is

impossible to route the net N= {c,d}. First, it is important to note that

blockage can occur if and only if net N' is over node c and node d in

opposite streets as shown. However, according to Definition 2, since both

c and d are associated with nets which have not yet been routed when we

route N\ so they both belong to type A nodes and thus the conductor path

of N1 over nodes c and d must be in the same streets according to Definition

2. Therefore, we have reached a contradiction; hence the theorem is proven.

Remark: For practical purpose, it is advisable to make minor local
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modifications in the final realization. This is illustrated in Fig. 10.

In Fig. 10a, we show a net N which is routed in street U according to Defintiion

2. Fig. 10b illustrates the same net N after the modification. The places

which modifications occur are at nodes a^^ and ag. We follow strictly the

definition in routing N in Fig. 10a, and then make the modifications in

Fig. 10b to simplify somewhat the routing. These modifications are strictly

local and obviously do not affect routability in any way.

4. Sufficient Condition for Routability.

In order to come up with sufficient condition for routability in terms

of street congestion specifications, we need to introduce two pertinent

properties of a given net list, namely: density and cut number. The first

was originally introduced by So and entered in his sufficient condition for

routability. However, density alone failed far short in telling the complete

story of the structure of a net list.

Definition 3: The density for a unit interval (a,b), denoted by d(a,b),

of a given net list is the number of nets over the unit interval (a,b).

Stated in another way, if a vertical line is drawn between node a and

node b, the number of intersections which the line makes with all nets

over (a,b) is d(a,b). Thus density is a function of the unit intervals. We

denote by p the maximum of density over all unit intervals on R. Obviously

pis intimately related to the street congestion that can be realized. It

should be noted that both the density over a unit interval and the maximum

density for a given net list can similarly be defined for any realization

of a net list. Clearly they are invariant with respect to realizations of

the net list. Figure 11 illustrates these concepts.

It is easy to see that we can state the following lemma pertaining
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to the lower bound on street congestion.

Lemma 1: Let the congestions for the upper street and lower street

be the same, and let M = C(U) = C(W). For a given net list, the minimum

street congestion for all possible realizations is equal to or greater than

p' where p? = [y], [•] denotes the smallest integer larger than or equal

to the expression. Thus for p even, p' = ^- and for p odd, p1 = ^5— .

Proof:

Assume that we could achieve a realization with street congestion M =

C(U) = C(W) < p', say p'-l. Since the maximum density is p, there exists

at least a unit interval (a,b) with d(a,b) = p. At this interval we can

route at most P'-l nets in U and W thus a total of 2(p'-l) nets. Thus, if

p is even, 2p'-2 = p-2 < p; and, if p is odd, then 2p'-2 = p-1 < p. In

both cases we have at least one net over (a,b) which cannot be routed with

a street congestion of p'-l. Therefore, we conclude that the street con

gestion is at least p1.

Remark: In this lemma we have established a lower bound on the street

congestion for the realization of any net list. One may hope that we could

always achieve a realization with street congestion equal to p'. This

is, however, not always possible as illustrated by the example shown in

Fig. 12. In Fig. 12a, the net list is shown with p = 4. The realization

given in Fig. 12b yields a street congestion of M = C(U) = C(W) = 3 which is

larger than p1 = 2. As a matter of fact, it can be shown later in Section 5

that there exists no realization with street congestion equal to p* = 2.

The crux of the matter is that density alone does not prescribe all the

structural properties of a net list. What we need to obtain is not just

an estimated lower bound but are some sufficient conditions which ensure
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routability. In this connection we have found that there exists another

key property of the structure of a net list: the cut number.

Definition 4: The cut number c of anode i, c(i), is the number of

nets over node i, not counting the net in which node ibelongs. The cut

number of anet is the maximum cut number of the nodes which are associated

with the net.

Figure 11 illustrates the above concepts. It is easy to see that, like

density, the cut number is invariant with respect to any realizations of a

net list.

From the definitions of density and cut number, we can state the following

useful properties of anet list: The density at any unit interval (a,b)

differs with the cut number at node a or node b by at most one. The density

at adjacent unit intervals differ at most by one. The cut number at adjacent

nodes differ at most by one. These properties will be useful when we

consider in detail the structural properties of a net list.

With this, we are ready to present the following theorem which gives

the sufficient condition for realization of a net list.

Theorem 2. A net list L over R is realizable with C(U) = C(W) =M > p'

if the following holds: for every unit interval (a,b) with density d(a,b) =

I, I>M+l, there exists at least 2(I-M) nets over (a,b) such that each

of them has cut number less than I.

Remark: This theorem suggests a constructive forward scanning procedure

to determine a suitable street congestion by examining all intervals with

density greater than p\ First, if the condition stated in Theorem 2 is

satisfied with M = p', the net list can indeed be realized in an optimum

way with street congestion equal top'. If not, we increase Mby one each

time until the sufficient condition is met.
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Remark: By definition the cut number at any node is at most p-1.

Thus, if M = p-1, Theorem 2 is always satisfied; hence, the least optimum

realization follows. It is also easy to show that the between-nodes

congestion is at most equal to street congestion minus one, or M-2. This

case corresponds to what was given in So [1].

In the following we give the assignment algorithm based on Theorem

2.

Assignment Algorithm:

Step 0: M + p'

Step 1: I -*- M+l

Step 2: Let (a,b) be the leftmost unsearched unit interval with density

equal to I.

Step 3: (i) There are less than 2(I-M) nets over (a,b) with cut number less

than I, then go to Step 5. (ii) There are 2(I-M) or more nets over

(a,b) with cut number less than I.

(a) There are I-M nets over (a,b) with cut number less than I

already assigned in both U, and W. Then go to Step 4.

(b) There are I-M nets over (a,b) with cut number less than I

already assigned in U or W with I-M-l in the other street. Then

assign a net with cut number less than I which has not yet been

assigned to that other street. Go to Step 4.

(c) There are I-M-l nets over (a,b) with cut number less than I in

both U and W. Pick two nets over the unit interval with cut number

of the nets less than I which have not yet been assigned. Assign

one net to each street.

Step 4: If there exists no more unsearched unit interval with density equal
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to I; then if I = p, go to Step 6, otherwise set I «- 1+1 and go

to Step 2. If there remains any unsearched unit interval with

density equal to I, go to Step 2.

Step 5: Wrong exit, street congestion exceeds M according to the sufficient

conditions. Set M «- M+l, go to Step 1.

Step $: All necessary nets are assigned, stop, end.

It should be mentioned that the above algorithm is strictly for the

purpose of assigning nets in sequence to the appropriate streets. After an

assignment is made, the net must then be routed according to the routing

algorithm described in the previous section. Thus in realizing a given

net list, we use the assignment algorithm in conjunction with the routing

algorithm. After the assignment and routing algorithms terminate, there may

be nets left over. These remaining nets can be routed in any street at any

order using the routing algorithm again to complete the realization.

Example: Let us illustrate the assignment algorithm and the routing

algorithm with an example. The graph representation of the net list is shown

in Fig. 13a. Since P = 4, P1 = 2, we need only to examine unit intervals

with density greater than 2. They are (a~,a,), (a_,afi) and (a7,ag) which

have density three and (a, ,a,.) which has a density four. From left to right,

we check first (a.,,a,). Note that nets N- and N. have cut number less than 3,

thus we assign N- to U and N to W. These are routed as shown by the

solid lines in Fig. 13b. Examination of unit intervals (a_,a6) and (a_,ag)

yield the same assigned nets. We therefore increase I by one and examine

the interval (a,,a_), we assign next N. to U and N, to W and obtain the

routing immediately as shown by the dotted lines in Fig. 13b. At this stage

the assignment algorithm is terminated and the only remaining net is N_. We
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may assign it arbitrarily. In Fig. 13c, we route N_ in street W and complete

the net list realization. It is seen that the street congestion is eaual to

p' = 2.

Proof of Theorem 2:

We claim that by combining the assignment algorithm and the routing

algorithm, we can achieve 100% routability with a street congestion M. The

proof contains three steps:

(i) Obviously, we do not need to examine those unit intervals with

density equal to or less than M, because in the worst case all M nets over

these intervals can appear in one street.

(ii) For every unit interval (a,b) with density equal to I > M,

from Theorem 2 we know that there are at least 2(I-M) nets over (a,b) with

cut number less than I. Over each such unit interval (a,b) we assign I-M

nets in U and I-M nets in W. If we can show that in actual routing the nets

will not switch in the unit interval (a,b). Then we will have routing with

street congestion M. This is due to the fact that, for any such unit interval,

there are at most I - 2(I-M) = 2M-I remaining nets after the assignment which

need to be routed. In the worst case, if all these remaining nets are

routed in the same street, then (2M-I) + (I-M) = M which is the street

congestion sought. Note, from Theorem 1, we know that routing without

blockage is guaranteed, thus it is only the street congestion which we need

to check.

(iii) To complete the proof, we need to show that the assigned nets

for each unit interval (a,b) with d(a,b) = I > M when routed do not switch

from one street to the other over the unit interval (a,b) and over any

other unit intervals (x,y) with d(x,y) >. I. To understand the following
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arguments which constitute the proof we must bear in mind several important

concepts. We must understand precisely the nature of our routing algorithm

which depends on the type of nodes a net encounters. Furthermore, in the

assignment algorithm, it is stated that we assign only those nets which

have cut number less than I. Thus the cut number pertaining to nodes which

belong to these assigned nets must be less than I. Since over any unit

interval with density I, the cut number* of nodes which are associated with

the unit interval can be either I or 1-1, we can therefore rule out immediately

the consideration of unit intervals (x,y) with d(x,y) > I. This is due to

the fact that for these intervals, the cut number at node x or y is at

least I, and therefore these nodes must be of type A. From the routing

algorithm, the paths associated with nets over any unit interval (x,y)

with both x and y belong to type A stay in the same street without switching.

Therefore, we need to consider only those unit intervals with density equal

to I.

There are several cases to be analyzed depending upon the type of nodes

which are associated with the unit interval under consideration (i.e. at

the time of routing). Clearly, if the two nodes are of type A, according to

our routing algorithm, the net to be routed does not switch over the interval.

In the case where two nodes are of type B(C), as shown in Fig. 14a and 14b

(the case where two nodes are of type C is symmetrical to that of type B).

The cut number of at least one of the nodes is I, which is impossible to

occur because by the assignment algorithm, all the nodes associated with

nets assigned have cut number of at most 1-1 at this stage. Therefore, we

are left with only those cases in which the two nodes are of different types.

There are four of these cases as shown in Fig. 14 which need to be considered.

The other possibilities have been ruled out because of symmetry and because
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of the fact that in our algorithms routing and checking are always from

left to right.

In the cases shown in Figs. 14c, 14d and 14£, since d(a,b) = I the cut

number at node a must also be I from the definition of the cut number,

which contradicts the statement that the cut number of the nets already

routed is less than I. Therefore only Fig. 14e needs to be considered. If

we run into such a situation as in Fig. 14e, we find that a net has already

been assigned and routed in the upper street as shown, thus by Step 3-b of

assignment algorithm we need only to assign another net in the lower street.

Following our routing algorithm, since node a is of type A and node b is of

type B, we can route the net over (a,b) in the lower street without switching.

This completes the proof of Theorem 2.

The assignment and routing algorithms have been programmed on CDC 6400.

In the Appendix I we give several examples together with a table which

summarizes the result. The algorithms seem to be rather efficient. It is

possible to give the following estimate on the computing time in the worst

case. Let n be total number of unit intervals and let n± be the density of

those unit intervals, which exceed p1. In general, there are about n/2

such unit intervals, and an average number for n± is (p+p*)/2. In the worst

case we have p * n/2. In our algorithm, we only examine the nets over unit

intervals with density greater than p1; therefore, the total computing time

~ /P*P\ /n\ - 3nis proportional to E n. ~ (.—^—) vj' ~ 16 "

5. Necessary and Sufficient Condition on Single-Row, Single-Layer Routing.

In the previous section we have taken advantage of the two key properties

of the net list structure in deriving the sufficient condition for routability

with channel capacity constraints, namely: density and cut number. The

assignment algorithm and the routing algorithm together yield physical
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realizations for any given net list. Two logical questions to ask now are
how good is the sufficient condition and do our algorithm lead to option
or near optimum realizations. In Fig. 15 we show an example in which
according to our sufficient condition and algorithms, the street congestion
Mis equal to 3, yet there exists another realization with M=2. Thus we
know that our result does not give the optimum solution in general. In
order to be able to evaluate our sufficient condition we need to look into
the structure of anet list in amore detailed fashion. We need to develop
necessary and sufficient condition on routability. It turns out that density
and cut number together are not enough to characterize the intricate rela-

„««- He*- There exists other structuraltions among various nets of a given net list. There exis

properties of anet list which must be taken into account. First let us
introduce the following definitions:

Definition^ We denote by Sfc aclosed interval [».,] with the property
that the cut number for both nodes xand yis k-1 and for any other node
in (x,y) is greater than or equal to k. Furthermore, for consistency, we
denote the nodes in the interval [x.y] by the sequence (x.a^,.. .,ap,y).

Definition 6: We denote by n(Sk> the set of nets with the property that
i. u *.v,o«- a < v < v < b and the net Neach net H has at least two nodes a, b such that a <x y_

has no nodes in the open interval (x,y).

Definition 7: We denote by n(Sfe) the set of nets with the property that
each net has at least one node in the open interval (x,y).

Definition 8= We denote by Sfc aset of disjoint intervals S™, i.e.,

*k =^Sk
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Definition 9: For any s£ €I we define

"k^ °n^k^ and for Zk With ISls-1 - 2

4±li'1 m) =n (s^) nfj (s«)) nfs <s<*>) n...nfi (skm))
forsf.sf.sW,-, S^E,k

Definition 10: Given a realization of a net list, we say that a net

N €= n (S, ) is routed in street U(W) completely over the interval S, =

[x,y] if over all z €= {x,a_...a ,y}, the conductor path of N is in street

U(W) and does not switch in [x,y].

The above definitions are illustrated with the example in Fig. 16.

We are now in a position to derive some necessary conditions. First let us

state the following lemma.

Lemma 2: Given a net list L, if there exists any S, with k > p*

such that |n^S,)| < 2(k-K) then, for all realizations, the street congestion,

M > K.

Remark: The lemma above gives us a simple procedure of establishing a

lower bound of street congestion. In Fig. 17, we see that S~ • ta3,ag] and

n"(S3) » {N }. Thus |n"(S3)| =1<2(3-K), the largest integer for K is 2.

Hence according to lemma 2, the street congestion M > 2. Using the suf

ficient condition of Section 4, we find M = 3. We may therefore conclude

that M = 3 is the optimum street congestion for the given net list.

Proof: With reference to Fig. 18a consider node a . Assume that
P

over node a , excluding the net which is incident with a , there are h^ + g^^

nets routed in street U and h2 + g2 nets routed in street W. Let the h^ + h2

nets belong to n^S,) and the g + g2 nets belong to fi(Sk). Since a is next
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to node y and c(y) « k-1, c(a ) = k; we have ^ + h2 + gj_ + 82 ~ k»

If e, =0, then at node a the lower street congestion is at least k -
"1 P

h,. Assume that g., ^ 0, if we make a vertical cut at node a ,
1 °1 P

among the nets in n(S ) crossing this cut in street U, let Nx be the one

of farthest distance away from a . This net N has a node

b. G [an,a ] because N- £ n(S.). Note, as shown in Fig. 18b, at node b,,
1 1 p 1 k -1-

there are the same h, nets in street U which were over node a , and there
1 P

are the same h„ nets in street W which were over node a . Because otherwise
2 P

net N would intersect with any of the nets. Now, let us assume that there

are g- nets which are in n(S,) and are in street U over node b . If g1 = 0,
b!

then the lower street congestion is at least k-h.. Assume that g^ ^ 0,

then over node b- there is a net N2 £ n(S.) which has the same property as

N- with respect to a . Since the number of nodes in [a1,a ] is finite, we

can find anode s£ [a1,a ]such that g^ =0. This implies that the lower

street congestion at node s is at least k-h.. Using the same argument we

can state that there exists a node t £ [a-,a ] such that the upper street

congestion at t is at least k-h«. Therefore the street congestion for all

possible realizations must satisfy the following inequality:

M > max (k-h,,k-h2)
"h1+h2=|n(sk)|

In(s )|
> k r^— > k - (k-K) = K.

In view of Lemma 2, we can immediately state that a necessary condition

for M =K is that, for every Sk, k > Pf, we have |"n(Sk)|1 2(k-K). We state
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this as a corollary.

Corollary: Given a net list L, a necessary condition for M=K is that,

for every Sk, k > pf, we have |rT<S, )|>_2(k-K).

In the following, we give a more stringent necessary condition to ensure

routability with street congestion M=K.

Theorem 3: Given a net list L, if for every S , k > p1, |"n(S,)| >_ 2(k-K),

then a necessary condition for M = K is that there are at least k - K nets

in n(Sk) routed over S, completely in both street U and street W, respectively.

Remark: Theorem 3 puts more restriction on Lemma 2 in that each of the

k-K nets assigned in U(W) has to be routed completely in U(W) over every

interval S. Referring to Fig. 15, we see that sjj = [a3,ag], sjj

[au,a14], S^1) =[a4,a5], S<2) =[a6,a?], S<3) =[a12,a13] and n(S^) =
{NrN2}, n(S^2)) ={N6,N?}, n(s£1}) ={N1,N2,N3,N4}, n(S<2)) ={NlfN2>N3,N5},
— (3)n(S4 ') = {N1,N6,N7,N8}. if we route in street U(W) the portions of N-^N^

which are over si , the portions of N,(N_) which are over S- , the
3 o / J

portions of N~(N.) which are over S, , the portions of N,.(N_) which

(2) (3)
are over S. plus the portions of N.(NQ) which are over S. as shown

in Fig. 15c with the remaining portions of all the nets above routed

last, we then have a realization with M=2. On the other hand, in Fig. 15b,

- (2)because there is no net in t\(S^ ) which is routed completely in U over

(2)
S.: , by Theorem 3, we have M > 2.

Proof: Assume that there is a realization with M=K for the following

situation: There exists an interval [a,b] C (x,y), where Sk = [x,y] and

K > Pf such that there are at most k - K - 1 nets in n(Sk) over [a,b]

completely in street U. Then it follows that there are at least k - K + 1

nets in "n(S, ) over [a,b] completely in street W. (See Fig. 19 for illustration.)
K.
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Now we can use a similar argument as in the proof of Lemma 2 to arrive at

M >_ » K+l, which is a contradiction. Thus M > K.

Theorem 4: Given anet list L, if for every Sk, k> p1, |n(Sk)| >_

2(k-K), and there are at least k-K nets in n(Sk) routed over Sfc completely

in both street U and street W, respectively, then street congestion is M=K.

Proof: From Theorem 1 we know that routing is of no problem, thus

we need not concern about street congestion for unit intervals

with density less than or equal to K. The only places we need to consider

are unit intervals with density greater than K. If we can show that for

any unit interval (a,b) with density I > K, the street congestion is less

than or equal to K in that unit interval, then we have proven the theorem.

To show this, since d(a,b) = I > K, then, by definition, there is an

interval S 3 (a,b), and by the assumption, there are at least I-K nets in

rl"(ST) routed over ST completely in both street U and street W, respectively.

Since S D(a,b), so there are at least I-K nets in tKSj) routed over (a,b)

completely in both street U and street W, respectively. Since d(a,b) = I,

there are at most I-2(I-K) nets left unrouted over (a,b). In the worst

case, all of the I-2(I-K) are routed in one street over (a,b), say in street

U, then in street U the street congestion is (I-K) + I - 2(I-K) = K, so the

street congestion holds.

Remark: Theorem 3 and Theorem 4 set up the criterion for optimum street

congestion of a given net list. If we can achieve a realization such that

for any S, , k > K >_ p1, there are at least k-K nets routed over S, completely
IV

in both street U and street W, respectively, and K is the smallest such number

satisfying the condition, then street congestion M=K is the optimum.
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Combining these two theorems, we can state the following:

Theorem 5: Given a net list L,. then street congestion M=K >_ p' if

and only if for every Sfc, k>K >_ p1, |"n<Sfc>|>_ 2(k-K) and there are at
least k-K nets in ~^{S,) routed over Sk completely in both street U and

street W, respectively.

We can now easily arrive at some interesting necessary conditions on

the behavior of S, 's interacting with each other based on the criterion set

forth in Theorem 5. In the following we will present three lemmas relating

to the interactions of different S^s. The proofs of Lemma 3, 4 and 5 are

given in the Appendix II. First let us illustrate some of the concepts with

an example.

Consider the net list representation of Fig. 20. The following can be

immediately obtained:

P= 7, P' =4

S5 = [a5,a12]' S5 = ^a17,a2A^

H5 -n(s<1}) ={n1,n3>, h2 =n(s<2)) ={n7,nu}

Hfl2>^n(sf)nn(Sf) ={N1,N3},

Hfl^ftnCs^nficsW)-^}.

We notice that Lemma 2 is satisfied with M ^ 4. Suppose that we want to

see whether M=4 can be realized. By Theorem 3, we know that N..(N3) has

to be routed in street U(W) completely over S^ ' and NyCN^) nas to be
(2)routed in street U(W) completely over S^ . However, this is impossible

(2)because both nets N.. and N_ have nodes in S^ , which means that both nets
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i. *~ * is reached in order to also satisfy themust switch somewhere before a1? is reacnea
N andN are routed coxm^letely, in street Uand streetcondition that nets N? and Nu are rou E ^

, .,„ QU; which means that in
(2} *.4 «i,r Rut N has a node in S, , wnxcuW over S^Z\ respectively. But N? nas 5
4f T.™na 3 N will intersect N.. This suggests that M>4.

order to satisfy Lemma J, w? wxxj. 1

, 4« n^l2) and H(2'X) must be included.Clearly the information in H5 ana.tig
«. n«f L if for some nonempty Ek with k > P,

Lemma 3: Given a net list L, it, k
/«x . r» C 7 - {SW> such that for eachthere exist an Sk&) eIk and anonempty Zk CZk lSk

Sk V

(i) _H(i|*>| <k-K-1
K

Then a necessary condition for M=K is

IJW . U H^l >2(k-K).
ski} GK

Remark: For the example above in Fig. 20, we note that

|H(1) _Hal*>| =0 15-4-1

|H(2) „H(2|1), cl< 2(5-4) -2.

1 «-v,* nprAssarv condition for M=4 is notTherefore, for this example, the necessary con

satisfied. f
- n«r T if for some nonempty Sk with k > P ,Lemma 4: Given anet list L, it, ior k ^

ro) a _ -. c z - {s54)} such that for each Sfcthere exist an S, *} and anonempty Ek <- \ l*k

G E1

Ic-Kil^-^10! <2(k"K)
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Then a necessary condition for M=K is

K

(2)Remark: For the example above in Fig. 20, suppose that we check S^

first, we know that

k-M=1=|h£2) -h£2IX) I=1<2(5-4) =2

However,

|H(1) _R(1|2) |=0<5~4=1

Thus M=4 is not a feasible street congestion.

Lemma 5: Given a net list L, if some Z, has an element S, and two

nonempty subsets

z^czk-{sW}

such that for each S^ GE£ and s£^ Gz£

l^1) -H^l^^l <2(k-K)

and |Hp} -Hpli'Jl) <2(k-K)

then a necessary condition for M=K is
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|H<A) _ U U H^l1'^ |>2(k-K)
s(i)GE, sa)ezk

To conclude, we have developed a set of necessary conditions based

on Theorem 5which can be used to check how good is the sufficient condition

in Section 4. In Appendix I we give anumber of examples. These examples

indicate that in most cases the sufficient condition of Section 4 is very

close in giving the optimal solution. In those cases for which the

necessary conditions yield astreet congestion which can be realized with

our sufficient condition, the result is of course optimum.

6. Conclusion

In Section 2we discussed briefly the decomposition of a single-row

net list from multilayer to single layers. Let us illustrate here with an

example, taking advantage of what we have learned on single-layer routing

in the last two sections.

In Fig. 21a, we have the graph representation of a net list for a

single-row, two-layer problem. Fig. 21b illustrates one possible decomposition,

If we use the necessary condition to check the street congestion, we find

that, for the second layer, we need astreet congestion of at least three.

Fig. 21c gives another possible decomposition. Here, we use the sufficient

condition and find that a street congestion of two can be realized in both

layers. Thus if the specified channel capacity for the problem is two,

the decomposition in Fig. 21b is not acceptable, while that in Fig. 21c is

good. In [1], So gave adecomposition method for the single-row, multilayer

problem. We have found that much more can be said on this problem. The

basic idea is to decompose a given net list to achieve minimal but equal

street congestion at all levels.
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To summarize, in this paper, we have made an extensive study of the

single-row, single-layer routing problem. A very good sufficient condition

which can be easily implemented and several necessary conditions based on

a necessary and sufficient condition on routability with channel capacity

constraints have been derived. Two useful algorithms, one on routing and

the other on assignment, have been obtained to implement our sufficient

condition for physical realizations. These algorithms have been programed

and tested with many examples.

The general problem of multirow and multilayer routing has been alluded

to in Sections 1, 2 and 6 and its relation to the single-row, single-layer

problem has been illustrated with examples. It should be noted that the

multirow, multilayer problem is a very general and interesting problem.

Much more work needs to be done in order to answer such questions as routa

bility, optimal street congestion and minimal layers as well as to develop

routing methods and algorithms.
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APPENDIX I

Example 1

1 1

A i ; x i ;
*

\ A A )\ A A

(a) NET LIST (5 NETS) OVER R (10 NODES)

* ¥

(b) NET LIST ROUTABLE WITH STREET CONGESTION 3

-30-

5 NETS, 10 NODES

MAXIMUM DENSITY = 4

STREET CONGESTION = 3

-3
COMPUTING TIME = 2.5x10 SEC

S3 = [a3,a8]
|n(S3)| =1 <2

=> M _> 3 (BY LEMMA 2)

M = 3 (BY THEOREM 2)

=* OPTIMAL SOLUTION



Example 2

{ A A ][ x ; ; x x \[

(a) NET LIST (4 NETS) OVER R (9 NODES)

X I I x

(b) NET LIST ROUTABLE WITH STREET CONGESTION 2

-31-

4 NETS, 9 NODES

MAXIMUM DENSITY = 4

STREET CONGESTION = 2

-3COMPUTING TIME = 2.3xl0~ SEC

M » 2(BY THEOREM 2)

M >i 2(BY LEMMA 1)

=> OPTIMAL SOLUTION
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I
10

I

# of

Nets

// of

Nodes

Max.

Density

Street

Congestion
(lmplementation)

Result

Street

Congestion
(Hing So)

Computing
time

(10~3 sec.)

Our Results

Optimum?

4 9 4 2 3 2.3 yes.

5 10 4 3 3 2.5 yes.

6 14 4 3 3 3.2 yes.

9 20 5 3
4 4.4 yes.

10 20 8 5 7 4.6 yes.

15 30 8 5 7 6.7 yes.

20 40 10 5 9 8.5 yes.

25 50 14 8 13 11.0 yes.

30 60 12 8 11 14.2 yes.

TABLE OF SOME IMPLEMENTATION RESULTS AND

COMPARISON TO HING SO'S PREDICTION



APPENDIX II

Proof of Lemma 3: We first show that for the case where |z'| = 1,
K.

and U H^*'^ =H^l1*, the conclusion that |H^J') -H**'^ |>
4t} eI•
k k

k "k • w™™ w«-w ,~k

2(k-M) is true. We then show that in the general case where |zJ*| > 1 the

conclusion is also true. To show the first step where |z'| = 1, we know

from the assumption that there are less than or equal to k - K - 1 nets that

are in H*1* -H^il£) =n(S^) -tKS*1*) nn(s££)). To satisfy Theorem 3,
there is at least one net N € n"(s£ ') nn(s£ ') that is over s£ ' completely

in, say, street U and there is at least one net N2 G n"(s£ )n ^(si ' that

is over s£^ completely in street W. (See Fig. A-II-1.) Let's suppose that

|hW .^l <2(k-K), i.e.

|n<s<£)) -nCs^^nfKs^)! <2(k-K).

Then to satisfy Theorem 3, there is at least one net N3 £ n(s£ ') Hfj(s£ )
(o)

such that N is completely over S^ in street U(W). This is impossible

because then N„ intersects N (N ). Thus we conclude that |H, -H^ ' ) >_

2(k-K).

For the general case where |z*| > 1, we know that, by the above argument,

for each

Sk G Zk» we have

|h£** -H^l^l >_2(k-K), thus we have
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k k

n H*** -H**'1* |>2(k-K)

u) _ ,, „a|i)

k ' (i)
:h>*' u h£

sk y G £k

Proof of Lemma 4; We prove this in similar steps as in Lemma 3. We first

look at the case where |z£| =1. Since k-K £|H^ -H^1'^! <2(k-K), to
satisfy Theorem 3, there is anet N- G7Ks£ ') Hfj(s£ ') which is routed
over S^ completely in street U or W, say in street W. Let's assume that

IjjUI) _h^I1) |<k_K# To satisfy Theorem 3again, there is at least one

net N„ €n~~(s£ ') Hn(s£ O which is routed over s£ 'completely in street
Uand there is at least anet N €rj"(s£ ') Hfi(s£ ') which is routed over
(A)S^ ' completely in street W. (See Fig. A-II-2.) The above situation is

i (&)impossible because then N. intersects N... So we conclude that |H, -

H^l >k-K.
For the case where |z'| > 1, it is easy to see that for each S^ G

Z£, we have \n^ -H^'1^ >k-K hence we have

| H (H<*> -H^l^)! Lk-K
bk Lk

II

IhU) _ u Ha|D|.
S(i) GZ'bk L k

Proof of Lemma 5: We first consider how 3 different S^ s may interact

with each other (i.e. |z'| = 1 and |z"| = 1.), then we consider the general

case.
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For the case where |z'| = 1 and |z"| = 1, in order to satisfy Theorem

3, and |h£1} -H*1'^0^ 2(k-K) |H<j) -H^1'^ <2(k-K) for S<i} €Z^,

Sk^ GZk* we have that there is at least anet Nl G^k^ °fl(Sk£)) °
MS^ ) routed completely over S^ in street, say, U. There is at least

anet N2 G"n(S^) Hn(s£^) Hn(s£^) which is routed completely over S^
in street W. (If N« were in street U, then N« intersects N-.)

Let's assume that |H£*' -H^'1^ |<2(k-K). Then to satisfy Theorem 3,
there is at least anet N G"n(S^) <~1 fi(S^) nn(S^) such that N3 is

(o)
routed completely over S^ ' in street U(W) . (See Fig. A-II-3.)

The above situation is impossible because N intersects N.(N2) in

street U(W). Hence we conclude that |h££^ -H^£'J,J^| >_ 2(k-K) •
In general case where |z'| >_ 1 and |z"| >^ 1, we have

H H (h££) -H**'1*^|>_ 2(k-K)
S1(i) G Z,» S.(i) G Z"
k k k k

s1(i) g z; s,(j) g z"
k k k k
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Fig. 1. PINS AND VIAS ALTERNATING ON EACH ROW.



12 3 4 5

a X 0 X 0 X

b X 0 X 0 X

C X 0 X 0 X

d X 0 X 0 X

(a) A BACKPLANE WITH 5 ROWS AND 9 COLUMNS.

u
«* 0 bi

8

n.,
a7 a8

ft

4 \c{ C*3 ° C* ° * C§n-\

X L_i
3>

1
<S d7 4~\

P
e§ <t

0-J J

(b) 3 NETS DEFINED ON A BACKPLANE.

Fig. 2. A MULTILAYER, MULTIROW PROBLEM REDUCED TO 7 SINGLE-ROW,
SINGLE-LAYER PROBLEMS.



N

2

N2
N

N,

°4 a5 '8

(Q) A REALIZATION OF A NET LIST IN A GIVEN SPACE

(b) A GRAPH REPRESENTATION OF A NET LIST.

Fig. 3. Realization and Representation of a Net List.

upper
( street U

lower
street W



fl X ~^i

H

a.

Fig. 4. FOWARD AND BACKWARD ZIGZAGGING NOT
ALLOWED IN ROUTING.

a, a2 a a,
it * * * •* *

a6 a7 a8 a9a,

Fig. 5. ALTERNATE REALIZATION OF NET LIST IN Fig. 3,

layer I fa x x Q4 |Q5 a7 a8
1 1

layer 2 x ;a2 fas X X J<>6
X x 1

09

Fig. 6. ATWO LAYER DECOMPOSITION OF THE NET LIST IN FIG 5.



a. a

Type A nodes: a,, a3, a5 and a8

Type B nodes: a6, a7

Type C nodes- a2 » 04

Fig. 7. Three Different Types of Nodes Displayed,

n
l\"4

\

N.

N

f t V ]S X9 "10

N, Routed in U

N„ Routed in W

c

1

Fig. 8 Vertical Conductor Segments to Interconnect Horizontal
Conductor Segments in Different Streets.

8



0|

h

N1

N

Fig. 9. NET N INTERSECTS NET N' SOMEWHERE
IN INTERVAL (c,d).

N

'02 03 a4 05 06 07

(a) REALIZATION OF N USING THE ROUTING ALGORITHM

N

a2 'a3 04 'a5 '06 a?

»Poas Q9

08 ]09

(b) LOCAL MODIFICATIONS AT a± and ag HAVE BEEN MADE.

FIG. 10. LOCAL MODIFICATION OF DEFINITION 2



N,

N3

Cut number-* 0

N|

N2

Cut number: 0
n

N-

N|

Cut number

N

N4

n

N.

N4

N-

N.

n »

0

(a)

(b)

(c)

Density : 3 2 3 3

Max. Density = 3, both density and cut number
are invariant.

cut number of net 1=2 (a)

cut number of net 2=2

cut number of net 3=2

cut number of net 4=2 (b)
(c)

Fig. 11.

A net list with 4 nets

over a single row with
10 nodes

Realization 1

Realization 2



Nl

N2

N3

% x. x

0|
X x
02 03

N4

N5

a2 a3 a4 a5 a6 a7

(a) A NET LIST WITH 5 NETS: p- 4, p' = 2.

|04 05 °6 07

a8 a9 Qio

08 J09 0|0

(b) One realization which yields M=C(U).- C(W) = 3>p' = 2.

Fig. 12.
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N2

Q|

Ni

N2

0| a2

N3

N4 Ns

i r
06 07

¥ * * X„a3 {o4___a_5_ Ja6 a7 a8
N4

N3

(b) ASSIGNMENT OF NETS INTO STREETS.

Ni

N2

[
Qi a2 03 |04 1

05 Joe h.
N4

N3

(C) A COMPLETE ROUTING WITH M = 2.

Fig. 13.

02 03 04 05 06 07 08 09

(a) A GRAPH REPRESENTATION OF A NET LIST WITH p = 4 and p' = 2

0|0

08

x x

Qg Q|0

N5

1
a9 aio



(a)

d(a,b) =I

a i b

, 'c(a)=c(b)=I
TWO NODES ARE OF TYPE B,

d(o,b)=I

*b

c(b)=I

(b) TWO NODES ARE OF TYPE B,

d(a,b)=I

(r\ NODE a IS TYPE B.
V ' NODE b IS TYPE A.

Fig. 14

d(a,b)=I

((J) NODE a IS TYPE B.
NODE b IS TYPE C,

d(a,b)=I

a b

V6 ' NOSE a IS TYPE A.
NODE b IS TYPE B.

d(a,b)=I

a

(f ) NODE a IS TYPE C.
NODE b IS TYPE B.
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N2 Ne

; :

N3

V 1

N7

; ;

N4 N5

n i IS A I
> *

N8

111; :;
a, a2 a3 a4 a5 a6 a7 a8 a9 al0 aM a,2 0|3 a,4 a,5 a,6

(O) A NET LIST WITH 8 NETS, p = 4

Ni

0|

N3

'a2 a3}a4|a5)ta6 a7fa8
N4 Ns

09 0|0 Oil fai2 0|3{a|4]0|5 '
N8

N2 N7

0|6

N6

(b) A REALIZATION OF (a) USING SUFFICIENT CONDITION, M = 3

Nl

N3

V
I 1 ^a2Vfa^a5^06_a7j08'

N4 N5

Ne

1
Oil fOl2 0l3f0l4

N8

N2 N7

(c) A REALIZATION OF (a) WITH M = 2.

Fig. 15.

QI5 0|6



Ni

N2

N3

N4

rii

N5

Ne

N7

*_ * f I * Xo, a2 a3 a4 a5 a6 a7 a8 a9 a,0 a„ al2 a,3 al4

( 0 ) ANET LIST WITH 7 NETS.

(1) _
Sl =[Va14]' S2 = ta2'a13L S3 =U3,a8]

(D- (2) _ (3)

S3 " U9'a12] ' S4 " [Va5]' S4 =[Va7]' S4 =[a10'all]

nCs^ = <f>, nCs^ ={n^n^-.-.n^

n(s2) - (J>, n(s2) =nCs^

nCs^) ={NlfN2}, n(s<1}) ={n3,n4,n,.}

n(s<2)) ={n5,n6>, n(s<2)) =(n^n^

E.-CS,}. E2 =(S2>, E3={Sf>,Sf}, Z4={Sf>,sf,sf>

Fig. 16(a)
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0%

( b ) A REALIZATION OF (a)

0|0
1 t

oil

N7

Ne

0|2 0|3 0|4

(i)N , N € n(S ) are routed in street U completely over Sj
J. £m J

0\ (2)N ^ n(S ) is routed in street W completely over S3 .
6 3

Fig. 16.
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Ni N5
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iL * LI 1o, *a2 0304*05 aea7 o8 a9 a,0

Fig. 17



X x x
x ai a2

h, +h2 +gj+g2=k

x x
x a,

=| h, nets in i](Sk)

=| gj nets in i](Sk)

x x

aD y

(a)

| g2 nets in 77 (Sk)

\ h2 nets in ^(Sk)

same h, nets in 77 (Sk)

>h| nets in 77 (Sk)

N,

i ===[h2 nets in rj(Sk)

same h2 nets in 77 (Sk)

(b)

Fig. 18.



k-K -I nets in

k-K nets in

Fig. 19.

Ni

N2 N7

X_ i

N3

Ne Nl3

N4 Nio Nl4

N5 N9 Nil

\ /

Ne

Vi

Nl2

Ul \ 1\ ' \_ / \ i \ t \ i 1. 1 1K A i

Fig. 20. A NET LIST WITH 14 NETS, p «= 7.
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(a) A NET LIST WITH p = 8.
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XXX
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aXXXXXXXXaXXX

(i) 1st layer decomposition with /)( =4
1

x x x x

E
• 1

F
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l A % ); )[ x ;i x ;[ X X

(ii) 2nd layer decomposition with p2=4
(t)) A NET LIST DECOMPOSITION TO 2 LAYERS.

B

D

I

X X

X X i rxxxxxxxxx

(i) 1st layer decomposition with p =4
x x x x

x x x x x x x

H

A x x

(ii) 2nd layer decomposition with ^2 =4
(C) ANOTHER DECOMPOSITION OF (a). Fig. 21.
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