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Abstract

Suppose n jobs are to be processed by a single machine. Associated

with each job j are a fixed integer processing time p., a deadline d.,

and a positive weight w.. The weighted tardiness of job j in a given

sequence is w. max(0,C -d.), where C. is the completion time of
3 3 3 3

job j. Assume that the weighting of jobs is "agreeable", in the sense

that p. < p. implies w. > w.. Under these conditions, it is shown

that a sequence minimizing total weighted tardiness can be found by a

' . A
dynamic programming algorithm with worst-case running time of 0(n P)

or 0(n pm ), where P = Y p. and p = max{p.}. The algorithm is
max J max j

"quasi-polynomial", since a true polynomial-bounded algorithm would be

polynomial in log P or log p
max
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1. Introduction

Suppose n jobs are to be processed by a single machine. Associated

with each job j are afixed integer processing time p., adeadline d ,
1 j

and a positive weight w.. The weighted tardiness of job j in a

sequence is defined as wjmax{0,Cj-dj}, where C. is the completion
time of job j. The problem is to find a sequence which minimizes the

total weighted tardiness, where the processing of the first job is to

begin at time t = 0.

Let us assume that the weighting of jobs is agreeable, in the sense

that p± <Pj implies w± >w• . Under these conditions, it is shown

in this paper that an optimal sequence can be found by a dynamic pro

gramming algorithm with worst-case running time of 0(n*P) or 0(n5p )
*max '

where P = J p., and p = max{p }.u 3 max """"LPjj.

The proposed algorithm is distinguished from previous algorithms

[4,6,12] for this problem in that its running time is bounded by a function that

is polynomial, rather than exponential, in n. However, the present

algorithm does not qualify as a true polynomial algorithm, since its

running time is not bounded by a polynomial in the number of bits of data

required to specify an instance of the problem [5]. To be polynomial

in this sense, the running time bound should be polynomial in log P or

loS Pm«v» rather than P or p
max *max

It should be noted that the general weighted tardiness problem has

been shown to be NP-complete [9]. This means that it is in the same

equivalence class as the traveling salesman problem, the chromatic

number problem, the three dimensional assignment problem, and other

well-known hard problems, with respect to the existence of a polynomial

algorithm. One may reasonably conjecture that there is no polynomial



algorithm for any of these problems.

The status of the agreeably-weighted tardiness problem is less clear.

The proposed algorithm is, at best, "quasi-polynomial". On the other

hand, none of the problem reductions known to the author can be used to

establish that the problem is NP-complete.

It might be pointed out that the distinction between agreeble

weightings and arbitrary weightings is clearer, in the case that one

wishes to minimize the weighted number of tardy jobs. The agreeably

weighted problem can be solved in polynomial time (specifically, O(nlogn)

[8]), whereas the general problem is NP-complete.

2. Theoretical Development

Theorem 1. Let the jobs have arbitrary weights. Let tt be any

sequence which is optimal with respect to the given deadlines d ,d .... d
12 ' n*

and let ^ be the completion time of job j for this sequence. Let
d be chosen such that

min(d ,C ) < d! < max(d ,C ) .

Then any sequence tt' which is optimal with respect to the deadlines

dj,dj;,...,dn is also optimal with respect to d.,d0,...,d (but not
J- £ n

conversely).

Proof: Let T denote total weighted tardiness with respect to

d1,d2,...,dn and T» denote total weighted tardiness with respect to

d^,d^,...,d\ Let tt' be any sequence which is optimal with respect to

di»d2»-«-»di» and let Cj be the completion time of job j for this
sequence. We have



where, if C < d ,

and, if C. > d,,
J - j*

T(tt) - T'(ir) + I A. , (i.i)
j j

T(tt') = t'(tt') + JB. (1.2)
j J

Vo

B = -w max(0,min(C!,d )-d!)
°* 3 J J j

WW
B = w max(0,min(C!,d!)-d.) .

3 3 J j J

Clearly A > B and J A >'J B.. Moreover, T»(tt) > T1^1),

because tt is assumed to minimize T\ Therefore the right hand side of

(1.1) dominates the right hand side of (1.2). It follows that t(tt) >T(tt')

and tt1 is optimal with respect to d_,d0,...,d . •
12 n

Theorem 2. Suppose the jobs are agreeably weighted. Then there

exists an optimal sequence tt in which job i precedes job j if

d± <dj and p± <p^, and in which all on time jobs are in nondecreasing
deadline order.

Proof: Let tt be an optimal sequence. Suppose i follows j in

tt, where d± < d^ and p± <p. Then asimple interchange of i and j

yields a sequence for which the total weighted tardiness is no greater.

(Cf. proof of theorem in |10].) If i follows j, where d < d and
i - j

i and j are both on time, then moving j to the position immediately

following i yields a sequence for which the total weighted tardiness is

no greater. Repeated application of these two rules yields an optimal

sequence satisfying the conditions of the theorem. •



In order to simplify exposition somewhat, let us assume for the pur

poses of the following theorem that all processing times are distinct.

If processing times are not distinct, they may be perturbed infinitesimally

without upsetting the assumption of agreeable weighting or otherwise

changing the problem significantly. Hence there is no loss of generality.

Theorem 3. Suppose the jobs are agreeably weighted and numbered in

nondecreasing deadline order, i.e. d, < d. < ••• < d . Let -job k be
1 — 2 — — n J

such that pk = max {p }. Then there is some integer 6, 0 < 6 < n-k,
j J

such that there exists an optimal sequence tt in which k is preceded by

all jobs j such that j < k+6, and followed by all jobs j such that

j > k+6.

Proof: Let C£ be the latest possible completion time of job k

in any sequence which is optimal with respect to deadlines d ,d ... d .
1 2* '' * n"

Let tt be a sequence which is optimal with respect to the deadlines

d1,d2,...,dk__1,d^ =max(C^,dk),dk+1,...,dn, and which satisfies the condi
tions of Theorem 2 with respect to these deadlines. Let C be the

k

completion time of job k for it. By Theorem 1, ir is optimal with

respect to the original deadlines. Hence, by assumption, C, < d\ Job
k — k

k cannot be preceded in tt by any job j such that d, > d\ else
3 k'

job j would also be on time, in violation of the conditions of Theorem 2.

And job k must be preceded by all jobs j such that d < df. Let 6
j - k

be chosen to be the largest integer such that d, . < df and the
k+6 — k

theorem is proved. p



3. Dynamic Programming Solution

Assume the jobs are agreeably weighted and numbered in nondecreasing
deadline order. Suppose we wish to find an optimal sequence of jobs

1,2,....n, with processing of the first job to begin at time t. Let k

be the job with largest processing time. It follows from Theorem 3that,
for some 6, 0<6<n-k, there exists an optimal sequence in the form of:

(i) jobs l,2,...,k-l,k+l,...,k+6, in some sequence, starting at
time t, followed by

(ii) job k, with completion time C(6) =t+ J p., followed by,
,.... .' j<k+6 J
Uii) jobs k+6+l,k+6+2,..,,n, In some sequence "starting at time

Cfc(6).

By the well known principle of optimality it follows that the over

all sequence is optimal only if the sequences for the subsets of jobs in

(i) and (iii) are optimal, for starting times t and Cfc(6), respectively.
This observation suggests a dynamic programming method of solution. For

any given subset S of jobs and starting time t, there is a well-defined

sequencing problem. An optimal solution for problem S, t can be found

recursively from optimal solutions to problems of the form S', t\ where

S1 is a proper subset of S and t1 > t.

The subsets S which enter into the recursion are of a very restricted

type. Each subset consists of jobs in an interval i,i+l,...,j, with

processing times strictly less than some value pk. Accordingly, denote
such a set by

S(±,j,k) ={j'| i<j'<j, Pj(<Pk} ,

and let



T(S(i,j,k),t) = the total weighted tardiness for an optimal sequence
of the jobs in S(i,j,k), starting at time t.

By the application of Theorem 3 and the principle of optimality, we have;

T(S(i,j,k),t) =min{T(S(i,k+6,k,),t)+wklmax(0,Ckt(6)-dkl)
+ T(S(k'+6+l,j,k'),Ckf(6)} (3.1)

where kf is such that

pfct =max{pjf | j» eS(i,j,k)} ,
and

Ck,(5) - t+ Jp ,

where the summation is taken over all jobs j' 6 S(i,k+6,kf).

The initial conditions for the equations (3.1) are

T(<f>,t) = 0

T({j},t) = w max(0,t+p -d.) .
J j j

It is easy to establish an upper bound on the worst-case running time

required to compute an optimal sequence for the complete set of n jobs.

There are no more than 0(n3) subsets S(i,j,k). (There are no more than
n values for each of the indices, i, j, k. Moreover, several distinct

choices of the indices may specify the same subset of jobs.) There are

surely no more than P=£Pj <^ possible values of t. Hence there
are no more than 0(n3P) or CKn^) equations (3.1) to be solved.
Each equation requires minimization over at most n alternatives and

0(n) running time. Therefore the overall running time is bounded by
0(n4P) or 0(n5p ).

max



At this point we have accomplished the primary objective of this paper:
which is to present an algorithm which is polynomial in n. The remaining
sections are devoted to a discussion of various computational refinements.

4- Refinements of the Algorithm

There are several possible refinements of the basic algorithm that

may serve to reduce the running time significantly. However, none of

these refinements is sufficient to reduce the theoretical worst-case

complexity; some may actually worsen it.

Representation of Subsets

It should be noted that S(i,j,k) may denote precisely the same subset

of jobs as S(i\j',k») even though i* i», j*j', m*m\ The notation

used in (3.1) is employed only for convenience in specifying subsets.

Obviously, the computation should not be allowed to be redundant.

State Generation

Only a very small fraction of the possible subproblems S,t are of

significance in a typical calculation. Any practical scheme for imple

menting the recursion should have two phases. In the first, subproblem

generation phase, one starts with the problem S = {1,2,...,n}, t = 0

and successively breaks it down into only those subproblems S,t for

which equations (3.1) need to be solved. In the second, recursion phase,

one solves each of the subproblems generated in the first phase, working

in the order opposite to that in which they were generated.

Restriction of 6

It is often not necessary for 6 to range over all possible integer



values in (3.1). The range of 6 can sometimes be considerably restricted

by the technique described in the next section, thereby reducing the

number of subproblems that need be generated and solved.

Shortcut Solutions

There are some "shortcut" methods of solution for the sequencing

problem. Whenever one of these shortcut methods is applicable to a sub-

problem S,t generated in the first phase of the algorithm, it is

unnecessary to solve that problem by recursion of the form (3.1) and no

further subproblems need be generated from it. A discussion of shortcut

solution methods is given in Section 6.

Branch-and-Bound

At least in the case of problems of moderate size, there appears to

be relatively little duplication of the subproblems produced in the

subproblem generation phase of the algorithm. In other words, the recur

sion tends to be carried out over aset of subproblems related by atree

structure, or something close to it. It follows that there may be some

advantage to abranch-and-bound method, based on the structure of equa

tions (3.1). Such abranch-and-bound method might have avery poor

theoretical worst-case running time bound, depending on the nature of

the bounding calculation and other details of implementation. However,
if a depth-first exploration of the search tree is implemented.

storage requirements could be very drastically reduced.

It is apparent that the form of recursion (3.1) furnishes a point

of departure for the development of many variations of the basic compu
tation.
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5. Restriction of 6

The number of distinct values of 6 over which minimization must be

carried out in equations (3.1) can sometimes be reduced by appropriately

invoking Theorems 1 and 2. If this is done in the state generation phase

of the algorithm, there may be a considerable reduction in the number of

subproblems which must be solved.

Consider a subproblem S, t. Let k be such that

p = max {p } ,
jes ^

and assume that p, > p., for all j 6 S- {k}. We also assume that the
J

jobs are numbered so that d- <_ d~ <.•••<. d . The following algorithm

determines distinct values 6 , i = 1,2,... <_n-k, over which it is sufficient

to carry out minimization in equations (3.1).

0. Set i = 1.

1. Set d' = t+ I p , where Sf = {j | d <d , jeS}.
k jes1 3 J K

Comment: If job k has deadline d, , then by Theorem 2 there exists

an optimal sequence in which the completion time of job k is at least

as large as d'.

2. If d* > d set d = d' and return to Step 1.

Comment: By Theorem 1, there exists a sequence which is optimal with

respect to d7 which is optimal with respect to d, .

Let j be the largest index in S such that d <_ d.. Set 6^^ = j-k.

Let S" = {j| d >d , j€S}. If S" is empty, stop. Otherwise, let
j k



j1 be such that

d,, = min {d } ,
j jjes"

and set d^ » d ,. Set i = i+1 and return to Step 1.

As an example of the application of the above procedure, consider

the first test problem given in Appendix A of [1]. All w = 1. The

». and d.
J J

Pj and d. values are as follows:

j

121 79 147 83 130 102 96 88

d 260 266 269 336 337 400 683 719

Note that k = 3. Equation (3.1) yields:

T(S(1,3,3) ,0) +78+T(S(4,8,3) ,347),^

T(S(1,4,3),0)+161 + T(S(5,8,3),430),

T(S(1,5,3),0)+291 + T(S(6,8,3),560),

T(S(l,6,3),0)+393 + T(S(7,8,3),662),

T(S(1,7,3) ,0) + 489 + T(S(8,8,3) ,758) ,

T(S(l,8,3),0)+577 + T(<|>,846)

Applying the procedure above, we obtain 6=3, 62 = 5 and the

simplified equation:

T({1,2,...,8},0) = min«< >

T({1,2,...,8},0) o min
rT(S(l,6,3),0)+393 +T(S(7,8,3),662),V

1 , , r ^'^IT(S(1,8,3) ,0) +577 +T((|>,846) J

11



6. Shortcut Solutions

"Shortcut" solutions are sometimes provided by generalizations of

two well-known theorems for the unweighted tardiness problem [3].

Theorem 4. Let the jobs be given arbitrary weights. Let tt be a

sequence in which jobs are ordered in nonincreasing order of the ratios

w /p . If all jobs are tardy, then ir is optimal.

Proof: Note that

IwjTj =I„jCj +JWj *x(0.d -C >

It is well-known [11] that ir minimizes £w C . If all jobs are tardy,

then each term in the second summation is zero and that sum is also

minimized. •

Note that if jobs are agreeably weighted and processing times are

distinct, then w/p -ratio order is equivalent to shortest processing

time order.

Theorem 5. Let the jobs be given arbitrary weights. Let tt be a

sequence for which

max {w.T.}
j 3 j

is minimum. If at most one job is tardy, then tt is optimal.

Proof: Obvious. D

Note that in the unweighted case, nondecreasing deadline order mini

mizes maximum tardiness. In the case of arbitrary weightings, a minmax

2
optimal order can be constructed by the 0(n ) algorithm given in [ 7 ].

12
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The application of these two theorems can be strengthened considerably

by applying them to an earlier or a later set of deadlines induced by

Theorems 1 and 2.

For a problem S, t let the jobs in S be numbered so that

p- >P2> ••• >p . New (earlier) deadlines d' for the application of

Theorem 4 can be induced by the following algorithm.

0. Set k = n.

1. If k = 1, stop. Otherwise, set k = k-1.

2. Set dV « <L .

3. Let S(k) ={j| J6S, d^d^, Pj>Pk>. Set Ck=t+ \ p.
j6S-S(k)

(k)
Comment: S contains all those jobs which can be assumed to

follow k by Theorem 2.

_4. If Cfc < dJ", set d' = C, and return to Step 3. Otherwise, return

to Step 1.

New (later) deadlines d7 can be induced by the following algorithm:

0. Set k = 1.

1. If k = n, stop. Otherwise, set k = k + 1.

2. Set d,f = d, .
— k k

3. Let S(k) »{J|J6S, d <d» p,<pv}. Set C, =t+p+ J p.j j k ^s(k) j

_4. If Cfc > d^, set d' = C and return to Step 3. Otherwise, return

to Step 1.
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By Theorem 1, an optimal solution to the sequencing problem with

respect to induced deadlines dj, j=l,2,...,n, is optimal with

respect to the deadlines d . Hence Theorems 4 and 5 can be applied

with respect to the induced deadlines.

As an application of Theorems 4 and 5, let us solve equation (5.1).

Consider first the application of Theorem 5 to S(l,8,3), t = 0. If the

jobs in S(1,8,3) are sequenced in increasing d -order, i.e. 1, 2, 4, 5,

6, 7, 8, then jobs 5 and 6 are tardy so Theorem 5 does not apply. However,

if induced deadlines are computed, it is found that d' = 515f ^th

dj =dj» for 3 J 5. When the jobs are sequenced in increasing d'-order,
i.e. 1, 2, 4, 6, 5, 7, 8, no jobs are tardy with respect to d*. By

Theorem 1, the sequence is optimal with respect to the original deadlines

and T(S(1,8,3),0) = 178. Also by Theorem 5, T(S(1,6,3),0) = 178. And

by Theorem 4, T(S(7,8,3),662) = 194. Hence (5.1) becomes:

T({1,2,...,8},0) = min

= 755 ,

as indicated by Baker [1], An optimal sequence is: 1, 2, 4, 6, 5, 7, 8, 3

Most of the test problems on the same list can be resolved with similar

simplicity.

It should be mentioned that even in the case that Theorems 4 and 5

do not yield shortcut solutions, it may be possible to reduce the size

of a subproblem with the following observation.

J178+ 393+ 194,]

ll78+577 +0 J



Theorem 6. Let k be such that d! = max{d! | j6S}, where the d'

are induced deadlines obtained as above. Let. P be the sum of the pro

cessing times of jobs in S. If P+ t < d', then

T(S,t) = T(S-{k},t) + wkmax{0,P+t-dk) .

Proof: Cf. [2 ]. D

7. Possibilities for a Polynomial Algorithm

As we have commented, the status of the agreeably weighted tardiness

problem is unclear. The proposed algorithm is only "quasi-polynomial".

However, no problem reduction has been devised to show that the problem

is NP-complete, and one may still reasonably suppose that a polynomial

algorithm does exist.

There are some possibilities that do not seem rewarding in searching

for a polynomial algorithm. For a given set S, T(S,t) is a piecewise

linear function of t. If T(S,t) were also convex, and all w = 1,

then T(S,t) could be characterized by at most n+1 linear segments,

with successive slopes 0,l,2,.,.,n. The function T(S,t) could then

be computed in polynomial time, using equations (3.1). Unfortunately,

T(S,t) is not convex, as can be shown by simple counterexamples.

If the values of 6 for which the minimum is obtained in (3,1)

were monotonically nondecreasing with t, then this would also suggest

a polynomial bounded algorithm. Unfortunately, there are simple counter

examples for this property, as well.

15
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