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Abstract

A circuit element is nonenergic, if the instantaneous power flow into it

is always zero. Well-known examples include the ideal diode, transformer,

gyrator, and circulator. Most of the interesting nonenergic elements are

nonlinear N-ports with N >_ 2, and many of their properties are quite counter

intuitive. For example, there exists a surprisingly large class of nonenergic

multiport capacitors and inductors, all of which, it turns out, are nonlinear

and reciprocal. Nonenergic linear N-ports, on the other hand, are necessarily

resistive and antireciprocal.

In this paper we present a rigorous fundamental theory of nonenergic

N-ports which results in a general canonical representation. Special canonical

forms are developed for nonenergic resistors, capacitors, and inductors, and

numerous examples are given.

Research sponsored by National Science Foundation Grant ENG74-15218
and National Science Foundation Grant ENG72-03783.
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I Introduction

An N-port "Yi is said to be nonenergic [Duinker, 1959 and 1962] iff the
instantaneous power flow into it is always zero, i.e.

N

p(t) = E v.ooi.(t> = o (l-D
k=i k k

for all admissible pairs (y(*),!(•)) and for all t.

A nonenergic N-port can be viewed as a device which simply transfers

power from one port to another without loss or gain. This point of view is

particularly evident, for example, in the scattering matrix representation

of a circulator.

Many of the results in this paper are quite counterintuitive, e.g. the

existence of nontrivial nonenergic capacitors and inductors. The roles

played by reciprocity and linearity considerations are likewise unexpected:

it turns out that nonenergic N-port capacitors and inductors must be nonlinear

and reciprocal while nonenergic linear N-ports are all resistive and anti-

reciprocal. In addition, the choice of representation is far more crucial

than the authors had anticipated. Hybrid representations are essential,

since continuous voltage-or current-controlled representations of nonenergic

reciprocal resistors and continuous voltage- or charge-controlled representa

tions of nonenergic capacitors and inductors are impossible, except in trivial

cases.

Perhaps the results are counterintuitive because our intuition is highly

developed only for linear N-ports and nonlinear 1-ports, while all the

interesting nonenergic N-ports are nonlinear with N >^ 2. The others are

special and particularly simple in one sense or another. For example,

linear, time-invariant, nonenergic devices can all be realized simply by

interconnecting ideal gyrators. And the most general sort of nonenergic

1-port will obviously look like either an open circuit or a short, depending

perhaps on the operating point and the time as in the case of an ideal diode

or a time-varying switch. Yet there are nonlinear multiport resistors,

capacitors, and inductors which are nonenergic without being pathological,

i.e. that are time-invariant, smooth, reciprocal, and defined on all of

In . See examples 4-4 and 5-6.
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We now give a brief synopsis of the content of the following sections.

In section II it is shown that every linear, time-invariant, nonenergic

N-port is resistive and antireciprocal, and that any such device can be

synthesized from ideal gyrators.

Section III gives two conditions on the state space representation of

72, each of which separately is necessary and sufficient for it to be non

energic. The first is a condition on the state equations alone; the second

involves the stored energy and the dissipation rate. An example is given of

a nonlinear nonenergic R-C network, which serves as an introduction to the

considerations of sections IV and V.

Section IV gives a general theory of nonenergic resistive N-ports, both

linear and nonlinear. Necessary and sufficient conditions for nonenergicness

are derived in terms of the potential functions content, co-content, and

hybrid content in the reciprocal case.

Section V establishes that a nonenergic multiport capacitor must be

reciprocal. Then necessary and sufficient conditions for nonenergicness

are developed in terms of the co-energy and hybrid energy potential functions.

An interesting parallel between nonenergic voltage-controlled capacitors

and classical thermodynamics is noted.

Section VI extends the results in [Duinker, 1959] by displaying a

class of nonenergic Lagrangian N-ports which are not traditors.

Section VII is substantially more abstract than the rest. In parts A

and B no assumption is made that 7t is time-invariant, lumped, causal, or

continuous or that its admissible pairs are measurable functions.

Theorem 7-1 provides a canonical form for nonenergic N-ports. Theorem

7-2 builds on theorem 7-1 to show that if a nonenergic N-port is linear, it

must be resistive. In part C we drop the "global coordinate assumption,"

i.e. the assumption that r\ is globally voltage-controlled, current-controlled,

hybrid, etc. Resistive and capacitive N-ports are viewed as N-dimensional

differentiable manifolds in IK , and the properties of nonenergicness and

reciprocity are presented purely in terms of local coordinates.

Sections II through VI deal only with the time-invariant case.

II Linear Time-Invariant N-Ports
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A. Definitions and Assumptions

Definition 2-1 Suppose the 2N port voltages and currents of an N-port

9l are partitioned into two vectors, u e R and y e IK ,in such a way that
either u, = v, and y = i, or u, = i, and y, = v, for each k € {1,2,•••N}.

Then u and y are a hybrid pair.

It follows immediately from the definition that the instantaneous net

power flow into /L can be given simply in terms of u and y as

N

P(0 = E v,(t)i,(t) =<u(t),y(t) > (2-1)
k=l k k ~

if u and y are a hybrid pair, where (•»• >denotes the standard inner product

operation on IR .

Although the definitions of reciprocity and antireciprocity are commonly

stated in the frequency domain [Penfield, Spence and Duinker], we will require

the following equivalent time-domain statement.

Definition 2-2 A linear N-port 71 is said to be reciprocal iff v1(•)*!"(•)
v"(*)*V(') and antireciprocal iff vf(«)*i"(') = - y''^)*!1 (•), whenever

(v'(-),!'(•)) and (v"(.),iM(-)) are admissible pairs1.
We let U C n denote the set of admissible values an input waveform

u(») is allowed to take. We denote by Ct the class of all admissible input

waveforms. It may be helpful to note that an admissible waveform u(*) is in ZC,

whereas at any particular time t, the vector u(t) is in U.

We require throughout the remainder of section II that 6C satisfy the

technical assumptions listed in part B of section VII. As explained there,

this will occur automatically in every case of practical interest. In

addition we require that:i) l/L be restricted sufficiently so that there

exists a unique output waveform y(») for each input waveform u(«) e IA , and
2ii) u and y form a hybrid pair .

If x(») and y(«) are two IK -valued time functions, then their convolution
is given by N /•»

[x(.)*y(-)](t) =E J xk(T)yk(t-T)dT
The existence of a representation satisfying condition ii) is a very weak
assumption for linear N-ports. It is equivalent to the existence of a
scattering matrix representation, which is in turn equivalent to the existence
of at least one representation of the form A(s) V(s) = B(s) I(s) [Anderson,
Newcomb and Zuidweg].
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B. Every Nonenergic Linear N-Port is Antireciprocal and Resistive

Theorem 2-1 Suppose 71 is a linear N-port characterized by the state
equations

x = Ax + Bu

y = Cx + Du (2-2)

or the convolution operator y(t) = [G(»)*u(») ](t) , where u and y form a

hybrid pair. Then the following three conditions are equivalent:

i) 71 is nonenergic.

ii) fits characterized by y = Hu,

where H e H is an antisymmetric constant matrix.

iii) {[, is an antireciprocal resistor.

Proof

i) =* ii) This is a consequence of theorems 7-1 and 7-2, applied in

the time-invariant case.

ii) =• iii)

(y'(.)*!"(•)) +(y^-)*!^))

=[(y'(.)+y"(.))*(i'(-)+i"(-))] -jVc*)*!' (•)] -[y,,(-)*i,,<->] (2-3)

Since /L is linear, each of the three terms on the right hand side of

equation (2-3) is the convolution of an admissible voltage waveform with its

corresponding current waveform. In order to show that each such term is zero,

we first renumber the ports if necessary so that either u = y and y = i or

u=[V'-V vk+1,--vN]T -[ti.yy and y=[v"^.^."-!,,]1 -

-4-



[T T 1T
~I,iII ' ^or some iateger k, 1 £ k £N. We show in part A of the Appendix

that such renumbering preserves the antisymmetry of H. Then if (v(»)»i(*))
is any admissible pair,

y(-)*i(0 =(yI(-)*iI(-)) +(yII(-)*iII(-)) =

(v>*ii<'>)+ (in^^i^0) • h(-)T^ii(-)T]T*K(->^?i<^]T •
/ \ N N r

y(-)*u(-) =(hu(.)]*u(0 =E L hij[ui^)*uj(#)J =°»

by the antisymmetry of H. The calculation is similar if u = y and y = i.

Therefore the right hand side of equation (2-3) is zero and the conclusion

follows.

iii) =*i) If we let y'(.) = y"(.) and if(0 = i"('), then it follows directly

from the definition of antireciprocity that [y(•)*!(')] =0if (y(•)»!(•)) is an
admissible pair and 't is antireciprocal. Let (y,i) be a dc admissible pair
for J[. Then (0,0) is also an admissible pair since Tl is linear. Define the

admissible pair of waveforms (y(•)»!(•)) by:

Then

Y (O = fv, 0 < t < 1 and i (t) =

I0, otherwise
(h ° 1 t - 1
[O, otherwise .

<V,£ >= J <v,i >dx = [ <y (T),i (1-t) >dx = [v (-)4 (-)](t-l) =0

where the first equality follows because y and i are constant vectors, and

the second equality follows becasue v(t) and l(t) are constant vectors for

all 0 < t < 1.

I
Example 7-5 will show that the conclusion that A must be antireciprocal

holds only in the time-invariant case.
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Example 2-1 Ideal Transformer

-V2_

=

0 -n

n 0

Vl

Example 2-2 Ideal Gyrator

*1
=

o g

-g 0

~vl"
V2

(2-4)

(2-^5)

Corollary. LetTlbe a nonenergic N-port described by the state

equations (2-2). Then D is antisymmetric. Furthermore, if Tl is completely
controllable (definition 3-2), it is completely unobservable, i.e. C = 0.

C. Nonenergic Linear N-Ports Which are Both Reciprocal and Antireciprocal,

Transformer-Only Synthesis,

The ideal transformer is nonenergic, linear, reciprocal,and antireciprocal

[Penfield, Spence,and Duinker], as a simple computation will verify. Theorem

2-2 gives a canonical form for such devices.

Definition 2-3 Suppose u e R and y e R are a hybrid pair, but
u $ y and u + i. Then u and y are a mixed hybrid pair.

Example 2-3 Consider the following four choices of independent and

dependent variables for a 3-port resistor:

i)

u =

iii)

U =

f"~ "™) r— •"*

vl xi

*2 » y = v2

v3
L_ -J

H

Vl| [h
v2 ,y = i2
v i

ii)

iv)

-6-
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Choices i), iii) and iv) are all hybrid pairs, but only choices i) and iv) are

mixed hybrid pairs.

Theorem 2-2 Suppose Tl is a linear N-port which is both nonenergic and
reciprocal. If Tl is characterized by

NxNy=Hu, He(R (2-6)

where u and y form a hybrid pair, then exactly one of the following three

cases must hold.

i) The input u=y, y=i, H=Q and Tl is an N-port open circuit.

ii) The input u=i, y = v, H=0 and Tl is an N-port short circuit.

iii) The input u and output y form a mixed hybrid pair. After renumbering

the ports, if necessary, so that u= (i ,y.^) and y = (y^i^) , then H has
the form given in the following elaboration of equation (2-6):

*I

In

,(k)|

"It 1 ~T7n-k)
-B

ii

*n

(2-7)

where B e R is arbitrary.

Proof It is well known that a linear N-port given by an impedance or

admittance matrix H is reciprocal iff H is symmetric and antireciprocal iff

H is antisymmetric. If H is both symmetric and antisymmetric, then h = h

and h = - h ,, so H = 0. This proves the conclusion in cases i) and ii).
ij ji

In case iii), after suitable renumbering, we have

h
r

A ~XI
(2-8)

*II -B' *II
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T
where the appearance of -B follows from the antisymmetry of H required

by theorem 2-1. It follows from definition 2-2 that since 7Xis both
reciprocal and antireciprocal,

yf(•)*£"(•) = 0, for all admissible yf(0 and !"(•). (2-9)

Substituting equation (2-8) into equation (2-9) and dropping terms which

cancel yields

(4ii<->)*i;<0 +Yn('>*(5Yii^>) =°>

which is possible for all admissible ij(-), ij(-), y' (•)» and y''I(0 iff
A = 0 and C = 0.

•
Using theorem 2-2, it is easy to synthesize every nonenergic linear

reciprocal resistive N-port from ideal transformers. The cancmical synthesis

is given in Fig. 1, where turns-ratios are expressed in terms of the entries

of B in equation (2-7).

D. Scattering Representation

Definition 2-4 A square matrix M of real or complex numbers is orthogonal
T -1

iff M is nonsingular and M = M .

Theorem 2-3 Let TV-be a linear N-port given by the scattering matrix

S(s) with respect to real positive port normalization numbers, where S(s) is

defined for all s in the open right half plane. Then Tl is nonenergic ** S(s)

is real, orthogonal, and independent of s.

Proof (*=) Since S(s) is orthogonal, Tl is antireciprocal [Penfield,

Spence,and Duinker]. Since Tl has a scattering matrix representation,TL has

a hybrid matrix representation [Anderson, Newcomb, and Zuidweg]. And since

S(s) is real and independent of s, fi is resistive. The conclusion follows

from theorem 2-1.
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(=>) Since Tl has a scattering matrix representation in the open right half

plane, Tl has a hybrid matrix representation [Anderson et.al.]. Then it

follows from theorem 2-1 that Tl is antireciprocal and resistive. Since

ii is antireciprocal, S(s) is orthogonal [Penfield et.al.], and since /Lis

resistive, S(s) is real and independent of s.

I

Example 2-4 It is well-known that every real orthogonal 2x2 matrix can

be written in one of the following two forms [Hoffman and Kunze]:

or

cos 6 sin 9

sin 6 -cos 9

Ccos 9 -sin 9^
sin 9 cos 9J

(2-10)

(2-11)

It is not hard to verify that equation (2-10) is the scattering matrix with

respect to 1 ft port normalization numbers of an ideal transformer, where

tan 9 = «. Similarly, equation (2-11) is the scattering matrix with
1-n

respect to 1 ft port normalization numbers of an ideal gyrator, where tan 0

1-8

E. Gyrator-Only Synthesis of General Nonenergic Linear N-Ports

It is clear that any N-port constructed only from ideal gyrators will

be linear and nonenergic. The remarkable fact is that the converse is also

true. An algorithm is given in section 5.9 of [Carlin and Giordano] for

the synthesis of any nonenergic linear N-port with a scattering representation

from ideal gyrators and transformers. Since an ideal transformer can be con

structed by connecting two ideal gyrators in cascade, this amounts to a gyrator-

only synthesis.

IIL State Variable Representation
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A. Definitions and Assumptions

Definition 3-1 Suppose the N-port li is characterized by the state
equations

x = f(x,u)

? = §(?»!*)• (3-1)

If u e R and y e R form a hybrid pair (definition 2-1), then equations
(3-1) are called the hybrid dynamical system representation for "71.

RN
and

that LL be the class of all piecewise continuous waveforms: R -> U, where

(Xand U are as defined in part A of section II. We denote the state space

of /1 by 2^, and zL will be an open set in R .

Definition 3-2 If for each choice of states xn, x. e J^ , there exists
a time t. >_ 0 and an admissible input u(*) e Li that steers Tl from state xQ
at t=0 to x1 at t= t., thenTV* is said to be completely controllable.

B. The Output Map y = g(x,u)

Theorem 3-1 Suppose that Tl is described by the hybrid dynamical system
representation (3-1), that g(*,#) is continuous and that Tl is completely
controllable. Then /T is nonenergic <*• g(x,u) can be written in the form

g(x,u) = H(x,u)u, for all u e U and all x e 2^ , (3-2)

where H(x,u) is a function assigning to each point (x,u) e Lx U an anti-

symmetric real NxN matrix, i.e. H(x,u) = - H (x,u).

Proof («=)

p(t) =<u(t),y(t) >=uT(t) H(x(t),u(t))u(t) =0,

since H(x,u) is antisymmetric.

-10-



(=>) If g(x,u) and u are orthogonal for all (x,u) e 53 x U, then the conclusion
follows from theorem 7-1 whenever u + 0 and from the continuity of g when u

= 0. It remains to show that g(x,u) and u must always be orthogonal. Suppose

the contrary, i.e. that there exist u* eU and x* e£ such that ^U*»g(?*»U )'
c* 0. Then for any initial state xQ at t= 0, there exist a t^ >_ 0 and a
control u(») e%L that transfers 71 from xQ at t=0 to x at t= ty If
u(t.) = u*, we are done. Otherwise, let the control u(t) be given by

u(t) = u(t) when 0 <_ t < t. and u(t) = u* when t > t . Now x(») is

continuous since it satisfies equation (3-1), and g(»,*) is also continuous.

Therefore .

lim ^p(t)] =lim \u(t) ^[x(t) 9n(t)j) =
. .+ . .+

lim(u*,|(x(t),u*)) =<'u*,g(x*,u*)> =c* 0, (3-3)

contrary to the assumption that /l is nonenergic. |

See the note which follows the proof of theorem 7-1.

It is not difficult to show that the above theorem remains true if we

oN
require that u(t) be continuous, provided U is a connected set in In .

Corollary. Every non-energic n-port satisfying the hypotheses of Theorem 3-1

is a memristive n-port [Chua and Kang].

C. Stored Energy and Dissipation Rate

Nonenergicness implies a relation between the state equations, the

stored energy, and the dissipation rate of /(. Intuitively, the requirement

is that power dissipated in the resistors of /Tmust come from active elements

and storage elements inside l\ , since none of it can come in through the

ports.

Suppose ft consists of:i) (multiport) reciprocal capacitors and inductors,

ii) nonenergic (multiport) resistors, e.g. ideal diodes, transformers and

-11-



gyrators, iii) dissipative resistors, e.g. linear 2-terminal resistors,

transistors, zener diodes, independent sources, and iv) dependent sources.

Then all the (positive or negative) power dissipation occurs in the elements

listed under iii) and iv), and all the energy storage takes place in elements

listed under i). Let 71 be characterized by the dynamical system representation
(3-1) in which the components of the state vector x are capacitor voltages and/or

charges and inductor fluxes and/or currents. Let the components of u and y

be port voltages and/or currents; we don't require that u and y form a hybrid

pair. We must require that the capacitors and inductors be reciprocal so that

there will be a stored energy function E(x) defined to within an additive

constant [Willems]. If /Lis a well-posed network , then x and u uniquely

determine all the voltages and currents at all the ports of all the

dissipative resistors and dependent sources, so we can write a function

d(x,u) which gives the total power dissipated inside ft as a function of

the input and state.

Theorem 3-2 Suppose Tl is a well-posed network, the above conditions

hold, E(x) is (T, f(x,u) and d(x,u) are continuous, and Tl is completely

controllable. Then TT is nonenergic0

(VE (x), f (x,u)/ + d(x,u) = 0, for all x eZ and all u eU (3-4)

Proof

(<=) By Tellegen's theorem (or by conservation of energy) we have

that p(t) =~ E/x(t)j +d(x(t),u(t)j, and by the chain rule we have that
E^x(t)) =<VE (x(t))f f(x(t),u(t)j> .

dt

(=*) Since 71 is completely controllable, the conclusion follows by a

continuity argument similar to that leading up to equation (3-3).

•

LIt is possible, though quite lengthy, to derive sufficient conditions for well-
posedness of general networks in terms of topological matrices and element
constitutive relations. It is generally easier to verify well-posedness by
ad hoc techniques in particular cases of interest.
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D. Examples

Example 3-1 The network in Fig. 2 is a simple example which illustrates

the ideas in theorems 3-1 and 3-2.

Let the state be q, the input be i, the output be v, and U = IH. The

normal form hybrid state equations and the functions E and d become:

x = f(x,u) -»• q = i - gof(q)

y = g(x,u) •* v = f(q)

E(x) •* E(q) =f f(q,)dql
d(x,u) -»• d(q,i) = f(q) .[gof(q) ],

where "ol1 denotes the "composition" operation.

Theorems 3-1 and 3-2 allow us to conclude immediately that if such a

network is nonenergic and completely controllable, it is trivial. The

requirements of theorem 3-1 can only be met if f(q) =0 for all q £ 1 , so
that H(x,u) is "the only antisymmetric lxl matrix"; namely, zero. Likewise,

according to theorem 3-2, Tl is nonenergic iff f(q)*[i - g°f(q)] + f(q)[g°f(q)] =

0, or i-f(q) =0for all(i, q) eRx L ,or f(q) =0, for all qe L, Hence,
in either case, we conclude that the one-port must be a short-circuit.

Example 3-2 Let the network in Fig. 3 be represented by a hybrid dynamical
T Tsystem representation with input u = (i.,i«) , output y = (v ,v2) and state

Tx = (q-i >q?) • We do not need to include q~in the state, since q. is uniquely

determined by q^^ and q2: q3 = f3(v3) = f3(v1""v2) = f3\fi^ql^ " f2^q2V *
If we define

M(g) =

_- f3(£l(<'l)-f2('2>)£i<«l> 1+^(h^-h^h^ll

then the hybrid dynamical system representation for this circuit is given by:

-13-



M X (q)

fl(ql}

f2(q2)

V 8l°fl(ql)
i2- g2°f2(q2)

if M(q) is invertible, as a straightforward calculation will verify. If the

network is completely controllable and if M(q) is invertible at each point

q eJ], then it follows easily from theorem 3-1 that jl is nonenergic iff
~ T
ft(q-) = f2(q2) = °» for a11 (qi»q2) e£> i*e« tne network must be trivial.

The surprising fact, however, is that there are nontrivial choices of

element constitutive relations for the network of figure 3 which cause it

to be nonenergic. Of course, M(cp is singular in these cases. One such

choice is given in Fig. 4, where the network has been separated into resistive

and capacitive two-ports, Pu and C , connected in parallel. The following

calculation shows that R and C are individually nonenergic.

. 8. is non-energic:

dl*vl,V2^ = 1/V1

j2(vl'V2} = ~ 1/V2
p(t) = v^+v^ = 0

:. C is non-energic:

P(t) =

Q1(v1,v2) = - In v± + £n(V;L-v2)

Q2(v1,v2) = In v2 - SLniv^v^

«1 "(^) *I +fe^)(V*2)

«2 "(^) *2 -(^")(V»2)
vlQl + v2Q2 = 0

-14-
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Both H and C are somewhat singular networks. PL is well defined only

if v^^ and v2 are nonzero; (? only if v, >v„ >0. This may be due in part
to the naive synthesis procedure adopted here or to some fundamental limitation

on all syntheses using two-terminal elements and no dependent sources.

However, the authors have discovered certain restrictions which are

independent of the synthesis procedure. For example, every nontrivial,

nonenergic voltage-controlled capacitor must be discontinuous at the origin,

v = 0. Similarly, every nontrivial, nonenergic, reciprocal, voltage- or

current- controlled resistor must blow up at the origin, v = 0 or i = 0.

These conclusions will emerge as consequences of the theory developed in

sections IV and V.

IV. Multiport Resistors

We require throughout section IV that U, the set of admissible input

values, be an open set in lR .

A. General Theory

Theorem 4-1 If /Lis a resistive N-port characterized by

y = f(u), for all u e U, (4-1)

where u and y are a hybrid pair (definition 2-1) and f is continuous, then

7T, is nonenergic ° f(u) can be written in the form f(u) = H(u)u, where H(»)
RNxN

w

T T
Proof ("*=) (y,i > = (y,u > = u H (u)u = 0, since H(u) is antisymmetric.

' (=>) Since u and f(u) must be orthogonal for all u e U, the

conclusion follows from theorem 7-1 for nonzero u. Extension to the case

where u = 0 follows from the continuity of f. §|

See the note which follows the proof of theorem 7-1.

Example 4-1 The ideal transformer and gyrator, equations (2-4) and

(2-5).. .

-15-



Example 4-2 The type II conjunctor [Duinker, 1962], characterized by

Bv,

V 0

BV3 0~ V
0 0 h
0 0_ Lv3J

Example 4-3 The 2-port \\ of Fig. 4 and equation (3-5) can be

characterized by

_ 2j

Example 4-4

u^a-J

0 l/O^vp

-l/(Vlv2) 0

ro

o

L Va V3

"i2v3

-Va

Uv2-

L-V3-

vx * 0

v2 * 0

(4-2)

, for all (i ,i2,v3) e If?

(4-3)

It is easy to verify that this one is reciprocal (definition 4-2).

In the statement of theorem 4-1, the phrase "can be written as" is

used advisedly, since such a representation of f(u) is by no means unique.

Equation (4-2) above could also be written as

u<

L 2 J
-l/vl

and equation (4-3) as

vl
0 -v2 0

3

V2
=

2

~V3
0 0

H 0 2ilv3 °

-16-
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Definition 4-1 Suppose ft satisfies the conditions of theorem 4-1 and

f is C . Then ]t is said to be locally strictly passive or incrementally

strictly passive at a point u e U iff the Jacobian of f is positive definite

at that point.

Theorem 4-2 Assume that /Lsatisfies the conditions of theorem 4-1 and

f is C . If Tl is nonenergic, then Tl is not locally strictly passive at any

point of U.

Proof First choose u # 0. Then for all 6u such that u + 6u e U, 0 =
~ ~" r ~\ ^ ~ ^ o

<f(u+6u),u+6u> - (f (u),u> = ( j(f(u))| 6u,u>+ (f(u),6u> + 0(Il6ull ), so
u J(f(u)J +f(u) 6u =0(ll6ull ). Therefore u IJ f(u) +f(u) =0, and
it follows that u J(f(u)j u+f (u)u = 0. Since 7T is nonenergic, we know
that f (u)u = 0. Combining this with the previous equation proves that the

Jacobian of f is not positive definite at u. The conclusion can be extended

to the point u = 0 as well, since f is C . J

B. Reciprocity, Antireciprocity, Content^ and Co-Content

Definition 4-2 for reciprocity and antireciprocity of nonlinear N-ports

is modelled after definition 2-2 for the linear case. The meaning of the

term "operating point" is deliberately left somewhat vague here; in the case

of resistors, capacitors and inductors there will be no ambiguity.

Definition 4-2 ft is said to be reciprocal iff

6v'(-)*6i"(.) = 6v"(.)*Si,(0 (4-6)

and antireciprocal iff

6v'(0*<5i"(0 = - ^"(O^i'O) (4-7)
'V 'V/ 'V, -v

whenever (6v*(•),&if(•)) and (6v"(»),6i(»)) are small-signal variations

admissible to the linear approximation to 71 about the same operating point.
In the case that Tt is resistive, i.e. memoryless, definition 4-2

takes on the following form.

-17-



1 ,_

Theorem 4-3 AC resistive N-port 71 is reciprocal (definition 4-2) ♦

<6y',6i»> = <«y»,^»> (4_8)

and antireciprocal iff

whenever (<5v',6i') and (6y",61") are small signal1 variations admissible
to the linear approximation to 71 about the same operating point (v,i).

The proof is given in part B of the Appendix.

Definition 4-3 If a current-controlled resistive N-port Tl is characterized
by the gradient of a scalar function, i.e. v = f(i) = VG(i), for all i e U, then
G is called the content function of Tl.

The co-content G(v) is defined similarly in the voltage-controlled
case.

Theorem 4-4 Let Tl be a current-controlled resistive N-port characterized

bv Y = ?(*)» for a11 i e u» where f is C . Then i) => ii) and ii) o iii), where
statements i), ii) and iii) are:

i) ?T has a C content function G(i) defined on U.

ii) The Jacobian of f is symmetric at each point of U.

iii) /lis reciprocal.

Moreover, if U is simply connected, then i) o ii) o iii).

The proof is given in part B of the Appendix. Equivalent conditions

hold for the co-content in the voltage-controlled case.

See [Chua and Lam]. Their footnote #7 assigns a mathematically exact
meaning from differential geometry to the expression "small signal variations
same operating point, (v,i)".

-18-



C. Homogeneous Functions

Definition 4-4 A set S C fi is called a cone iff x e R

Xx £ (Rn, for all X > 0.

Notation: Throughout part IV, U denotes an open cone in

-19-

1RN.

Of course RN itself is an open cone. The domains in examples 4-5

through 4-8, 5-1, 5-2 and 6-1 are open cones which are proper subsets

of fl?2.

Definition 4-5 $: U C (Rn -* R is k-order homogeneous iff
_ c

*(Ax) = Ak$(x), for all X> 0, x* 0 (4-10)

2 2

Example 4-5 <Kx,y) =^-

is third order homogeneous on Uc = {(x,y)|x + y* 0}.

Lemma 4-1 Suppose $: U C f\ •* R is differentiable at all nonzero
c

x e U . Then $ is k-order homogeneous <*•

(v$(x),x) = k$(x), for all x eU ,x* 0. (4-11)

Lemma 4-1 is a standard theorem of analysis [Courant and Hilbert],

Lemma 4-2 If $: u C Rn •*• R is differentiable at all nonzero x e U
c ^* c

and k-order homogeneous, then (x) is k-1 order homogeneous, j = 1,2*»•}$.
3x. -

Proof Differentiating equation (4-10) w.r.t. x. yields

X(D.$)(Xx) = Xk(D.$)(x).



D. The Reciprocal Case when Tl is Current-controlled or Voltage-Controlled

Theorem 4-5 Let 71 be characterized by y(i) = VG(i), for all ieU CRN,
Then 7T is nonenergic iff G is 0-order homogeneous.

Proof (i,y(i)> - (i,VG(i)}

The conclusion follows from lemma 4-1. H

Corollary Under the assumptions of theorem 4-5, if 7\ is nonenergic,
then each component of y(i) is - 1 order homogeneous.

Proof. Follows from lemma 4-2. •

It follows from the corollary above that if ft is a reciprocal current-

controlled nonenergic resistor, then li either blows up at the origin or

else is an N-port short-circuit. For this reason nontrivial, nonenergic,

reciprocal, current-controlled resistors will probably not be encountered

in practice.

Everything said here applies equally to G(y) and i(y) in the voltage-

controlled case.

Example 4-6 .

G(i) = 1

1 2

i2
3G 2

1 3ii ai +±y2

-i i
3G 12

v« =2=lil = „2 ,.2,3/2 ' ^l'V * (0,0)-•2 (i1+i2)

The interest of the next example lies in the fact that it can be synthesized

using only 2-terminal nonlinear elements without dependent sources.
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Example 4-7 The 2-port resistor pt of equation (3-5) and Fig. 4 is

/ il
characterized by the content function G(i) = in

X2
|, ±± + 0, i2 4= 0.

One might suspect that if Tl is reciprocal and the components of y(i)
are -1 order homogeneous, then 'Lis nonenergic. This would be the converse

to the corollary to theorem 4-5. The next example shows, however, that this

is not the case.

Example 4-8 v --j—j . V2 =_-^

<y,i > = 1, (i-pip * (0,0)

*n(i* + il)
G(i) - lj—2-

E. Reciprocity and Hybrid Content

Suppose we have a resistive N-port characterized by equation (4-1). If

u and y are a mixed hybrid pair (definition 2-3), then, after renumbering

the ports if necessary, we can write

u- [v-vw"*n]T- [il'Sll]
I=[vr••-Vi^,••-ij =[yj.ijj ,1<k<H-l (4-12)

We adopt the following notation: i = - i ; the simple function

carrying i^. into i* is written i^ij); u* = i*T»YTT *and the function
carrying u into u is written u(u*).

Definition 4-6 Suppose Tl is characterized by equation (4-1). A

differentiable scalar function $(u*) is called a hybrid content function

for Tl iff y= f(u) =f/u(uM = V<i>(u*), for all u* such that u(u*) eU.

Theorem 4-6 Let /I be a resistive N-port characterized by equation

(4-1). Let f be C , let u and y be a mixed hybrid pair, and let the ports
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be renumbered if necessary so that u and y appear as in equation (4-12)
Then i) => ii) and ii) <*• iii), where statements i), ii) and iii) are:

i) 'I has a C hybrid content function, $(u*).

ii) At each point of U the Jacobian of f is of the form

A | B~

T '
-r I g

where Ae Rkxk and CeR<N-k)x(N-k) are 8yiB|etrlc-

iii) 71 is reciprocal.

Moreover, if U is simply connected then i) o ii) o iii).

The proof is in part B of the Appendix.

F. Reciprocal, Nonenergic, Hybrid Resistors

Example 4-9 A direct computation will verify that the resistive 3-port

of equations (4-3) and (4-5) has the hybrid content function $(y*) = *(i* ,y ]
*(i*,i*,v3) =i*i*v2.

-1 *Notice that in the above example, $ has the property that <&(y i*,yy ) •

*(iI,y _), for all y > 0. Far from being accidental this condition on $ turns
out to be necessary and sufficient for l\ to be nonenergic.

Theorem 4-7 Let /1 be a resistive N-port characterized by a C hybrid

content function $(i*,v ) defined on all of IR . Then f\ is nonenergic <•

Ky"1!* ,yyl;L) =*(i*,yi;t) for all y>0and for all [~i*T»Yii] e1RN.

Proof ft is nonenergic iff

<y,i> - £ i 2=j(iJ.yiI)+ £ v
j=l 3 3i? j=k+l J
k 3* ,.* _ , . £ _ a* (1* , .

-22-
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dy

k ™ N
E.* 3$ . t-» 3$

^ ~ + ^ Vi 3v~ = °' <4-13)j=l J 3i* j=k+l J 3vj

Hu'h* yv__) =-£ i* i±- + £ |±_ =0

T

(=») Define avector field on IRN as follows: to each point ijT,YT-rl e^
assign the vector w^i*T,VjJT) =[- i^.y^J =[i^Y^]1. If 71 is nonenergic,
then the vector field V$ is everywhere orthogonal to the vector field w, and

therefore 4> is constant along the integral curves of w. A straightforward

solution of N first order, linear, uncoupled differential equations
r ^fp rp "j T

shows that the integral curve of w passing through a point Ii_ ,v
I -X *T X T "IT x I-1 ~I-U

is given by [e i^ ,e v . Substituting y for e yields the theorem.

Corollary Let ft be a reciprocal linear N-port resistor characterized

by ? =?u. for all ue (R ,where u and y are amixed hybrid pair and H e RNxN,
Then ?1 is nonenergic o Tl has a hybrid content of the form $(i* ,v )=
i*TBvII+V?eRkX<N-k>. ~l ""

The proof is a direct computation using theorem 2-2 and equation 2-7.

G. The Antireciprocal Case

Theorem 4-8 Let ft be an antireciprocal resistive N-port characterized

by equation (4-1), where U= lRn, f is C,and u and y form ahybrid pair.
Then li is nonenergic o Tl is linear.

Proof (*=) Follows from theorem 2-1.

(=*) Every antireciprocal C resistive N-port is affine [Chua and Lam], i.e.
Y=Hu+c, HeR • Since Tl is nonenergic, <y,u > = <Hu + c,u > =0,
for all u e R ,which is possible only if c = 0.

V. Multiport Capacitors and Inductors
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For simplicity of language, all results in this section are stated in

terms of capacitive N-ports and the variables v and q, but they apply to

inductive N-ports as well if i is substituted for v and $ for q. We will

require throughout section V that U, the set of admissible input values, be

an open set in (R .

A. Reciprocity and Coenergy

Theorem 5-1 A C capacitive N-port »V is reciprocal (definition 4-2) <•

<6vf, 6q" > = <6v",6q! > (5-1)

whenever (6vf,6qf) and (6v",6q") are small signal variations admissible to

the linear approximation to 7\ about the same operating point, (y,c[).
The proof is in part C of the Appendix.

Definition 5-1 If a voltage-controlled capacitive N-port, f\ , is

characterized by the gradient of a differentiable scalar function W(y), i.e.

if <j(y) = VW(y) for all y e U, then \j is called the electric coenergy function

for ft.

Theorem 5-2 Let /t be a voltage-controlled capacitive N-port characterized

by

q = q(y) for all y e U, (5-2)

where q(«) is C . Then i) =* ii) and ii) "^ iii), where statements i), ii)

and iii) are:

i) /I has a C electric coenergy function W(v) defined on u»

ii) ft is reciprocal.

iii) The Jacobian of q(v) is symmetric at each point of U.

Moreover, if U is simply connected, then i) ***• ii) ** iii) .

The proof is outlined in part C of the Appendix.
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B. Charge-Controlled and Voltage-Controlled Capacitors

Theorem 5-3 Suppose ft is a charge-controlled capacitor characterized

by v = v(q) for all q e U. Then/I is nonenergic <* y(q) = 0 for all q e U.

Proof C*3) Obvious.

(=*) Suppose there exists a point q- Iq^, •••»5N| euwhere
v(q) * 0. Then let q(t=0) = q and i(t) = i cos 2 tt t, t > 0. Then q(t=l) = q,

i(t=l) = i and p(t=l) = <v(q),i ). We can choose i so that p(t=l) * 0,

contradicting the assumption that Ii is nonenergic. •

Theorem 5-4 Suppose / I is a voltage-controlled capacitor characterized

by

q = g(y), for all y e U , (5-3)

where U is an open cone in R (definition 4-4) and q(v) is C .
Then Tl is nonenergic ° fl is reciprocal and q.(y) is 0-order homogeneous,

j = 1, ••• N.

Proof (<=)

p=<y,q >=v|j(g(v)jjv =

YT[^(3(Y))] TY =YTr^(3<Y>)] Y- (5"4)

The j-th component of J(q(v)) v is

N 3q.

Evk^(v). (5-5)
k=l k

But by lemma 4-1, expression (5-5) is zero for each value of j e {1,***N},

since each component of q(v) is 0-order homogeneous.
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(=*) We first establish by contradiction that it is reciprocal. Suppose,

on the contrary, that there is a point v e U where the Jacobian of q(v) is
1 ~ C ~ ~~

not symmetric. Then there is a C closed curve C in a neighborhood of v such

thatn)q(v)«dy 4= 0. But since Cis closed, ^q*dv +"9)vdq =A^q(v),v) =0,
sovUvdq, which represents the total energy absorbed by 71 over the closed

path, is nonzero. This contradicts the assumption that /Lis nonenergic.

Therefore /I is reciprocal and equation (5-4) still holds. Since at a given
instant we can specify y and y independently, as in the second part of the

proof of theorem 5-3, it follows that

[i(s<Y>)]y (5-6)

for all y e U . Expanding equation (5-6) as in expression (5-5) and using

lemma 4-1 proves that each component of q(v) is 0-order homogeneous. fl

It is easy to see that the only continuous zero-order homogeneous

functions defined on all of H are the constant functions. (Think about

continuity at the origin.) But if we allow q(v) to be defined only on

n - {0}, we can exhibit nontrivial nonenergic capacitors as in the following

example.

vl
Example 5-1 q1 =

1 /2T~2
Vvl + v2

v2

J 2 4. 2

The next example, while it is only defined on a portion of R - {0},

is of interest because it can be synthesized from 2-terminal nonlinear

capacitors without using dependent sources.

Example 5-2 The capacitive 2-port C of Fig. 4 and equations (3-6)

is characterized by
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Q, = ^

fv —v'1_ 2

Qo =^vV' Vl >Vl >°
(5-8)

If the constitutive relations of the individual capacitors in C are extended

as follows:

Cl: *i = " £nlvll
C2: q2 = An|v2|

C3: q3= ^n|v3|

Then equations (5-8) can be extended to become

Q1 = £n

Q2 = An , vx # 0, v2 * 0, v1 * v2,

(5-9)

(5-10)

Example 5-3 The type II traditor [Duinker, 1959] can be written as a

capacitive 3-port as follows:

-v.

<li =1 Av.

-v.

qo =2 Av.

V1V2
q3 =~T" ' V3 * °'

Av„

Corollary Suppose 71 satisfies the conditions of theorem 5-4.

Then 71 is nonenergic ^ w(v) exists and is, to within an additive
2

constant, a C first order homogeneous function.

-27-
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Proof W Then q(y) is C and reciprocal and it follows from lemma

4-2 that each component is 0-order homogeneous. The conclusion then follows
from theorem 5-4.

(=*) From theorem 5-4, q(y) is reciprocal. The coenergy is given by

W(v) = <y,q(y) >, (5-12)

since V<v,q(y) >=q(y) +[j(q(v))lTy =g(y) +(j(g(Y))l Y=9<Y>> where the
last equality follows from lemma 4-1 and the fact that each component of

g(y) is 0-order homogeneous. Since each component of q(v) is 0-order homogeneous,
W(y) as given by equation (5-12) is first order homogeneous.

Examples 5-4 For examples 5-1, 5-2 (equation (5-8)), and 5-3, W(v) is

given respectively by:

5-D W(v) =Vv^ +v2, (vrv2) *(0,0)

5-2) W(Y) = v2£nv2 ~ v1Anv1 + (v^-v^Hn^-v^, v- > v, >0

5-3) w(v) =•&•) , v3 *0.

C Parallel to Classical Thermodynamics

There is an interesting relationship between our voltage-controlled

nonenergic capacitors and classical thermodynamics. The Euler relation

[Callen], W = TS - PV + yN, can be thought of as a relation between the stored

energy w, the "port voltages" T, P, and y, and the "port charges" S, V and N

of a reciprocal, 3-port, charge-controlled capacitor [Oster and Perelson].

It is a fundamental axiom of classical thermodynamics that W(S,V,N) is

first-order homogeneous, at least for homogeneous fluid systems. It follows

from the dual of the preceding corollary that the energy W(q) of a reciprocal

charge-controlled capacitor is first order homogeneous to within an additive

constant <* the capacitor is "non-coenergic," i.e. the rate of change of

-28-



coenergy, (q,v), is always zero. In this sense we can say that classical

thermodynamics is the study of "non-coenergic" 3-port capacitors.

D. Reciprocity and the Hybrid Energy Function

Definition 5-2 If an N-port capacitor is characterized by

y = f(u) for all u e U, (5-13)

where u + q and u^ v but for each j e {1,2* »»N} either u. = q. and y. =

v. or u. = v. and y. = q., then by analogy with definition 2-3 we say that

u and y are a mixed q-v hybrid pair.

Suppose y\ is an N-port capacitor characterized by equation (5-13), where

u and y are a mixed q-v hybrid pair. Then, after renumbering the ports if

necessary, we can write

f IT T T T "IT
u= lqi'"-VvkH-r---vN] =ISl'YiiJ

I"[V"VW-JT= K'3ii]T' 11k<"-I- (5-14)

We ,* Adefine q by qj = - q , the simple function carrying q into q as g (g ),

u* by u* = |5*T,y^ |T, and the function carrying u* into u by u(u*).

Definition 5-3 Suppose 71 is characterized by equation (5-13) and u and

y are a mixed q-v hybrid pair. If there exists a differentiable scalar function

$(u*) such that y=f(u(u*)) =V$(u*) for all u* such that u(u*) eU, then $
is called a hybrid energy function for Tl •

Theorem 5-5 Suppose 71 is characterized by equation (5-13), y and y are
a mixed q-v hybrid pair, and f is C . Then i) =* ii) and ii) ** iii), where

statements i), ii) and iii) are:

i) /I has.a C hybrid energy function $.

ii) A Lis reciprocal.

-29-



iii) At every point u e U, the Jacobian of f(u) has the form

-B"

where AeRkxk and Ce(R(N"k)x(N"k) are symmetric. Moreover, if Uis
simply connected, then i) o ii) o iii).

The proof is outlined in part C of the Appendix.

Theorem 5-6 Let /I, u, y and f satisfy the conditions of theorem 5-5
and U be an open cone in IF? . Then 71 is nonenergic ^ f is of the form

3g

Y! = - "aiT fci'*!^ *II

9n = ?(3i»Yu>

where g: U ->• (R is any C function such that

i)
9g

3v (Sl»Yii> is symmetric at each point of U, and

ii) each component of g(q].,yII) is 0-order homogeneous in y
for every value of q .

Proof Suppose /iis characterized by

VI = ^I^ii*

Sn = ?(?i»Yii>»

where for the moment we make no assumptions about h and g except that they are

."517 (Si'~ii'J

J Yn* Since we can specify q and vIT independently from

-30-
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each other, from v , and from q , as in the second part of the proof of

theorem 5-3, 7c is nonenergic iff the two expressions enclosed by {•}

are always zero. The first expression yields h in terms of g. The

product of the second expression and y is the net power flow into the

N-k port voltage-controlled capacitor obtained by open circuiting the

first k ports of rl. It follows from theorem 5-4 that conditions i) and

ii) of theorem 5-6 are necessary and sufficient for this N-k port to be

nonenergic.

Example 5-5 Since the zero function is the only linear zero-order

homogeneous function, all the linear examples can be generated by requiring

that gCq^y^ =-BT3l, Be(Rkx<N~k). Then

Yi " !Yn

Sii =-BTqr (5-15)

We recognize equation (5-15) as a restatement of equation (2-7) in terms of

charge rather than current. Equation (5-15) represents a multiport ideal

transformer, as predicted by Theorems 2-1 and 2-2. A realization is given

in Fig. 1.

Example 5-6 A simple class of examples arises if we require g(q ,v S) to

be independent of v T, but otherwise arbitrary. Then we have

*!-" J(s(9i»

3n = I^P • (5_16)

where g is any C function: In •*• B . The type II traditor of equation

(5-11), for example, can be written as a hybrid capacitor with g(q_) = Aq-.^' or

vl =^q2v3
v2 =""Aqlv3

q3 = Aqlq2 (5"17)

*II
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Example 5-7

vi =

q2 =

q3 =

/ 2 , 2

qlv2Tv2 + v3

qlv3//Vv2 +v2, (v2>v3) *(0>0)

Corollary 1 Under the conditions of theorem 5-6,~Y\ is nonenergic ♦ Tl
has a hybrid energy function of the form

•(3rYu> -(s<-SrYn>»Yii) +c,

where g: u+ R is any C function which satisfies conditions i)
and ii) of theorem 5-6, and c is an arbitrary constant.

Proof (<=)

Yl(3l»YlI> " ! ** =
Si

r 9§
—r ("3i»Yii)L3(-q*) ^ -11 .

31'

(k)
where 1 denotes a kxk identity matrix, and

(k)
-1' JYii>

(5-18)

(5-19)

Su<SrYu> " !YlI$ " §(-qi'Yn> +Lra§ * YlI . (5-20)

The last term on the right hand side of equation (5-20) is zero because of

assumptions i) and ii) on g and lemma 4-1. Equations (5-19) and (5-20) become

T

r 9g

Jifsi^Yii)-- TTTrK^'Yn)
9<-9i>

Yn

rag

- L^ (qi'~i]

qn(qi(qi>>Yii) -§(-qi<qi>>Yii) -?<qi>Yii>>

which guarantees nonenergicness by theorem 5-6.
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(=*) If II is nonenergic, then by theorem 5-6 71 is characterized by equations
(5-21) and (5-22). The hybrid energy function is produced by use of the inner

product as in equation (5-18).

•
Examples 5-8 The hybrid energy functions for examples 5-5; 5-6, equation

(5-16); 5-6, equation (5-17); and 5-7 are, respectively:

(5-5): •(,;.vII) =(b^J.v^) =qfBYlI

(5-6), equation (5-16): *(q* ,yn) =(gC-q^.Yn)

(5-6), equation (5-17): ♦(qJ.Vjj) =\A(-q*)(-q*),v3) =Aq*q*Vg

(5-7): •<sJ,vII) =(j== <VV3>« (V2'V3>) =""1^2 +V3
Vv2 +v3

Corollary 2 Under the conditions of theorem 5-6, if 11 is nonenergic

then Ii is reciprocal.

Proof It follows from corollary 1 and theorem 5-5.

I

VI. Lagrangian N-Ports

We call ?? aLagrangian N-port [Duinker, 1959] if Tl is characterized by
Lagrange's equations,

3L(x,x) 9L(x,x)

yk =̂ ^i^-^^'k =1'2'-N» . (6_1)
where x and y form a hybrid pair (definition (2-1)). Tl is called a traditor
[Duinker, 1959] if the Lagrangian is of the form L = ax f(x), j e U,***N},

where f is arbitrary.

It is easy to show that every traditor is nonenergic, but Duinker*s

theorem that every nonenergic Lagrangian N-port is a traditor depends on the
1 2 Nparticular assumption that the Lagrangian is of the form L= k^ x2 ""^ fQOf
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where the a's are nonnegative integers. The following theorem shows

that if this assumption is relaxed, we can discover new sorts of nonenergic

Lagrangian N-ports.

Theorem 6-1 Suppose /I is a Lagrangian N-port. If L is independent
2

of x, L(x) is defined on an open cone (definition 4-4), and L(x) is C

and first-order homogeneous, then f[ is nonenergic.

Proof Expanding equation (6-1) yields in this case

T. ..if 32L ,.J\ .
=i; • * tor: (^J ? •

L 3 i J

and therefore

The i-th entry of

N

[axTsxT <*>] 5is

£ Xj ^T v-iev • (6-2)

3LSince L(x) is first order homogeneous, -tt— is 0-order homogeneous by lemma 4-2.
~ oX.

Therefore expression (6-2) is identically zero by lemma 4-1.

The following example is a 2-port which satisfies the assumptions of the

above theorem. One can easily verify by direct calculation that it is nonenergic,

Hi TT
Example 6-1 L(x,x) = vx.. + x«

*? + x?V/22)

.2

X2

'X1X2
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We can choose to let (x^x^ represent the port charges (q ,q ). Then
in the above example y and y2 are port voltages, which depend in equation
(6-3) on the port currents and their derivatives.

The following theorem shows how to generate more complex nonenergic

Lagrangian N-ports from those introduced in theorem 6-1 and from traditors.

Theorem 6-2 If L^x.x), •••, Lk(x,x) are Lagrangians of nonenergic
N-ports, then any linear combination of L through L, is the Lagrangian of

a nonenergic N-port.

The proof is immediate.

VII. Fundamental Theory

Notation In part VII we will^use superscripts to indicate vector
components, i.e. v = v ,v ,••»v

T

, etc.

The restriction to the time-invariant case is dropped throughout part
VII. .

A. Operator Theory of Nonenergic N-Ports. A Canonical Form.

Definition 7-1 Suppose u e R and y e IR form a hybrid pair (definition

2-1). Let Zi be the class of all admissible input waveforms, u(.)» for *l . If

1) there exists an operator rr assigning to each input waveform u(») e Li a

unique output waveform y(*)» i.e. y(0 = rr u(«)> y(t) = (flru(O) (t), and

2) every admissible pair (v(0» i(0) °f /Z can be represented, after perhaps
a suitable reordering of components, as (H'u(0 ,u(0) for some u(») e £/, then

a hybrid operator for /[ .

If f\ has a hybrid operator fzr , then /T is nonenergic iff

p(t) =<u(t),y(t)) =(u(t),(#u(.))(t)) -0, for all u(.) e*U
and for all t (7-1)

Notice that we cannot discuss the ideal diode in this framework. Its

v-i relation is such that there is no representation in which either v or i

can be chosen globally as the independent variable.
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nxnDefinition 7-2 Let "V be any class of functions: R + Rn. Let R
n a

be the set of all antisymmetric nxn real matrices. Let A be the class of all

functions: IK ->• Ha .We will denote by Ct an operator: y •*• A .

If u(«) e V , then v^u(0 is an antisymmetric-matrix-valued time
function A(-), i.e. for each value of t, A(t) e RnXn. Thus we write Clu(') =
A(«) e A to indicate that the time function A(«) is the image under Cv of the

time function u(-). And we write (O-u(-) K ^=A(t) eRn nto indicate that
the image under O- of the waveform u(«), when evaluated at the time t, is a

certain nxn antisymmetric matrix A(t).

Example 7-1 Let Vl be the class of all C functions: R -*• R . Then

one operator CA. on \^ is given by

(<**(->) (t)

x1(t)x2(t+l)

-x1(t)x2(t+l)

T

for all x(-) =(x1(.)> x2(.)] e Y^ and for all t.
In the special case n = 1, the intended interpretation is that the scalar

0 e H is the only antisymmetric lxl matrix. And an operator carrying \a

into A-, just assigns the zero function, 0(t) = 0 for all t, to each

waveform in v -, •

Lemma 7-1 Let x and y be any two vectors in H such that (x,y ) = 0 and
x + 0. Then there exists a matrix A e R such that y = Ax.
- ~ a ~

The proof is in part E of the Appendix.

Suppose that u(.) e \f and Q-u(-) =A(-). Then we let (0Lu(*)j(txU(t) =
A(t)u(t) represent the vector in Rn obtained by operating on u(t), a vector in

Rn, with the nxn antisymmetric matrix \Q-}*('))(t\ = A(t) . See example 7-2.

Theorem 7-1 Let ft be an N-port characterized by a hybrid operator ft
defined on a class 7/ of admissible input waveforms: R ->• R . Then TL is

nonenergic <*• there exists an operator CL defined on It such that the following

equation holds for every choice of /u(.),t) e2L *R such that u(t) *Q:
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y(t) =(#»(•>) (t)- (Q«(-))(t)S(t) (7-2)

Proof («=) Choose any waveform u(«) e XL and any time t. If it turns

out that u(t) = 0, then equation (7-2) need not hold, but <u(t),y(t) > = 0

nonetheless. If it turns out that u(t) + 0, then equation (7-2) does hold and

\~u(*))(t) is some nxn antisymmetric matrix A. Therefore

(»(t),(Vu(.))(t)) =(u(t),((lu(.))(t)u(t)) =(u(t),Au(t)) =0,

and (u(t),y(t)/ =0 in this case as well.

(=*) Since /l is nonenergic, equation (7-1) must hold. It follows from lemma 7-1
that for each choice of (u(«)»t) eMx R such that u(t) * 0, there exists a
matrix A e In such that

a

y(t) =(Vu<*>)(t) =Au(t). (7-3)

There may be more than one such matrix, but for each choice of (u(*)>t) e Lt x|R
such that u(t) + 0 we choose one and denote it Afu(*)»t). This choice of A
then satisfies equation (7-3). And for each choice of (u(«),t) e l^x R such

RNxN
and denote it

A(u(*),t) as well, even though in this case our choice of A will not satisfy

equation (7-3). This construction has yielded amap A(u(0>t) : Wx R+fi
which satisfies equation (7-3) at each point (u(«),t) e (A xR such that
u(t) # 0. And this map is our desired operator d.

Note that the construction used in the second part of the above proof makes

implicit use of the axiom of choice. Notice also that there is no claim that

CX is unique.

Note The exact statement of theorem 7-1, that there exists an

operator^ such that y(t) =\CL u( •)) ,,.u(t) whenever u(t) is
nonzero, is paraphrased in theorems 3-1 and 4-1 with words to the effect that

the maps in question in those cases "can be written in the form" \Q~u(*)j.*u(t).
The statements of theorems 3-1 and 4-1 take on a particularly simple form,

however, because the maps in question are memoryless and therefore (X is required

to be memoryless as well.
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Example 7-2 For the voltage-controlled nonenergic capacitor of example

5-1, let \A. be the class of all C voltage waveforms (v (')9v (•)) which never
pass through the origin of R . Then the 2-port of equation (5-7) can be

represented in terms of an operator ^s as follows:

i\t)

l (t)
v1(t)v2(t) - v1(t)v2(t)

^"(t)) +(v2(t)) Jfc

v^Ov^t) - v1(t)v2(t)

W+w1
3/2

v1(t)

v2(t) (7-4)

Theorem 7-1 can be interpreted as providing the following canonical

representation for nonenergic N-ports characterized by a hybrid operator *Pf:

y(t) =#»<•>) (t)

(flu(0)/tsu(t), for all tsuch that u(t) *0

(ilu(0)/tN, for all tsuch that u(t) =0
(7-5)

where it, is an arbitrary operator: fj[ + {the class of all functions: R -*• R }.

Examples 2-1, 2-2, 4-2, 4-3, 4-4, 7-2, 7-3, 7-4, and 7-5 are all given in this

canonical form, but a. is the zero operator in all but examples 7-3 and 7-4.

Since any expression of the form (CLu(«)) /1-\u(t) is zero whenever u(t) is zero,
no explicit mention of li was needed except in examples 7-3 and 7-4. This

canonical representation is of course not the only possible representation, as

comparison of equations (4-2) and (4-4), equations (4-3) and (4-5), or equations

(5-7) and (7-4) will demonstrate.

Example 7-3 This one is nonlinear, time-varying, anticipative, and

discontinuous.
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tf.-^)2.!^.)](t)

vX(t)

v2(t)

- t e"<->V(.)
(t)

= <
iV-D

i2(t+l)
for all t such that i(t) = 0

^(t)

i2(t)

, for all t such

that i(t) * 0

The assumptions behind theorem 7-1 were very weak. In particular we have

not required that ft be linear, time-invariant, lumped, causal or continuous
or that its inputs be continuous or even measurable functions of time.

B. Proof That Every Nonenergic Linear N-Port is Resistive

We assume throughout part B that H ,the class of admissible input waveforms
fK •* IK ,is closed under addition and scalar multiplication, so that linearity
will make sense. In addition 1U must satisfy any one of the following three
(mutually exclusive) conditions.

Standing Assumptions Either

i) N is arbitrary, but U contains only the zero waveform 0(t), or

ii) N=1, i.e. ILis a1-port, and if u^-) is any waveform in U and t' is
is any time such that u,(t') = 0, then there exists some other waveform urt(0 e
0/ i 2VU such that u2(tf) £ 0, or

iii) N >_ 2, i.e. 71 is a multiport, and in addition U satisfies a), b), and
c) below:

a) Let u^(*) and u2(0 be any two waveforms in Wand let t* be any time
such that the vectors ^(t1) and ^(t') eR are linearly dependent but neither
is zero. Then there is some other waveform u^(0 e U such that the vectors
u^(t') and "-(t1) are linearly independent,
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b) If u (•) is any waveform in U. and t* is any time such that u.(t') = 0,

then there exists some other waveform u„(») e LA such that u_(tf) 4= 0.

c) If u(-) =(u (•),«(•)»*••« (*)) etl9 then the waveforms (u {>)90t •••0J,
m,u (-),0,-*-o) and (0,0,-*-u (•)) are also in IX.

Note that the converse of condition iii-c) is guaranteed by our previous

assumption that ii is closed under addition.

The standing assumption is given in such detailed and explicit form in

order to make clear exactly what is necessary to prove theorem 7-2. It is

extremely weak, and every case of interest will satisfy it. For any fixed

value of N, for example, the following classes of functions: H -*• IK will

all satisfy it: 1) all functions, 2) all measurable functions, 3) all piecewise
k P

continuous functions, 4) all C functions, k = 0, 1, 2,'" or k = », 5) all L

functions, p = 1, 2, ••• or p = M, 6) the intersection or the span of any

two of the above. Condition i) is included for the sole purpose of allowing

the (multiport) nullator, which is linear and nonenergic, to fit our scheme.

Theorem 7-2 Suppose that /l is a nonenergic N-port characterized by a

hybrid operator "Vr and that (X satisfies the standing assumption. If |Iis

linear, that is, if

for (attjO) +bu2(.)) =aVfUl(.) +bWu2(0, for all ^(0,^(0 eU (7-6)
and all a, b e n.

then /L is resistive, i.e. memoryless.

We are now in a position to show the necessity of the provision of

condition ii) of the standing assumption which also appears as part b) of

condition iii). The following example shows that when this condition is

violated, theorem 7-2 no longer holds.

Example 7-4 Let T\ be a 1-port with input i(')> output v(*)» and
admissible input class H consisting of all waveforms i(-) that pass through
the origin at t = 1. If Tl is characterized by

t * 114 i K0 H- v(-); v(t) =(Wi('))(t) =|
U(t-l), t=1,

then /i is linear and nonenergic, but not memoryless.
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Proof of Theorem 7-2 LA satisfies either condition i), condition ii), or
condition iii) of the standing assumption.

Case i) LA contains only the zero waveform, 0(#)»

By equation (7-5) /Wo(.) =1p/Y<>(.) +()(•)) =£f 0(0 +%f Q(-), so Wo(-) =
Q(*) and f4 is the zero operator, which represents a memoryless N-port.

Case ii) /[ is a 1-port and LA satisfies condition ii) of the standing assumption,

It follows from theorem 7-1 that y(t) =(34u(-)), .=(Q. u(*)L >u(t) =0
for all (u(-),t) el(x R such that u(t) *0, since (0-u(#))/t% is the only
lxl antisymmetric matrix, namely zero. It turns out that y(t) is also zero for

all values of t such u(t) = 0, and the proof is exactly parallel that to be

given for the vector-valued case in equations (7-12) and (7-13), so we won't

repeat it here. Therefore W- is again the zero operator, which is memoryless.

Case iii) N >_ 2 and U satisfies condition iii) of the standing assumption.

We deal first with the case N = 2. In this case we can write the operator

LX in terms of its component operators LX.i LA ->- {the class of all functions:

R -*• R} as follows:

fe9<o)(t) -
"° (ai2S<->)(t)

." (^2»<->)(t) °
(7-7)

T T

See example 7-1. Let u±(-) =[uJcO.uJco] and u2(#) =[U2(#) ,U2(#)] be aRy
two waveforms in TV , and let tbe any time such that u, (t) and y?(t) are
linearly independent vectors in R . Then from equations (7-5) and (7-6) we
have

(#ul(*))(t)yi(t) +(^2(->)(t)*2(t) " [^Sl^)^2(->)](t)(Sl(t)^2(l:>)
(7-8)
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Let the matrix S be given by

n 0 1

-1 0

Then using equation (7-7) we can rewrite equation (7-8) as

ffel^^t)*!^ +§K2»2(-))(t)»2<t)

s =

"S~{ai2{^-^2^)}(t)(^M^2M) • (7"9)

Since S is nonsingular, equation (7-9) implies that

fel(-))(t)Sl(t) +(^l2S2<-))(t)S2(t)

={^12(si(-)+S2(-))}(t)(^l(t)+S2(t))

Since we have assumed that u-(t) and u (t) are linearly independent, it

follows that(tf12Ul(.))(t:) ={^12(ui(')-Hi2(0)}(l:) and(^12u2(.))
={^i2(ul(*)+u2(,))j(t)* Tb^ef0^

(t)

(<Vl<->)(t) "(4l2U2<*>)(t)- (7-10)

Now let t' be any time such that u^t') and u2(t') are linearly dependent,
but neither is zero. Then by condition iii-a) of the standing assumption there

exists a waveform uo(0 eU such that un(t') and u.(t') are linearly independent
It follows that u (t') and u (t') are also linearly independent. Therefore the

pairs (u1(0,u3(-)) and (y2(.) »y3(-)) are linearly independent at t=t'.
Substituting these pairs into equation (7-8) and repeating the reasoning

leading up to equation (7-10) shows that (flio-l^*))(t1) = \ 12-3^ 7(tf)
and (fl12»2<->)(t:') =(^I2u3(*))(t»)- Therefore (^12ul(* >) (t«)
=\OL12u2(')) (t') and ec*uation (7_1°) holds at t=t' as well. The previous
two results together show that equation (7-10) holds for every value of t
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such that u-i(t) and u2(t) are both nonzero.

We can, if we like, think of the component operator CL2: IX "*" \tne class
of all functions: R -*- R >instead as amap:|c( xRK IR, i.e. Q12: (u(0,tj
UL2(u(*)»t) e R. Then since equation (7-10) holds for arbitrary u.(0 and
u„(») eIX and for each value of tsuch that u.(t) and y2(t) are both nonzero,
it follows that if we fix t, then Lc 2(uC-),t) is independent of its first
argument so long as its first argument is not a waveform which passes through the

origin at t. Referring back to theorem 7-1 and the canonical representation it

prescribes, we see that we can write the operator fr in the following form:

r,

flUo
12

-(\2(t) 0

uX(t)

u2(t)
for all t such that u(t) * 0

(VuO)(tf<

L

(1iu(.)j . ., for all tsuch that u(t) =0,

for all u(*) e M« We have no information about t£ as yet. The component
operators of CI are written as — LjL-(t) to show that they are independent of

u(*)» but could conceivably vary with t.

We need to show finally that (Uu(0) (t)
is zero whenever u(t) is zero.

(7-11)

We will show that this follows from equation (7-5). Let u-(-) be any waveform

in XX that passes through the origin and let t be any time such that u. (t) = 0.
Then by condition iii-b) of the standing assumption there exists another waveform

u (•) eIX such that u2(t) + 0. Then

=f(ul(.)+u2(.))](£) -[a(u1(-)41}2(-))](£)(u1(£)-hl2(J))

°12(£) u^(t)+u^(t)
1 ~ 1 *L-u£(t)-u£(t?j

- 0^(2) 2 A

L-2(£>J

[^(Si<')^(-))](t) "[^»l<->](-t) +[V»2<-)](£) =
(£*l<->)(t) +^(t)
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Comparing the last term in equation (7-12) with the last term in equation (7-13)

shows that (^ UiC*))/2\ =Q. Thus we have shown that (*tru(.)j- is zero for
any choice of (u(.),t) e1(x R such that u(t) = 0. Since any expression of
the form (Q. u(«)L *u(t) is zero whenever u(t) is zero, equation (7-11) simplifies
to

y(t) =(14u(0)
(t)

0

Aw

a
12

0

(t) uX(t)

Lu2(t).
,for all u(-) e Zf! (7-14)

and for all t.

But equation (7-14) represents a memoryless system. This proves the theorem

when N=2.

We can reduce the case N >3 to the case N=2. Linearity of 71 and condition
iii-c) of the standing assumption allow us to break up Tr into its component
operators ^4~, ,representing signal transfer from port k to port j. And we can
then represent the response y(-) to any input u(.) eIX in terms of the responses
of the operators TTk to the component waveforms u (•) of u(«).

Let je{1,2,.-.N} be arbitrary and let u(.) be any waveform in CL The
decomposition goes as follows:

yJ(.) ={34u(.)}j ={V[«V>,u^O.--%uY>]} =
{^[(AO.O.'-'.O) +(0,u2(.),-.-,0) +•••+ (0,0, -••>uV))]|J =
{l+(u1(-),0>--,0)}j +{^-(0,u2(.),---,0)}j +—+ {¥(0,0,...,uN(.)}J =
34./0) +^j2u2(.) +••-+ "4NuN(o. (7-15)

Equation (7-15) can be viewed as a rigorous definition of the component operators
OJ . We next show that the theorem holds for each component operator separately.

Let ^/., be any component operator. If j=k then we investigate ~&^ by driving
port jalone, i.e. by considering only inputs of the form u(-) =(o,---,u (O.-'-.Oj.
Then we have effectively a 1-port, and we have already shown that the hybrid
operator of a nonenergic linear 1-port must be the zero operator. If j*k then
we investigate ^=/:k by driving only ports jand k, i.e. by considering only

J (0,"-,uj(.),---,uk(-),-'-0). The proof given forinputs of the form u(«)

the case N=2 shows that
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r

v.

—' — ^
uj(.)

o > =

u (•)
J (t) -°3k(t)

#..(t) u3(t)

uk(t)

for all u(-) = (0,---,u:l(.),...,u (-)t"0) e U and for all t. Therefore the

operator <p/:, does nothing more than multiply u (t) by Q., (t), a memoryless

operation. Since j, k and N >_ 3 were arbitrary, and since the input-output

behavior of [I is completely characterized by the set of operators {nr.} as
shown in equation (7-15), this completes the proof. ||

Perhaps the proof of theorem 7-2 is so long because the assumptions were

so weak. /I was not required to be time-invariant, lumped or causal and its
inputs were not required to be continuous or even measurable functions of time.

Statement iii) of theorem 2-1 claims that a nonenergic linear N-port is

not only resistive, but antireciprocal as well. The following example shows

that the second part of this claim is true only in the time-invariant case.

Example 7-5 Let 't be the linear, time-varying nonenergic 2-port for which

equation (7-14) takes on the following form:

"At)"

v2(t)J - sin t

sin t r±1(0

.i2(t)

Let if(«) and i"(•) be two input waveforms given by

if(t) =
e"tu(t)

— •—'

0

, i"(t) = , for all t,
0 1

where u(t) equals 0 for t <_ 0 and 1 otherwise. Then the corresponding output

waveforms v'(«) and v"(«) are given by

v'(t) =
~0 sin t

, y"(t) = , for all t.

_-e sin t u(t) 0 _
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Then

[V*(.)*!"(.)] =f (v'(T),i"(t-T))dT =- f e"T Sin Tu(T)dT =
r°° i i00-I e sin xdx = -j e~T (sin x+ cos x) | =- -^-, for all t,

and

V
0

(y"(x),i'(t-x))dx =1 sin xe"(t"x)u(t-x)dx =
00 J—00

-t r ** x i -t iT=t i
e I sin x e dx = — e e (sin x - cos x) = -r (sin t - cos t), for all t.

Comparison with definition 2-2 shows that r(- is not antireciprocal.

C. Properties of Resistive, Capacitive and Inductive N-Ports as N-Dimensional

Manifolds in lf?2N.

Definition 7-3 (Adapted from [Spivak], p. 111.) A subset M of (f?n is

an ft-dimensional C manifold in lr\ iff for each point p e M there exist

an open set U in (Rn with p e U, an open set VC if? , and a 1-1 CK function
f : V •+ ff?n such that :

1) f(V) = MH u,

2) (Df) . . has rank l for each x e V,
""" ^?' ~

3) f : f(V) ->• V is continuous.

Such a function f is called a coordinate system around p.

Assumptions and Definitions. In part C we will deal explicitly with

resistive and capacitive N-ports only. Properties of inductive N-ports

can be obtained from those of capacitive N-ports by substituting <J> for q

and i for v. We call the set of d.c. admissible pairs, (y,i) or (v,q),

of /( the graph of 77. We assume throughout that the graph of 1/L does form

a manifold in IK . This is not very restrictive. It amounts to assuming

that the graph of l\ is smooth enough, has no self-intersections (like a

figure 8), and never folds back infinitely close to itself (like a figure 6

made by bending an open interval back on itself). We say that an N-port
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fits regular [Chua and Lam] if its graph is an N-dimensional manifold in
IK ,i.e. if 71 has "N degrees of freedom," and that 1\ is CK if its graph
is a CK manifold in lf?2N.

In order to model the graph of Y\ as a manifold in R2N we wiH have
to keep track of the types of the 2N quantities involved (voltages, charges,
etc.) and of the port number with which each quantity is associated. For

a resistive N-port we will label the coordinates of ff?2N as
T

[v1,...»vj^ii»--«iN] and for a capacitive N-port the coordinates will be
ordered as [v^ ... .v^q^ ... ,qN] . This ordering then provides a
natural way of breaking up any coordinate system f : U -»- U?2N into two
functions f, and f : u -*• If? . In the resistive case, fn :x^vand
?2 :Xl^" i* In tne capacitive case, f- :xi-j- v and f9 :x^q,

Lemma 7-2. Suppose 71 is aregular C1 resistive N-port. Then 7£ is
nonenergic o for every local coordinate system f=(f ,f ), (f,(x),f2(x))
= 0 at each point x in the domain of f. And Yl is reciprocal <* for every
local coordinate system f=(f^f,,), [j(f2(x))jT [j^C?))] is symmetric
at each point x in the domain of f.

The first proof is immediate; the second is a direct application of

equation (4-8). In the current-controlled case (that is, when there

exists an f= (f-^f^) such that f2 is the identity and the range of f is
the graph of 7(), then the reciprocity condition above reduces to the
familiar requirement that the incremental resistance matrix R(i) be
symmetric at each point i.

Lemma 7-3. Suppose /Lis aregular C1 capacitive N-port. Then ~}L is
nonenergic o for every local coordinate system f, [^(foW)]1 f(x) =Q
at each point x in the domain of f. And 7{ is reciprocal *> for every local
coordinate system f, the matrix [j(f2(x)) JT [J(?!<?))] is symmetric at each
point x in the domain of f.

The first proof is immediate; the second is a direct application of
equation (5-1).

Theorem 7-3. Suppose Xis aregular C2 capacitive N-port. If 7i is
nonenergic, then T? is reciprocal.
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Proof Let p be any point in the graph of 7? and let f= (f_,f2)
be any coordinate system around p. Since f\ is nonenergic,

J(f (x)J f,(x) = 0 at each x in the domain of f. Taking the Jacobian

of both sides of this equation yields

k(?2«)]T [f(!i«)] +£ fjw
32f*

(x)
3x.3x.

1 J

= 0 c ff?NXN, (7-16)

k kwhere f.. denotes the k-th component function of f.. and f2 denotes the

k-th component function of f?. Since at each point x in the domain of
f the second term on the left hand side of equation (7-16) is a symmetric

NxN matrix, it follows that the first term on the left hand side must be

symmetric as well. Then by Lemma 7-3,77. is reciprocal.
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Appendix

A. Renumbering the Ports of 11 Preserves.the Antisymmetry of h

Lemma A-l Let 11 be a linear, time-invariant resistive N-port characterized

by y = H u, where H e IR is antisymmetric and u and y form a hybrid pair

(definition 2-1). Suppose u. = i. for some j e {1,2,'"N}, i.e. u £ y. Then

there exists a renumbering of the ports of ft such that, in the new numbering

system, u = {i , "VW'V' * = tV'VVi' i }, 1 <_ k <_ N, and

y = H u, where H is antisymmetric.

Proof Order the entries of u which are currents as follows: u. = i.
. ~ J • "

T TExample. Let u = (v^i^v^i^) ,y = (i1,v2,i3,v4) , and

H =

0 a b c

-a 0 d e

-b -d 0 f

-c -e -f 0

Then j1 = 2, j2 = 4, J3 = 1, J4 = 3,

Q =

and

H = QHQ =

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

0 e -a d

e 0 -c -f

a c 0 b

•d f -b 0
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1 Jl
u. = l. , ..«, u. = i. ; j < j« < ••• < j,, 1 <_ k <_ N. Order the remaining
J? J2 ^k. Jk
entries of u, which are voltages, as follows: u. =v. ,u. -v. ,••"

Jk+1 3k+l .Jk+2 Jk+2
uj ~ vj »Jk.+i < Jic+2 < "' < Jm* Now renumber the ports of Jy\ so that
port # j becomes port # m, for all m e {1,2,•••N}. Since u = u. and y = y. ,

m m Jm m Jm
it follows that Q, the matrix for change of coordinates, given by

N N

\ = H qmiluJl and ym * 2 %a?i has its m""th row Siven by e. . Since <e. ,e >
1=1 1=1 1 "'Jm ~JZ "Jm T

6 , it follows that Q is orthogonal. Therefore H = QHQ = QHQ , and H = (QHQT)
m rp rp

QH Q = Q(-H)Q = - H, so H is antisymmetric.



B. Reciprocity. Proofs of Theorems 4-3, 4-4, 4-6, 5-1, 5-2, and 5-5

Proof of Theorem 4-3 (=>) Let (v,i) be any operating point of the resistive

N-port 71, and let (6v',6i') and (6v",6i") be d.c. small signal variations
admissible to the linear approximation to II about (v,i). Let (6vf(t),6if(t))

equal (6v*,6i*) for 0 <_ t <_ 1 and be zero otherwise. Similarly, let (6v"(t) ,6i"(t))
equal (<5v",6i") for 0 <_ t <_ 1 and be zero otherwise. Since 71 is reciprocal
(by definition 4-2),

<%'.%"> =£<6v'(x),6i"(l-t))dx =[^,(0*4ft»(.)](t.1) =
[6^"(.)*6i'(.)](t=1) =<6v",6i'>. (B-l)

(<=) Let (v,i) be any operating point. Let (ty (•) ,<$£' (.)) and (ty"(•) ,Q"(.))
be any two almost everywhere continuous small signal variations about (v,i) such

that the convolutions in equation (4-6) are finite for all values of t. Then

using equation (4-8) and the definition of the Riemann integral we have

f««,(-)*«4"(-)l(t) - (" («y'(T),64"(t-T))dT=lim f («g'<T),«4"<t-T>)dT-

lim lim *k± (%> (-L +Mk-VZL\ „.. L+L. 2L(k- 1/2) \ ).

| (<^u(t-x), '̂(x))dx =[^"(.)* '̂(.)](t). (B-2)

The proof for antireciprocity is similar.

I
Proof of Theorem 4-4

9v« *2* *2* 9vii) => n) _J. = a ♦ _ 9 ♦ = _k
' 9i, 81,81. 9i.9i, 8i.

ii) =* iii) At any operating point iwe have 6^' =|j/f(i)\ <^L' and
W=[j(l<i))]«4M- Then <^,.^M >=^tT[j(f(i))]V =̂ [j(f(i))]V
<6/^",<^il >, which proves 77 is reciprocal as in theorem 4-3.
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iii) => ii) <ty',<5,i" >-<ty",^f >=0=<^'T{[j(f(i))]T -[j(f(i))]W.
Since <$^' and $,1" are arbitrary, the term in brackets must be zero.

ii) ** i) if U is simply connected. This is a standard theorem of analysis

[Protter and Morrey].

Proof of Theorem 4-6

i) =* ii) Adopting the notation g(u*) = f(u(u*)) = V$(u*), we have by the chain

rule

j(g(u*)) =[j(f(u(u*)))]'[j(u(u*))], (B-3)
or

j(f(u(u*))) =rj(s<u*))i •fj(tt(tt*))i "1.
Write the Jacobian of g(i.e. the Hessian of <&) at any point u* as

j(«Cu*)) =
-A j B

(B-4)

(B-5)

where -A e IK and C e R^ ' are symmetric since the Jacobian of g
is. The Jacobian of u(u*) (defined in part E of section IV) at any point u*
is given by

r f\r\ ! "1
(B-6)

j(lf<!f*>) =
(k) ,

-1

0

1

. 9
4.
I

! 1
(N-k)

Combining equations (B-4) through (B-6) yields the result.

ii) "* i), if U is simply connected. It follows from equations (B-4) through

(B-6) that the Jacobian of g is symmetric. The remainder is a standard

theorem of analysis [Protter and Morrey].

iii) ^ ii) About any operating point u we have ty = Jff(u)) 6ua

^1

^11.

where A e n , etc.

A { B

C j D

-52-
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<w,W >-<«yi.«*;> +< &&<%"„. >" (B_?)
(^•)T AT (^) +(^ )T BT(«4J) +(«<£ )T C(«iJ) +(«jj )T D(^)

<«y«,^ > =<«^,^J>+ <«8'I,I.«4ii > •
(B-8)

<^I>T AT «£{) +(«Kjz)T 5T («£') +(«^)T C(«J«) +(^j)1 D(^x)

Since <$£', <^i", <5^-fT> and i^v" are independent, it follows from equation (4-6)
and a term by term comparison of equations (B-7) and (B-8) that

A = AT, C= - BT, D = DT. (B-9)

ii) =* iii) This follows immediately upon substituting equation (B-9) into

equations (B-7) and (B-8).

Proof of Theorem 5-1 (=*) In definition 4-2, let (v,g) be an operating

point and let (^'(Oj^H*)) and (<$^"(») ,$£"(•) be small signal variations

about the operating point such that Hty'(t)ll, H$v"(t)ll, II$g'(t)H =DI <5^f (x)4^B,

and H^"(t)H = II I (5^"(x)d(rll are small for all t. For any two such small-

signal variations, reciprocity implies that I \<$^'(x) ,&J"(t-x) )dx =

($v"(x),<$4,(t-x) )dx. Therefore
—00

f (§vy,(x),^q"(t-x))dx = f f (<5v'(x),6i"(t'-x)) dxdt' =

f f (^,,(x),y.,(t,-T))dTat,« f (6v"(x),6g/(t-x))dx, (B-10)
««-oo «^oo «£-oo

for any choice of t.

Now let (^',^') and (^",^") be any two d.c. small-signal variations

about the operating point. Let the waveform (<$v/ (t) ,<$$' (t)j equal (<$v',§$') for

0 <_ t <_ 1 and be zero otherwise. Similarly, let (<5^"(t) ,$$"(t)j equal (§v/',<5fl")
for 0 _< t <^ 1 and be zero otherwise. Since these waveforms are discontinuous

and we shall require C waveforms, let <(fyl.(t) >$$/.(t)J >be a sequence of C
waveforms converging in the L sense to f<$v/ (t) ,<$^L' (t)j and let i I<$^{!(t) ,<$^"(t)J !>
be a sequence of C waveforms converging in the L sense to (^"(t) ,<$^L"(t)) .
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Z"00 \ /.CO

Then< '̂,<^"> = (ty'(x),^"(l-x))dx= lim f ($v'(x) ,^"(l-x) >dx =
lim J Wk,(T)'̂ k(1'T) >dT = W'(t),(^'(1-x) >dx =<$v",V >, where
k"*00 "^-00 ioo

the third equality follows from equation (B-10).

(*=) Equation (5-1) implies that

L (^,(T)»^"(t-T))dx =J (<ty"(x),4n,'(t-x))dx, (B-ll)

as can be shown by writing each integral as the limit of a sum as in equation

(B-2). In order that definition 4-2 make sense, we require that Sfl'O) and

$$"(•) be differentiable. The proof then follows by differentiating equation
(B-ll) with respect to t.

Theorems 5-2 and 5-5 The proof of theorem 4-4, though given for the

current-controlled case, remain practically the same if the roles of v and i

are interchanged. After this interchange a further substitution of q for i,

justified by theorem 5-1, provides a proof of theorem 5-2. Effecting this

same substitution of q for i in the proof of theorem 4-6 provides a proof of

theorem 5-5.

C. Proof of Lemma 7-1

If n = 1, then y = 0, A = 0, and we are done.

If y = 0, let A be the zero matrix and we are done. If y * 0, then x and y

are nonzero orthogonal vectors and therefore linearly independent. Since any

orthonormal set of vectors can be extended to an orthonormal basis, we can form

an ordered orthonormal basis for Rn of the following sort {x/llxll ,y/0yll, {^5v3,*»*,~n}
With respect to this basis we have that x = (11x11,0, •• «0) and y = (0,Uyll,0, ••*0) .

And in this new basis the following antisymmetric matrix carries x into y:

A

llyj/llxll

lyll/llxll j 0
i
i

.4.
I
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Let e represent the j-th vector in the standard ordered basis of Rn,

1 <_ j <_ n. To find A, the representation of the matrix A in the standard basis,

we will^need the matrix P whose element P is defined implicitly by

Si = £ PkA' or
K=l

(n) _

—. -.
r-. —•

T T

h ?1
T T

?2
^T

?2
• = P •

• •

* •

T T
e a
~n -n

— ~_
_ —

T
= P A

(C-l)

where a = x/llxll and a. = y/Uyll and equation (C-l) defines A. Since {a, ,"",,a }
~i - - ~z ~ ~i -n

forms a basis, A is nonsingular; and since the rows of A and orthonormal, A is
T ~—1 T

an orthogonal matrix (definition 2-4) . Therefore P =A = A , so P = A.

Furthermore A=P AEis antisymmetric, since AT =PT ^P"1 =?T(-A)P =
-P"1 A P = - A.

1.

2.

3.

4.

Figure Captions

Canonical synthesis of linear reciprocal nonenergic N-port from ideal

transformers.

Figure 2. See example 3-1.

Figure 3. See example 3-2.

The 2-port network of figure 3 drawn as the parallel connection of a

resistive 2-port rL and a capacitive 2-port L- . With the element

constitutive relations indicated, W and CT are individually nonenergic

(see equations (3-5) and (3-6)). Therefore the combined network is

nonenergic as well.
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