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Abstract '

The Rayleigh Quotient Iteration (RQI) is a method for computing
eigenvectors and eigenvalues of a square matrix.

The behaviour, both Tocal and global, of RQI with symmetric and
normal matrices is almost completely underﬁtood. The vector sequence
converges for almost all starting vectors. |

In this papér, we investigate. the g]obé] properties of RQI on
non-normal matrices. Results on nearly normal matrices with real eigen-
values are obtained, and at the othér extreme, results on completely
degenerate matrices are also obtained. In particular, the question of
global convergence of the vector iteration on a general matrix is reduced
to the convergence of the scalar sequence of the Rayleigh quotients.

In practice, the vector iteration always converges.

The main dffficu]ty in the degenerate case is that the iteration
function is discontinuous near the.eigenvector.' An example is used to
display the sectorial behaviour of the iteration. Further we construct
a sequence of numbers that converges to the eigenvaiue. Yet if the numbers

are used as shifts with inverse iteration, the vector sequence fails to

converge.
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CHAPTER ZERO

Introduction

§0.1 History
The idea of Rayleigh Quotient Iteration (RQI) originated in the.

nineteenth century. Its earliest function was to improve an approxi-
mation to a mode shape in the theory of sound.

With the advent of high speed digital computers in the 1950's the
RQI was turned into a way of computing eigenvectoks and eigenvalues of
Hermitian matrices by successively improving an arbitfary initial
starting vector.

In 1958/59 Ostrowski [4] published a series of six articles giving

detailed analyses of the local asymptotic behaviour of the RQI and some

" variants of it. He discussed both the symmetric and the nonsymmetric

cases, but not much was said about the global convergence because of
the complexity of the behaviour at early stages of the iterative pro-
cess. In 1968, Parlett and Kahan [5] proved the global convergence,
for almost all starting vectors, in the symmetric case. In 1974,
Parlett [7] proved the global convehgence, for -almost all starting

vectors, in the normal case.

In this paper, we continue the investigation. The Rayleigh Quotient

Iteration is of interest to us for the following reasons:

1)  Because of its excellent local convergenée rate, which we
will discuss in Tater chapters. This is a very fast way to compute a
few eigenvectors, especially if one has a fair approximation to the

eigenvector or the eigenvalue.



2) There is an intimate relationship between RQI and the Shifted
QR (SQR) method, and thus, understanding RQI would hold the key to
unlock the mystery of Shifted QR which is so successful in practice.
This will be discussed in more detail in our next section.

3) A generalized form of RQI was found to be a powerful algorithm
for finding zeros of a polynomial. The iteration is applied to the
Frobenius matrix associated with the polynomial (see Wilkinson [9],

p. 349).

§0.2 RQI and SQR

The shifted QR algorithm is currently the champion for computing
eigenvalues and the process is stable, but the shifted QR algorithm
 is so complicated to analyze that any direct approach to its global
behavior seems intimidating. |

Given a matrix C, the Shifted QR is defined as follows: for
k=1.2,3,..., let £ (ctK)) = UIR(K) " pnen ser clk*) = gtk clklgtk)
where C(l) = c*, Q(k) is an unitary matrix, R(k) is an upper
triangular matrix, fk(t) can be any sequence of polynomials of fixed

degree §. We may define:
£, (t) = det(tI- exc(K)g)

vhere E is the last & columns of the nxn identity matrix I.

e = (0,...,0,1)T, i.e., the shift

A practical SQR method takes E
is the (n,n) element of C(k).
The relationship between RQI and SQR was discussed by Parlett and

Kahan [5], and Wilkinson [9]. 1t is briefly the following:

k) th

If V( is the vector at the k-~ step of RQI with initial vector



A

k /.
e, then V(k) = the last column of the matrix ig]Q(1). Hence if

V(k) + X, an eigenvector of C, then

X *** X X
C(k) - Q(k)*...Q(])*C*Q(]);..Q(k).+ S - E E
X *oe X
0 .-- 02

where Ax = XX.

Thus, convergence of SQR can be deduced from the convergence of RQI.

§0.3 A Brief Qutline of Results

Here we investigate what RQI brings us when the matrix C and an
arbitrary starting vector V is given.

In Chapter 1, we define RQI and state known results.

In Chapter 2, we investigate the semi-simple case. We show that
a bisector of a pair of eigenvectors can always be a 1limit vector of
the iteration. We show the almost-always convergence properties of
RQI on Hermitian matrices through a different method than that employed
by Parlett and Kahan [5], and thus the results can be extended into
the non-normal cases for well-conditioned matrices. We also have a
complete characterization of 1imit vectors of RQI on semi-simple matrices
when a scalar sequence, called the Rayleigh Quotients (pk) converges.

In Chapter 3, we expose new difficulties that we encounter in the
completely degenerate case. There will be a detailed analysis of a
3x3 matrix with sectorial behavior around the eigenvector. Then we
shall prove global convergence under a certain weak condition when the
Rayleigh Quotients converge, and we construct a sequence of numbers,

which, when used as shifts, would force inverse iteration not to



converge even though the sequence of numbers Converges to the eigenvalue.
~In Chapter 4, we summarize the picture-ihto a theorem which makes
the only unsettled question about the global behavior of RQI for a

general matrix the convergence of Py

-~y



CHAPTER ONE

Definition and Known Results

§1.1 Notation

First we shall explain our notation. Matrices will be represented
by capital Roman letters, column vectors by small Roman letters except
for i, j, k, £, m, n, p, g which are reserved for indices. Greek
Tetters represent scalars. The conjugate transpose of a vector u is
denoted by u*, and unless otherwise specified, lull = u*u, the
Euclidean norm. I = (e],ez,...,en) js the identity matrix, and the

matrix C-pl is often abbreviated as C-o.

§1.2 Definition and Basic Properties of Rayleigh Quotient

The Rayleigh Quotient p 1is a function defined by

p: -0y ~¢,

ur u*Cufu*u , u#0,

where C is a matrix whose eigenvalues and eigenvectors we seek. So
p assigns to each non-zero complex vector a scalar value. Also, if
it is necessary to emphasize the role of C, we write p(u) = p(u,C).

The following are some basic facts:

Homogeneity: p(ou,B8C) = Bp(u,C); o # O.

Translation Invariance: p(u,C-al) = o(u,C)-a .

Continuity: The function p is a continuous function.



Boundedness: {p(u), u#0} is a region (the field of values) in.
the complex plane for a given matrix C. By homogeneity {p(u), ufb}
= {o(u), u*u=1ul =1}, d.e., we only have to consider unit vectors.
Since the unit sphere is compact and p is continuous, ther;efore,
{p(u), u£0} is compact. C = RxR 1is a metric space implies

{c(u), u#0} s closed and bounded.

Stationary Values: We say p 1is stationary at n if

Tim{p(uttv) -p(u)l/t = 0 as t -+ 0 through real values for all v.
A straightforward calculation (see Parlett [7]) shows that p is
stationary at u if and only if (C-p(u))u =0 and u*(C-p(u)) = O*,
i.e., u must be an eigenvector of C and C*. Note that if C is
rormal (CC*=C*C), the eigenvectors of C are the stationary points

of »p.

Minimal Residual: Given u # 0, f(C-u)ul is minimal if and

only if u = o(u).

u*u|u|2 - pu*Cu - pu*C*u + u*C*u
w*ul (7i-5T00) (u-(u)) - [p(u) | + u*C*Cu/u*u}
1cut® - o(u) | 21ul® + (5-5TaT) (u-p(u) Juru .

Proof: 1(C-p)ul®

Therefore, li(C-u)uilz > peut’® - Ip(u)lzﬂullz, with equality if and only
if = p(u). . O

. 2 a2 2y 2 :
Corollary: [Nu*(C-u)l® > llu*Ci® - |o(u)|“lu*l® and equality holds

if and only if u = p(u).

Corollary. u is orthogonal to (C-o(u))u in Euclidean space.

Y



The above fact is equivalent to: Let f be an arbitrary poly-
nomial and compute {f(C)ull over all monic polynomials of degree one.

Then the polynomial t-p(u) is minimal.

§1.3 The Rayleigh Quotient Iteration and Its Invariant Properties

The Rayleigh Quotient Iteration (RQI) is the following scheme:
For an arbitrary starting unit vector V(O), and for k =0,1,2,...
(i) Compute oy = p(V(k)).
(ii) If C- p, s singular, solve (C—pk)V(k+]) =0 for
y(k+‘) # 0 and stop. Otherwise
(151) Solve (C-p WIKT) o y(K),

(iv) Normalize v(KF1) o y(k+1) p (ke1)y
The sequence {pk,V(k)} is called the Rayleigh sequence generated
by vi0) and c.

It y(k) converges to x, an eigenvector of C, then, by
continuity of »p, Py = p(V(k)) converges to A, the associated eigen-
value of - x. Hence RQI can be regarded as a method to find eigenvectors
or eigenvalues or both.

Let {pk,V(k)} be the sequence generated by RQI froh C and
V(O). The following are invariant properties of the iteration:

(i) Scaling: The matrix of, o # 0, produces the same sequence
as C.

(i) Translation: The matrix C-a produces the sequence
{pk-oa,V(k)}.

(iii) Unitary Similarity: The matrix QCQ*, Q unitary, produces

the sequence {pk,QV(k)} if you start with QV(O). This property says

that RQI is coordinate free, in contrast with QR.



With these invariant properties in mind, we shall normalize our
matrix in the most convenient form in subsequent chapters without loss

of generality.

§1.4 Local Results

In 1958/59 Ostrowski [4] published six articles giving a rigorous
and detailed analysis of the local.asymptotic behaviour of RQI -and
some variant of it. Ostrowski showed that for a semi-simple, i.e.,
nondefective‘non-norma], matrix C, the local convergence rate of RQI

is quadratic if C has real eigenvalues.

Theorem (Ostrowski). If the sequence Pk tends to X without

any of the Py becoming equal to one of the other eigenvalues of C,

if all eigenvalues of C are real, and V(k) + X, the associated

k

eigenvector, then either for a constant K, pk+]"k = O(K ! (pk-x) )
0 - A : Jj=0

as k-« or -531——§-+ g#0 as k>« If some of the e1genva1ues

¢f C are comp1e§ then

pk"‘] -A= O(Qk‘)\) a_s_'_ k + o s

and for any fixed integer p

pk‘*‘] -A= 0((pk">\)(pk_]"'\')”'(pk_p"x)) as K> o,

In 1974, Parlett [7] showed that for a normal matrix C, the
local convergence rate for RQI is cubic (the equivalent result for SQR
was known to Wilkenson and Buurma [1]), and this excellent local con-

vergence rate makes the RQI all the more interesting.



Theorem (Parlett). If C is normal and V(k) + X, an eigenvector

for X, as k> «, then

either v D) g v (k) g3 - g

k+1

or 0 < WK xi% < 1 for all sufficiently large k.

For defective matrices, the local convergence rate is at best
linear. In 1970, Kiho Lee Kim [2] computed the Tocal convergence rate
for completely degenerate matrices of sizes ranging from three to
twenty. But in his analysis, he assumed the iteration function to be
differentiable whereas RQI is not continuous in any neighborhood con-
taining the eigenvector when C 1is completely degenerate. This will

be discussed in greater detail in Chapter 3.

§1,5 Fixed Points of RQI

It is easy to see, by step (ii) that the only fixed points of RQI
are the eigenvector because: If u is a fixed point, consider C-p(u):

Case 1: If C-p(u) is singular, by step (ii), we shall get
an eigenvector.

Case 2: If C-p(u) is nonsingular, then (C-p(u))u =u or
(C-p(u)-1)u = 0 1implies u is an eigenvector.

This result depends strongly on the definition of RQI as stated
in 81.3.

For semi-simple matrices, Ostrowski [4] described a finite
neighborhood around each eigenvector. When RQI is started in this

region, convergence will occur to the associated eigenvector.
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§1.6 Global Results

In 1966, Kahan [5] had a probf'that for Hermitian matrices, the
RQI converges for almost all starting vectors. In 1974 Parlett [7]
proved global convergence of RQI for normal matrices except in an

unstable special case:

Theorem. Let the RQI be applied to a normal matrix C with

starting vector v(0), As k » e

(1) Py = p(V(k)) converges, and either
(1) (p VK

(i11) P converges to a point equidistant from m (> 2) eigen-

) converges to an eigenpair (A,x) or

values of C, and the sequence {V(k)} cannot converge. It may or

inay rot have a limit cycle.

The main tool in proving the above theorem is the observation that

the norm of the residual (to be defined) is monotone decreasing:

Theorem. Let r(K) - (C-pk)V(k) be the residual at the k™ step

of RQI. 1f C 1is normal, then the sequence {ﬂr(k)ﬂ: k=0,1,...} is

monotone decreasing for all starting vectors V(O).

Py < peapy vy

iu(c_pk)v(kﬂ)
= ]v(k)*(c-pk)v(k+])| , since (C—pk)V(k+]) is

Proof. 1

I, by minimal residual property

parallel to V(k)

< uv(k)*(c-pk)nuv(k+])u » Cauchy-Schwarz

= IVE(C-p, )1

= ﬂ(C-pk)V(k)H , since C 1is normal
(k)y

= |r
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. . - (k+1)* .
Equality can occur only if P+t = Pk and V is parallel
* . .
to V(k) (C-pk). From monotonicity of norm of residuals, it can be

shown that
(1.6.1) |pk-pk+]| +0 as k-~ ® .

Then global convergence of P for normal matrices can then be proved.
Parlett [7] in his papek remarked -this fact without going into details.
For completeness, we include the proof of the global convergence of Py

here:

Proof. I. If .ﬂr(k)ﬂ + 0, we know V(k)-+ X, an eigenvéctor,
hence P po(x) = A. Therefore Py converges;' ,.' |
I1I. If Ur(k)ﬂ +1>0, theset F= {p(u)|11e5n51} is compact,
so let p(]) be a limit point of {pk}, and lét the infinite set
KcC{0,1,2,...} be such that 1im oy = p(]) for k e K. Consider
{V(k)l keK}. It has limit points because S~ .is‘compact. Lét
I CK be such that T1im VY = V(]) for vy € P; Then p(V(])) = p(]).
From Parlett's theorem, it was proved that
(1) !I(C'-p(”)V“)il =T,
(i1) ~(C-p(]))*(C-p(1))V(]) = TZV(]) ,
(1) o = 1im p(v,) .

yer 7 . . (1)
From the above three relations, we can derive that p

is
(a) equidistant from m (> 2) distinct eigenvalues of C,
~ (b) a weighted mean of them.
We can see immediately that p(]) can assume at most (2"-n)
values. We shall see later that only a very few of the (2"-n) values

. can actually be candidates for a limit point of Pk We have established
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that there are only finitely many limit points of Pk~ Let p(]),...,p(q)
be the distinct 1imit points. We proceed to show that if q 3 2 there
is a contradiction. _ | |

Let d = min{]p!PpW)), 545, 1<i,5<qr > 0. Let
B, = {g] l&-p(iv)l <d/4, £eC}, i.e., open balls in the complex plane.
Then F\ithi is stilé compact, hence there can oh]y be finitely many
pk's belonging to F\ UB

i=1 |
ok). Let this finite number of pk'S be M,

(otherwise we have another 1imit point of

From (1.6.1) we have ka-pk+]| + 0, so there exists N such
that ka-pk+][ < d/2M for k > N, |
1 2 such that k2 > k] >N and
pk] € B], pk2 € BZ' Then one of the fo]]owing:

If 9q>2 pick k; and k

1oy =Py arl

: ky Pky 1 ;
O, 41-P
k]+1 k1+2

lo, 1-p, |
k2 1 k2

must be greater than d/2M for the {pk} to travel from B] to BZ’
which is a contradiction to ka-pk+]| < d/2M for k > N,

So q =1, 1in other words, converges, O

Pk
Remarks. (1) The values that p, can converge to is limited

by properties (a) and (b). (a) says that a circle must be able to be

drawn through the eigenvalues and p is the center. So, not any combi-

nations of eigenvalues can produce a possible limit for Py* (b) says

that p 1is a weighted mean of those eigenvalues, so, not any combina-

tion of co-cyclic eigenvalues can produce a limit point.



k)

(2), Though Py always converges, V( does not and may have

infinitely many 1imit vectors. For example, a 3x3 matrix

C = diag(1,e?1,e7%1).

It is easy to see that there exist Oys Gp> O3
2, . (0) .
such that Xiail A; = 0. Ifwelet V7 = a]e]fa2e2+a3e3, then

- (k) _ -i2k o _i2k
for k =0,1,2,..., V = e +<fzze e.2+a3e eq. The sequence
{V(k)} is infinite because if Vh) = V(J) with i #J would imply
2i = 2j (mod 2w) which is impossible, It is also obvious that each

V(k) is a limit vector of the set {V(k): k=0,1,2,...1.

13
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CHAPTER TWO

Rayleigh Quotient Iteration for Semi-Simple Matrices

§2.1 Synopsis

Here we turn our attention to non-normal matrices. Remember the
main tool in the proof of the convergence of RQI in the normal case
is the monotonicity of the residual. That no ]onger holds for non-

normal matrices. For example, the matrix

O o w
QO NN
—_— N -

with an initial vector of (0,.75,.6614)T would produce a sequence of
residuals which is not monotﬁnic (see Table 2.1). And the closer

the initial vector is to the boundary that separates regions of conver-
gence to different eigenvectors, the more éapricious the behaviour of
the residuals is.

In the normal case, the residuals of different 1imit vectors are
the same. For example, for the matrix A = diag(3,2,1), (e]+e2)//§
and (e]-ez)//? are limit vectors belonging to the sequence of
vectors generated by V(O) = (e]+e2)//7. Both of the residuals equal
0.5, but residuals of different 1imit vectors may be different in non-
normal cases. This will be shown in Section 3 of this chapter.

The residuals have been measured in norms othef than the Euclidean
norm. First we define X and Y* as follows: Let X be an nxn
matrix whose columns are unit column-eigenvectors of the matrix C,

and Y* dis an nxn matrix whose rows are unit row-eigenvectors of

matrix C, and Y* 1is obtained by normalizing rows of X'1 to have

™
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Table 2.1
kK . - (k)T Elr(.k)"
number of iterations | Rayleigh Quotient (V™) residual
0 2.555 (0,.75,.66) 2.560
1 2.543 (-.97,.20,.03) .06928
2 2.790 (-.31,-.94,-.040) 2.112
3 '2.807 (-.99,-.09,-.002) .07129
4 3.058 (-1.0,-.002,-.000) .0308
5 3.003 (-1.0,-0.0,-0.0) .0015
6 3.000 (-1.0,-0.0,-0.0) .48E-5
7 3.000 (-1.0,-0.0,-0.0) .46E-10
8 3.000 (-1.0,-0.0,-0.0) .98E-20
0 2.540 (0.,.93,.368) . 2.302
1 2.523 (-.97,.21,.02) .081
2 2.503 (.20,.988,.27) 2.132
3 2.500 (-.97,.23,.002) 114
4 2.411 (.19,.98,.003) 2.126
5 2.401 (-.96,.27,0.0) .13
6 1.488 (-.70,.71,0.0) .525
1.846 (-.85,.51,0.0) .093
8 1.981 (-.89,.46,0.0) .010
9 2.000 (-.89,.44,0.0) .002
10 2.000 (-.89,.45,0.0) .58E-7
11 2,000 .13E-13

(-.89,.45,0.0)
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unit length. We have tested the following norms: HX'](C~p)vﬂ,
ﬂx'](C-p)vﬂ/HX']vﬂ, IY*(C-p)vli/IY*vll, and some of these were designed
to force residuals of different 1imit vectors to be the same, but the

monotonicity has not been recaptured.

§2.2 Anatomy of the Rayleigh Quotient

To pursue the behaviour of Rayleigh Quotient Iterations, we first
analyze the Rayleigh Quotient. From the definition, the Rayleigh
Quotient of a non-zero vector v is p = v*Cv/v*v. If C is normal,

then X, as defined in the last section, can be taken as unitary. Then

_ (Xx)*C(Xxx) _ -1
p m)— when x =X v
_ X*X*CXx

X*X*Xx
X*Dx
X*x

vhere D = diag(xi) = X*CX.
by definition of X.

So if x = (a],az,...,an)T, i.e., v=Ja.x; where Cx, = A;X;s then

n
2

izllail A

p =

n
2

2 lo"-il

i=1

Therefore, p can be regarded as a weighted mean of the eigenvalues
of C. The weights are proportional to the square of the coefficients
when v is expressed as a linear combination of ejgenvectors.

In the non-normal case, the picture is very different. In this
chapter, we shall concern ourselves only with non-defective matrices.

We now remind the reader that we are introducing some facts and standard



notation about non-normal matrices. Let X and Y* be defined és

in the last section. Then CX = XA, Y*C = AY, where

A= diag(xl,...,xn), and Xis ¥ i=1,.,..,n, are unit column and

row vectors of X and Y* respectively. Then y, = y?xi, (0<-y15_1)

are reciprocals of the condition numbers of the eigenvalues (see

Wilkinson [8]).
n

B
* = *
1.Z]onixi, v i§187y1' Then

Let v

1]

_ V*Cv
(2.2.1) »p 2y

= %§;$¥¥§£ y* = (B]a'--)Bn)g X = (a],...,an)T
= %;%%? where A = diag(ki), T = diag(yi)
n
izlaiBiYiAi
n
iz]aiBiYi

Although the Rayleigh Quotient can still be considered as some sort

of mean of the eigenvalues, it is no longer a barycentric mean (convex
combination) of Ai's because even in the real case Yiaisi may be
negative. When some a;B; < 0, it is possible then for some
laiﬁiyili(aisiyi)l >1 and hence p 1is no longer confined to the
convex hull of eigenvalues in the complex plane. (Recall that a matrix
is normal if (and only if) its numerical range {p(v): v#0} is the

convex hull of its eigenvalues [Hausdorff] (see Mareus and Minc [3]).

§2.3 The 2x2 Case

Having outlined the general picture, we shall now analyze in detail

the 2x2 case. This will on one hand show the role that the Rayleigh



Quotient plays in the convergence of the iteration, and on the other
hand, supply a result needed later in Section 6 which deals with a
sufficient condition for a vector to be a limit vector. 4

By the invariance properties of RQI, it is sufficient to consider

. 1 «
C= , k>0,
0 0

And since v and -v will give the same sequence of vectors except
fof sign, it is sufficient to consider vectors on a unit hemisphere,

and in the present case we can have our column and row eigenvectors on a
half circle of the unit circle (even in the complex case, with the
above normalization, column eigenvectors can be expressed as a real
linear combination of ¥y and 2 (see Section 2 for definition)).

We have the following figure:

yit=vyy, y3¢=0

Cx] = x], sz =0

Figure 2.3.1

Note that we choose directions so that the angle between Y3 and
X; is acute. If we want to express X1s Xp5 Y15 Yo in the orthonormal

T
basis {ep.e}, then x, = (1,07, x, = (,-1)/1(k,-1)'1,

18



¥y = (LR, y, = (0,-1)T.

Lemma 1. Y1 = Yo

Proof. ' yTx] = 1701 ,)l = 1//T+2
Y%y = 1/1{k,=1)1 = 1//THc*
Therefore Yy =© y?x] = y5x2 = Yp-
6, = angle between X1 and ¥q = cos’]Y] = cos']Y2
= angle between Xy and Yo = 62 . O

Lerma 2. Let v = a]x]-+a2x2.= B]yli-szyz. Then

|°‘]| > |a2| implies |B]| > |82' .

Proof. In order to show the main idea without involving ourselves
in unnecessary detail, we shall proceed on the assumption that ays O
are real. The proof of the complex case is left to the reader.

Let Tt = /T+c%. Then

x] = (]sO)T = T(]’K)T/T + K(O:"] )T
= T_Y] +|(_y2
Xy = (ks-1)/1 = k(1,k)/T + 1(0,-1)

= Ky.l +Ty2 .
So if v = a]x]-+a2x2 = B]y]-fﬂzyz, then

. B, = Ta, + Ko
(2.3.1) 1 L 2
82 = KOL] + T(lz .

Recall that T > k and we assume Ia]l > |a2|. So among the four

19



20

products that appear on the right hand sides, lta]l > {IKG]I,lTQZI}

> IKaZI. If ays O differ in sign, then By is fhe difference

between the largest and the smallest products while By is the
difference between the two middle ones. Hence IB]I > IBZI. If

s @, agree in sign, let a = [rall, b = [Kall, c = Itazl, d = lKaZI,

then ad = bc and a > {b,c} > d.
Claim. a+d > b+c
Reason. We may assume b > ¢ without loss of generality.

(b+ (a<b))(c+ (-c+d)) = .ad
bc + b(d-c) +c(a-b) + (a-b)(d-c) = ad
So

(2.3.2) : b(d-c) +c(a-b) + (a-b)(d-c) = 0 .

If ¢-d > a-b, then b(c-d) > c(a-b) because b > c. This would imply
the left hand side of (2.3.2) is negative with right hand side equal

zero. So a-b > c-d, or a+d > b+tc. Here ends the proof of the

claim.

Now [8,] = a+d, IB,] = b+c, so [By] > [B,]. O

Lemma 3. |ay| = |o,| implies 8| = 8,15
la]l < Iazl. implies |B]i < |32'°

Proof. First statement is trivial by (2.3,1)., Second statement

follows from the symmetry of Lemma 2, O
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-‘xz‘ I‘ l : X-I -XZ
|
(| o | |22
|
-X X
1 I 1
-jl_ { X +Xx
| | vz
X2

Figure 2.3.2

(0)

Theorem. Let C bea 2x2 matrix, and V(o) = ago)x1-+a2 X2

be the starting vector. Then the Rayleigh sequence converges to an

eigenvector if and only if |a§0)| # 5“§0)|o

Proof. As mentioned at the beginning of this section, it is
sufficient to consider C = [é g] with « > 0. We can actually separate
the half unit circle (see Figure 2,3.2) into invariant regions under
the action of RQI:

Region I: |a][ >'|a2|

1f 1o{f)] > (oK), by Lenma 2, 188K > 15{K)].

Dropping the superscript when there is no confusion, we have from
(2.2.1)

_ 4B P Bavety

(k)
= p(V'")
1817y FanB,Yy

Py

and also A1 =1, AZ = 0" Yy =Yy = v
Let O.-IB]'Y = a+bi, OLZBZ'Y =c+di. Then b = -d because
0131y ta,foy = 1. la]B]! > |o,8,| implies fa] > [c|, but a+c =1,
1

SO a > é& Hence
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oy 8yY
o 8]‘( + a282Y

=a>

Re(pk) = Re( % .

From the definition of RQI, we have

V(k+]) = a§k+])x] + aék+])x2 = Tk(C-pk)~]V(k) .

So
0
and _
k+1), -1 (k (k K
(2.3.3) |2 ! - l(]-pk) a‘-) - a‘) o | H )l ,
_('E'T)'aza- (O_DK)-IO%UI ;'Z(E)‘ o ” (ol

since Re(pk) > %n Consequently |a(k+] | > |a (k+])|

and thus region I
is invariant.

We now show that region I has a single attractive fixed‘point. Let
[n(o)l > laéo)[, then Ia(k)l > Ia )I and lsgk)| > [ng)l for

each k, Then

(k)B(k) K (K
(k)Bék)l (k)’ (because lB~| | > IBZ 1)

by (2.3.3) since reg1on I is invariant

(o) ( and Ia]o)l > laz | by assumption
0
o

> |12
oy
%

J

(0)
Rl

(k) (k)

Let w>1. Let Yo Es = a+bi, v, i. Now

(D506) - ¢,

Iail, |8.] are bounded since fvl = 1. Therefore |b| is bounded by
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" a constant, say M. By the result above,
(k) (k)
% R

alkislki
2 "2

Therefore

a2+b2 2

—2—~—>m ,
c +d2

a2 + b2 > wzcz -i-uuzb2 s

2
i2—> w2+(w2-1)b2 >1,
Cc .

a ‘/212_52
> Y+ {w*~-1)b% > w .
So

| g (k) |
Re(py) = Re [ REROFNOAGN > To5 >

RO} —

for each k. Repeated application of (2.3.3) brings us to

ol (512 Ia%"’! '
= LN ) + ® as -+ o
o{M|  Li=olT-e4 30 |
because
l o l NECE 224b2 (1+m) +b° r1+) +M°
To:| = |T-a-b7| = 77 > 7,22 5 >
i | {(1-a)"+b \(m) +b V('H'w) +M

In other words, V(k) converges to x,.



Region II: la]| < |a2|
By similar arguments, this region is invariant and if V(o)

k) |

belongs to region II, V( converges to Xoe

Region III: legl = loyl
1f ol )= 1ol then 18{1) = 1))

o B ]
Re(p:) = Re 171 = ~
1 0By F a8y’ 2
because y(a]B]-faZBZ) = 1.
0L$1+])| - | -, (1) : a§1)
LT 7 1T ‘g‘T A

so 1 [al%] = (0] then fali)] = jodD)) foram .
This region is invariant and the vector sequence will not converge.
Therefore, the theorem is proved and the sequence converges if and

only if V(O) is not a bisector of the eigenvectors. a

Value of Residual Norm for Bisectors

Now, let us compute the residual of the eigenvector bisectors:

Let u, = (x]-xz)/ﬂx Xolls Uy = (x +x2)/Hx *x,0.  Then

- -5l g -0 )

.—!T

—(1+—-—)/M1+ Hl.

Let 8 = tan']x. Then
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(1-sin®, cos e)T//Z -2sind

=
1
u, = (l#sine,-cose)T/¢2+-Zsine
1 1-1
= tan 6 2 4tano
1,-1 _ | 2 ) |
(C'E) = 1 =
0 -5 | 0 -2
1,-1 1 2 4tano 1-sin® -
ir 0 = 1(C-5) u!l=——-——-——-——[ M ]
_ 1. (2+251ne]g
/Z-Zsingl 2cos®
, = 2/(2+sin@)/(2 -sin@)
1,-1 1 2 4tan6 ) 1+sino
Ir,l = 1(C-5) ull=—-—————-[ ]( ]
2 2 2 m 0 -2 -C0S O ﬂ

= 2/(2-sin9)/(2+sin8) .

IrI = Ir,ll iff /{Z¥sTn8)/(2-5in06) = /(Z-sin 8)/(2+sing)
iff sine =0 |
iff 8 =0 iff «=0 iff C 1ds normal.

We have just shown that if C 1is non-normal, then the residual of
1imit vectors can be different. Thus monotonicity of residuals is

lost immediately.

§2.4 The Hermitian Case '

W. Kahan and B. Parlett [5] presented a proof of the convergence
of RQI in the Hermitian (symmetric) case in 1968 through the use of the
monotonicity of the residual. In previous sections, we have seen the

irregular behaviour of the residual in non-normal matrices. In this
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section, we shall present a characterization of limit vectors without
the use of the residual, so that we may extend the result further into
the near]j normal case in the next section,

Let A be an nxn matrix such that A* = A. In this case, the
eigenvé]ues Ai of A are real and {xi==yi, i=1,..,,n} form an

orthonormal basis. Further, we arrange the Ai's so that

AyEXh,<rrr<A . Let v be a vector. Then p(v) = v*Av = v¥¥y = vy
is real. .
tet v0) e the initial vector and {V(k)l ﬂV(k)H =1, k=1,2,...}

be the Rayleigh sequence from A and V(O). Let

V(k) = a%k)x]-+agk)x2-+----*aék)xn .

Then from the relation

(A - o(v(k)))v(k"']) = TkV(k)

when A- p(V(k)) is invertible, we have
| (k)
: (k+1) _ %
(2.4.]) Ol..i - Tk -}\—_—(—v—(ﬂ—
. .i"p )
so the action of RQI induces an increase in !ail which is inversely
proportional to the difference between p(v(k)) and Ai.

Also, the Rayleigh Quotient p(v(k)) is a mean of the eigenvalues:
n
o(uik)y < .z]x1.|a§k)|2 (see §2.2) .
'l:

With these in mind, we would like to show that the only limit

point of the Rayleigh sequence is either an eigenvector or a bisector

L)
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of a pair of eigenvectors. Before we proceed with the main theorem,

we shall illustrate the main idea through a 3x3 example.

Example. Let A = diag(}\],)\2 3) where A1'<A2<:A3, and

X; T €y i=1,2,3 are the eigenvectors. Let

RO (O +o{0)y 4ol
%2

x2 X3 be the starting vector and

vk o a% )x]-kagk)xz-fagk)x3 be the vector at the Kth

V= a]x]-+a2x2-Fa3x3 be a 1imit vector. The crucial step is to show

step and let

that at least one of Qs Ops Oy must be zero.

Figure 2.4.1

Suppose a]a2a3 # 0. Then consider the scalar sequence
= p(v(k)), k = 0,1,2,... . lLet w-= (A2+A3)/2. There are three

possibilities:

(1) pp Sw forall k but p converges to w.

Notice we may assume a( ) #0, 1=1,2,3 because if ago) =0

then a§ ) - 0 for all k by (2.4.1) and thus o = 0. And for the
same reason, assume agk) # 0 for all finite k and all 1. P, con-
verges to w means there exists a constant N such that if k > N,

w‘xz
lpk—wl < —5—. Consider

0L(N+k+]) (ompy o) ] (N+k)l
_(WK*T) o ) To (KT y le.5. 1)
1 17PN’ ™
o I [ad)
= 1 N+1] .%—.)_ +® ags k + o
N

2 ON+i oy



w-A
, 1
because each of the terms I(A]-DN+i)/(12-oN+i)I > G:XE > 1, and

aéN) # 0. That means lagk)l >0 as k-, which implies o, =0,
a contradiction.

(2) o Sw for all k and P does not converge to w.

Then there exists an € > 0 such that Ok < w-e for infinitely

many k. -Hence

(k+1) (0)
a5 ) [ E A3-p I} ay y
OL3k+] =0lA270;! ago)!
Aq=p.
A3 1 > 1 because o. <w
27P5 i
Ao-
| Ps
and ‘ 3-p;i i.zfz > 1 for infinitely many i ,

so the ratio tends to infinity, which means ]agk)! +~0 as k- .

Thus oy = 0, a contradiction.

(3) There exists a oy > w-

This inequality is "invariant" under subsequent RQI steps, i.e.,

Peej > w For all i. Actually, we shall show that

PSP S P2 S SR S The reason is clear if we consider

the following

(k+1) _ (k) (k)
+ -
aé ) 3Pk aé )l as l
Similarly
agk+])' a§k)§
RCGIIRERGIE
o3 Gy

28



Therefore [agk)l increases with respect to Iaék)l and Iagk)l. We
know that for
k)12 _ oy (kH1),2
1= 2egf? = gadlt)
k)2
o = Dylaf)]
5_2A1|a§k+])|2 because more weight is put on
Ag and A3>A2>)\]
" P
So we have w<p <Py <P S e and
——-5-. = +® 3§ J > @
;§k+J i=0 l2'9k+i! a(k)l
since
A3=Pp4i o 1037Pk) 1, 2=1.2
A Pieil = gyl

Therefore o o, = 0, which means V(k) converge to X3, @ contra-
diction that 0 0n0g #0. Soif v is a limit vector, then v is a
linear combination of at most two eigenvectors. If Vo= ogXg +a2x2,
then |a1| = Iazl, this will be shown in the last part of the forth-

coming theorem. ]

When A is nxn, the picture is more complicated, and that is
why we prove the theorem separately. |
The main trouble is when V = Ja.x, with a #0 and o, =0,

i > 2. Then the existence of a Py > (}\2+>\;,_])/2 does not quarantee

(k)
2+1

Dy Ay be less than Py - But if we Tet k be so large that V(k)

that Ors1 > Py because « may decrease at the (k+1)5t step and

29



is very close to V, then even though Prey May be less than Pr>
the subsequent pk's are confined to a narrow interval. This is the

essence of the following theorem.

Theorem. Let V(O) be the initial vector and let V be a limit

vector of the Rayleigh sequence from A =A* and V(O). Then either

1) V is an eigenvector and V(k) >V o= x5 and D(V(k)) > Ay

or 2) V is the internal or external bisector of two eigenvectors

. s . : k
belonging to distinct eigenvalues and the sequence V( ),' k =1,2,...

oscillates between the bisectors, p, - p equals the mean of the
k . —

eigenvalues.

Proof. 1) V is an eigenvector. Ostrowski {4] described an

eigenvector as an attractive fixed point of the RQI, i.e., if V(k) is

close enough to V, then e Ai, the eigenvalue associated with
V and V(k) converges to a vector in the eigenspace of Ai.
2) If V is not an eigenvector, then the crucial step is to
show that V is a linear combination of only two eigenvectoré. So
assume V = a1x]-+----kanxn with s G Oy being non-zero and
a; = 0 for n>i>2. (If & =n, then we have essentially the 3x3

example before, and the first three cases listed later will be suffi-

cEen? and we may skip most of the proof). We proceed to show that if
k

0

v is cﬁose enough to V, then there exists an open neighborhood

of V such that V(k) is outside of.it when Kk %s large and hence
contradicts the assumption that V is a limit vector.
Now, V being a 1imit vector means that there exists k0 such

(kq) (kq)

0" 4s so close to V that |a.

that V 5

the following conditions:

0 'ail < € where ¢ satisfies

30
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(i) €< .0]|a2| and let u = .99]&2[. Let s<m<&<q be
indices such that aéo), aé}o), aéo) are nonzero and all a-(iO) =0
if i 1is between any two of them. Then by (2.4.1), we know all those
agk) =0 and aik), aélk), aék) non-zero for all finite k., Let
w = (}‘m+>‘2)/2 (see Figure 2.4.2).

Ag Ay t Ay A.q
W '
Figure 2.4.2

(ii) e 1is chosen so small that

A=A n A_+A
e R iR I
1=q A

(iii) If the scalar t is given by the following relationship

n
(2.4.2) uzl)\z-wl = uzl)\g-m-tl + 92|>\1.-m-ti

1=q

A -0
then € is chosen so small that t < 24

(iv) Let 055 i=1,...,s be positive numbers defined as

2 u)-}\- n ‘
011 -5 ) = T (y-w)e?
L J=q
and ¢ 2 0 is defined as
m Ap-w A, -w
2 % _ .2 2
L ojlot-G—-2y) = "0, - =)

We can see that if ¢ - 0, ¢1.-'»0 for i=1,...,s and



}\l-w,
A, - -
¢2 > u2 ( 2 )
mo Az-w
Uu+'7r—~li)

Let ¢ be chosen so small such that

2h_+A
Z(A ___m S)
i 3 '

i

2 ] >
(2.4.3) ¢m(Am-§(Am-AS)) Z'izl¢
We are now ready to proceed. Consider the scalar sequence

Qk = Q(V(k))T

Case 1. o, <w but p > o.
Remember o # 0 in the expression for the limit vector V, but

examining (2.4.1) reveals that

D] o) 1600
(KT~ o y(K) %k) ’
o |lp o(V )|.am
o Am'p(v(k))
and o, ~w implies ;—:;Z;(ET; <y <1 for k>ky for some k.
b _ .
'a(k) ' ‘
Thus _%ET' +0 as k> o, |a;k)| <1 implies la(k)l + 0, a contra-
U-m P .

diction to ap # 0.

Case 2. P S w but there exists an open neighborhood Nw around

w such that p, ¢ Nw for infinitely many k's.
Examining (2.4.1) shows that laik)/aék)l +0 as k =« which in

turn implies !agk)l ~ 0, a contradiction to a, # 0.

32
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So we may assume that there exists Py such that P, > -

1 1

Let

0 if 2=n
t = .
defined in (2.4.2) if &< n.

Case 3. Let . 2wtt. :
1 A A

By (ii) in the choice of €, we first have 5= > Py for all
k z_k]. By the action of RQI, i.e. equation (2.4.1), we know Iagk)|
 increases with respect to lagk)l for i # &. The choice of t insures
A, A
2

that e >w for all k z_k] with Py + w, Py + ——5—9: Therefore,

as k>, ]agk)/uék” +0 forall i#2. Thus vk X,

contradiction to V being a linear combination of eigenvectors of

a

distinct eigenvalues.

Case 4. w+t > Pp. > w
1
Two possibilities exist:

(a) Py is monotonic increasing from this point on. Then

Pk ™ Ag and V(k) - Al as before, a contradiction.

(b) F = {k| kik] such that :°k+1<pk} 0. Le’Ek I;z = min{k|k e F}.

n
If we Took closer at the formula p, = ) Ailai 2 |2 and regard
i=]

P, as the center of gravity of a weightless rod that has weights

(k)|2
;
moment on the right of Py after adjustments due to RQI > loss of

|ot at positions A;, then the hypothesis implies: 1loss of

moments on the left of Py Before we calculate how much is lost on

each side, we would like to remind the reader that Pk must be in the

(k,) 2 :
in?eryal (w3w+t), hence Iai 2 I, 1#2 de%re%ses with respect to
}up 2 }. If we use the normalization that |a, 2 | =u, then the

moment lost on the right can at most be



z € (A -w) . (1)

1=q
(k) A2+A
(Notice la /a | > |e/u] for k> kg» 1> % because p, < )
And the moment lost on the left is at least
s (k ) m-A.
12]'“1 l (1-;\ 5 ws) (11)

The hypothesis implies (I) > (II) and by definition of 55 i=1,...,s,
(ip)

we have ¢, 2-!ai for (1 7 1,...,s. This, together with
k
w < pk? < wrt, implies lam 2 | > ¢.. Hence
(k,) s (k) 5 2)_+A
27,2 1
lon 1900 - 302D > g ot 27 (A].-——“‘é—s) by (2.4.3) .

2x_+\
This insures that P > "; 2 for k > k, and therefore
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iagk)/aék)l +0 as k- for i=1,...,s. In particular, Iaék)l + 0,

a contradiction to o # 0. Here ends the proof of the crucial step

that V s a linear combination of only two eigenvectors,

Now V = a.x, i toyX;. If 'ail # |uj|, say [uiI > Iajl, then
the Rayleigh sequence generated from V would converge to X; by the
result of the last éection. We know that Xs is an attractive fixed
point and there is an open enighborhood NX around- X; such that if
a vector falls into that neighborhood, the subsequent Rayleigh Quotients
would converge to Ai (see Ostrowski [4]). The RQI function is
continuous and will map an open neighborhood of V, NV’ into Nx’

Therefore if V is a limit point, then there exists V(k) € NV and
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thus V(k) > X5 as k - o, a contradiction to the assumption that V
is a limit point. Therefore Iail = Iajl and V is an external or

internal bisector and Py o(V) = (A{+Aj)/2. 4 T

The instability of the case where V is a bisector will be

discussed in Section 8.

§2.5 The Nearly Normal Case

We have seen the characterization of 1imit vectors for a Hermitian
matrix without the use of residual in the last section. Here, we shall
prove a similar result for real nearly normal matrices with real spectrum.

The proof itself is a modification of the last theorem. Hence we
shall not present the same proof twice, but rather we shall discuss
what properties are fost when we do not have a normal matrix, and how
we can modify the proof accordingly.

By translation invariance property, we may assume O = A] s_kzgo-- <A

n
From (2.2.1), we have, for v = J a.x,
Ly

_ zaiBiYiAi

Q(V) - EaiBiYi

By nearly normal, we mean max I]'Yil < § for some small positive &,
As in the last section,1we want to show that the only limit vectors

of RQI are the eigenvectors and the internal and external bisectors

of two eigenvectors. Once again, let V be a limit vector which is a

~ Tinear combination of three or more eigenvectors with distinct eigen-

values. We shall draw a contradiction from that assumption if & is

small enough.



The important properties that are lost in non-normal cases are:

(i) In the expression for p(v) with Ai, Y% > 0, the term
a;BAsy; may be negativé whereas aiBiYi ='|ai|2 %n the normal case,
We 1ike to know when would “131 be negative? If we consider the
space spanned by {xi,yi}, and in the same plane draw the n-1 dimen-
sional hyperplanes spanned by the other n-1 column eigenvectors

and - n-1 row eigenvectors respectiVely, we have Figure 2,5.2.

A\

A= Span{yj RERD;
LI?= span{lej #i}

So the only place where aiBi is negative is when the projection of v

Figure 2.5.2

onto the plane spanned by {xi,yi} is in the shaded area. Let 4 XsYs
be @ and f v_Abe ¢ <6. Then ]“131| = |sin¢sin(e-¢)/cosze[.
So |a;B,] >0 faster than ltanzel as 6+ 0. We also know 6 + 0
as & = 1-cos 6 -~ 0. Therefore, for each € > 0, we can choose §
so smail that a;B:y; < 0 if and only if laiBiYi! < gy, foreach 1.
(ii) The numerical range of p is no longer confined to the
interval [A],An]. But maX{0131Y1| i=1,...,n} < 14-(n-1)e], so if
A;g1 s small with respect to |Ai+]exi| for each i, then o
cannot be close to A when o, = 0. The effect of this has to be-

taken in account also.

36
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cannot drop off (because {2.5.1)) so that O, > w for k >k Thus

1°

V(k) converge to X, as before. As for Case 4, one extra considera-
tion must be taken: & be small (and thus € small) so that if
agk)agk)yi is negative (which would be like a weight of |a§k)8§k)yi|
at -Ai) the effect of agk)sgk)yiki in the expression of Py is
negligible.

Thus the convergence result proved in the Hermitian case holds

here, a non-normal case, also.

Remarks. We have attempted above to present an idea on how to -
prove the nearly normal case through the extension of a proof of the
Hermitian case. The proof is greatly simplified at the expense of
choosing an extremely small §. If we are willing to do some more
detailed analysis, e.g., choose the translation of matrices such that
A] = -An, obtain better estimates in conjunction with the bound on
iaisiyil, etc., we can come up with a Targer §&. We like to emphasize
here that the main goal in this section is to present a sketch of the
global behaviour of .RQI for a non-normal matrix, but not to obtain a
theorem as powerfu1 as we could. In fact, there are reasons to be1iever
the "nearly normal" condition can be replaced by "well-conditioned",
pecause for the conclusion of the theorem to be false, pk's have to
Jjump around and lie frequently close to each eigenvalue whose associated
eigenvector has a non-zero component in the expression for a limit
vector. But for a well-conditioned matrix, it is not hard, only tedious,
to trace the locus of Py generated by RQI. Therefore, it leads us
to conjecture that the same conclusion is true for well-conditioned

matrices. Nonetheless, we shall not pursue this matter along this line



because in the last two sections of this chapter, we shall look at
RQI from a different perspective and reduce the questionof global
convergence of the vector iteration to that of the convergence of the
scalar quantity P which 1ies in a compact space. And we believe

that this is a more simple and elegant way to look at RQI.

§2.6 Bisectors of Eigenvectors as Limit Vectors of RQI

In previous sections, we have just shown that for sufficiently
well-conditioned real matrices with real eigenvalues the necessary
condition for vectors to be 1imit vectors of RQI is that they either

be an eigenvector or bisectors of two eigenvectors. In this section,

we show that for any non-defective matrix, the same condition is suffi-

cient provided, in the case of bisector, that the mean of their asso-
ciated eigenvalues is not an eigenvalue of the matrix in question.

Let x, and Xo be the two eigenvectors for C, and by various

]
invariant properties of RQI, we can have A] =1, Az = 0, and we
consider, without loss of gehera]ity, the action to take place in the
coordinate system where- € = Xy and Xy @ gggl_]inear combination
of ey and e,. Then, the first two components of N and y, are
real because yix; = &;.v; 20, {i,j} € {1,2}. Let ) be the plane
spanned by x; and x,. Llet u;, u, be real unit vectors on
that are orthogonal to Xos Xy respectively with the angles between
Uys Xy and Ups Xo being acute. Let P be a fuéction that takes

a vector and projects it on ), i.e., P(w) is the orthogonal pro-
jection of w onto J. Then wu, = P(y;)/IP(y;)l, uy = Ply,)/IP(y, )l

because Yis Yo lie in hyperplanes that are orthogonal to Xos X4

respectively. It is also obvious that u?x] = u?xz, i,e., the angles
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are the same, call it 0.
Lemma . (y]u])(x]u]) X3¥1s. (y3uy) (x3u,) = X3Yo -

Proof. Let Y1 =M% Enge, tw where w*x] = w*e2 = 0. Then

| - Zz
Then uy = (n]x]~+n2e2)//ni+n§
So ,Y?ICU-' = (n?"'ng)/vn] +n2

Xjup = ny//ny*ng
XY= m
g 2
(Y?U])(X‘{u]) = ((n%**nz)/»’nlz’rnzz)n]/»/n]zﬂnz2 =ny = X3y -
Similarly (yguz)(xguz) = x’é‘y2 - O

Now we are ready to translate our problem into one that deals

with vectors on ), so that we can use results of Section 3.

Theorem. Let Cx] = Ay sz = 9° Then the bisectors of Xy

Ao
and x, are limit vectors of RQI if and only if (A;#1,)/2 is not

an eigenvalue of C.

= = s ¥ 3
Proof. Let v a]x]-+a2x2, V¥ 81y¥-b82y5~+ -PBnyn. First

notice P(yj) =0 for j > 2 because y*xl = y*x2 = 0. So

= P(v) = P(B]y])'*P(Bzyz) = 51(yfu])u]-+82(y2 2/u2. ‘From the lemma,

wa have
XXy Y Y
.M . Y2
y?u] - x?u] " cos 8§ ° YoY2 * cos ¢ -
So

v = (B]y]/cos o)u] + (azyz/cos e)u2 = gyup * LU,



. = B.Y. , Jj=1,2.
vihere cJ BJyJ/cos 8, j=1 Then

a4 (BTY]))\] +0£2(62Y2)>~2 +0+.--40
a]B]y] +QZBZYZ+U+ - +0

p(v) =

i a]c] cos 6 )\] + GZCZ cos ¢ )\2
a] C] cos o+ oe2?;2 cos @

which brings us back to the situation of the 2x2 case with Bi =T
Y; = cos 8 (see §2.3). And the results of Section 3 apply.

So if (A]+k2)/2 is not an eigenvalue, the bisectors of x,
and X, are 1imit vectors, but if (k]+A2)/2 is an eigenvalue, then
by definition of RQI, it will give us the eigenvector associated with

(}'\]+,\2)/2. O

We know also that bisectors as limit points are unstable in the
sense that if there is a slight perturbation in ) of v, the RQI

will give us either Xy Or X5, as in the 2x2 case.

Note. Bisector here means v = a;x;+oX, where Ia]| = |a2|.

§2.7 Characterization of Limit Vectors When oy Converges

We know that Py = p(V(k)) is a sequence of numbers in a compact
metric space (real or complex). In this section, we shall investigate

what happens to V(k) if py converges,

Definition. If v = a]x]-+a2x2-+.---+anxn, then we say v is

deficient in X if oy = 0 (see Parlett and Poole [6]).
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Theorem. If Py converges, then either

1

(i) p, converges to A; for some i and v(K) converges to x.
provided y(0) is not deficient in xi, |

) | L (0) . .
or (ii) (a) P, Converges to p' = A and V is deficient in x

(b) P, converges to p' which is not an éigenvalue.

In either case,

2 o, B Yi As /) a
i=1 i 95 343 121 315315,

where [A. -p'| = |X; -p"] = -+ = |x, ~p'|. In other words,
= ", iy j ———

: m

Aj ,...,Aj must be co-cyclic with center p', In this case, V(k)
1 m

may not converge. If v is a

mit vector of the Rayleigh sequence

1i
m
- v
L

i=1J

<

0. X

{t
v k=1,2,...}, then

Proof. From the definition of RQI, V(k+]) = Tk(A-pk)']V(k) S0
(k+1) o "k (k)

15 3 (0)

we have o Ai-pk ; (as in (2.2.1)). If o # 0, then
“§k+1) Ai'pkl 0L(.k)
a§k+]7' lj-pk :

Hence in the case p, converges to A , a careful examination of the
k

abocve formula reveals that |a(k)/a k)l +0 as k +»e for J # 1.

Therefore V( ) converges to X In Case (ii), let v = Z as X5
: =19
m<n, a, #0 bea limit vector. Let w = min {|A, -p l} Then
- I 1<ism 4
w # 0 because otherwise o }j with aj # 0, which is the first
i i

case, a contradiction.

Let w I}\ji

§ > 0, then there exists K such that for k > K

-p'| for some 1i. If there exists 2 such that

I X,

]
hall 04 - W
3,7P l

'y
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' §
}llji-pkl—(nl <3 Then

a(k+]) Al =Py a(k) ' ‘ a§k)
g I Jg | w*8/3]

alk+l; Aj —pkl otK) I = w+28/3 a{ﬁ) :
i % i i
i i i

Thus as k + =, agk) +~ 0 implies oy = 0, a contradiction.
L L

Therefore, |r, -p'] = A, =p'| = ¢ = |x; -0'| = w,
Jo In

m
A /Y as Blvs . 0
idi =1 iy

©
1}

m
plv) = 1 oy 8.

Definition. T = {j]’jZ""’jm}’ A be the subspace spanned by

p'-Fme1ej.

{x., jelT} and X,
txJ jerTl} j

Corollary. In the real case, p' = (Ap+lq)/2 and the only limit

vectors are  (x tx )/V2.

Proof. p' can be equidistant from only two distinct real eigen-
values, hence p' = (Ap+kq)/2. The results from the previous section
tell us that the limit vectors must be the internal or external bisectors

of xp and xq. Ap and kq could be multiple, but xp and xq are

the unique eigendirections in the plane defined by the projection of

V(O) onto A.

§2.8 Instability of Case (ii)

Let z be any unit vector in the invariant subspace A defined

above. Let ¢i = aiBiYi' Thus with the notion of Section 7:

g E
z = a.X. 5 2Z* = B.y:
j:] JJ =



with 1= Zajsjyj = 2¢j
| i0,
and : p(z) = [p'Z¢j+wZe J¢j]/2¢j .

Differentiating, we find

ie,
202) ~ [p'+ue I - o(2)]
30
J
3 i9.
=01 = e 9 #0 foreach j .
¢j v

So an increase in ¢j pushes the Rayleigh Quotient from p' towards
i0.
A, = p'+we J. Almost all perturbation in A of a limit point v

generates Rayleigh sequences which converge toward an eigenvector,

. 44



CHAPTER THREE

The Completely Degenerate Case

$§3.1 An Overview
We now focus our attention on the completely degenerate case.
We say that a matrix C 1is completely degenerate if C 1is similar

to a single Jordan block, i.e., there exist X invertible such that

\
Ritle
-1 o
X 'CX=4-= I
O
L @)

Because of the translation invariant properties of the RQI, it is
equivalent to consider C-ol, 1.e., a matrix C with zero as its
only eigenvalue and has only one eigenvector. Ncte that it is not
sufficient to consider the canonical Jordan block

1 O
0

. = N (N for nilpotent)

because not every completely degenerate matrix C with zero eigenvalues

is unitarily similar to N, and we know RQI is only unitarily invariant,

not invariant under similarity transformation.

We adopt the following notation throughout this chapter. Let X;

be the eigenvector of C of ith grade, i.e., Cx] = 0, 'Hx]ﬂ =1,

Cxjpy = %; for 1<i<nd. Thus Cx; =0, €'7'x; #0. With

standard calculation, we have X, orthogonal to x;, i # 1. (Notice
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Xss i # 1 may be of length other than unity).
- _ T- 2,1/2 .
If vs= Xaixi, then p(v) = zaiai+1/(21ail )/ provided {x.}
forms an orthonormal set (i.e,, the original matrix is unitarily similar

to N), and p(v) is more complicated if {Xi} is not orthonormal:

_ V*Cvy
o(v) = i o
_ a*X*CXa _ o | %
= N where v = Xa, X = (x1,x2,...,xn), a-= .
= a* = L= XX,
a*Ga/llvi where G (gij)’ 95 X3X51s
0
0
Xg = |
0)
= (Yo, )9..a.)/{v]
$1 5715
(3.1.1) =(§§%j%qﬁHWH.

Note that in the above expression, 915 0 for j#2 and 995 = 1

because xij = 0 by choice and xfx] = 1.

Now, we want to study what one step of RQI does to the vector v.

Let v' = Xa%xi be the resultant vector. .Then if C-p(v) is non-

singular,

(C-o(v) Ny
wl
T

wl

1]

vl

(C-p)"] expressed in the basis of generalized eigenvectors would be



so
(B, ) r'%"‘]"]‘zﬂz' 'J’n“n |
B] P P
2 1 1
w'=1| . | = (C-p)']v = ot -pn-lmn
| By . :
RN
| pn
{ 9
“olo7*62)
.-
“oloi*8)
(3.1.2) = :
1
~B'(an—1+3n)
1y
\ p n 7/
= - s
0

Studying these equations carefully reveals the main difficulty:
B = (-1/0)oy = (1/6%)ay~ ==+~ (1/o")a . When v is close to x , p
is close to zero. Therefore, ]/pn is very large and those "arbitrary"
small coefficients of X5 i # 1 cannot be ignored. Also, there may
be some unfortunate cancellations that make 8] ext?eme]y small as
compared to 82.

Wilkinson [9] studied the effect of Inverse iteration method as

applied to ill-conditioned matrices and degenerate matrices and came to
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the conclusion that you should not do inverse iteration more than once
if you have a very good approximation to the eigenvalues. Now RQI is
nothing but inverse iteration with a shift which is "optimal" in a
certain sense, and the shift tends to the eigenvalue. SQ we can expect
the same irregular behaviour near an eigenvector here. We shall demon-
strate the compliexity of the local picture through an example in the
next section.

The local behaviour and convergence rate of RQl for a degenerate
matrix was investigated by Kiho Lee Kim [2] in 1970. He derived the
equation V(i+]) = r#—H(V(i)-r)~+g(V(i)) where H is the Jacobian of
RQI at r, the fixed point of the iteration, and g is a function that
satisfies lg(x)l < Mllx-ril2 for some norm [-li and some constant M.
Kim showed that the convergence rate should be the spectral radius of H,
But his conclusion depends on the assumption that the iterative function
has second derivative in ﬁ, an open set for which r belongs to.

In the example of the next section, we can see that.the RQI function may
have second derivatives in some sector of a neighborhood of the eigen-
vector (and hence afford a Taylor expansion there), but the RQI function
is ﬁot even continuous at the eigenvector. Our Lemma below will

illustrate this point.

lenma. Let f be the RQI mapping, i.e., f(v{K)) = v{K¥1) 1ep

X be the eigenvector. Then for every &, > 0, there exists v,

vl = 1, such that Hx]-vﬂ < 8, and f(v) is orthogonal to X1-

Proof. By invariant properties of RQI, it is equivalent to consider
the matrix € which is similar to N. The set of generalized eigen-

vectors has the property that X is orthogonal to X5 i# 1.
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From (3.1.2) we know if v = Zaixi', Then
3.1.3) = (o) - (/0% - =<+ - (1/6™a
(3.1. By = plog = (1/07)a, p o,

Let w.= max{lx;h, i=1,...,n} (see the redefinition of x, at the

beginning of the section). Llet § = min(do/lon,(lon)'s). Pick v
_ ¢ 8yi-1 . _naN=2
such that o, = (Eﬁ) » 1=2,...,0-1 and 0>a >-nd and
a2 0 such that vl = 1. First notice ﬂv-xlﬂ < 60 because -
n

n-2
v=x41 <2 X [a | <2 Z (‘S )]-l-2n"n 2 s by choice of &. Then

0
o(v) = ]—+o(a ) by (3.1.1). If o =0 then B, <0 because
each term is positive in (3.1.3). 1If a = -nsn'z then B] > 0 because
each term in (3.1.3) is O(E—) except the last term which is 0(u"n"/6 )
Therefore, the last term dominates and By > 0.
Since v' depends continuously on v when the range of p(v)
is bounded away from zero, we must have a t, 0 < t <1, such that
n-2

when o = -né

n
- . o . = '
o t, then By = 0. This implies f(v) 1.chu].x]. that

lies in the hyperplane orthogonal to X1 a

§3.2 A 3x3 Example - Sectorial Behaviour Near the Eigenvector

From the lemma df the last secfion, it is obvious that one cannot
isolate a small open neighborhood of the eigenvector to study the local
behaviour of RQI, because no matter how small you take the neighborhood
to be, there are points and regions around the points that can throw
you out of that neighborhood. Thus, we divide the region about the

_eigenvector into sectors of attraction and repulsion. Ve shall give

an example of the sectorial behaviour of the RQI.
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010
Example., Let C =N = [ g 8 8 ]. Then for v = a]x]4-a2x24-a3x3,
plv) = (a]aZ-Pa2a3)/(a$-+a§-Pag)]/z, with ai's real, so if (v =1,

p(v) = aj0, + 0y0,. We first show that in this case, the RQI converges’
for all starting vectors, and in the course of doing so, demonstrate

the sectorial behaviour of RQI. (See Figure 3.2.1.)

e is coming out

of the plane, =
' €2=%2

> 2 -
/ot az(a]+a3) =0

2(a1+a3)2a] + ag(a]+a3) tag= 0

Hemisphere containing X1

Figure 3.2.1

et w' = (A-p(v))-]v = B]x]4-32x24-33x3 where

V = 01Xy tagX, tagxs. Then by (3.1.2)

83 = -c'.3/cx2b
2.2
(3.2.1) B, = =1/b - as/(a5b")
B] = -a]/azb - 'I/c.zbz - a3/agb3

where b = a]-+a3 and p(v) = azb. We can normalize, without loss of

gererality, o > 0 for all our vectors. We shall separate the region



in Figure 3.L.1 into the following:

I. a3 > 0. This is an invariant region under RQI because in
(3.2.1), sign(B])‘= sign(Bé) can be deduced from the fact that -each
term in the expression for B] and 82 has the same sign as Cy.

The convergence is monotonic in this region in the following sense:
|8—1' 3]_ —'I/azb - 1/a]a2b2 - a3/a]a§b3l
Bal 1%y

3.3 |
-1/a2b - a3/a2b

2 3,3
% 11/0,] + a/a3b|
(because each term has the same sign as az)

*

%2

v

(because |a]! < 1, in the last term of numerator)

and it is obvious that the factor does not tend to one.

sl
B3

l

o3

>

by similar arguments. Thus the vector iteration converges to Xy
the eigenvector.

Now we consider the region oz < 0.

I1(a) fag] > lall, a, > 0. Then p(v) <0, b= a;ta, <0 and
(3.2.1) gives 83 < 0. 8] < 0 because the second term dominates the
first term, and the third term has the same sign as the second term,
which is negative. We get thrown into region I and get convergence.

I1(b) ]a3| 3_|a]|, a, < 0. Then p(v) >0, b= ay tas < 0.

(3.2.1) gives ey > 0, By > 0 for the same reason as above. We get

thrown in region I and get convergence.
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Now Tet |o,| > |agl. Then b = a;+ay > 0.

1 73
2
I1I(a) a, > 0, |a2b| > |a3|. Then 85 > 0, B, <0. If By >0,
we are in region I and convefge. If B] < 0, a standard calculation

shows

-Bé' ] a3/o. l ' | 1/0. l
B2l Nyba, fa5b |1/a b+a /a2b2|
o3
-S> o because the two terms in the denominator
2! differ in sign and are dominated by the first,

So at each step, the ratio

a )

Ei‘ increases and we stay in III(a) until
2

|a5b] < Jog) -

2
TII(b) oy > 0, [a2b| g'la3|.

(1) olbfa; +odb+ay > 0. Then (3.2.1) gives By <0, B2 >0,

B30 1% %3] .
8., > 0 and a standard calculation shows that [+ -,
3 [ R A 7

If i83l 3.|B]|, we are in region II(b) and thus have convergence.

>

3, .

If IB3! < IB]I, we have III{d) which we consider later.

< 2 .
(i1) ofbe +adb+ay < 0. Then (3.2.1) gives 8 >0, B, >0,

63 > 0 and we are in region I, thus have convergence.

I1I1(c) a, < 0, [a§b| > |u3|. This is a mirror image of region III(a)

2
and has the same properties. The vector in this region is either

thrown into region I or region I1I(d) below.

111(d) @, <0, Ia bl < lagl. This is a mirror image of region
II1(b) and has the same properties. |

(1) % *olb+ay > 0. Then (3.2.1) gives 8 <0, B, >0,
By > 0 and calculation shows that ;% , 22! > gé- If

1351 > |81, we are in region 11(a) and thus have convergence. If



(83{ < |84], we shall be back at region I1I(b) (hence a possible cycle).

(1) oBba +aob+oy < 0. Then (3.2.1) gives 8, >0, B, >0,

83 > 0 and we are in region I and thus have convergence.

From all of the above regions whose union is the hemisphere, we
either have convergence or are thrown into convergence regions ultimately
except that there is a possible cycle to go from III(b)(i)to ITI(d)(i)
back and forth. This is fortunately not an infinite loop because at
each step, the ratio |§§|, |§%| both increase and thus force
aob%a +ogb+ay < 0 ultimately and we shall be thrown into I11(b)(i1)
or III(d)(ii), then région I and have convergence.

We haQe omitted the case a, = 0 because this would make p(v)7= 0
and by definition of RQI, we have convergence in oﬁe step.

Now that we have shown global convergence of the example, it would
seem instructive to draw the graph of a neighborhood of X to illustrate

the different regions and their possible route to convergence (see

Figure 3.2.2).

§3.3 Behaviour of Pr as k » o=

The main objective in this section is to show if o, converges,
then P, converges to A, the single point in the spectrum of the
operator. With the normalization as in §3.1, we have A = 0.

Before we proceed with the main theorem, it may be illuminating to
prove the following lemma that presents some analysis that will recur

throughout this chapter.

53

Lemma. If the shift O is constant, i.e., P = P a fixed number,

then V(k) = Tk(C—p)-kV(O) converges to  x.
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Monotonic Convergence

Y

TN Lo
Va)
™
0> £2
to convergence

to convergence “ region

region IO‘3| .>_ Ia]l
vihere

L. = a, + az(a +a.,)

1773 2'71 73

L2 2
2, % aglogtag)e) + 8,

Figure 3.2.2



Proof: In this case, RQI is reduced to inverse iteration with the
shift p. The vector sequence converges because of the special form

-1

of (C-p)-k. So we consider -p(C-p) in the basis of generalized

eigenvectors:

L. O [
-p 1

1,-1 . -
-(3) -p - =

]]. (:)
.o..o‘] :
\O 01

Let £ = 1/p. Then V(k) rk(I EN)” V<O) But

where N =

(1-g8) 7 = [(1-gm)7T7K

(I+gN+52N2+--- +
+ M+ ((5) + (5 A
+((5) +2(5) + ()
+((k + o0 et

En-]Nn—])k

oot (( 1)+ )5"']Nn'] for k>n
z](k+J ])
j=0 J

So (I-gN) s a unit upper triangular Toeplitz matrix (see Marcus and

: I k+j-1
Minc [3]). ' If we~wr1te k+j_]cj to denote ( i )

that k+j-]Cj is of 0(kJ) as k -+ o,

, then it is clear
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r 2 kT :
160 874140 & k#n-20n-1
k-2
T 55 & “n-3Cn-2
n 1 .
(I-gN) ™ = e
%4
| 1 )

Assume V(o) = (n],nz,...,nn)T (in the basis X}""’Xn)' Then
V(‘) = T&(I“EN)_kV(O) is a linear combination of columns of (I-EN)"k

with coefficients NpsNose-e-sn

(0)

n Let N, be the last nonzero element

© ’ i j
Then as k » =, the fact that k+j-lcj is of order k
th

column vector would dominate in the

in V
implies the components of the 2

(k)

expression for V written as a linear combination of column vectors.

So when k is large

KGR

But here again |k+j—2cj-1/k+j—lcjl +0 as k +wo. Therefore

V(k)—re1=x] as k = oo, O
The same conclusion is still valid if o = p(V(k)) converges
to a scalar other than the eigenvalue:
(k)

Theorem. If p converges to w = re!® # A, then V converges

o xy.
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Proof. Recall we have the normalization that A = 0. The assump-
tion that o ~w implies that there exists K such that for k > K,
. . _ iek _ _Lr;l_
then Ir-rkl < e and |6—6k| <e, vhere p =re 7, g =-5->0
i (K) _ . :
and e, <In - Let V' = (”]’“2”"’"n) (in the basis of x],...,xn).

Then

yKeke) -1, (K)

-1 -1

(K+k+1) _ .

- -1... -1, (k)
v - Tk(I €K+kN) . (I'£K+]) v

= 1 (1+d N+ dy (KNP - 4 dn_](k)N“")v(K)

where d.(k) = sum of k+i-1C; terms of the form (gjlgjz"-gji).

Lemma. There exists M. m, independent of k such that

M
MilkrianCi) 2 4y 2 miepy4€4)-

Proof. Since Foe; > Igjl > FIET

So we can take Mi = (;f%—01. As for m, we have to make use of the

1
condition
m
le"ekl <€2<m]‘.
If ¢.¢. ---£. = se1e then
J] 32 Ji
-6-6'| < gp <7 -



The length of the orthogonal projection of Ej ---gj on the line
1 i
-8 in the complex plane is at least scosw/4 = s/¥2, and the orienta-

tion is the same for each of the 'kﬂ._]ci of them. Hence mi can be
taken as (r:e: )'//Z. Here ends the proof of the lemma. O
1

The rest of the proof of the theorem is similar to that of the case
where Py is constant. V(K+k) is a linear combination of the columns
of

(1 d (k) dy(k) o+ d_1(K) )
1 dlik) cood (k)

(1-gN) X = . P
O LG

1

Let Ny be the last nonzero component of V(K). Then as k + =, the

components of the ch column vector would dominate, so

[ dp (k)
dg_2(K)

k) ' y
V( > d](k) Ll B .

\
Therefore, V(k' > ey =Xy, O

Corollary. Let C be a completely degenerate matrix with A as

Py be the Rayleigh Quotients sequence. If

its only eigenvalue, and

Py converges, then Pk converges to A.
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Proof. Directly from the last theorem, if P W # A, then

V(k) > X but p as a function from ¢" to € s continuous.
Therefore p(V(k)) + p(x) = A, a contradiction. Therefore, p
1 k

converges to the eigenvalue if the sequence converges. a

§3.4 Behaviour of V(k) When Pk Converges

In this section, we want to show that if P, converges and X,
is not a limit vector of the Rayleigh sequence, then the vector itera-
tion converges to Xq-

Without loss of generality we assume that p converges to A =0
and un]ess.otherwise specified, a vector is expressed in the basis of
generalized eigenvectors.

Define T = {v| v is a unit limit vector of the Rayleigh sequence}..
From T we pick out a vector whose last nonzero element has a maximal

index, % say. Thus u = (”]’”2""’”n)T e I' satisfies

(1) "ng
(2) u'

w# 0 and ny = 0 for j > 2,

(njsnps...onp) €T implies nj = 0_ for j > &.

!
Now u being a 1imit vector means that there exists a set Kg € {1,2,.%.}

such that V(k), k € K0 converges to u. We shall %irst investigate
what V(k']), k e Ky, Tooks Tike when p,_, is sufficiently close
to zero.

Since P 0, there exists a number N0 such than whenever
(3.4.1) k>Ny o ol <

where & 1is so small that
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(3.4.2) |w/8] > 3k

where « = sgp{laill w==(£],...,£n), w is a unit vector}. (Recall X5
i

i > 1 may be of length other than unity because we normalize C in

the convenient form which is a Jordan block).

It is more convenient to change the basic RQI equation (C-pk)V(k+])

= TkV(k) into the following form:

(g v (K1) =g o ()

where £ = 1/pk. In detail, we have, for V(k) = (a%k),...,agk) T,

K k-1
“ﬁ - gk-]"k-]“r(u )
(3.4.3)
(k) (k-1) (k)

ai = gk-]Tk—]ai' + Ek—]ai"‘] ’ 1<1<n-1.

When Kk e KO is large enough, aék) % . Studying these relations

leads us to a key result.

Lemma 1. Assume P 0. Then

(1) For k 1large enough, there exists constants d2 z;d] >0
such that d] < Tpop £ 4o k e KO’
(2) aék"]) +0 as k+« for ke K0 (K0 is defined at the

beginning of the section).

(3) There exists constants h], h, such that 0 < hy 5_|aéf%l 5-h2

for k large enough, k € KO.

Recall that for normal matrices .7, _, 3.d] >0 1implies that V(k)

does not converge.

60



61

Proof. (1) We want to show that Ty is bounded away from zero
and infinity. We know there exists a number N] such that when
(k) . -
1> keKy then |a™'-w| < 8. Sofor k2N, max(Ng,N,)
where NO is given in (3.4.1)

k > N

- k-
|Tk-1°‘yglf1”"°‘s(zk)‘ 2 lTk-]“IS.-l])+‘°I -6
k-1) .
> fw] - (]Tk_]a£_1 )|-+6) .
From (3.4.3)
k -
el = e ey s o)
, k-1
> g _q 1ol -7 _pad5D -6)

If there exists k such that |t _,| <&, then
k
18] > e ;1 (ul-2¢8)

|v

1€, 1 | (38-2xs) (because |w] > 3«8)

>k (since [g ;] >1/6 and k>1),

a contradiction to the definition of « in (3.4.2). Therefore, there
exists d] > 38 >0 such that Ty > d] for k 3_N2. Now from the
defining equation of RQI, we have (C-pk_])V(k) =-tk_]V(k']), and thus
119l 2 0CH+ o | < d, for some d, (because bk is bounded). So

(1) is proved.

(2) We want to show aék']) +0 as k>« and ke K, despite
that aﬁk) + w. We assume here that £ < n, and the case 2 =n is
treated later in Lemma 2. Notice that agt%-+ 0 as k»>o for ke K0

because n, =0 for j > %, and we have !a(k)~m < 8§ for k>N,,
Jj L -2

k € K From (3.4.3)

0



(k) _ k-1 k
ap " = gk-lTk-ﬁ‘fg )4 Ex- 1°‘s§+%
k-1
= g lmey M rall))

As k> for ke Kg> &y_y.> ©- Therefore (Tk ék -, (k)) - Q.

%241

But a(k) +~ 0 as noted above and 1, >d, >0 from (1). Hence,

L+1 k — 1

aék'])+0 as k>« for ke K,
(3) For k_>_N2, keK0
k k= k)
5] = By ro-urag)

but 0 < |aé_‘f%| <K, SO

|‘|.'koz(k ])+w-w+aék)| <x§ .

(),
Recall Jw-ap"'| <6 for k>N, >Ny, so
k- k-1
el - Tull < lrads +ul
k- k
=L lTk 5(2' ]]) tw- (w'aé‘ ))I + “*"Q‘ék)l
< (k+1)s
i.e. la] - (e+1)8 < 7,0, (" D < ol + (k#1)8
- |w]-(x+1)8 (k-1) wl+(k+1)8 _
0 <h < 1o |iJ“L‘dT—""2
because d] ST L d2. O

We still need the following lemma before we proceed to the main
theorem. The lemma is true for the complex case, but for simplicity,
we shall only prove it for the real case.

(k)

Lemma 2. Assume p, - 0. Then o ™" >0 as k > o,
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Proof. Let all quantities be real and proceed by contradiction,
Suppose agk) does not tend to zero. Then there exists € such that
Iagk)l > e for infinitely many k. Let N3 be an integer so large

that whenever k > Ni, |[p | < 8, where e/VE;'> nc and 1//3; >> 1.

Now consider V(k+]) where Iagk)llz €:

(k+1) (k)

“n = 5 k%

(k+1) P (k),§-i

(3.4.4) ; Ek‘rk jZH o3 Ek
v & Halk) o i) (uhere g, = 1/p,)
by backward solving (I-EkN)V(k+]) = &kaV(k) (see (3.4.3)).
Therefore, when we normalize a§k+]) =1, then
| 1a{ ) = ogel-1+1/g)
= o(g, ")

_because Iaﬁk)[ > e and a/%%?f> n<.
From (3.4.4), it is clear that either all ai's have the same sign

as o or their signs alternate. We have the following two cases when

(k+]))

we normalize sign(a] to be positive.

(k+]))

Case 1: sign(ai is positive for all 1i. This characteristic

is invariant under RQI for subsequent steps because PR+l is then

positive and py,i = & . Then (3.1.2) tells us that a§k+2) >0 for
all . |

(k+2) (k+1) , (k+2) (k+1), .

% I e E A I L]

T2y (k+2) = ey el

%41 541 | %541 k+1

> o as$s 'Dk+]—"0
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because the two terms in the numerator are both positive. Thus

(K (k)

and so a "> 0 contradicting our initial assumption.

k) = (™,

Case 2: s1gn(a This characteristic is also

invariant under RQI for subsequent steps and Pk+] 2 -8

]O

(k+2) (k+1) , (k+2) (k+]) (k+2)
T L k+1| RALIL
;TE¥§T (k¥2] | Ia(k+2)l
i+l %541 i+l
> © 3gs pk+] -0
because O+ is negatlve and s1gn(m(k 2)) # s1gn(a$tll))
Thus (k) > X and aﬁk) + 0, a contradiction. a

Let us summarize the picture so far: For k 1akge enough and

k e KO’ we have

ST S
r X A { X 3
: ;
S1>1bp o I I I Bl
L~ a, b2+1 <+ 241
34 :
. b
: L n
\ an 7/
q*w 0<h < |p] < hy, b's tend to zero (because Mgy = ---==nn==0),

a, tends to zero by Lemma 2, a, tends to zero by Lemma 1 and

L

,a tend to zero for the same reason as a, (by considering

a£+],...
(3.4.2)).

n-1

Now we can proceed inductively. Consider A = {V(k-])l ktsKO}.

Let u, be a limit vector of A and let K, CK be a subset for

1 0



which V(k), k € K] >up as k -~ e, By the remarks just above,
Uy = (X5...5XsPs0,...,0) where p is the (2,-])5t component and
{pl >hy, > 0. By repeating the same arguments as before, we find

that for k e K] and k large enough

y(k-2) y(k-1)
[ x ] [ x )
X X
=2+ | r s s | « 21
L 9 [ %n )

where g's and a's tend to zero, and |[r| z_h3 >0 and so on.

Finally we have, ke K, , CK, ; €= S K4 CKys k Tlarge

enough

J(k-242) ) ()
[ X 3 '.x )

t o

. qQ

——— oo -

bg+1

L %n \ Pn )

where c's tend to zero as k>, keK, , and |t| >h, > 0.

Consider the set B = {V(k"“z)l keKy o}t Let w be a limit

vector of B. Then w = (c],gz,o,...,o)T with |c2| >h, >0 (by

arguments similar to that of Lemma 1(3)). Now p(w) = 1%, = 0,
since P 0, and gzlf 0 so o = 0, when normalized lczl = 1

and so w = x2.
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Hence we have the following situation: Whenever & > 2, then Xy

is a limit vector. Therefore if x, is not a limit vector then & < 2,

which means the vector iferation converges to ST

On the other hand, if Xo is a 1limit vector, we know by the same
argument as presented earlier in this section that X must also be a
1imit vector, and so the vector sequence must cycle. We suspect that
this cycling is impossible because otherwise it would mean that, over
and over again, the vector sequence approaches X1 and gets thrown
out to a region that is close to Xos which is orthogonal to Xq- This
seems hard to realize, but using the condition P 0 é]one is not
sufficient to prove that the cycling is impossible. This fact will be
shown in our next section.

We have, therefore, shown how to prove the following result:

Theorem. If Py Converges, then the vector iteration converges if

and only if x, is not a'limit vector.

Note. We merely say "pk converges" because by the corollary of
the theorem in the last section, Qhenever ‘P, converges, pk, converges

to A.

§3.5 A Shift Sequence Which Prevents Convergence

In this section, we show the surprising result that P ™ X does
not imply V(k) > Xq- But with a very weak hypoth;sis, the generalized
eigenvector of second grade cannot be a 1imit vector and thus by the
result of the last section, the vector iteration converges,

We shall first derive those weak conditions. Let C be normalized

such that A '= 0, and suppose X5 the generalized eigenvector of



second grade, is a limit vector of RQI. Let V(O) = ("]’nZ”"’"n)T
be the starting vector. Then by definition, there exists an infinite
set KC€{1,2,3,...} such that V(k) + x, for ke K. Let this

sequence of V(k) be denoted by Hi, i= 1,2,.7. . By the definition

of RQI:
k
a ) -1
't}(.r_l (I-E,J.N)) V = W]
j=1
£ (e )"
T, 0 (I-£.N V=W
(3.5.1) 2021 )
k3
= r -1 =
T3[‘E (I-ng)] vV = w3
Jj=1
etc.
where %i is the normalizing factor so that -uwin = IVl =1 and

£. = 1/p;. Denote ( £1(I-€.N))'] by B = (b(W)) m=1,2,...
J J j=1 J m ij ’? i ’

( 1 b(m) b‘(|n31) e b(m) A

Y m
m m
T bp3t oo by,
B = 1

Bm is an upper unit triangular Toeplitz matrix.

1

Case 1: UM # 0 . The fact that bg;) =1, Bm upper triangular
and wi = TiBiV * Xys whose last component is zero, implies that
?i > 0, and consequently some entries of the second row of Bi must

tend to infinity.
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b)) () o(1)
Lemma. . _%%Y , —%%T seves Z;n'll all tend tec zero as i » =,
b2n b2n bZ,n

i.e., b, ° tends to infinity faster than any other entry in row 2 of B, -

Proof. The proof exploits the Toeplitz matrix structure of Bi‘
So suppose that one of the ratios does no*,send to zero. Let
1

b
r € {1,2,...,n} be such that when j e T, l—T%T' doas not tend to
b

zero.
(i)
. : \ A
Case 1: There exists M, a constant, such that ET%T <M for
2n
all jel andall i. Let m=min{j|jel}. Then therzisxists an
b
s . m
infinite set K, C{1,2,...} such that when i e Kqs ET77~ >e>0
2n
for some €. Since béé) = b£1%+3n (they are on the same diagonal),
the ratio
th
(n-m+2)~" component of Ni’ .
> as i+, iek,.
2"d component of W, l — e+ (JT{-T)M+1 L

Therefore wi does not converge to Xos @ contradiction.

( Case 2: There exists Ty C{1,2,...,n} such that for je Iy
p{1)
I—%%71 is greater than any constant infinitely many times since
pi1/1
(

n
i) _ (4) .
bsi" = bp_jsp,n> At leastone j eT; such that
(ﬂ-j+2)th component of wil .
>
2nd component of wi | "'IP][ +1

for infinitely many 1i. Therefore 'wi cannot converge to Xp, a con-

tradiction. Here ends the proof of the lemma. O
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Let B% = Bi/béiz (bélg # 0 for large enough 1 because it tends

to infinity). Then as i - =,

( (1),.03)
0 --- 0 1 b]n /b2n
0 1
B% > :: 0
L 0 )

Therefore, x, is a limit vector if and only if bga)/bég) tends to

Mp-1/My

Case 2: There exists & such that Ny #90, nj =0 for J> 2,

If % > 2, this just reduces the problem to the consideration
of an 2x%& matrix. So, exactly as before, Xy is a 1imit vector if
| oo (1) (1) )
and only Tf b]z /b22 tends to n2_1/n2- |
If 2 =2, the T, may not tend to zero, but this case behaves
as if the matrix is 2x2, and the argument is easy when C is 2x2.
If ve let V(O) = (n],nz)T, then X5 is not a limit vector if and
i
on1¥ if -n]/nz is not a 1imit point of the sequence S; ° y gk =
_ k=
) .
k=1 Pk

k
Now we can summarize what we have done: Let Fk = (_ (I-ng))'],

ek 3=1
Fk (fij ), where

fgg) sum of Ei » 0(k) of them as k + =

f(k) sum of terms like £. &. , 0(k2) of them as k » «
13 17,

f%:) sum of terms like &, .-.E; s o(kz']) of them as k + =,

1 To-1
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We have shown the following theorem:

Theorem. Let C be a completely degenerate matrix with 0 as

its eigenvalue. Let V(O) ("1’“2’ s ool ) be the initial vector

with ng # 0, n; = 0 for i > &, Suppose P ™ 0. Then RQI will
converge to the eigenvector if and only if

(3.5.2) ]
-ny_1/ng s not a limit point of the sequence s; = fi,

Remark. The last condition is weak and highly technical.

In all of our experience with RQI, S5 always_d%verges. Even if
we can construct a sequence of Py that tends to zero with S; having
countably many limit points, the chofce of initial vectors that coqu ‘
force RQI not to converge is a union of n-1 dimensional vector spaces,
and hence of measure zero in the n-dimensional space.

In the rest of this section, we shall present a sequence of numbers
that tend to zero, which, if they are used as shifts, would force the
vector iteration not to converge, when an arbitrary but fixed initial

0) _ )T

Vector V( - (n1 ’nz, e ,nn 'iS given.

Without loss of generality, we may assume n, # 0. Suppose
“Ny-1/Mn

We shall construct the following sequence:

2 (2
lWpl > ap(zy 2 m(2)+1 2 9n(2)+2 2 770 2 In(2)

(3) , 4(3)

3.5.3 . 3
353 ugl 2 an(3) 2 9z 2 7 2 a3y



where qgi) =1/ for all i, and wi are to be determined such that
iwil.i 1/i. If the last condition is satisfied, then the sequence
constructed by putting wz right after qé}%)., w3 right after

(2)

qm(2)" etc. would tend to zero.

The wi are inserted at strategic points to force f%t)/fgtz],
as defined earlier, to tend to ¢, and thus force the vector iterations
not to converge. The wi's are obtained from the following steps:

Step 1: ¥y = 1. If ¥y is known, pick m(i) an integer so
large that Iwil > 1/m(i).

Step 2: ¢ q(i) q(i) q(i) is a sequence tending to

= i) m(i )41 (i Y220
zero. Using these as shifts, either X5 is a 1imit vector, and thus
our goal is reached and no further work has to be done, or X, is the

only limit vector (by the theorem in Section 4).

Step 3: Solve for ¢1+1= Recall that we téke the shifts

Pj = n(i)+j-1 2N
k
v(k) - %k(jgl(l-(l/pj)N))']v(o) > Xy -

k

= (X 1-(1/p0)

Let us define B -1

and then, normalizing it,

it

Bé Bk/((l,n)-element of Bk) )

Then by the same arguments used in the last theorem,

[ 0 ---01

. 0
lim B} = .
ko K (:::) :
0

So for a particular k, Tlet Bé (bgg)), and let & denote the
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unknown to be found. We know (I-aN)_] = I~+£N-F£2N2-+~---F£n-1Nn°],

the (1,n) element of (I-gN)-]B& is

k) n-1

() (
1+ £b, +‘5b,n2+ +g b

1,1°
the (1,n-1) element of (I-EN)']BQ is

(k)
by p-1EPy ppt i FE Dy g

The crucial ratio becomes

p{k+1) HEb(k) (B & lb(k%

1,n-2
(3.5.4) _‘r__y =¢ .
2 (k) GV AL
by Pt EP p2t T By

The above equation can be solved because the complex numbers are

algebraically complete. _
We know that when k is large, b(kz is small for'a11 J#n. In

(3.5.4), when b( 2 tend to zero, £ tend to infinity. Therefore,

(k)

there exists k so large, such that b are so small that a solution
£ whose absolute value inverse 1/|£|_§ ]/(i+1).

Hence, m(i)' 1is an integer so large (énd thus k so large), that
the absolute value inverse of a solution & of (3.5.4) is less than
1/(i+1). Choose Yipy = 1/¢.

Step 4: Now repeat steps 1 through 3 to find ¢1+2’Wi+3"-' .

Thus we have a sequence of numbers that tend to zero, and, by argu-

ments of the last theorem and choice of Yis we know that using these

numbers as shifts would force the vector iteration not to converge.

Remark. Through the intimate relation between SQR and inverse

jteration with shifts, it is surprising to learn, by the last example,



that SQR may not converge when operated on a general matrix even though

the shifts tend towards an eigenvalue.
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CHAPTER FOUR

The General Case

We are now in a position to summarize some of our results in the
previous two chapters into a theorem.
Let C be a general complex nxn matrix. We adopt the follow-

ing notation:

Notation: A],...,Am are eigenvalues of C such that if the null.
"space of C-AiI is of dimension j, then xi appears J times
among A],...,Am. Let P be a non-singular matrix such that P']CP = Jd,

the Jordan canonical form of C. Then the column vecfors of P are
the generalized eigenvectors of C. Let xgl) be thé;cb]umn vector
of P such that ng]) = Aixgl), and xgj) be the coiumn vertor of
P such that ngj) = Aixgj)-+x$j-]).

ij™i
basis of generalized eigenvectors mentioned above. We say V is

Definition. Let V=7 7§ a..ng) be a vector expressed in the
1]

deficient in A if for all k such that M T Ay @5 = 0 fc-
all j.

Theorem, Let C be a complex nxn matrix, let

v(o) ) Zagg)xgj) be the initial vector and V a limit vector of
13

the RQI.

i

Suppose that Py = p(V(k)) +p as ko, Then

for some i and V(O) is not deficient in A.:

either I. p =2, j

i
in which case V is a vector in the generalized eigenspace

of A;, i.e., V isa linear combination of generalized

eigenvectors associated with Aj- If further the weak
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condition (3.5.2) of Theorem 3.5 is true for each Jordan

block whose associated eigenvalue )\J. equal )‘1" then V

is actually an eigenvector such that CvV = A].V.

or I1(a). p =A; for some i and V(O) is deficient in A,

or II(b). p is not an eigenvalue of C.

In either case of II V= } VX g” where T C {1,2,...,m} and
jer
[x.-p] = m, a constant for all j e T. Case II is unstable.

0)

Proof. (I) p = A and V( not deficient in Mgt Let & be

the index such that a(o) # 0 but a(o) =0 for j > 2. Then one

1]
step of RQI gives (see (3.1.2) where n = & there):
aggﬂ) = Tk(a(k) (>‘1”pk))’ and for j such that dj # a;
LLkFT) oK) 1 (k)
J] = k J] ((;\j'pk)- % (>‘ 'pk) P ( j)
= 7 otk (K)
S I

where q = Jordan block size of A., and

(k) = (ymp)” -1 § (A;-0) 7P g;)/a(k). Now p, > A; # Ay implies

there exists Ny such that if k> N, max{()\j-pk)pl 1<p<al <My
for some constant M1 Then, by the theorem in Chapter 3, section 3,
we know ]ag.k)/a(k | >0 as k »«. There exists N2 such that if

k > N, max{la(k)/a || 2<p<qt < 1. Let N= max{N],Nz}. Then

1

for k > N, lmj] | < qM,. Hence for k > N

0y alt) el
l
M) B e pN+s N)l

J1
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(k)

as Py, Ai as k + o. Thus aj] -~ 0 as k> =, and as mentioned
above la§;)/a§$)| -+ 0, hence agﬁ) +0 as k- «. Consequently, a
1imit vector V must be deficient in Aj for all _Aj # A;s i.e., V
is a vector in the generalized eigenspace of Ai' If further the hypo-
thesis of the theorem in Chapter 3, section 5 is fulfilled, then V is
an‘eigenvector such that CV = Aiv. (Note the hypothesis is automatically
satisfied if all the eigenvectors corresponding to ki are of the lowest
grade or if the coefficients of the higher grade eigenvectors are all
zero in the starting vector).

(ii) By the theorem in Chapter 3, section 3, ag.:;) +0 as
k >« for all p>1 and all j. Thus a vector can only be a linear
combination of eigenvectors of the lowest grade. The.conclusion then
follows from the theorem in Chapter 2, section 7. Tﬁe fact that this

case is unstable is the result of the discussion of Chapter 2, section 8.

O

Remark. By thié theorem, we have a complete characterization of
1imit vectors provided Py converges. Thus the global picture of

RQI on a general matrix is reduced to the convergence of Py
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