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Abstract

The Rayleigh Quotient Iteration (RQI) is a method for computing

eigenvectors and eigenvalues of a square matrix.

The behaviour, both local and global, of RQI with symmetric and

normal matrices is almost completely understood. The vector sequence

converges for almost all starting vectors.

In this paper, we investigate.the global properties of RQI on

non-normal matrices. Results on nearly normal matrices with real eigen

values are obtained, and at the other extreme, results on completely

degenerate matrices are also obtained. In particular, the question of

global convergence of the vector iteration on a general matrix is reduced

to the convergence of the scalar sequence of the Rayleigh quotients.

In practice, the vector iteration always converges.

The main difficulty in the degenerate case is that the iteration

function is discontinuous near the eigenvector. An example is used to

display the sectorial behaviour of the iteration. Further we construct

a sequence of numbers that converges to the eigenvalue. Yet if the numbers

are used as shifts with inverse iteration, the vector sequence fails to

converge.
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CHAPTER ZERO

Introduction

§0.1 History

The idea of Rayleigh Quotient Iteration (RQI) originated in the

nineteenth century. Its earliest function was to improve an approxi

mation to a mode shape in the theory of sound.

With the advent of high speed digital computers in the 1950's the

RQI was turned into a way of computing eigenvectors and eigenvalues of

Hermitian matrices by successively improving an arbitrary initial

starting vector.

In 1958/59 Ostrowski [4] published a series of six articles giving

detailed analyses of the local asymptotic behaviour of the RQI and some

variants of it. He discussed both the symmetric and the nonsymmetric

cases, but not much was said about the global convergence because of

the complexity of the behaviour at early stages of the iterative pro

cess. In 1968, Parlett and Kahan [5] proved the global convergence,

for almost all starting vectors, in the symmetric case. In 1974,

Parlett [7] proved the global convergence, for almost all starting

vectors, in the normal case.

In this paper, we continue the investigation. The Rayleigh Quotient

Iteration is of interest to us for the following reasons:

1) Because of its excellent local convergence rate, which we

will discuss in later chapters. This is a very fast way to compute a

few eigenvectors, especially if one has a fair approximation to the

eigenvector or the eigenvalue.



2) There is an intimate relationship between RQI and the Shifted

QR (SQR) method, and thus, understanding RQI would hold the key to

unlock the mystery of Shifted QR which is so successful in practice.

This will be discussed in more detail in our next section.

3) A generalized form of RQI was found to be a powerful algorithm

for finding zeros of a polynomial. The iteration is applied to the

Frobenius matrix associated with the polynomial (see Wilkinson [9],

p. 349).

§0.2 RQI and SQR

The shifted QR algorithm is currently the champion for computing

eigenvalues and the process is stable, but the shifted QR algorithm

is so complicated to analyze that any direct approach to its global

behavior seems intimidating.

Given a matrix C, the Shifted QR is defined as follows: for

k- 1.2,3 let fk(C(k>)=Q(kVk>, then set C<k+1W°VkVk)
(1) * (k) (k)

where Cv ' = C , Qv ' is an unitary matrix, Rv ' is an upper

triangular matrix, fk(t) can be any sequence of polynomials of fixed

degree 5. We may define:

fk(t) =det(tI-EVK;E)(k)

where E is the last 6 columns of the nxn identity matrix I.

E

(k)

A practical SQR method takes E = e = (0,...,0,1) , i.e., the shift

is the (n,n) element of C

The relationship between RQI and SQR was discussed by Parlett and

Kahan [5], and Wilkinson [9], It is briefly the following:

If V^ ' is the vector at the k step of RQI with initial vector



e , then V^ ' = the last column of the matrix .n.Q^1', Hence if
(k) x, an eigenvector of C, then

c(k) =Q(k)\..Q(i)*cyi>-.-Qw

X X

X ••• X

0 ••• 0 X

where Ax = Ax.

Thus, convergence of SQR can be deduced from the convergence of RQI

§0.3 A Brief Outline of Results

Here we investigate what RQI brings us when the matrix C and an

arbitrary starting vector V is given.

In Chapter 1, we define RQI and state known results.

In Chapter 2, we investigate the semi-simple case. We show that

a bisector of a pair of eigenvectors can always be a limit vector of

the iteration. We show the almost-always convergence properties of

RQI on Hermitian matrices through a different method than that employed

by Parlett and Kahan [5], and thus the results can be extended into

the non-normal cases for well-conditioned matrices. We also have a

complete characterization of limit vectors of RQI on semi-simple matrices

when a scalar sequence, called the Rayleigh Quotients (p.) converges.

In Chapter 3, we expose new difficulties that we encounter in the

completely degenerate case. There will be a detailed analysis of a

3x3 matrix with sectorial behavior around the eigenvector. Then we

shall prove global convergence under a certain weak condition when the

Rayleigh Quotients converge, and we construct a sequence of numbers,

which, when used as shifts, would force inverse iteration not to



converge even though the sequence of numbers converges to the eigenvalue.

In Chapter 4, we summarize the picture into a theorem which makes

the only unsettled question about the global behavior of RQI for a

general matrix the convergence of p.,
K



CHAPTER ONE

Definition and Known Results

§1.1 Notation

First we shall explain our notation. Matrices will be represented

by capital Roman letters, column vectors by small Roman letters except

for i, j, k, £, m, n, p, q which are reserved for indices. Greek

letters represent scalars. The conjugate transpose of a vector u is

denoted by u*, and unless otherwise specified, Hull = /u*u, the

Euclidean norm. I = (e,,e„,...,e ) is the identity matrix, and the

matrix C - pi is often abbreviated as C-o.

§1.2 Definition and Basic Properties of Rayleigh Quotient

The Rayleigh Quotient p is a function defined by

p: Cn-{0} •* £ ,

u * u*Cu/u*u , u f 0 ,

where C is a matrix whose eigenvalues and eigenvectors we seek. So

p assigns to each non-zero complex vector a scalar value. Also, if

it is necessary to emphasize the role of C, we write p(u) = p(u,C).

The following are some basic facts:

Homogeneity: p(au,&C) = Bp(u,C); a ^ 0.

Translation Invariance: p(u,C-aI) = p(u,C)-a .

Continuity: The function p is a continuous function.



Boundedness: {p(u), uf 0} is a region (the field of values) in.

the complex plane for a given matrix C. By homogeneity {p(u), uf 0}

= (p(u), u*u= Hull =1}, i.e., we only have to consider unit vectors.

Since the unit sphere is compact and p is continuous, therefore,

(p(u), u^O} is compact. C = RxR is a metric space implies

(p(u), u/0} is closed and bounded.

Stationary Values: We say p is stationary at n if

lim[p(u+tv) -p(u)]/t = 0 as t •+ 0 through real values for all v.

A straightforward calculation (see Parlett [7]) shows that p is

stationary at u if and only if (C-p(u))u = 0 and u*(C-p(u)) = 0*,

i.e., u must be an eigenvector of C and C*. Note that if C is

normal (CC* =C*C), the eigenvectors of C are the stationary points

of p.

Minimal Residual: Given u f 0, H(C-y)ull is minimal if and

only If u = p(u).

2 2
Proof: ll(C-u)ull = u*u|u| - yu*Cu - uu*C*u + u*C*u

=u*u{(u-p(liD(u-p(u))- |p(u)|2+u*C*Cu/u*u}

= IICull2- |p(u)|2[|ul|2 +(il-RIiD(y-p(u))u*u .

Therefore, II(C-y)u!l2 > IICull2- |p(u) |2lluil2, with equality if and only
if u - p(u). D

Corollary: l!u*(C-u)ll2 > ||u*CII2 - |p(u)|2ilu*ll2 and equality holds
if and only if \i = p(u).

Corollary, u is orthogonal to (C-p(u))u in Euclidean space.



The above fact is equivalent to: Let f be an arbitrary poly

nomial and compute llf(C)ull over all monic polynomials of degree one.

Then the polynomial t-p(u) is minimal.

§1.3 The Rayleigh Quotient Iteration and Its Invariant Properties

The Rayleigh Quotient Iteration (RQI) is the following scheme:

For an arbitrary starting unit vector V^ ', and for k=0,1,2,..

(i) Compute pR =p(V^).
(ii) If C-Pj< is singular, solve (C-pk)V^k+1^ =0 for

V(k+1' f 0 and stop. Otherwise

(iii) Solve (C-P|<)W(k+1) =V(k).
(iv) Normalize V(k+1) =W(k+1)/!iW(k+1)ll.

(k)The sequence {p. ,VV '} is called the Rayleigh sequence generated

by V(0) and C.
(k)

If VN converges to x, an eigenvector of C, then, by

(k)continuity of p, pk = p(Vv ') converges to X, the associated eigen

value of x. Hence RQI can be regarded as a method to find eigenvectors

or eigenvalues or both.

(k)Let {pk»Vv '} be the sequence generated by RQI from C and

V^ . The following are invariant properties of the iteration:

(i) Scaling: The matrix aC, a f 0, produces the same sequence

as C.

(ii) Translation: The matrix C-a produces the sequence

{pk-a,V(k)}.
(iii) Unitary Similarity: The matrix QCQ*, Q unitary, produces

the sequence {pk,Qr h if you start with QV^0'. This property says
that RQI is coordinate free, in contrast with QR.



With these invariant properties in mind, we shall normalize our

matrix in the most convenient form in subsequent chapters without loss

of generality.

§1.4 Local Results

In 1958/59 Ostrowski [4] published six articles giving a rigorous

and detailed analysis of the local asymptotic behaviour of RQI and

some variant of it. Ostrowski showed that for a semi-simple, i.e.,

nondefective non-normal, matrix C, the local convergence rate of RQI

is quadratic if C has real eigenvalues.

Theorem (Ostrowski). If the sequence p. tends to X without

any_ of the pk becoming equal to one of the other eigenvalues of C,

if all eigenvalues of C are real, and y' '•» x, the associated
k ?eigenvector, then either for a constant K, pk+, -X= 0(K It (pk-X) )

pk+l "A j=0as k-> co or ^ "* 9 ?* 0 as k -• ». Ijf some of the eigenvalues
(pk-X)

of C are complex, then

pk+l "A=°(pk~A) ^ k"*" °° '

M^. 1°_T_ any fixed integer p

Pk+1-A =0((pk-X)(pk_r>.)-..(pk_p-X)) as_ k-^-oo.

In 1974, Parlett [7] showed that for a normal matrix C, the

local convergence rate for RQI is cubic (the equivalent result for SQR

was known to Wilkenson and Buurma [1]), and this excellent local con

vergence rate makes the RQI all the more interesting.



(k}
Theorem (Parlett). If C is normal and Vv ' •> x, an eigenvector

for X, as_ k ->- <=°, then

either HV(k+1)-XII/IIV(k)-Xfl3 - 1

or 0< ll/k+1)-XiI/UV^-XII3 <1 for all sufficiently large k.

For defective matrices, the local convergence rate is at best

linear. In 1970, Kiho Lee Kim [2] computed the local convergence rate

for completely degenerate matrices of sizes ranging from three to

twenty. But in his analysis, he assumed the iteration function to be

differentiate whereas RQI is not continuous in any neighborhood con

taining the eigenvector when C is completely degenerate. This will

be discussed in greater detail in Chapter 3.

§1.5 Fixed Points of RQI

It is easy to see, by step (ii) that the only fixed points of RQI

are the eigenvector because: If u is a fixed point, consider C-p(u):

Case 1: If C-p(u) is singular, by step (ii), we shall get

an eigenvector.

Case 2: If C-p(u) is nonsingular, then (C-p(u))u = u or

(C-p(u)-l)u = 0 implies u is an eigenvector.

This result depends strongly on the definition of RQI as stated

in §1.3.

For semi-simple matrices, Ostrowski [4] described a finite

neighborhood around each eigenvector. When RQI is started in this

region, convergence will occur to the associated eigenvector.



§1.6 Global Results

In 1966, Kahan [5] had a proof that for Hermitian matrices, the

RQI converges for almost all starting vectors. In 1974 Parlett [7]

proved global convergence of RQI for normal matrices except in an

unstable special case:

Theorem. Let the RQI be applied to a normal matrix C with

starting vector V* . As k-• »

(i) Pk = p(V ') converges, and either

(ii) (pj<>v ) converges to an eigenpair (X,x) or

(iii) Pk converges to a point equidistant from m (> 2) eigen

values of C, and the sequence {V^ '} cannot converge. It may or

may not have a_ limit cycle.

The main tool in proving the above theorem is the observation that

the norm of the residual (to be defined) is monotone decreasing:

Theorem. Let r^ =(C-pk)V^ be the residual at the kth step
of RQI. If C is normal, then the sequence {llr^ll: k=0,l,...} js.
monotone decreasing for all starting vectors V^ '.

Proof. Ilr(k+1)ll =B(C-pk+1)V(k+1)||
£ ll(C-pk)V^ Ml , by minimal residual property

=|V<k>*(C-pk)V<k+1>t , since (C-pk)V(k+1> is
parallel to V^

<IIV(k)*(C-pk)llllV(k+1)II , Cauchy-Schwarz
= HV|(C-pk)li

=ll(C-pk)V^k^il , since C is normal
- Ir<k>l .

10
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Equality can occur only if pk+, =p and V^ ' is parallel
(k)*to Vv (C-pk). From monotonicity of norm of residuals, it can be

shown that

(1.6.1) Ipk~pk+l I"* ° as k"*" °° *

Then global convergence of pk for normal matrices can then be proved.

Parlett [7] in his paper remarked this fact without going into details.

For completeness, we include the proof of the global convergence of p.

here:

Proof. I. If iirk'll-*0, we know v'k^ -*• x, an eigenvector,
hence pk -»- p(x) =X. Therefore p. converges.

II. If llr^H -x>0, the set F={p(u)| ues""1} is compact,
so let p* ' be a limit point of {pk>, and let the infinite set

KC{0,1,2,...} be such that lim P|< =p^ for keK. Consider
{V^ '| keK}. It has limit points because S is compact. Let

rcK be such that lim V =V^ for y er. Then p(V^) =p^\
From Parlett's theorem, it was proved that

(1) l(C-p(1,)V(1)l =t,

(ii) W1W-P(1,)V(1) -tV1* .
(iii) p(1) =lim p(V ).

Yer m
From the above three relations, we can derive that pv ' is

(a) equidistant from m (>_ 2) distinct eigenvalues of C,

(b) a weighted mean of them.

We can see immediately that p^ ' can assume at most (2n-n)

values. We shall see later that only a very few of the (2n-n) values

can actually be candidates for a limit point of p. . We have established
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that there are only finitely many limit points of pk. Let p^ ,...,p ^

be the distinct limit points. We proceed to show that if q >. 2 there

is a contradiction.

Let d=min{|p^-p^|, i^j, l<1,j<q} >0. Let
B. = (C| |S-p |<d/4, £e(t}, i.e., open balls in the complex plane.

q
Then F\ u B. is still compact, hence there can only be finitely many

i=l n q
p.'s belonging to F\ u B. (otherwise we have another limit point of
K i»l 1

Pk). Let this finite number of p.'s be M,

From (1.6.1) we have IPi<"pk+1' "*" ®9 so tnere exists N sucn

that |Pk~Pk+1l <d/2M for k > N.

If q >. 2 pick k, and k2 such that k« > k, > N and

Pk e B,, pk eB«, Then one of the following:

K^+ll
|pk1+Tpk1+2l

|pk2-i:pk2'

must be greater than d/2M for the {p.} to travel from B-j to B2,

which is a contradiction to |P(,-Pk+il < d/2M ir°r ki N»

So q = 1, in other words, pk converges. •

Remarks. (1) The values that pk can converge to is limited

by properties (a) and (b). (a) says that a circle must be able to be

drawn through the eigenvalues and p is the center. So, not any combi

nations of eigenvalues can produce a possible limit for pk. (b) says

that p is a weighted mean of those eigenvalues, so, not any combina

tion of co-cyclic eigenvalues can produce a limit point.



(k)
(2) Though p. always converges, Vs ' does not and may have

infinitely many limit vectors. For example, a 3x3 matrix

C=diag(l,e 1,e" 1). It is easy to see that there exist a,, a2> a3

such that J|a.| A. =0. If we let V* ' =a,e.j+a2e2+a3e3, then
(k) -i?k i2kfor k=0,1,2,..., Vv ;=a^+o^e ,tNe2+a3e e3. The sequence

{V* '} is infinite because if V*1' = V^J' with i f j would imply

2i = 2j (mod 2ir) which is impossible. It is also obvious that each

V^ is alimit vector of the set {V^: k=0,1,2,.,.}.

13



CHAPTER TWO

Rayleigh Quotient Iteration for Semi-Simple Matrices

§2.1 Synopsis

Here we turn our attention to non-normal matrices. Remember the

main tool in the proof of the convergence of RQI in the normal case

is the monotonicity of the residual. That no longer holds for non-

normal matrices. For example, the matrix

f 3 2 1 1

0 2 2

0 0 1

with an initial vector of (0,.75,.6614) would produce a sequence of

residuals which is not monotonic (see Table 2.1). And the closer

the initial vector is to the boundary that separates regions of conver

gence to different eigenvectors, the more capricious the behaviour of

the residuals is.

In the normal case, the residuals of different limit vectors are

the same. For example, for the matrix A=diag(3,2,l), (e,+e2)/./2

and (e,-e2)/i/2 are limit vectors belonging to the sequence of

vectors generated by V* - (e,+e?)//2. Both of the residuals equal

0.5, but residuals of different limit vectors may be different in non-

normal cases. This will be shown in Section 3 of this chapter.

The residuals have been measured in norms other than the Euclidean

norm. First we define X and Y* as follows: Let X be an n*n

matrix whose columns are unit column-eigenvectors of the matrix C,

and Y* is an n*n matrix whose rows are unit row-eigenvectors of

matrix C, and Y* is obtained by normalizing rows of X" to have

14
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Table 2.1

k
number of iterations

P

Rayleigh Quotient (vW
ir^l

residual

0 2.555 (0,.75,.66) 2.560

1 2.543 (-.97,.20,.03) .06928

2 2.790 (-.31,-.94,-.040) 2.112

3 2.807 (-.99,-.09,-.002) .07129

4 3.058 (-1.0,-.002,-.000) .0308

5 3.003 (-1.0,-0.0,-0.0) .0015

6 3.000 (-1.0,-0.0,-0.0) .48E-5

7 3.000 (-1.0,-0.0,-0.0) .46E-10

8 3.000 (-1.0,-0.0,-0.0) .98E-20

0 2.540 (0.,.93,.368) 2.302

1 2.523 (-.97,.21,.02) .081

2 2.503 (.20,.988,.27) 2.132

3 2.500 (-.97,.23,.002) .114

4 2.411 (.19,.98,.003) 2.126

5 2.401 (-.96,.27,0.0) .113

6 1.488 (-.70,-71,0.0) .525

7 1.846 (-.85,,51,0.0) .093

8 1.981 (-.89,-46,0.0) .010

9 2.000 (-.89,-44,0.0) .002

10 2.000 (-.89,-45,0.0) .58E-7

11 2,000 (-.89,.45,0.0) .13E-13



unit length. We have tested the following norms: HX^1 (C-p)vlI,

nx""1 (C-p)vH/«X""1vil, HY*(C-p)vll/IIY*vll, and some of these were designed
to force residuals of different limit vectors to be the same, but the

monotonicity has not been recaptured.

§2.2 Anatomy of the Rayleigh Quotient

To pursue the behaviour of Rayleigh Quotient Iterations, we first

analyze the Rayleigh Quotient. From the definition, the Rayleigh

Quotient of a non-zero vector v is p = v*Cv/v*v. If C is normal,

then X, as defined in the last section, can be taken as unitary. Then

p= W$$ when x=x"lv
= x*X*CXx

x*X*Xx

=T^T where D=diag(A.) =X*CX
A A 1

by definition of X.

T

So if x = (ou,cu,. ..,a ) , i.e., v = Jcux- where Cx. = X.x., then

n 9
I \^\\

i=l ^ np = .

i=l n

Therefore, p can be regarded as a weighted mean of the eigenvalues

of C. The weights are proportional to the square of the coefficients

when v is expressed as a linear combination of eigenvectors.

In the non-normal case, the picture is very different. In this

chapter, we shall concern ourselves only with non-defective matrices.

We now remind the reader that we are introducing some facts and standard

16



notation about non-normal matrices. Let X and Y* be defined as

in the last section. Then CX = XA, Y*C = AY, where

A = diag(X,,...,X ), and x., y., i = l,,.,,n, are unit column and

row vectors of X and Y* respectively. Then y- = y*X-. (0<y.<_l)

are reciprocals of the condition numbers of the eigenvalues (see

Wilkinson [8]).

Let v

n 3
= I a.x., v* = I &.y* Then

i=l n 1 i=l 1 T

(2.2.1) p=
r̂v

=,y*Y*CXx y* = , , , >T
y*Y*Xx 1'' ****n ' v.oc-| 9. •-sct i

="pfT where A=diag(X.), r=diag(Yi)

J^iVi^i
= _ .

I a.e-Y,
i=l 1 n 1

Although the Rayleigh Quotient can still be considered as some sort

of mean of the eigenvalues, it is no longer a barycentric mean (convex

combination) of X.'s because even in the real case y.a.3- may be

negative. When some a.6. < 0, it is possible then for some

|a..3.|Y.j/I(a.iS.jYi)l >1 ancJ hence p is no longer confined to the

convex hull of eigenvalues in the complex plane. (Recall that a matrix

is normal if (and only if) its numerical range {p(v): vf 0} is the

convex hull of its eigenvalues [Hausdorff] (see Mareus and Mine [3]).

§2.3 The 2.x 2 Case

Having outlined the general picture, we shall now analyze in detail

the 2x2 case. This will on one hand show the role that the Rayleigh

17



Quotient plays in the convergence of the iteration, and on the other

hand, supply a result needed later in Section 6 which deals with a

sufficient condition for a vector to be a limit vector.

By the invariance properties of RQI, it is sufficient to consider

C =

r 1 k )

0 0

< > 0

And since v and -v will give the same sequence of vectors except

for sign, it is sufficient to consider vectors on a unit hemisphere,

and in the present case we can have our column and row eigenvectors on a

half circle of the unit circle (even in the complex case, with the

above normalization, column eigenvectors can be expressed as a real

linear combination of y^ and y2 (see Section 2 for definition)).

We have the following figure:

yfC = yf , y|C =0

Cx, = x,, Cx« = 0

te2

Note that we choose directions so that the angle between y. and

x. is acute. If we want to express x,, x«, y,, y2 in the orthonormal

basis {else2}, then x] =(1,0)T, x2 =(k,-1)T/H(k,-1) II,

18



y1 =(1,k)/||(1,k)H, y2 =(0,-l)T.

Lemma 1. y, = y2

Proof. y*x1 = l/il(l,K)ll = 1//1+?

y|x2 = l/fl(ic,-l)ii = 1//RF

Therefore y^ = y*x.j = y£x2 = y2-

9, = angle between x, and y1 = cos" y, = cos y2

= angle between x2 and y„ = 02 . O

Lemma 2. Let v = a,x, +oux2 = B-.yi +32y2- Then

1^1 > |a2| implies \^\ > |B2I .

Proof. In order to show the main idea without involving ourselves

in unnecessary detail, we shall proceed on the assumption that a,, cu

are real. The proof of the complex case is left to the reader.

Let t = /I+k*. Then

x1 =(1,0)T =t(1,k)T/t +k(0,-1)T
= xy] +<y2

x2 = (k,-1)/t = k(1,k)/t + t(0,-1)

= Ky-, +Ty2 .

So if v = a.|X.| +a2x2 = B-^ +32y2, then

(2.3.1) 112
B2 = Ka-. + xou .

Recall that x > k and vie assume |a, |> |a2|. So among the four
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products that appear on the right hand sides, |ta, | > {|kou |,|tou|}

> |kou|. If a,, a2 differ in sign, then B-, is the difference

between the largest and the smallest products while B2 is the

difference between the two middle ones. Hence |B-,| > |32|. If

a,, cu agree in sign, let a= |xct, |, b= |i<a,|9 c = |xa2|, d- |koi2|

then ad = be and a > {b,c} > d.

Claim, a+d > b+c

Reason. We may assume b >_ c without loss of generality.

(b+(a-b))(c + (-c+d)) = ad

bc + b(d-c)+ c(a-b) + (a-b)(d-c) = ad

So

(2.3.2) b(d-c)+c(a-b) + (a-b)(d-c) = 0 .

If c-d >_a-b, then b(c-d) ^ c(a-b) because b > c. This would imply

the left hand side of (2.3.2) is negative with right hand side equal

zero. So a-b > c-d, or a+d > b+c. Here ends the proof of the

claim.

Now 1^1 =a+d, |B2I =b+c, so \^\ > |B2|. •

Lemma 3. |<x, |= [aJ implies |bJ = |B2U

lot-, |< |a2| implies IB^ < |S2|.

Proof. First statement is trivial by (2.3,1), Second statement

follows from the symmetry of Lemma 2, •
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Figure 2.3.2

Theorem. Let C be a 2x2 matrix, and V*0* =aj^x-j +a^x2
be the starting vector. Then the Rayleigh sequence converges to an

eigenvector if and only if |aj°'| ^|al°'|.

Proof. As mentioned at the beginning of this section, it is
fi "

sufficient to consider C= Qq with k > 0. We can actually separate

the half unit circle (see Figure 2,3.2) into invariant regions under

the action of RQI:

Region I: |ct^ | > |a2|

If |ajk)| >|ot|k)I, by Lemma 2, \&\
Dropping the superscript when there is no confusion, we have from

(2.2.1)

o - o(V{kh - alBlYlVa262Y2X2
k pv ; a^y-j+c^B^

,(k) 5(k)
'2

and also Xj = 1, X2 = 0, Y] =Y2 =Y-

Let a-jB^y = a+bi, a^Y =c+di. Then b= -d because

a13-,Y +a2B2Y = 1. la-,6^ > |o2B2| implies |a| > |c| , but a+c

so a > j. Hence

= 1,



Ct S Y

Re(pk} =R\&J+\*2J -Q>l'

From the definition of RQI, we have

So

and

(2.3.3)

v(k+i) =a(k+i)Xi +a(k+1)X2 =Tk(c.Pk)-iv(k)

(k+1)
a

a
[k+TJ

(k+1) ,, v-1 (k)
al = Tk(x"pk} al

m H (k)(1-Pk) a] '

(0-pk) a£ '
=

(k)
al

(k)a2

pk

^k
>

al

a(k)
2

since Re(p.) > j. Consequently |ai '| > |ai '| and thus region I

is invariant.

We now show that region I has a single attractive fixed point. Let

|«;0)| >|4°>|, then |ajk>| >la^l and |6l(k)| >IB^I for
each k. Then

a
(0)

Let

a
(oy

MMa1 B1

o^^p
a

a

(k)
1
no
2

(k-1)
1

a

a
2

*

(oj
1

a

(0)
a

(k) (k)(because |b)R|| > |B^'|)

! by (2.3.3) since region I is invariant

and |oti '| > |ai '| by assumption

= to > 1. Let Yajk)s|k) =a+bi, ya^B^ =C-bi. Now

a. |, |B-| are bounded since fivll = 1. Therefore |b| is bounded by

22



a constant, say M. By the result above,

Therefore

So

aik)6<k)
a(kUk)

•V, 2
-*—« > to ,

a2,h2s 2 2 . 2.2
a+b >wc+tob ,

2

1%> w2 +(o)2-l)b2 >1
c

|> /t/+(to2-l)b* >a) .

«jk,ejk>Y
Re(pk) = ReU^^Ua^B^y)^ >1

for each k. Repeated application of (2.3.3) brings us to

«ik)
4k)2

=

r k
n

li=0

pi
1-P1

•

j

a2

-*• °° as k

because

i-Pi
a+bi

1-a-bil "\V^W
~~2—2aW

\
(iF +b2
W**-\

fk)
In other words, Vx ' converges to x.

02+»2
(^2 +«2

23
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Region II: |a,| < |ou|

By similar arguments, this region is invariant and if V

(k)belongs to region II, VN ' converges to x2.

Region III: |a,| = |a«|

If |cu(i)| = |41}|, then |b{1)| = |0<1)|..
1 '1

Re(p.) =Re(_JT_) »I
i \x-|B-| +a2^2

because yfa-jB-j+a2B2) = 1

a
(1+1)

a
(i+TT

-p.

1-p.

a(1)al

a2

= •

4"'

(0)

So if |ot^0)|=|<40)| then |ai(1)| =|41)| for all i.
This region is invariant and the vector sequence will not converge.

Therefore, the theorem is proved and the sequence converges if and

only if V* ^ is not a bisector of the eigenvectors. •

Value of Residual Norm for Bisectors

Now, let us compute the residual of the eigenvector bisectors:

Let Un = (x,-x2)/llx,-x2ll, u2 = (x,+x2)/llx,+x2!|. Then

u, =(1-f 1)T/U(1-|,1)B ]

u2= (l+^-l)T/i,(1+P7)l! '

Let 6 = tan" k. Then
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So

rj =

u, = (1 - sin 0, cos 0) //2 -2 sin©

u2 = (1 +sin6, -cos 0) //2+ 2sin 0

(c-ir1

(C-J)-1u1

[\ tan 0V1
o .1

f 2 4 tan 0 1

0 - 2

1 2 4tan0 1
0 - 2

/2-2sin0

1 . If 2 + 2sin0 '
I[ -2 cos 0

/2-2sin 0

= 2/(2 +sin 0)/(2-sin 0}

1

1 - sin0

cos 0

llr2ll =fltC-^J^Ugl
/2-2sin0

f 2 4 tan 0 1
0 - 2

1 +sin0

-cos 0

= 2/(2-sin0)/(2 + sin0) .

1^1 = Dr2ll iff /(2 +sin0)/(2-sin0) = /(2 -sin 0)/(2+ sin 0)

iff sin 0 = 0

iff 0 = 0 iff k = 0 iff C is normal.

We have just shown that if C is non-normal, then the residual of

limit vectors can be different. Thus monotonicity of residuals is

lost immediately.

§2.4 The Hermitian Case

W. Kahan and B. Parlett [5] presented a proof of the convergence

of RQI in the Hermitian (symmetric) case in 1968 through the use of the

monotonicity of the residual. In previous sections, we have seen the

irregular behaviour of the residual in non-normal matrices. In this
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section, we shall present a characterization of limit vectors without

the use of the residual, so that we may extend the result further into

the nearly normal case in the next section.

Let A be an n*n matrix such that A* = A. In this case, the

eigenvalues X. of A are real and {x.=y., i= l,...,,n} form an

orthonormal basis. Further, we arrange the X.'s so that

A, £X2£- ••£X . Let v be a vector. Then p(v) = v*Av = v*A*v = v*Av

is real.

Let V^°) be the initial vector and {V^| f|V^II =l, k=l,2,..:>
be the Rayleigh sequence from A and V^ . Let

v(k)=ajk)x1+4k)x2+..-+aWxn.

Then from the relation

(A-D(V(k)))V(k+^ =

when A-p(V ') is invertible, we have

(k)

(2.4.1J ai = T. rry-
1 kX.-p(Vlk))

so the action of RQI induces an increase in jot-f which is inversely

(k)proportional to the difference between p(Vv ;) and X..

Also, the Rayleigh Quotient p(V^ ') is a mean of the eigenvalues:

p(V(k)) = I X.\a\k)\2 (see §2.2) .
i=l 1 n

With these in mind, we would like to show that the only limit

point of the Rayleigh sequence is either an eigenvector or a bisector

26



of a pair of eigenvectors. Before we proceed with the main theorem,

we shall illustrate the main idea through a 3x3 example.

Example. Let A = diag(X, ,X2,X3) where ^•j<^p<^3' and

x. = e., i = 1,2,3 are the eigenvectors. Let

V^ '=aj 'x, +ai x2 +ai 'x3 be the starting vector and
V^ =a|k)x1 +4^*2+4^*3 be the vector at the kth step and let
V = a,x, +a2x2 +a3x^ be a limit vector. The crucial step is to show

that at least one of a,, a2, a3 must be zero.

-t~

Figure 2.4.1

Suppose cua2a3 f 0. Then consider the scalar sequence

Pk =p(V^), k=0,1,2,... . Let u) =(X2+X3)/2. There are three
possibilities:

(1) p. < u) for all k but p. converges to to.

Notice we may assume a. 7* 0, i= 1,2,3 because if a\ -0
• j

then 4 =0 for all k by (2.4.1) and thus a, =0. And for the
j j

(k)same reason, assume a} ' f 0 for all finite k and all i. p. con

verges to u) means there exists a constant N such that if k ^ N,
o)-X«

[p.—031 <—^—• Consider

(N+k+1)
a2

^I+TT
,, x-1 (N+k)(X2-Pk+N) a2

ul pk+NJ al
t k X,-

n

i=0

l"pN+i

VpN+i

„(N)

,w
a

by (2.4.1)

-*• « as k -*•
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u)-X-

because each of the terms |(VPN+i)/(VpN+i^ >'ZFT > *» and
(N) (k) 2a£ f 0. That means |a| '| -> 0 as k- «, which implies a, = 0,

a contradiction.

(2) pj^ £ w for all k and p. does not converge to w.

Then there exists an e > 0 such that p. < oj-e for infinitely

many k. Hence

.(k+1)

.(i Vpi |a2
(0)

a3
(k+1)

a3 Ypi J

x3-P;

Vpi
> 1 because p. < w
- i —

and
Vpi
Vpi

> al+£
— o)-e

> 1 for infinitely many i ,

so the ratio tends to infinity, which means |ai '| -* 0 as k•* °°.

Thus cy3 = 0, a contradiction.

(3) There exists a_ p. > oj.

This inequality is "invariant" under subsequent RQI steps, i.e.,

pk+i > w for a1^ i- Actually, we shall show that

"<pklpk+1±pk+2l

the following

< Pi . • <—^k+i -
The reason is clear if we consider

Similarly

.(k+1)
a3

=

x2-pk a3
(k)

aX '

>

(k)
a3

a(k)(k+1)
a« Vpk

(k+1)

fk+TJ'
a

a

(k),
'3 :
TkTi

since pk>u
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Therefore |a^|
know that for

(k) Mincreases with respect to \a\ | and |a, '| We

! _ vi (k),2 r, (k+1),2

"v* I Ck)|2Pk=lA.|a} M

±I^-;lai I because more weight is put on
X3 and X3>X2>X,

= P k+1 *

So we have ax PklPk+1 £Pk+2£ *•• and

a
(k+j)

IFJ7
a

since

j-i
n

•i=o

Wi
Vpk+i

(k)
a

00"
a

Vpk+i| > |Ypk
Vpk+ii - IVpk

-> <* as j

> 1 I = 1,2

(k)Therefore a, = a2 = 0, which means Vv ' converge to x~, a contra

diction that a,a2a3 ? 0. So if v is a limit vector, then v is a

linear combination of at most tv/o eigenvectors. If v = a-,x, +a«x?,

then [ot-j |= |a2|, this will be shown in the last part of the forth

coming theorem. •

When A is n*n, the picture is more complicated, and that is

why we prove the theorem separately.

The main trouble is when V = Ya.x. with a„ t 0 and a. = 0,
^11 £ l '

i > I. Then the existence of a p. > (X«+A0 ,)/2 does not guarantee

.wthat p.+, > p. because ai*i may decrease at the (k+1) step and
(k)Pk+1 may be less than pk> But if we let k be so large that Vv ;

st
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is very close to V, then even though p.+-, may be less than p. ,

the subsequent p.'s are confined to a narrow interval. This is the

essence of the following theorem.

Theorem. Let V^ ' be the initial vector and let V be a limit

vector of the Rayleigh sequence from A = A* and V^ '. Then either

1) V is an eigenvector and Vk* •*• V=x.. and p(rk') -* Xi
or 2) V is the internal or external bisector of two eigenvectors

(k)
belonging to distinct eigenvalues and the sequence Vv , k=l,2,...

oscillates between the bisectors, p. •*• p equals the mean of the

eigenvalues.

Proof. 1) V is an eigenvector. Ostrowski [4] described an

(k)
eigenvector as an attractive fixed point of the RQI, i.e., if V is

close enough to V, then p. -*- X., the eigenvalue associated with

V and V^ ' converges to a vector in the eigenspace of X...

2) If V is not an eigenvector, then the crucial step is to

show that V is a linear combination of only two eigenvectors. So

assume V = a,x, + ••• +ax with an, a. a0 being non-zero and
ii n n p r *»

a. = 0 for n > i > I. (If I = n, then we have essentially the 3x3

example before, and the first three cases listed later will be suffi

cient and we may skip most of the proof). We proceed to show that if

(kn> - . •uk u AV is close enough to V, then there exists an open neighborhood

of V such that v'k^ is outside of'it when k is large and hence

contradicts the assumption that V is a limit vector.

Now, V being a limit vector means that there exists kn such
(kn) (kn)

that V u is so close to V that |a. -a.| < e where e satisfies

the following conditions:



(i) e < .01|aJ and let y = ,99|otn |. Let s < m < 51 < q be

indices such that a; ', a[ ', a; ' are nonzero and all a\ =0
s m q l

if i is between any two of them. Then by (2,4.1), we know all those

a(k^ =0 and a^, a^k\ a^ non-zero for all finite k. Let
i s m q

w = Um+^)/2 (see Figure 2.4.2).

»* ff—•& & fl

Figure 2.4.2

(ii) e is chosen so small that

u2(-V) > I£2(X.-^) .
i=q

(iii) If the scalar t is given by the following relationship

(2.4.2) u2|Xru)| =p2|X.-o)-t| + Ie2|X.-w-t|
* * i=q n

X -a)

then e is chosen so small that t < -4-.

(iv) Let <j»., i = l,...,s be positive numbers defined as

« u)-X. n

1 Vw 1 j=q J

and <f> > 0 is defined as
m —

m9 X0-uj « X0-w

We can see that if e -*- 0, (f>. + 0 for i = l,...,s and
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X£-w.
? 2JV-H_
Ym X0-o)

Let e be chosen so small such that

(2.4.3)
9 1 s 9 2X +A

<j>2(A -i(X -X )) > I ^.--4-1)vnr m 3N m s ' - .£;,vi l 3 '

We are now ready to proceed. Consider the scalar sequence

Pk =p(V(k)).

Case 1. p, <iii but p. -»• w.

Remember a f 0 in the expression for the limit vector V, but
r

examining (2.4.1) reveals that

(k+1) yp<v(k)> (k)

and

Thus

a„

a.
(l+TT
m

a

x-p(v"^T lap
p m

p. •* a) implies
Vp0/(k)>
Xp-p(V(kT)

£ \p < 1 for k >^ k, for some k,.

i (k)

a.
m

•+ 0 as k -»• °°. Icr 'I < T implies la; M •> 0, a contra-
1 m ' — r P

diction to aJO.

Case 2. p. < w but there exists a_n open neighborhood N^ around

u such that p. $ N for infinitely many k's.

Examining (2.4.1) shows that l4 '4 '"*" ° aS k"** °° Whi°h 1n
(k)turn implies |a^ ;| -> 0, a contradiction to a^ / 0.
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So we may assume that there exists p. such that p. > w.
Kl Kl

Let

fo if I = n

defined in (2.4.2) if I <n .

Case 3. Let p. >^w + t.

1 VXoBy (ii) in the choice of e, we first have —2~ > pk for a^

k̂ kr By the action of RQI, i.e. equation (2.4.1), we know |a^ '|
(k)increases with respect to |a. '| for i f I. The choice of t insures

that p. >a) for all k> k, with p. -f w, p. -f- —2-9-. Therefore,

as k-> oo, |4kV4k^l "*• ° for a11 i**- Thus V^R) "* V a
contradiction to V being a linear combination of eigenvectors of

distinct eigenvalues.

Case 4. w + t > p. > cu
Kl

Two possibilities exist:

(a) p. is monotonic increasing from this point on. Then

(k)
p. -*• X. and Vx ' -*• X« as before, a contradiction.

(b) F = {k| k^kn such that o. ,<p.} ? 0. Let k0 = min{k|keF}(
1 kl K n (k2r2

If we look closer at the formula p. = J X.|a. | and regard
K2 i=l q n

p. as the center of gravity of a weightless rod that has weights

(k\ o
|a- '| at positions X., then the hypothesis implies: loss of

moment on the right of p. after adjustments due to RQI > loss of

moments on the left of p. . Before we calculate how much is lost on

each side, v/e would like to remind the reader that p. must be in the

(U k2
interval (io;u+t), hence Ice. i, i t l decreases with respect to
(kj 1 (k )

\oLn !. If we use the normalization that |an j = u, then the

moment lost on the right can at most be



n 2,I e (X.-w) . (I)
i=q

34

(Notice |a|k)/4k)l >\*M for k1k0' i>l because P|( <-i^-9.).
And the moment lost on the left is at least

s (k9) 9 oj-X.
J |ai I O-r-^-V * (II)i=l n Vw n

The hypothesis implies (I) > (II) and by definition of <j>., i = l,...,s,
(k2) 1

we have <b. > |a. c | for i = l,...,s. This, together with
1" ' (U

ca < p. < w+t, implies |a | > $ . Hence
Kp m — m

(kj ? t s (k,) , 2X +\
K iVK-V^h2 iV-t-1) by {2-4-3) •

2X +X

This insures that pk > m3 for k>k2 and therefore

ja]kV4k^l - ° as k•> «> for i=l,...,s. In particular, |a^|
a contradiction to a f 0. Here ends the proof of the crucial step

that V is a linear combination of only two eigenvectors.

Now V=a^.+a.Xj. If |a..| t |a.|, say |a..| > |a.| then

0,

the Rayleigh sequence generated from V would converge to x. by the

result of the last section. We know that x. is an attractive fixed

point and there is an open enighborhood N around x. such that if

a vector falls into that neighborhood, the subsequent Rayleigh Quotients

would converge to X. (see Ostrowski [4]). The RQI function is

continuous and will map an open neighborhood of V, Ny, into N .
(k)

Therefore if V is a limit point, then there exists Vv ' e Nu and
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(k)
thus Vv ' -*• x. as k -*• «>, a contradiction to the assumption that V

is a limit point. Therefore |a.| = |a.| and V is an external or

internal bisector and p. -»• p(V) = (X.+X.)/2. " D
K 1 J

The instability of the case where V is a bisector will be

discussed in Section 8.

§2.5 The Nearly Normal Case

We have seen the characterization of limit vectors for a Hermitian

matrix without the use of residual in the last section. Here, we shall

prove a similar result for real nearly normal matrices with real spectrum.

The proof itself is a modification of the last theorem. Hence we

shall not present the same proof twice, but rather we shall discuss

what properties are lost when we do not have a normal matrix, and how

we can modify the proof accordingly.

By translation invariance property, we may assume 0 = X, <_\9<_ ••• <_X .
n n

From (2.2.1), we have, for v = £ a.x.,

p(v) = -p—s .
)a.6.Y'L i i'i

By nearly normal, we mean max |1-y-| 5.6 for some small positive 6,
i 1

As in the last section, we want to show that the only limit vectors

of RQI are the eigenvectors and the internal and external bisectors

of two eigenvectors. Once again, let V be a limit vector which is a

linear combination of three or more eigenvectors with distinct eigen

values. We shall draw a contradiction from that assumption if 6 is

small enough.



The important properties that are lost in non-normal cases are:

(i) In the expression for p(v) with X., y. > 0, the term

ai3iXiYi may be negative whereas ajB-Yj -la^2 in the normal case.
We like to know when would a^- be negative? If we consider the

space spanned by {x^^y^}, and in the same plane draw the n-1 dimen

sional hyperplanes spanned by the other n-1 column eigenvectors

and n-1 row eigenvectors respectively, we have Figure 2.5.2.

jA= span{y.|j?M}

^ f-B= span{x.|j f i}

Figure 2.5.2

So the only place where a.Q. is negative is when the projection of v

onto the plane spanned by {x.,y.} is in the shaded area. Let /x.y.
ii ~^ i i

be 9 and lv>J(be <J> < 6. Then |a.3.| =|sin <*> sin(0-<J>)/cos20|.

So la^-l -> 0 faster than |tan e| as 8-* 0. We also know 8^-0

as <5 = 1- cos 6 -»• 0. Therefore, for each e, > 0, we can choose 6

so small that a^Y-j <0 if and only if la^-Yj! < e-j > for each i.

(ii) The numerical range of p is no longer confined to the

interval O-j.Xj. But max{a18iYi Ii=1,... ,n} <1+(n-1 )e], so if

X..^ is small with respect to |X.+,-A.| for each i, then p

cannot be close to Xn when an = 0. The effect of this has to be

taken in account also.
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cannot drop off (because (2.5.1)) so that p. > u> for k > k,. Thus

Vv ' converge to x^ as before. As for Case 4, one extra considera

tion must be taken: 6 be small (and thus e, small) so that if

4 4 Yj 1s negative (which would be like aweight of |4 3- Y-l
at -X^ the effect of <x\ 4 Yixi in the expression of p. is
negligible.

Thus the convergence result proved in the Hermitian case holds

here, a non-normal case, also.

Remarks. We have attempted above to present an idea on how to

prove the nearly normal case through the extension of a proof of the

Hermitian case. The proof is greatly simplified at the expense of

choosing an extremely small 6. If we are willing to do some more

detailed analysis, e.g., choose the translation of matrices such that

X, = -X , obtain better estimates in conjunction with the bound on

|cx.3-Y. |, etc., we can come up with a larger 6. We like to emphasize

here that the main goal in this section is to present a sketch of the

global behaviour of RQI for a non-normal matrix, but not to obtain a

theorem as powerful as we could. In fact, there are reasons to believe

the "nearly normal" condition can be replaced by "well-conditioned",

because for the conclusion of the theorem to be false, p.'s have to

jump around and lie frequently close to each eigenvalue whose associated

eigenvector has a non-zero component in the expression for a limit

vector. But for a well-conditioned matrix, it is not hard, only tedious,

to trace the locus of p. generated by RQI. Therefore, it leads us

to conjecture that the same conclusion is true for well-conditioned

matrices. Nonetheless, we shall not pursue this matter along this line



because in the last two sections of this chapter, we shall look at

RQI from a different perspective and reduce the question of global

convergence of the vector iteration to that of the convergence of the

scalar quantity p. which lies in a compact space, And we believe

that this is a more simple and elegant way to look at RQI.

§2.6 Bisectors of Eigenvectors as Limit Vectors of RQI

In previous sections, we have just shown that for sufficiently

well-conditioned real matrices with real eigenvalues the necessary

condition for vectors to be limit vectors of RQI is that they either

be an eigenvector or bisectors of two eigenvectors. In this section,

we show that for any non-defective matrix, the same condition is suffi

cient provided, in the case of bisector, that the mean of their asso

ciated eigenvalues is not an eigenvalue of the matrix in question.

Let x, and x? be the two eigenvectors for. C, and by various

invariant properties of RQI, we can have X, = 1, X2 = 0, and we

consider, without loss of generality, the action to take place in the

coordinate system where e1 = x,, and x2 a real linear combination

of e. and e2. Then, the first two components of y, and y2 are

real because y*x. = 6-iY1 1 0, {i,j} c{l,2}. Let £ be the plane

spanned by x, and x2- Let u,, u2 be real unit vectors on £

that are orthogonal to x2, x, respectively with the angles between

u,, x. and u2, x2 being acute. Let P be a function that takes

a vector and projects it on £, i.e., P(w) is the orthogonal pro

jection of w onto I. Then u1 =P(y1 )/DP(y1)B» "2 = P(y2)/ilP(y2)H

because y,, y2 lie in hyperplanes that are orthogonal to x2, x-j

respectively. It is also obvious that utx, = utx2, i.e., the angles
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are the same, call it 0.

Lemma. (yfiijKx*^) =x*y], (y|u2)(x*u2) =x*y2 .

Proof. Let y1 = n-,x1 +n2e2+w where w*x, = w*e2 = 0. Then

Then ' U] = (n1x1 +n2e2)Mi]+7i|" .

So y*u} =(n2 +n2)//r^+7[£
x|u1 = n-|//n|+n|

xlyl = ^1

(y^Hxfiij) =((n2+n2)/>^]+npn//h^ =n1 =xfy

Similarly (y|u2)(x*u2) = x*y2 . D

Now we are ready to translate our problem into one that deals

with vectors on £, so that we can use results of Section 3.

and

Theorem. Let Cx, = X,x,, Cx2 = X?x2. Then the bisectors of x,

x2 aXi limit vectors of RQI if and only if (X,+X2)/2 is not

an eigenvalue of C.

Proof. Let v = a-jX-j +<*2x2, v* =8^+8^+••• +BnY*. First

notice P(y.) = 0 for j > 2 because y*x, = y*x9 = 0. So

v=P(v) = PCB-jy-j) +P(82y2) = 31(y|u1)u1+ §2(y^u2)u2. From the lemma,

we have

xTyl Yl Y2
ylul x*u1 cos 8* y2u2 cos 0•

So

v= (8^-,/cos 0)u] + (§2y2/cos 8)u2 = c1u1 + c2u2
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where ci = 8-y^cos 0, j = 1,2. Then

_a}(8^ )X1 +a2(B2Y2)X2 +0+•••+0
p(v) = a181Y1+ct282Y2+0+-"+u

a, C-i cos 0 X, +a2C2 cos S X2
a,£, cos 0+a2C2 cos 8

which brings us back to the situation of the 2x2 case with 8^ = C^,

Y- = cos 0 (see §2.3). And the results of Section 3 apply.

So if (X,+X2)/2 is not an eigenvalue, the bisectors of x-j

and x2 are limit vectors, but if (X1+X2)/2 is an eigenvalue, then

by definition of RQI, it will give us the eigenvector associated with

(>1+X2)/2. •

We know also that bisectors as limit points are unstable in the

sense that if there is a slight perturbation in I of v, the RQI

will give us either x, or x2, as in the 2x2 case.

Note. Bisector here means v=a,x, +a2x2 where |a^| = |a2|.

§2.7 Characterization of Limit Vectors When p^ Converges

We know that p. = p(v' ') is a sequence of numbers in a compact

metric space (real or complex). In this section, we shall investigate

(k)
what happens to Vv ' if p. converges.

Definition. If v=a-|x-j+a2x2 +'**+Cinxn» then we say v is

deficient in x. if a. = 0 (see Parlett and Poole [6]),
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Theorem. If p. converges, then either

(k)(i) Pk converges to X. for some i and V^ ' converges to x.

provided V^ ' is not deficient in x.,
,(0)or (ii) (a) pk converges to p' =x. and Vw is deficient in x.,

(b) p^ converges to p' which is not an eigenvalue.

In either case,

m m

p' = I «i 8- Yi X. / I a. 8. y.
i=l Ji Ji Ji Ji i=l Ji Ji Ji

where |X. -p'| = |X. -p'| = ••• = \\ -p1]. In other words,j1 j2 jm

Xn. ,...,X. must be co-cyclic with center p\ In this case, V
Jl Jm "

my not converge. ]f v isa limit vector of the Rayleigh sequence

{V^|k=l,2,...}, then v= £a. x. .
i=l Ji Ji

(k)

Proof. From the definition of RQI, v^k+1^ =Tk(A-Pk)"1V^ J
we have ajk+1) =t—a(k) (as in (2.2.1)). If an(0) f 0, then

1 A-i""Pk ' 1i Hk

a
(k+1)

Ik+TT
a:
i

W
Ypk

a
(k)

nr
a:
l

Hence in the case pk converges to X., a careful examination of the

above formula reveals that |a: '/a- | •> 0 as k -*• » for j f i.
(k) J mTherefore Vv ; converges to x.. In Case (ii), let v = \ a. x. ,

1 i=l Ji Ji
m £ n, a- f 0 be a limit vector. Let to = min {|X. -p* |}. Then

1515m Ji
w f 0 because otherwise p. -»• X. with a. f 0", which is the first

case, a contradiction.

Let in - |x. -p'| for some i. If there exists I such that
Ji

|X. -p'| -w = 6 > 0, then there exists K such that for k > K
J 0



i|X, -Pj-w|ul < 3. Then

k+1

Vp"
a

n?n7 VP*

(k)
aj

a
(k)

w + 6/3
-uj+26/3

a
(k)

h

fhus as k+<», a'.k' +0 implies a. =0, acontradiction

Therefore, |X. -p'| = |X. -p1

m

= IX, -P
Jm

m

U),

P* = P(v) = la 8- Y, X, / la 3 Y .
i=1 Jn- Ji Ji Ji 1=] J-, J-, J-,
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D

Definition, r= {j-,,J2,... ,jmh A be the subspace spanned by
i q

{x., jeD and X. = p' +we J.
J J

Corollary. In the real case, p' = (X +X )/2 and the only limit

vectors are (x +x )//2.

Proof, p' can be equidistant from only two distinct real eigen

values, hence p' = (X +X )/2. The results from the previous section
P °i

tell us that the limit vectors must be the internal or external bisectors

of x and x . X and X could be multiple, but xrt and x are
p q p q r p q

the unique eigendirections in the plane defined by the projection of

V^ onto A.

§2.8 Instability of Case (ii)

Let z be any unit vector in the invariant subspace A defined

above. Let <|>. = a-3-Y-- Thus with the notion of Section 7:

z = Y a.x. ,
j=l J 3



with

and

1 - lajSjYj - I*.
i0

p(z) =[p'fy.+wje ^j]/^.

Differentiating, we find

M5i= [p'+we J'-p(z)]
«J

1*0.

^- =we J^0 for each j
<3<p.

So an increase in <f>. pushes the Rayleigh Quotient from p* towards
ie. J

X. = p* +o)e J. Almost all perturbation in A of a limit point v
j

generates Rayleigh sequences which converge toward an eigenvector.
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CHAPTER THREE

The Completely Degenerate Case

§3.1 An Overview

We now focus our attention on the completely degenerate case.

We say that a matrix C is completely degenerate if C is similar

to a single Jordan block, i.e., there exist X invertible such that

foio rV

X_1CX = J
a

o .
a

Because of the translation invariant properties of the RQI, it is

equivalent to consider C-al, i.e., a matrix C with zero as its

only eigenvalue and has only one eigenvector. Note that it is not

sufficient to consider the canonical Jordan block

f0J? O
0 \ = N (N for nilpotent)

45

because not every completely degenerate matrix C with zero eigenvalues

is unitarily similar to N, and we know RQI is only unitarily invariant,

not invariant under similarity transformation.

We adopt the following notation throughout this chapter. Let x.

be the eigenvector of C of i grade, i.e., Cx-j = 0, llx^fl = 1,

Cx.+1 =xi for 1<i<n-1. Thus C1xi =0, C^x. f 0. With
standard calculation, we have x, orthogonal to x^, i f 1. (Notice



x^, i f 1 may be of length other than unity).

If v=£a.x., then p(v) =I^a^/^la-l2)172 provided {x.}
forms an orthonormal set (i.e., the original matrix is unitarily similar

to N), and p(v) is more complicated if {x^ is not orthonormal:

p(v) "TvT
_ a*X*CXa where v=Xa, X= (x^,x2,.,.,xn), a=

= a*Ga/l!vfl where G = (g..), g.. = x*x. ,.
3ij 3ij i j-1

x0 =

=(I«i Xg^-aO/ivo
1 J

(3.1.1) = (I Xg-.a-a-J/Ilvil .
i J

' 0^
0

10 J

a,

a,

an

Note that in the above expression, g^ =0 for j f 2 and g1? =1

because x|x. = 0 by choice and x*x, = 1.

Now, we want to study what one step of RQI does to the vector v.

Let v' = Jajxi be the resultant vector. Then if C-p(v) is non-

singular,

W =(C-pfvjr'v

llw'll '

-1
(C-p) expressed in the basis of generalized eigenvectors would be
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(C-p)

so

w' =

(3.1.2)

-1
(-'-'», oi

-P '.

o •••' 1

-p J

-1

f61l
1 1

-pVT0^
P

P 2(C-p^v

f"J<V*2>

-l(a.+8.J.Jpv l i+l

I P n

1

p

1
... «• •

n n

n-1
)

i
p

1

n-1 n

P n

=- i(v+Nw') .

Studying these equations carefully reveals the main difficulty:

8-j = (-l/p)a, -(1/p )a2--"-(l/p )a . When v is close to x1, p

is close to zero. Therefore, 1/p is very large and those "arbitrary"

small coefficients of x., i ^ 1 cannot be ignored. Also, there may

be some unfortunate cancellations that make 3-, extremely small as

compared to 8«.

Wilkinson [9] studied the effect of Inverse iteration method as

applied to ill-conditioned matrices and degenerate matrices and came to
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the conclusion that you should not do inverse iteration more than once

if you have a very good approximation to the eigenvalues. Now RQI is

nothing but inverse iteration with a shift which is "optimal" in a

certain sense, and the shift tends to the eigenvalue. So we can expect

the same irregular behaviour near an eigenvector here. We shall demon

strate the complexity of the local picture through an example in the

next section.

The local behaviour and convergence rate of RQI for a degenerate

matrix was investigated by Kiho Lee Kim [2] in 1970. He derived the

equation V^1+1^ =r+H(V^-r) +g(V^) where H is the Jacobian of
RQI at r, the fixed point of the iteration, and g is a function that

2
satisfies ilg(x)|| < Mflx-ril for some norm ll-ll and some constant M.

Kim showed that the convergence rate should be the spectral radius of H.

But his conclusion depends on the assumption that the iterative function

has second derivative in U, an open set for which r belongs to.

In the example of the next section, we can see that the RQI function may

have second derivatives in some sector of a neighborhood of the eigen

vector (and hence afford a Taylor expansion there), but the RQI function

is not even continuous at the eigenvector. Our Lemma below will

illustrate this point.

Lemma. Let f be the RQI mapping, i.e., f(V^) =V^k+1^. Let

x, be the eigenvector. Then for every <5Q > 0, there exists v,

IIvll = 1, such that llx,-vll < 6Q and f(v) is orthogonal to x,.

Proof. By invariant properties of RQI, it is equivalent to consider

the matrix C which is similar to N. The set of generalized eigen

vectors has the property that x. is orthogonal to x., i t 1.
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From (3.1.2) we know if v = £a.x.j. Then

(3.1.3) 8-, =-(l/p)a1 - (l/p2)a2 (l/p")an .

Let y •= maxUx-ll, i = l,...,n} (see the redefinition of x.. at the

beginning of the section). Let 6 = min(5Q/10n,(10n)~ ). Pick v

such that a. = (—J1"1, i = 2,...,n-1 and 0 > a > -n6n~ and

a, >_ 0 such that Hvll = 1. First notice Uv-xJI < 6Q because
n n-2 . . «

ilv-xJI < 2 Y la. I < 2 Y (—)1+2non"': < 6n by choice of 6. Then
~~ i=2 "" i=l ^

p(v) =a1 ^r+0('52) by (3.1.1). If ap =0 then 61 <0 because
each term is positive in (3.1.3). If a = -n5 then 8i > 0 because

each term in (3.1.3) is oOf-) except the last term which is 0(unnn/52),
Therefore, the last term dominates and 8, > 0.

Since v' depends continuously on v when the range of p(v)

is bounded away from zero, we must have a t, 0 <_ t <_ 1, such that

? n
when a = -n6 t> then 8 = 0. This implies f(v) = Y aix. that

1 i^2 "• "•
lies in the hyperplane orthogonal to x,. •

§3.2 A 3x3 Example - Sectorial Behaviour Near the Eigenvector

From the lemma of the last section, it is obvious that one cannot

isolate a small open neighborhood of the eigenvector to study the local

behaviour of RQI, because no matter how small you take the neighborhood

to be, there are points and regions around the points that can throw

you out of that neighborhood. Thus, we divide the region about the

eigenvector into sectors of attraction and repulsion. V/e shall give

an example of the sectorial behaviour of the RQI.



Example. Let C = N = 0 0 1. Then for v = cux, +a0x0 +a0x0,
0 0 0 J i \ d d 6 6

p p 9 1/9

p(v) = (a1a2 +a2a3)/(a-j+a2+a3) ' , with a/s real, so if llvll = 1,

p(v) = a1a2 +a2a3. We first show that in this case, the RQI converges

for all starting vectors, and in the course of doing so, demonstrate

the sectorial behaviour of RQI. (See Figure 3.2.1.)

e, is coming out

of the plane,

i.e., a-, > 0 in

the figure

y//// «3 +a2(a,+a3) =0
1(a)/

2 2a?(a1+a0) a, +a2(a,+a~)+ a~ =0

Hemisphere containing x.

Figure 3.2.1

-1Let w' = (A-p(v))" v= 3-jX-i+32x2 +33x3 where

v = a,x, +a2x2 +a3x3. Then by (3.1.2)

(3.2.1)

*1 =

-a3/a0b

-1/b -a3/(a2b2)
2

-a-./a2b - l/a«b / 3K3
a-/a«b

where b'= a, +a3 and p(v) = a2b. We can normalize, without loss of

generality, a, _> 0 for all our vectors. We shall separate the region
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in Figure 3.2.1 into the following:

I. a- >_ 0. This is an invariant region under RQI because in

(3.2.1), sign(8-|) = sign(82) can be deduced from the fact that each

term in the expression for 8-j and 82 has the same sign as a«.

The convergence is monotonic in this region in the following sense:

61
=

a1
a2

a.

a,

-l/a2b -l/a,a2b -a3/a,a2b

-l/a2b -a3/a2b

3U3l/a2b| +|l/cx1ot2b^| +lag/^ogb0!

l/a2b| +|a3/ap]
(because each term has the same sign as a9)

51

a,
(because |a, j < 1, in the last term of numerator)

and it is obvious that the factor does not tend to one.

61
>

°3

by similar arguments. Thus the vector iteration converges to x.,

the eigenvector.

Now we consider the region a3 < 0.

11(a) |a3| > lajl, a2 >0. Then p(v) <0, b=a1+a£ <0 and
(3.2.1) gives 83 < 0. 81 <0 because the second term dominates the

first term, and the third term has the same sign as the second term,

which is negative. We get thrown into region I and get convergence.

11(b) |a3|>|a-j|, a2 <0. Then p(v) >0, b=a1+a3<0.
(3.2.1) gives 33 >0, 6-j >0 for the same reason as above. We get

thrown in region I and get convergence.



Now let Ia, I> |a3|. Then b=a, +a3 > 0.

111(a) a2 >0, |a2b| >|a3|. Then 83 >0, 82 <0. If 8] >0,
we are in region I and converge. If 3, < 0, a standard calculation

shows

& a3/a«b a.

/b +a3/a2b a.

l/a2b |

1/a2b +a3/a2b

a.

OL,
because the two terms in the denominator
differ in sign and are dominated by the first.

a.

So at each step, the ratio
a,

increases and we stay in 111(a) until

kp! £ hi
111(b) a2 > 0, |a2b| < |a3|

2L2(i) a2b a^agb+ag >0. Then (3.2.1) gives 8-j < 0, 82 >0,
1

>
a3

a1
»

B3
h

>
°3

a2
6^ > 0 and a standard calculation shows that !-£-
3 ip-j

If |33| _> |B,|, we are in region 11(b) and thus have convergence.

If |33| < |8-||> we have 111(d) which we consider later,

(ii) clb^+clb+c^ <0. Then (3.2,1) gives 8] >0, 82 >0,
83 > 0 and we are in region I, thus have convergence.

III(c) a2 <0, |c|b| >|a3|. This is amirror image of region 111(a)
and has the same properties. The vector in this region is either

thrown into region I or region III(d) below.

111(d) a2 <0, |a2b| <|a3|. This is amirror image of region
111(b) and has the same properties.

2L2 ._2U ._. ^ r\ TU„„ fO O 1\ n{..ar O S O ft -> (),(i) a,b a, +c£b +a, > 0. Then (3.2.1) gives 8-, < 0, 82 >
C \ L i o ~ ft .' n u

3~ > 0 and calculation shows that
63
61

>
°3

al
,

-63| >
B2I

a3
a2

If

1^3 we are in region 11(a) and thus have convergence. If

52



53

|33! < |8-||» we shall be back at region 111(b) (hence a possible cycle).

(ii) a^b^ +a2b +a3 <0. Then (3.2.1) gives 8] >0, 82 >0,
83 > 0 and we are in region I and thus have convergence.

From all of the above regions whose union is the hemisphere, we

either have convergence or are thrown into convergence regions ultimately

except that there is a possible cycle to go from III(b)(i)to 111(d)(1)

back and forth. This is fortunately not an infinite loop because at

a3 a3
each step, the ratio |—|, |—| both increase and thus force

cLn a-i

2 9 2 c '
a2b""a, +a2b +a3 <0 ultimately and we shall be thrown into 111(b)(ii)

or 111(d)(ii), then region I and have convergence.

We have omitted the case a2 =0 because this would make p(v) = 0

and by definition of RQI, v/e have convergence in one step.

Now that we have shown global convergence of the example, it would

seem instructive to draw the graph of a neighborhood of x, to illustrate

the different regions and their possible route to convergence (see

Figure 3.2.2).

§3.3 Behaviour of p. as k -> °°

The main objective in this section is to show if p. converges,

then p. converges to A, the single point in the spectrum of the

operator. With the normalization as in §3.1, we have A = 0.

Before we proceed with the main theorem, it may be illuminating to

prove the following lemma that presents some analysis that will recur

throughout this chapter.

Lemma. If the shift p. j[s_ constant, i.e., p. = p a_ fixed number,

then v'k' =Tk(C-p)~M0^ converges to x1.



to convergence
region

v/here

Va3 +a2^ai+a3)
&2 - a2(a-,+a3) a, + £,
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Proof: In this case, RQI is reduced to inverse iteration with the

shift p. The vector sequence converges because of the special form

-k -1
of (C-p) . So we consider -p(C-p) in the basis of generalized

eigenvectors:

P

where N =

f -P 1
-P . o

-P

o

0 1

O

i.O
'.'•1

0

1

-p

-1

o ••••}

1-1

-(i-Jh)"1

Let C= 1/P. Then V(k) =T'(I-?N)"kV(0). But

(I-CN)"k = [(I-CN)"1]k

= (I +CN +t:2N2+.-. +cn"1Nn_1)k

=I+({kN+((2) +({m2N2
+((3)+2(k) +(k))C3N3
+(({) +-)C4N4
+--- +((nk1) +"-)Cn"1Nn"1 for k>n

=Y(ktr)^
j=0 J

So (I-£N) is a unit upper triangular Toeplitz matrix (see Marcus and

Mine [3]). If we write k+j_-jC- to denote (k+J'"1), then it is clear
that k+j_-|C- is of 0(kJ) as k-> «,.
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' ] *kCl C k+lC2
1 Vl

(I-CN)
-k

c^1 CK k+n-2Ln-l

£k"2 CK k+n-3 n-2

Vl

Assume V ' = (ru»n2,... ,nn) (in the basis x-j,...,xn). Then
yM =xMl-CNrM0^ is a linear combination of columns of (I-£N)"k
with coefficients n-, ,n2,... ,nn- Let n£ be the last nonzero element

^°^. Then as k-*• », the fact that k+j_1C- is of order kJ
>th

in V

implies the components of the S. column vector would dominate in the

expression for \T ' written as a linear combination of column vectors

So when k is large

But

V^ •»• e, =x, as k+ ».

(k)

E*-1 C^ k+£-2Vl

r^ C

here again Ik+j-2Cj-l/k+J-lCJ' "* ° aS k* °°* Therefore
D

(k)The same conclusion is still valid if pk = p(V ;) converges

to a scalar other than the eigenvalue:

ie ,(k)
Theorem. If p. converges to u = re f A, then V converges

to x,.
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Proof. Recall we have the normalization that A = 0. The assump

tion that p. -»» a) implies that there exists K such that for k ^ K,

i0k Irlthen |r-rk| < e1 and |6-0k| < e2 where p;< = r^e , e^ = -hg*- >0

and e2 <4n * Let = (ni ^2''"' ,nn^ ^in the basis Qf x-|'--->xn)
Then

u(K+k+l) _ T (r A N-l/r rt x-1 /r ft x-lw(K)
V -Tk(C-pK+k} (C-pK+k-l} -"^"PK+l5 V

.et £k = l/pk. Then

»(K+kt,)=^('-W)-'-(HK+1)-Vk)

=T|^(l +d1(k)N+d2(k)N2+ ••• +dn-1(k)Nn"1)V(K)

where d.(k) = sum of ... ,C. terms of the form (£• £. •••£. )1 K+l-l 1 J-j J2 J..

Lemma. There exists M., m. independent of k such that

Proof. Since —!—- > l^.l >-1r-e-j ''j • r+£.

r e1 j1 j. r+£l

So .... ... ..... ,. _ , 1 Owe can take M. - (t^t-) . As for m-. we have to make use of the

condition

>-ek| <e2<^.

If S, C, •••€, = se10' then
Jl J2 Ji

-9-6'i<^l|
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The length of the orthogonal projection of £, •••£.! on the line
Jl_ Ji

-8 in the complex plane is at least scos ir/4 = s//2, and the orienta

tion is the same for each of the '|,+1- iC- of them. Hence m. can be
1 i i—

taken as (——) //2. Here ends the proof of the lemma.
r+c

•

The rest of the proof of the theorem is similar to that of the case

where pk is constant. V* ' is a linear combination of the columns

of

(I-#0 -k

'1d^k) d2(k) ••• dn-1(k) '
1

1

d^k) dn-2<k>

d^k)

Let n« be the last nonzero component of V

components of the I column vector would dominate, so

(K) Then as k -*• », the

v(k> .

Therefore, V^k' +e] =x].

fd£ }(k) )
d,_2(k)

d^k)
1

0

r 11
0

D

Corollary. Let C be a_ completely degenerate matrix with A as_

its only eigenvalue, and pk be the Rayleigh Quotients sequence. If

p, converges, then pk converges to A.
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Proof. Directly from the last theorem, if p, ••*• to f A, then

V^ ' •* x,, but p as a function from Cn to C is continuous.
(k)

Therefore p(Vv ') + p(x.) = A, a contradiction. Therefore, p.

converges to the eigenvalue if the sequence converges. •

59

(k)§3.4 Behaviour of Vx ' When pk Converges

In this section, we want to show that if p. converges and x«

is not a limit vector of the Rayleigh sequence, then the vector itera

tion converges to x,.

Without loss of generality we assume that pk converges to A = 0

and unless otherwise specified, a vector is expressed in the basis of

generalized eigenvectors.

Define r = {v| v is a unit limit vector of the Rayleigh sequence}..

From r we pick out a vector whose last nonzero element has a maximal

index, l say. Thus u = (n-. ,n2>...,nn) e r satisfies

(1) 'n0 " w t 0 and n. = 0 for j > £,,

(2) u' = (n-j9n2,...,nn) er implies x\\ =0 for j> £.

i

Now u being a limit vector means that there exists a set KQ c {1,2,.'..}
(k)

such that Vv 7, ke L converges to u. We shall first investigate

(k-1)
what Vx , ke L looks like when p. , is sufficiently close

to zero.

Since pk •* 0, there exists a number NQ such than whenever

(3.4.1) k> NQ , |pk| <6

where 6 is so small that



(3.4.2) |co/a| > 3k

where k = sup{|£.|| w= (£.,,.., ,£ ), w is a unit vector}. (Recall x.,

i > 1 may be of length other than unity because we normalize C in

the convenient form which is a Jordan block).

It is more convenient to change the basic RQI equation (C-p. )\T '

(k)= TkVv ' into the following form:

(i-c;kN)v(k+1) =SkTkv(k)

where Ck a1/Pk- In detail, we have, for V^k^ =(a|k^,...,a^k^)T,

a(k) = e- x a(M)an VlTk-lan
(3.4.3)

a(k) =£ t a(M)+£ a(k) 1<i< n-1ai Vllk-lai Vlai+1 ' '- -1'

(k)When k e Kq is large enough, ax ' = oa. Studying these relations

leads us to a key result.

Lemma 1. Assume p. -»• 0. Then

(1) For k large enough, there exists constants d2 >. d, ^ 0

such that d, £ t. •, <_ d2, k e KQ.

(2) a[k"^ -*• 0 as k-»- » for keKQ (KQ is defined at the
beginning of the section).

(kl(3) There exists constants h,, h2 such that 0< h-j 5_ |a^_j|± h2

for k large enough, ke L. <

(k)Recall that for normal matrices t. -j > ^ > 0 implies that Vv '

does not converge.
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Proof. (1) We want to show that Tk is bounded away from zero

and infinity. We know there exists a number N, such that when

k>N,, keKQ, then |a[k^-w| <6. So for k>N2 =max(NQ,N1)
where NQ is given in (3.4.1)

|Tk-lVl ai ' - |Tk-1a£-l u| °

>M -(lv14S1)l*«)

From (3.4.3)

If there exists k such that |t. ,| <6, then

i4-Ji >iviKM^)
>^ Uk_-j I(3k5-2k6) (because |u)| j> 3k<5)

> k (since |£. ,| > 1/5 and k _> 1) ,

a contradiction to the definition of k in (3.4.2). Therefore, there

exists d, > 6 > 0 such that x. ,> d, for k> N2. Now from the

defining equation of RQI, we have (C-p.-j )V^ '=--c^V ', and thus
St-"ic_i I5.0CB +|pk| 5. d2 for some d? (because p. is bounded). So

(1) is proved.

(k-1)(2) We want to show a^ '•* 0 as k-»» «» and ke KQ, despite
(k)that a,} ->• a). We assume here that I < n, and the case £ = n is

(k)
treated later in Lemma 2. Notice that q} L -•* 0 as k -*• <» for ke L

because n. =0 for j>a,, and we have |aj -w| <6 for k>N?,
ke KQ. From (3.4.3)

61



a(k)=€ x a(k-])+£ a(k)al VlTk-la£ H-la£+l

-t (xa(k"1}+a(k))

As k-• co for keKQ, 5^ +». Therefore (^£^1+1) *°
(k)But aj+i -> 0 as noted above and x. >_ d, > 0 from (1). Hence,

a^ " ' -*- 0 as k-»• «» for ke L.
(3) For k> N£, ke KQ

(k) c , (k-n . (kU
al-i "^k-i(TkVi '+"-«+°J >

but 0<|a^k]| <k, so

, (k-lK x (k), , .
'Tk°x-1 +w"w +ao IiK<s •

Recall |w-a£ '| <6 for k> N2 > NQ, so

llvi-i^l-l^lllvi-i15^!
<lviS1)+u-(^ik))l +|u-4k)l
< (k+1)6 ,

i.e. H -(k+1)6 <Tka[k^1} <|o)|+(k+1)6

(k+1)6< ,(k-1), <M±(K+l)6 =h/
do — £-1 — d-, <

o<hl=^

because d, <_ xk £ d2- D

We still need the following lemma before we proceed to the main

theorem. The lemma is true for the complex case, but for simplicity,

we shall only prove it for the real case.

(v)
Lemma 2. Assume pk -> 0. Then a^ ' •* 0 as_ k -»• «>.
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Proof. Let all quantities be real and proceed by contradiction.

Suppose or ' does not tend to zero. Then there exists e such that

|a' '| >e for infinitely many k. Let N~ be an integer so large
n «5

that whenever k>N3, |pkl < 5, where e//£j~ > wc and 1//$^" » 1.

Now consider V* ' where la^ 'I > e:
1 n ' —

(3.4.4)

(k+1) e (k)
n = Vkan

n

4M) - 5A i .i^e?"1'k k .f;. j ^k

aTk5k"1+laSk)+0(5k"1) (where *ksl/pk)
by backward solving (I-^kN)V^k+1^ =C^V^ (see (3.4.3)).

(k+1)
Therefore, when we normalize ai ' = 1, then

| |ajk+1)| =0(€nk-i+1^)

because la; 'I > e and e/ZsT > mc.
1 n ' — 1

From (3.4.4), it is clear that either all a.'s have the same sign

as a or their signs alternate. We have the following two cases when

we norma
(k+11

lize sign(ai ;) to be positive.

Case 1: sign(a^ ') is positive for all i. This characteristic
is invariant under RQI for subsequent steps because pk+-, is then

positive and pk+1 =£k- Then (3.1.2) tells us that ajk+2' >0 for
all i.

(k+1). (k+2),
ai +ai+l /Pk+1

(k+1)

+
1

Pk+1(k+2)
ai+l

wm
a:.,
l+l

-> oo as
'k+1

•* 0
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because the two terms in the numerator are both positive. Thus

(k) (k)Vv ' -»• x-j and so a^ ' -> 0 contradicting our initial assumption.

Case 2: sign(ajk+1') =(-1)1+1. This characteristic is also
invariant under RQI for subsequent steps and pk+, = -6,.

(k+2) J k+1) AJk+2)^ ,(k+1), ,(k+2),
,ai I+ 'ai+l /P|

a
[k+2T
1+1

a(k+l)+a(k+2)
ai +ai+l /pk+l

(k+2T
ai+l ,ai+l

-><» as pk+1 •* 0

(k+2) (k+11because pk+, is negative and sign(a^, ') f sign(ah, ')
(k) (kl

Thus Vv ' •> x, and a* ' -* 0, a contradiction.
I n

'k+1

•

Let us summarize the picture so far: For k large enough and

k e KQ, we have

51-1

(k-1)

X

p

H

l£+i

(k)

X

q

*£+l

n )

£+1

q = a), 0 < h, < |p| £ h?, b's tend to zero (because n«+-, =•• •=n =0),

a tends to zero by Lemma 2, a„ tends to zero by Lemma 1 and
n I

a.+1,...,a , tend to zero for the same reason as a„ (by considering

(3.4.2)).

(k-1)Now we can proceed inductively. Consider A = {Vv " y| keKn}.

Let u-, be a limit vector of A and let K, c kq be a subset for
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which V^k\ ke K, -> u, as k-*• «>. By the remarks just above,
stu-, = (x,...,x,p,0,. ..,0) where p is the (£-1) component and

IpI 1 ni > °- By repeating the same arguments as before, we find

that for k e K, and k large enough

„(k-2)

1-2 +

£-1 +

x

r

!a-i

•(k-1)

x

s

a„

fc-1

where g's and a's tend to zero, and \r\ _> h3 >0 and so on

Finally we have, ke K£_2 c k^ c ••• c ^ c KQ, k large

enough

,(k-A+2)

x

t

Co

V
(k-fc+1) —+ V

(k)

. x

•

X

q

b*+i

. V

where c's tend to zero as k-*• », ke K- 2 and |t| >_ h^ > 0.

Consider the set B={V^k"£+2^| keK^}. Let w be alimit
vector of B. Then w=(crc2,0,... ,0) with U2l>h4>0 (by

arguments similar to that of Lemma 1(3)). Now p(w) = C-jC2 = 0>

since pk •* 0, and c2 f ° so Si =°» wnen normalized |c2l =1

and so w = x?.
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Hence we have the following situation: Whenever I _> 2, then x2

is a limit vector. Therefore if x2 is not a limit vector then l < 2,

which means the vector iteration converges to x,.

On the other hand, if x2 is a limit vector, we know by the same

argument as presented earlier in this section that x, must also be a

limit vector, and so the vector sequence must cycle. We suspect that

this cycling is impossible because otherwise it would mean that, over

and over again, the vector sequence approaches x, and gets thrown

out to a region that is close to x2, which is orthogonal to x-j. This

seems hard to realize, but using the condition pk -»- 0 alone is not

sufficient to prove that the cycling is impossible. This fact will be

shown in our next section.

We have, therefore, shown how to prove the following result:

Theorem. _If p. converges, then the vector iteration converges if.

and only vf x2 is^ not a'limit vector.

Note. We merely say "pk converges" because by the corollary of

the theorem in the last section, whenever pk converges, pk converges

to X.

§3.5 A Shift Sequence Which Prevents Convergence

In this section, we show the surprising result that pk -»• X does

not imply V^k' -*• x,. But with avery weak hypothesis, the generalized

eigenvector of second grade cannot be a limit vector and thus by the

result of the last section, the vector iteration converges.

We shall first derive those weak conditions. Let C be normalized

such that X'=0, and suppose x2, the generalized eigenvector of
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second grade, is a limit vector of RQI. Let V = (n-j sn2>... »nn)

be the starting vector. Then by definition, there exists an infinite
(kl

set Kc {1,2,3,...} such that Vv*;

,(k)sequence of V

of RQI:

(3.5.1)

x2 for ke K. Let this

be denoted by W., i = 1,2,... . By the definition

-1,Un (i-s^r'v =w1
1j=i J

To( n (I-C,N))"lV =W
1 j=l J

k3

6 j-i J
v = w.

etc.

where x. is the normalizing factor so that OW.ll = IIVII = 1 and
1 km , iin\

-1 (rn)Denote (n(I-^N))"' by Bm =(bVi'O. m=1,2,...h - 1/pj j=1

B =
m

f1 b(m) b(m) ••• b!m) 11 D12 D13 In
>)
*2n

(m)
'23
1

B is an upper unit triangular Toeplitz matrix. ,
m i

Case 1: n t 0. The fact that bj^' =1, Bm upper triangular
and W. = x.B.V -> x?, whose last component is zero, implies that

t. -*- 0, and consequently some entries of the second row of B^ must

tend to infinity.
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Lemma.

1.W
23

D2n

i

b^
24

b(i)D2n

, . . . ,

b<1>
2, n-1

2,n

68

all tend to zero as i -*- ~,

toi.e., b2n tends to infinity faster than any other entry in row 2 of B..

Proof. The proof exploits the Toeplitz matrix structure of B..

So suppose that one of the ratios does not tend to zero. Let

ibiVi
rc {1,2,...,n} be such that when j e r, -ffr does not tend to

zero.
'2n

Case 1: There exists M, a constant, such that

D2n
< M for

all j e r and all i. Let m = min{j|jer}. Then there exists an

infinite set ^ £{1,2,...} such that when ie K,, -py >e>0
FT
'2n

ror some e . Since bi ' = b^ * ~ (they are on the same diagonal),
n-m+3n

the ratio

r h

(n-m+2) component of W.

2 component of W. ^ e+(lrl-l)M +l aS i-°° • 16 Kl '

Therefore W. does not converge to x«, a contradiction.

Case 2: There exists r, c {l,2,...,n> such that for j e r,
>(i) '
2i-rjy is greater than any constant infinitely many times since

J2n

b2j = bn-i+2 n' at least one J 6 ri sucn tnat

J. L.

(n-j+2) component of W.

2 component of W. -i^i+i

for infinitely many i. Therefore W. cannot converge to X2» a con

tradiction. Here ends the proof of the lemma. •



Let B'. = B./b*1' (bi1' t 0 for large enough i because it tends
ii<-,n £, 11

to infinity). Then as i •+ °°,

oibiM1
o

Bi-

Therefore, x2 is alimit vector if and only if D}n /D2n tends to

"Vl'V

Case 2: There exists JI such that r^ f 0, n, = 0 for j > £.

If % > 2, this just reduces the problem to the consideration

of an £x̂ matrix. So, exactly as before, x2 is a limit vector if

and only if bjj /b^I tends to -n^-j/n^.
If I = 2, the x. may not tend to zero, but this case behaves

as if the matrix is 2x2, and the argument is easy when C is 2x2.

If we let \T0' =(n-,,n2)T, then x2 is not alimit vector if and
only if -n-i/no ^s not a limit point of the sequence s. = £ £,, -
i 1 ] 2 1 k=l K

=k=l ^k * k ^
Now we can summarize what we have done: Let F. = ( II (1-0)) ,

i=l J

Fk = (fij )j where

:(k) _
12

(klf)o = sum of terms like £. £•u ^ i2

fio' = sum of £. , 0(k) of them as k -»• »

0(k ) of them as k •> «>
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f)y = sum of terms like £. . ..£.
156 M Vl

, 0(k£'"1) of them as k + «,



We have shown the following theorem:

Theorem. Let C bea completely degenerate matrix with 0 as

its eigenvalue. Let V^0' =(n-j ,n2.-••>nn)T be the initial vector
with n£ t 0, n- =0 for i> %. Suppose pk •* 0. Then RQI will

converge to the eigenvector if and only if

(3.5.2) (i\ (i)
"na-l^nJl is n0t a 1imit P01'nt °f the sequence si = fU 'fi,£-l *

Remark. The last condition is weak and highly technical.

In all of our experience with RQI, si always diverges. Even if

we can construct a sequence of pk that tends to zero with s. having

countably many limit points, the choice of initial vectors that could

force RQI not to converge is a union of n-1 dimensional vector spaces,

and hence of measure zero in the n-dimensional space.

In the rest of this section, we shall present a sequence of numbers

that tend to zero, which, if they are used as shifts, would force the

vector iteration not to converge, when an arbitrary but fixed initial

vector r°) =(Tv,,n2>--->nn) is given.
Without loss of generality, we may assume nn f 0. Suppose

-Vl/nn =* '

We shall construct the following sequence:

l*2l ±<i(2) ^i<2)+l ^i(2)+2 i••• ^i(2)'
(3"5-3) I*3I^S)^Sh^"^8)'
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where q. = 1/j for all i, and ip. are to be determined such that

|ip.| < 1/i. If the last condition is satisfied, then the sequence

constructed by putting \p9 right after PmM\t> ^3 right after
(21

q /o\i» etc. would tend to zero.
Mm(2)'

(k) (k)The }\). are inserted at strategic points to force f^y/f^_-j,

as defined earlier, to tend to <J>, and thus force the vector iterations

not to converge. The i|>. *s are obtained from the following steps:

Step 1: ij>, = 1. If 1I1. is known, pick m(i) an integer so

large that |iK | >_ l/m(i).

Step_2: *rqi(1V<i(i)+rc»i(l))+2--- Is asequence tending to
zero. Using these as shifts, either x2 is a limit vector, and thus

our goal is reached and no further work has to be done, or_ x, is the

only limit vector (by the theorem in Section 4).

Step 3: Solve for \Jk+, : Recall that we take the shifts

pj =qm(i)+j-l and

v(k) =un (i-a/p.wrV05 -x,.
k j=l J '

k ,
Let us define B. = ( II (I-(l/p.)N)) and then, normalizing it,

K j=l J

Bk =B|C/(0»n)-element of V *

Then by the same arguments used in the last theorem,

lim B' =

k^> K

fo-oil
0

0

(klSo for a particular k, let B£ = (b:V), and let £ denote the
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unknown to be found. We know (I-SN)"1 = I+ £N +£2N2 +•••+£n~1Nn~1,

the (l,n) element of (I-5N)"1B^ is

i+rb(k) +r2b(k) +...+c-n-",b1+Cbl,n-1 C bl,n-2 + +^ Dl,l '

the (l,n-l) element of (I-CN)"1B^ is

blll^bl,n-2+'-'+^2bl,l •
The crucial ratio becomes

(3•'•,1 ^~ e,'«e,--«^ *•
The above equation can be solved because the complex numbers are

algebraically complete.

(k)We know that when k is large, b} '. is small for all j f n. In

(3.5.4), when b(k! tend to zero, £ tend to infinity. Therefore,

there exists k" so large, such that b\ \ are so small that asolution

£ whose absolute value inverse 1/|£| £l/(i+l).

Hence, m(i)' is an integer so large (and thus k so large), that

the absolute value inverse of a solution £ of (3.5.4) is less than

l/(i+l). Choose ip.+1 = l/£.

Step 4: Now repeat steps 1 through 3 to find ^i+2»^-j+3>- •• •

Thus we have a sequence of numbers that tend to zero, and, by argu

ments of the last theorem and choice of i{;., we know that using these

numbers as shifts would force the vector iteration not to converge.

Remark. Through the intimate relation between SQR and inverse

iteration with shifts, it is surprising to learn, by the last example,
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that SQR may not converge when operated on a general matrix even though

the shifts tend towards an eigenvalue.
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CHAPTER FOUR

The General Case

We are now in a position to summarize some of our results in the

previous two chapters into a theorem.

Let C be a general complex nxn matrix. We adopt the follow

ing notation:

Notation: X.j,...,Xm are eigenvalues of C such that if the null

space of C-AiI is of dimension j, then X. appears j times

among X-j,...^. Let P be anon-singular matrix such that P~^CP =J,
the Jordan canonical form of C. Then the column vectors of P are

the generalized eigenvectors of C. Let xj ' be the column vector
of P such that Cxi ' =^xj , and x|J"' be the column vector of
P such that Cx(j) =X.x(^+x(J"^.

i i

Definition. Let V = H a.-x:J' be a vector expressed in the
i j 1J 1

basis of generalized eigenvectors mentioned above. We say V is

deficient in X.. if for all k such that X. = X., a.. = 0 for

all j.

Theorem. Let C be a complex nxn matrix, let

v -IIajj xj be the initial vector and V alimit vector of
the RQI.

i J JJ

(klSuppose that pk = p(Vv ;) -*• p as_ k •* °°. Then

either I. p = X. for some i and \T ' is not deficient in X.:

in which case V is a vector in the generalized eigenspace

of X., i.e., V is a linear combination of generalized

eigenvectors associated with X.. If_ further the weak
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condition (3.5.2) of Theorem 3.5 is true for each Jordan

block whose associated eigenvalue X. equal X., then V
__^— _______^_——— j

is actually an eigenvector such that CV = X.V.

or 11(a). p= X. for some i and V^ is deficient in X..,

or H(b). p is not an eigenvalue of C.

In either case of II V= I tji.xv' where rc{l,2 in} and
jer J J

|X.-p| = m, a constant for all j e r. Case II is unstable.
w

-(0)
Proof. (I) p = X. and V not deficient in X.: Let I be

the index such that a)0^ f0 but a\y =0 for j>I. Then one
step of RQI gives (see (3.1.2) where n = I there):

au+1) =̂ u^Y^* and for j such that °J f ai
q a(k)

(k) (k)
k jl jl

where q = Jordan block size of X., and

a.,
Jl

mli} =(vpkrl +yv^'^Mi5- Now pk"xi^xj impiies
there exists N1 such that if k>N1, max{(Xj.-p(<)p| 1<P£q> £ M-j
for some constant M,. Then, by the theorem in Chapter 3, section 3,

we know |a(kVa^| -> 0 as k -*• «. There exists H9 such that if
' JP JI c

k>N?, max{|a(k)/cx.1k)|| 2<p<q} <1. Let N=max{N] ,N2>. Then
for k>N, |m^ | <qM-j. Hence for k>N

a
(k+N)
U ^
Ck+Nj
jl

a

k m^+s>
• Jln

s=l
>. .-,

'N+s

(N)
U

m
aU

a
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(kl
as p. •»• X. as k -*• ». Thus or.,' -* 0 as k •>• ~, and as mentioned

above |a: va-i I•* 0, hence a\k' •* 0 as k-* ». Consequently, a
limit vector V must be deficient in X. for all X. f X., i.e., V

is a vector in the generalized eigenspace of X.. If further the hypo

thesis of the theorem in Chapter 3, section 5 is fulfilled, then V is

an eigenvector such that CV = X..V. (Note the hypothesis is automatically

satisfied if all the eigenvectors corresponding to X^ are of the lowest

grade or if the coefficients of the higher grade eigenvectors are all

zero in the starting vector).

(kl
(ii) By the theorem in Chapter 3, section 3, cr. ' •> 0 as

J H

k •* « for all p > 1 and all j. Thus a vector can only be a linear

combination of eigenvectors of the lowest grade. The conclusion then

follows from the theorem in Chapter 2, section 7. The fact that this

case is unstable is the result of the discussion of Chapter 2, section 8.

D

Remark. By this theorem, we have a complete characterization of

limit vectors provided p. converges. Thus the global picture of

RQI on a general matrix is reduced to the convergence of pk
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