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ABSTRACT

One approach to machine based recognition of connected speech

requires that hypothesized dictionary spellings be matched against

errorful phonetic transcriptions of an utterance. A model and a

rule directed phone-phoneme matching algorithm, appropriate for

describing phonological variation as well as segmentation and

labeling errors, are described. An experiment in which this algo

rithm is applied with a simple set of context-free rules suggests

the usefulness of the technique, which is currently being imple

mented as an experimental knowledge source within the Hearsay II

speech understanding system.
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I. INTRODUCTION

A fundamental problem for mechanical speech understanding

systems is to match the measured acoustic signal to stored tran

scriptions of lexical items.

One approach to this problem is the two step process of

(1) producing a phonetic transcription of the utterance, and then

(2) comparing this transcription with entries in a phonetic (or

phonemic) dictionary to determine which words were actually spoken.

While such a strategy is conceptually simple, its application is

complicated by at least three basic difficulties.

In the first place, the automatic production of a correct

phonetic transcription is enormously difficult. Individual sounds

are encoded in a continuous acoustic signal which simultaneously

conveys many other levels of information—some, such as pitch or

rhythm, linguistically significant; others, characteristic of the

speaker's physiology or acoustic environment, linguistically ir

relevant. Because the acoustic waveform is so complex, analysis

techniques do not yet exist which are capable of automatically

locating and classifying phonetic segnents without error. Errors

in the detection of boundaries between segments cause omission

and spurious insertion of sounds; tentative decisions about bound

aries lead to overlapping segments. In addition to erroneous

boundaries, machine transcription is further confused by errors

or uncertainty in the labeling of the segments themselves.



2

Even if speech recognition programs were able to produce per

fect phonetic transcriptions, a second major obstacle exists.

Speech production is a highly variable human activity, subject

both to random and to systematic variation, including processes

described by acoustic-phonetic and phonological rules. "Perfect"

transcriptions of the same sentence, spoken by different persons

or at different times by the same person, can differ appreciably.

There are a large number of possible pronunciations for each word;

this complicates the dictionary look-up.

Conceivably, all pronunciations for every word might be

listed in the dictionary, but this would not resolve all the

problems. Pronunciations which occur only when two words are ad

jacent would be difficult to represent in a dictionary whose

entries consisted of single words. For example, "did you" is often

pronounced /D IH JH UW/, especially in rapid or casual speech,

but it would be misleading to list /D IH/ or /D IH JH/ as pronun

ciations of "did" on an equal footing with /D IH D/, since they

occur only in an appropriate right context.

In short, recognition error and speaker variability combine

to yield phonetic transcriptions which will rarely if ever cor

respond exactly to the dictionary spelling(s) of an utterance.

Determination of the words comprising an utterance must be based

on some procedure which allows inexact matches between the dic

tionary entries and the phonetic input.

In this note, transcriptions are given in the two-character
ARPA SUR notation.
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In addition to these difficulties, a third basic problem is

that reliable indicators of word boundaries occur infrequently in

natural speech, so that, in the worst case, it may be necessary

to match every possible word at every possible point in the utter

ance, a procedure which quickly becomes impractical as the size

of the vocabulary increases.

In the face of these problems, it is clear that recognizing

the words of an utterance is a process which is far from straight

forward. It is generally felt that mechanical speech understanding

systems will be able to approach the human level of performance

only by incorporating knowledge from many different sources, in

cluding phonology, prosodies, syntax, semantics, and pragnatics

(Newell, et al. [1973]).

In particular, the hypothesization of words may be approached

from two points of view.

A bottom-up approach suggests possible words by analyzing the

phonetic transcription. Often, this process is a crude but fast

way of narrowing the set of possibilities. The Hearsay II system

at Carnegie-Mellon University, for example, uses a dictionary

which is divided into (possibly overlapping) subsets of words with

a broadly defined syllable type in common (Smith [1975]). Each

syllable in the phonetic input matches at most a small number of

these syllable types, so that only the appropriate subsets of the

dictionary need be considered further. Bottom-up methods such as

this typically work best in the region of stressed vowels (where

acoustic analysis performs best).
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Top-down approaches suggest possible words or classes of

words without direct reference to the phonetic transcription. A

knowledge of syntax, for example, may suggest articles or adjec

tives as likely candidates immediately before a noun—again, the

result is to limit the possibilities to a Subset of the dictionary.

A top-down method usually works best in filling in gaps left by
the bottom-up approach.

The problem discussed in this note is illustrated by the

Hearsay II system, in which possible words are hypothesized both

by a rough, first-cut, bottom-up analysis of the phonetic input,

and by top-down prediction. These possibilities must be further

narrowed down by rating the hypothesized words according to a

more detailed comparison of their dictionary pronunciations with

the phonetic transcription.

Since the phonemic2 spellings for the hypothesized words are
known, this more detailed comparison may be viewed as an attempt
to match several competing phonemic transcriptions against an

errorful phonetic transcription, with the merit of a phonemic

sequence determined by the goodness of the match.

This note suggests an algorithm for efficiently matching
these two levels in such a way as to realistically reflect the

effects of recognition error and speaker variability.

2

For convenience, we use the term "phonemic" to indicatPspellings derived from the dictionary. In?ac? Hearsay II
dictionary entries are expressed at the so-ealied "surnemic"
(surface phonemic) level which represents a compromise between
the phonemic and a broad phonetic level; the "phonetic tran!
scnption" is expressed at a somewhat narrowerphonetic itvel



II. BACKGROUND AND MOTIVATION

The basis for the suggested approach to phone-phoneme matching

stems from work in spelling correction (Morgan [1970], Wagner and

Fischer [1974], Lowrance and Wagner [1975]). One previous appli

cation of this technique has been in automatic correction of

computer programs containing misspelled variable names or keywords.

Knowledge about the probabilities of various kinds of typing

errors may enable the compiler to make good guesses about the

intended spelling. By executing the automatically corrected pro

gram, an extra round of editing and compilation can often be

avoided.

In this model, the incorrect spelling is derived from the

correct one by a series of "edit operations." Lowrance and Wagner,

for example, consider the following types of operations:

(1) changing a character into some (possibly different) charac

ter; (2) inserting a character; (3) deleting a character; and

(4) interchanging two characters. Each of these operations is

assigned some non-negative cost; the cost of typing the correct

character is assumed to be zero. The total cost of changing the

correct spelling into the incorrect one is the sum of the costs

of the individual edit operations.

This definition of the cost of changing one string into an

other provides an intuitive notion of the "distance" between the

two strings. The correctly spelled word picked (as the intended
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word) is that word closest to the misspelled item as measured by

this distance function.

Lowrance and Wagner describe a "string-to-string correction"

algorithm which computes the minimum edit distance between two

strings; the complexity of this algorithm is proportional to the

product of the lengths of the two strings.

The application of this model and associated algorithm to

the phone-phoneme matching problem is immediately suggested. As

noted above, phonetic transcriptions, when compared with dic

tionary (phonemic) spellings, contain substitutions, insertions,

and deletions due to speaker variability and machine recognition

error. These differences may be modeled by edit operations, or

rules, which transform the phonemic string into the phonetic

string. The edit distance between a phonetic string and each of

a list of candidate phonemic strings may be computed; the most

likely phonemic string is that for which this distance is least.

Various difficulties, however, prevent direct application

of the string-to-string correction algorithm to phone-phoneme

matching. One such difficulty is that, because segmentation and

labeling routines often make multiple or overlapping guesses, the

phonetic transcription is really a graph rather than a string.

Similarly, the possible word sequences form a graph containing

many phonemic strings. Since having just two alternatives at each

of N nodes of a graph gives 2 distinct strings, a brute force

approach of separately matching each phonemic string against

each possible phonetic string would be impractical.

A further problem is that in the formulation given by Lowrance
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and Wagner, the cost associated with each type of edit operation

is a constant, independent of the symbols or context involved.

This assumption is certainly not valid for the phone-phoneme

matching problem; for example, deletion of a stressed vowel would

have a higher cost (lower probability) than the deletion of a

/TH/, which is a weak and difficult to detect sound. Furthermore,

the costs depend on the context. It is much more likely that a

spurious /SH/ will be recognized after a stop (by confusing the

aspiration with a sibilant) than that the same sound will be

erroneously inserted after a vowel.

The following section describes a modification and extension

of the string-to-string correction algorithm which meets these

objections. Discussion of whether the model is appropriate for

describing the differences between the phonemic and phonetic

transcriptions is deferred to section IV.
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III. AN ALGORITHM FOR PHONE-PHONME MATCHING

This section describes an algorithm for phone-phoneme matching

in the context of a system like the Hearsay II speech understanding

system (Lesser et al. [1975]). The goal is to present only the

broad outlines of the method, without formal proof. In addition,

some features which are necessary or desirable in an actual imple

mentation are discussed in a later section.

The phonetic transcription produced by Hearsay II and similar

systems is, in effect, a directed graph Gp with N+1 vertices which

may be labeled t. (0 < i < N), where each t. represents the time

of a boundary between two phones. Directed arcs from t. to t .,

where ti < t., represent phones beginning at time t. and ending

at time t.. The start vertex at time t = 0 has in-degree zero;

the final vertex tN = T, where T is the duration of the utterance,

has out-degree zero. An example of such a graph is shown in Figure 1

We are interested in all paths P through Gp which start at t

and end at t^; each such path corresponds to a possible sequence of

phones which spans the entire utterance. We will use the notation

P<t> to represent that portion of the path P starting at t and

ending at the time (vertex) t.

The phonemic spelling of the possible word sequences also

results in a graph Gg at the phonemic level; the vertices v. of

this directed graph do not correspond to times (since the times

or durations of phonemes proposed by top-down procedures are not
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initially known). We may, however, associate the start vertex v,

with time zero, and the final vertex v with time T. the end of
1 e '

the utterance. The directed arcs of this graph, which we may label

si (1 < i < M)> represent phonemes. The spellings of possible

word sequences spanning the entire utterance are represented by

paths S from vfe to vQ through Gg. Let S<i> represent that portion

of a path S from vfe through the phoneme si (1 < i < M); let S<0>

be the null path (of length zero) starting and ending at v,.

Figure 2 shows an example of a phonemic graph.

Notice that both these graphs have a particularly simple

structure. The fact that they have no self-loops or circuits will

be used later.

We consider three types of mapping operations, or rules,

for transforming phonemic strings into phonetic sequences:

(1) Substitution: s -> p

A single phoneme s is changed to a single phone p.

The cost of this rule is given by Cs(s,p,E), where "E"

is used as a cover symbol to indicate the effect of

the environment of s and p on the cost.

(2) Insertion: jZf -> p

A single phone p is inserted with cost CT(p,E).

(3) Deletion: s -> 0

A single phoneme s is deleted with cost CD(s,E).

The cost functions are non-negative, and are defined for all

phonemes s, phones p, and environments E. This technicality im

plies, for instance, that each phoneme can be changed into any

phone, no matter how unreasonable the particular mapping seems.
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The unreasonableness of a rule like "AE -> TH" is reflected by

assigning it a very high cost (low probability).

Superficially, these rule schemata appear to be context-free.

However, they are actually context-sensitive, since the cost

functions are allowed to take context into account in complex

ways. In practice, various restrictions would be placed on the

amount of context considered in determining rule costs.

We use these rules to represent both the errors made by the

segmentation and labeling program, and the effects of random and

systematic speaker variability. Variation of this latter kind is

often described by low-level phonological rules considerably

more complex in form than the three simple rule types listed

above. While we do not assume that these simple forms of rules

can completely cover low-level phonology, we do assume that they

can provide a useful approximation to such coverage.

If r is an individual rule and a is an arbitrary sequence of

phonemes, then r(a) is the resulting sequence after application

of the rule r. If R is a sequence of rules r1 ... r , then by R(a)

we mean the composition of these mapping rules:

R(a) = rn( ... (r-jU)) ... ).

We define C(R,a), the cost of such a sequence of rules acting on

a, to be the sum of the costs of the individual rules.

Let D(S<i>,P<t>), the distance between a phonemic path

through the phoneme s. and a phonetic path through the time t, be

defined as

(4) D(S<i>,P<t>) = min C(R,S<i>)
R

where the minimum is taken over all sequences of rules R such
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that R(S<i>) = P<t>. A particular case is the distance between a

phonemic path S and phonetic path P, both of which span the entire

utterance:

(5) D(S,P) = min C(R,S).
R

We further define:

(6) D(S<0>,P<0>) = 0.

That is, the distance between a null phonemic sequence and a null

phonetic sequence is zero. This definition of distance intui

tively gives a measure of the proximity of a phonemic string S to

a phonetic transcription P. The distance D is well-defined and

exists for all pairs of sub-paths S<i> and P<t>, since there is

always some sequence of rules which will transform S<i> into P<t>

(a trivial example is the deletion of all phonemes in S<i> fol

lowed by the insertion of all the phones in P<t>).2

Within this framework, the phone-phoneme matching problem

may be recast as the problem of finding that path S through the

phonemic graph for which the distance from some path through the

phonetic path is minimum. To this end, let

(7) H(si,t) = min D(S<i>,P<t>),

where the minimum is taken over all paths S<i> from v, through s.

in the phonemic graph, and all paths P<t> from t through time t

in the phonetic graph.

1
We use the term "distance" somewhat loosely. Strictly

speaking, the function D is not a metric.

2
Recall that all possible substitutions, deletions, and

insertions are allowed, even though some of them may have very
high costs.
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If we let sk represent a phoneme which immediately precedes

the phoneme s (by convention, let s = 0 be the predecessor of all

utterance initial phonemes), and b(p) represent the begin time of

the phone p, then the following equations allow H(s,t) to be

computed recursively:

H(s,t) = min {H(sk,b(p)) +Cs(s,p,E),
H(s,b(p)) +CI(p,E),

H(sk,t) +CD(s,E) }
(8)

H(sQ,0) = 0

H(sQ,t) = min {H(sQ,b(p)) +C].(p,E) }
H(s,0) = min {H(sk,0) +CD(s,E) }

sk

where the minima are taken over all phones p ending at time t and

all phonemes s, which immediately precede s.

Though these equations will not be proved here, it may be

worthwhile to point out that they are based on the principle that

if a phonemic path S is optimally matched with a phonetic path P,

then each leading sub-path of S must also be matched optimally

with some leading sub-path of P. In particular, an optimal match

from the beginning of the utterance through the current phoneme s

and the current phone p can occur in precisely one of three ways:

(a) An optimal match through a previous phoneme and a pre

vious phone is extended by the substitution rule s -> p,

which maps the current phoneme into the current phone

with appropriate cost.

(b) An optimal match through the current phoneme and a

previous phone is extended by an insertion rule 0 -> p

which inoerts the current phone.
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(c) An optimal match through a previous phoneme and the cur

rent phone is extended by a rule s -> 0 deleting the

current phoneme.

Of these three possibilities, the one which gives the lowest total

cost is chosen.

If we let len(s) be the maximum length of all paths from v,

through the phoneme s, then len(s ) = 0 and len(s) < M for all s

(since the phonemic graph G« contains M phonemes (arcs), and has

no loops). With this notation, we may now state an algorithm for

finding the best path through the graph Gg, given a phonetic

transcription Gp.

Algorithm 1

(a) Set i = 0.

(b) Let X = { s, j, j= 1, ..., q, be the set of all pho

nemes in Gg for which len(s) = i. If X = 0, terminate.

(c) Set j = 1.

(d) Set k = 0.

(e) Compute H(s. ,tv) according to equations (8).

(f) Set k = k+ 1. If k > N (the number of vertices in Gp),

proceed to step (g); otherwise to step (e).

(g) Set j = j + 1. If j > q, proceed to step (h); otherwise

to step (d).

(h) Set i = i + 1. Go to step (b).

This procedure always terminates in at most M+1 iterations of

steps (b) through (h), since len(s) < M. The purpose of the set X

in step (b) is to ensure that when H(s,t) is computed, the previous
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values of H required by equations (8) have already been computed.

When the algorithm terminates, H(sf,T) gives the cost of the

best path from the initial vertex vfe to each utterance final

phoneme sf. The actual sequence of phonemes comprising these best

paths may be easily recovered if we record how the minimum in

equations (8) is achieved.

When context is crucial to the rule cost functions, it may

be necessary to save several different values of H(s,t), each

corresponding to a different context of the phoneme s and pho

netic boundary time t.3 The minimum in equations (8) is then also
taken over all such different values of H.

Because H(s,t) must be computed and at least temporarily

stored for each of M+1 phonemes s and N+1 phonetic boundary times

t, both the storage and time required by this algorithm are pro

portional to G(M+1)(N+1), where G is a factor reflecting the

number of different contexts relevant to determining rule costs.

This value will grow exponentially as the amount of required
context increases.

It is apparent that the amount of context used by the rule

cost functions is crucial in determining the algorithm's

efficiency. Consequently, it is probably best not to fix before

hand the width of the context considered, but rather to dynami

cally compute the amount of context needed at any point on the

basis of rules which are applicable at that point. In this way,

Actually, the different phonetic contexts could probably be
nn?^y-lg?£red:~thfSe conte*ts wiH all be similar (at a givenpoint in the phonetic graph) aince they roproaent fcho (iifToront
guesses of the segmentation and labeling routines at what is
really a single phonetic context.
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the penalty of a large context is paid only in those regions where

it is required.

It should be noted that the procedure described above always

finds the best (lowest cost) match of a phonemic sequence span

ning the entire utterance with a phonetic sequence by considering

matches of each utterance initial sequence of phonemes against all

possible utterance initial phonetic sequences, no matter how

unlikely these matches may be. For example, H(sf,0), where sf is

an utterance final phoneme, is calculated. But this represents the

cost of deleting all the phonemes; the only way of proceding from

this point to a match across the entire phonetic graph is to in

sert all the phones by rules of the type 0 -> p. The fact that

such a mapping of the phonemic sequence onto the phonetic graph,

while mathematically possible, is so phonologically unrealistic

suggests two possible modifications of the algorithm, which we

will describe informally.

Algorithm 2

(a) Steps (d) through (f) of algorithm 1 are modified so

that instead of computing H(si ,tk) for k = 0, ..., N,

the function is calculated only for k . < k < k
mm — — max'

where the range of values is heuristically chosen to

be "phonologically reasonable."

(b) Once some complete match has been found (with, say, a

total cost of W), H(Si ,tk) is computed for those times

not previously considered. But now, whenever the total

cost of any partial match equals or exceeds W, it need
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not be examined further, since it cannot possibly lead

to a better complete match than that already found.

Though we have left unstated the exact details of this

algorithm, the essential idea is to quickly find a (possibly sub-

optimal) complete match so that partial matches which are not as

good can be pruned. This can always be done in such a way that

the optimal complete match will be found; bookkeeping is somewhat

more complex than for algorithm 1, but both space and time re

quirements are decreased.

A further modification is possible, giving a third algorithm.

Algorithm 3

As in algorithm 2, H(s, ,t, ) is calculated only for

"reasonable" values of k. However, the re-evaluation

procedure suggested in part (b) is omitted entirely.

This procedure matches phonemic sequences only against those

portions of the phonetic graph considered reasonable or likely.

It is consequently not guaranteed to find the optimal match (if

such a match proves, after all, to be "unreasonable"), but its

space and time characteristics are better than for either of the

previous two algorithms.

Because these algorithms find the hypothesized phonemic

sequence and errorful phonetic sequence which are most closely

matched under a set of phoneme to phone mapping rules, we term

this technique "rule directed phone-phoneme matching."



18

This technique may also be viewed as a dynamic programming

search through all possible partial matches. It is therefore not

surprising that it is similar to certain well established algo

rithms of dynamic programming.

For example, we may construct a graph whose nodes (s,t)

correspond to partial matches between a phonemic sequence through

s and a phonetic sequence through time t. Three arcs from each

node represent the application of the three types of rules to

reach incrementally more complete matches. To each arc we assign

a "length" equal to the cost of the associated rule. Finding the

best match is then equivalent to computing the shortest path

between (s0,tQ) and (s^,^) in this graph, a problem on which

there exists an extensive literature (Dreyfus [1969]).

Another algorithm, based on a somewhat different point of

view, is given by Bahl and Jelinek [1975]. They consider a pho

netic sequence Y and a series of possible dictionary spellings X.

Their "rules" are not applied at run-time, but are instead en

coded for each dictionary sequence X in a Markov chain obtained

by concatenating probabilistic finite state machines for each

input symbol x in X.

In order to determine the most likely sequence X, they must

compute the probability of Y given X. This they accomplish by a

procedure similar to the matching technique we have described.

The principle difference between these two techniques is

the way in which context is handled. Because Markov chains are

memoryless, the influence of context in the Bahl and Jelinek

model is treated by writing probabilistic finite state machines
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for each point in the n-product space xn of input symbols, rather

than just for each single input symbol x, where n is the maximum

amount of context required. Consequently, this method becomes

exponentially more complex as the amount of context increases.

On the other hand, the rule directed matching technique,

while it is forced to apply the mapping rules anew for each match,

is thereby also permitted to dynamically adjust the amount of

context considered as a function of applicable rules. The com

plexity of this method also increases exponentially, but only

with the average amount, rather than the maximum amount, of
context required.
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IV. IMPLICATIONS FOR A COMPUTATIONAL MODEL OF PHONOLOGY

In the previous section it was assumed that deviations between

expected and machine produced transcriptions of an utterance could

be adequately explained by three particularly simple classes of

rules. In this section, this assumption and its implications are

examined more closely.

As previously indicated, we assume that pronounceable lexical

base forms are transformed into (perhaps erroneous) transcriptions

of surface forms by the repeated application of three types of

rules: (1) the substitution of a single surface segment for a

single base segment; (2) the insertion of a surface segment; and
(3) the deletion of a base segment. For each such rule, functions
are defined which give the "cost" of that rule's application,
based on the context.

We would like these rules to account for two separate sources

of variation between the phonetic transcription and its corre

sponding base pronunciation. The greatest source of variation in

current systems is probably the automatic segmentation and label

ing of the acoustic input. Compared with the careful hand

transcriptions of trained phoneticians, machine transcriptions of
connected speech are still very poor.

A second source of variation is the probabilistic low-level

phonological rules which alter the pronunciation of an utterance.

The pronunciation of a word, even by a single speaker, may vary
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markedly depending on the phonological context, speech rate,

speech style, etc.

We combine these two sources of variation, not because they

are fundamentally the same, but because they are both manifested

in the same way within a speech recognition system, as deviations

of the phonetic transcription from a nominal base pronunciation.

Under the model proposed here, the base alphabet and the

surface alphabet are distinct and non-overlapping. If, for ease

of discussion, we assume that the base alphabet is phonemic and

the surface alphabet phonetic, then this model implies that each

symbol in the phonetic representation is derived by the applica

tion of some rule. The derivation of a phonetic [T] from a base

/T/, for example, requires the rule

/T/ -> [T].

A second assumption implicit in the way these rules are used

is that phonetic transcriptions are derived from phonemic base

forms by the simultaneous application of rules to these base forms.

As an immediate consequence, it is unnecessary to postulate any

intermediate levels between the base and surface levels. It is

also impossible to write a rule which applies to its own output,
or to the output of any other rule.

While it is perhaps not unreasonable to believe that this

model can account for variation of the first type, machine error,

its adequacy in explaining phonological variation is far from

clear. Our model of rules and their application makes two strong

claims about low-level phonology which run counter to much cur

rent thought on the subject. It is therefore appropriate to offer
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some justification for our use of this model.

The first suspicious claim is that low-level phonological

phenomena may be described by rules of substitution, insertion,

and deletion of single segments only. With only these types of

rules, it becomes difficult to express more complex phenomena

involving the rewriting or creation of two or more segments—

rules such as the interchange of two segments, the merging of

two segments into a single segment, or the derivation of two

surface segments from a single base segment. What we question is

not the ability of the simpler rules to generate the desired out

put (since they can derive any phonetic output), but whether they

are appropriate for the task.

An example of the second of the more complex forms mentioned

above, taken from Oshika et al. [1975], is:

(1) R AX -> ER / C C r I ].
f o — o L + stress J

This rule explains pronunciations like [IH NTERDAHKSHAXN]

instead of the dictionary form /IH NTRAXDAHKSHAXN/ for

"introduction."

Now consider the following pair of rules, both of the simple

form required by the model proposed here:

(2) AX -> ER / C R C [ \ 1
o — o u + stress J

(3) R -> 0 / C AXC [ I ].
o — o L + stress J*

It should be noted that the context in these rules is at the base,

or "phonemic" level.1 These two rules generate the desired output

1

In the suggested model, the context would be encoded in cost
functions specifying low cost (high probability) in the appropriate
contexts, and high cost otherwise. To simplify the presentation,
we describe these rules in a more traditional format.
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(with some cost). However, since either rule can apply alone, they

also generate the undesired outputs [R ER] and [AX] for the base

sequence /R AX/. If the costs of these undesirable outputs were

significantly higher than that of the desired output, we would be

satisfied. But it is impossible to define independent cost func

tions for these two rules so that either one applying alone has

high cost, while both applying together have a lower cost (since

the cost of applying both rules is by definition the sum of the

individual non-negative costs).

This inherent difficulty could be resolved in several ways.

Most simply, such types of phonological processes could be ig

nored. This alternative would only be appropriate, of course, if

the influence of such rules on pronunciation proved to be statis

tically insignificant.

A second approach would be to change the model to include

these more complex types of rules. This is possible as long as

the rules are strictly local, with a single rule never rewriting

a string of length greater than some fixed constant (general

"tree transformations," for example, would not be admissible).

However, this extension of the model would make equations (8) of

the previous section considerably more complex. This alternative,

then, would be attractive only if such rules are widespread and if

they significantly affect variation in pronunciation.

But a third solution, suggested by George Lakoff (private

communication), is possible if the notion of "context" implied by

rules (2) and (3) is broadened. Rule (2) may be left unchanged,

but rule (3) may be rewritten:
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/ C AX C [ ^ I ]
(4) R -> 0 ° — o L+ stress J

In this formulation, there are two separate contexts. The first

context is the same as in rule (3), and refers to the base form,

but the second context (indicated by "/") refers to the surface

form, and requires that an /ER/ be present at the phonetic level

immediately following the current position. Consequently, rule (4)

cannot apply unless rule (2) also applies, except with very high

cost. The net result is to predict either of the two acceptable

outputs (the original /R AX/ or /ER/) with relatively low costs,

while making both of the undesired outputs extremely expensive.

It would be interesting to compare these three alternatives

to handling more complex rules in an actual speech recognition

system.

But a more drastic claim of the model described in the

preceding section is that rules cannot apply to their own output,

so that the ordering of rules is immaterial. While such a claim

is tenable on purely formal grounds, it is generally rejected in

current literature (see, for example, Anderson [1974]).2 Allowing

rules to apply to their own output and to be Ordered permits rules

to be formulated more concisely and naturally, and provides ex

planations for some dialectal phenomena on the basis of different

orderings of the same set of rules, though the necessity of order

ing rules has also created labyrinthine problems of its own.

2
See, however, Lakoff and Thompson [1975], where similar

claims for intermediate states in syntactic derivations are
suggested.
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We do not here dispute that various rule ordering principles

can be useful and informative in many situations. Instead, we are

attempting to push a deliberately simplistic model to its limit

by claiming that a simple set of non-interacting rules can

approximate the actions of more traditional types of rules. The

computational model of phonology proposed here is intended to be

simple enough for use in actual speech recognition systems, yet

rich enough to adequately describe most low-level phonological

variation.
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V. A SIMPLE PHONE-PHONME MATCHING EXPERIMENT

In order to test the practicality of the model of low-level

phonology and machine recognition error described in preceding

sections, algorithms 1 through 3 have been implemented in a pro

gram which operates in the environment of Carnegie-Mellon

University^ Hearsay II speech understanding system, thou^i it

is not a part of Hearsay II.

Input to this program consists of a file containing a

phonetic transcription prepared off-line by the segmentation and

labeling modules of Hearsay II, and a file containing a manually

prepared graph of surnemes ("surface-phonemes") describing the

hypothesized word sequences for the utterance. The surneme to

phone mapping rules are also read from a file.

The program then applies any one of the three algorithms

described in section III, determining the paths through the

surnemic graph and the phonetic graph which are most closely

matched according to the given set of rules. This best match is

displayed in a format like that of figure 3, which shows the

best match between the phonetic graph of figure 1 and the surnemic

graph of figure 2.

In the remainder of this section, we report on the first of

a series of experiments designed to explore some of the assump

tions and implications of the underlying model.



Best Match for Utterance # 26 •What happened in England?1

Rule Total

Surneme Phone Time Cost Cost

WH L 25: 29 18 18

what ^ AA 29:\ 36 82 100

IH 36j: 41 33 133
T K

IH
41:
49:

: 49
: 54

65
18

198
HH 216

AE ER'RF 54:: 59 78 294

0 N 59:: 61 60 354
p

— 61:: 67 33 387
ipcxlcU. -J

SH 67:\ 68 65 452
IX IH 68:: 71 18 470
N N 71:: 79 18 488
D 0

IH
79:
79:

i 79
: 88

46
20

534

in IH 554
in N N

IH

88:
94:

5 94
:103

18

20

572
IH 592
NX N 103:s114 16 608

G UW 114::119 85 693
lgland L 0 119::119 46 739

AX IX 119::124 40 779
N T 124::135 90 869
D TH 135:M44 65 934

Figure 3: Best match of the surnemic sequence for
"What happened in England" against its
phonetic transcription. The begin and
end times for phones are shown in centi-
seconds.

27



28

In this initial investigation, we attempt to measure the

improvement in matching obtained by use of insertion and deletion

rules in addition to phone-surneme substitution rules. This

experiment was partly motivated by one version of Hearsay II

which employed a phone-surneme matching strategy in which inser

tions and deletions were not explicitly represented as separate

processes.

The rule "cost functions" used in this test were extremely

simple; they were represented by a cost matrix C in which the

cost of matching a surneme s with a phone p was given by C[s,p],

the cost of inserting p by C[0,p], and the cost of deleting s by

C[s,0]. Thus, the rule costs were independent of context—the

cost matrix is essentially an ordinary confusion or similarity

matrix which includes insertion and deletion frequencies.

The original cost matrix was based on phone-surneme simi

larities computed by the Carnegie-Mellon SUR group on the basis

of actual confusions encountered in 33 sentences read by a single
speaker.

In this original cost matrix C0f insertion and deletion costs

(not included in the original CMU data) were represented by two
separate constants, chosen to approximate the overall likelihoods

of insertion and deletion. That is, the cost of deleting a surneme

was the same for all sumemes; likewise, the cost of inserting a
phone was the same for all phones.

Using a technique suggested by Jelinek, Bahl, and Mercer

[1975], the true costs were then estimated. The matching program
was presented with the actual machine-produced phonetic transcrip-
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tion of each utterance, and with a surnemic graph which described

only the correct sequence of surnemes. Used in this way, the pro

gram 3imply finds the best matching of a known surnemic sequence

to a given phonetic graph.

This procedure was performed for the 33 utterances using the

original cost matrix. On the basis of the resulting matches,

three new cost matrices were computed, one based on utterances

1-16, another on 17-33, and a third based on all 33 utterances.

This procedure was iterated, this time using the new matrices,

and resulted in a final set of three cost matrices: (1) C1-16,

based solely on utterances 1-16;1 (2) C17-33, based on utterances
17-33; and (3) C1-33, based on the entire set of data.

The correct surnemic spellings were then augmented by adding,

for each correct word, a random selection from a list of phoneti

cally similar "distractor words."2

The matching program was reapplied to these augmented

surnemic graphs, using, in turn, the original cost matrix 00 (in

which insertion and deletion costs were constant), and the three

derived matrices C1-16, C17-33, and C1-33. For each of these four

cases, table 4 shows the number of words correctly picked as well

as the number of utterances in which all words were correctly

picked. Performance is shown separately for utterances 1-16 and

for 17-33; totals for the entire 33 are also shown.

Thus, of the 229 word tokens in all 33 sentences, the original

cost matrix found 184 or 80.3 # correctly, while the derived cost

1

~™ Except that the original similarity matrix obtained from
CMU was based on all 33 utterances.

2
The total number of words in the vocabulary was 57.



utterances 00

Cost ]

C1-16

Vlatrix

C17-33 C1-33

1-16

utterances

correct 7 11 7 10

words

correct

(of 108)
85 101 92 100

17-33

utterances
correct 5 3 10 11

words

correct

(of 121)
99 97 113 114

1-33

utterances

correct
12 14 17 21

words

correct

(of 229)
184 198 205 214

Table 4: Performance of phone-surneme matching
on 33 utterances with cost matrices
(a) 00 based on all 33 utterances, but

constant insertion, deletion costs
(b) C1-16 computed from just the first

sixteen utterances
(c) C17-33 computed from the last

seventeen utterances
U) C1-33 computed from all 33 utterances
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matrix C1-33 found 214, or 93.4 %, against expected chance per
formance of 50 %.

Not unexpectedly, the use of measured insertion and deletion

costs produced a substantial improvement over the use of overall

averages for these costs. Students t test shows that the better

performance of the derived cost matrix C1-33 compared with that

of the original matrix 00 is significant at a confidence level

well in excess of 99 f°. In fact, there is a tendency for the

derived matrices based on only half the data to perform better

than the original matrix (based on all the data), though this
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difference is significant only at the 70 # level.

We conclude that, for the current segmentation and labeling

strategies in Hearsay II, use of deletion and insertion frequen

cies, even if averaged over all contexts, can provide significantly

better recognition rates than use of confusion frequencies alone.

Thou^a the experiment just described involves a particularly

simple model in which rule costs are independent of context, it

still raises some interesting questions which we have not answered

here. For example, cost matrices with supposedly realistic entries

for insertions and deletions were obtained in two iterations of a

procedure which started with a matrix in which insertion and de

letion costs were constants. We may ask how fast this procedure

converges (or whether it converges at all). Would a single iter

ation have been sufficient? How much better would three iterations

have been?

Or, again, results were obtained for hypothesized word

sequences which always contained the right number of words, with

exactly one wrong word for each correct word. How would perfor

mance have fallen off with more realistically complex graphs of

hypothetical word sequences?

Although the answers to such questions would be informative,

we feel that a more important direction for further study is the

use of context in determining accurate rule costs. How much

context is required at the surnemic and phonetic levels to satis

factorily describe the observed variations and differences between

these levels? And what price in algorithm complexity is paid for

the increased accuracy afforded by these more precise rules?
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Especially useful would be a procedure which automatically

derived the costs of rules as a function of their context, perhaps

by iteratively refining rough initial cost estimates in the same

way that the context-free cost matrices were derived.

Besides its direct application in a recognition program, such

a procedure would permit an easy assessment of the relative

importance of phonological variation versus recognition error.

Two sets of rule costs could be measured; one, based on the dif

ferences between dictionary pronunciations and careful hand

transcriptions, would reflect true speaker variability; the other,

based on the differences between hand and machine transcriptions,

would describe the effects of segmentation and labeling error.

These two sets of rules, used separately and in combination, could

help in deciding how important speaker variability is in the face

of the high recognition error rates of current systems. Similar

methods might also be used to quantitatively measure the mag

nitude of inter-speaker differences.
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VI. IMPLEMENTATION OF PHONE-PHONME MATCHING IN HEARSAY II

At present, we are in the process of implementing the rule

directed phone-phoneme (or phone-surneme) matching technique as a

knowledge source within the Hearsay II speech understanding system.

As previously described, this technique is not immediately appli

cable within Hearsay II for several reasons.

For one thing, the algorithm matches a phonetic graph against

a hypothesized phonemic graph, both of which are assumed to be

present in their entirety before the matching begins. This may

well not be true for the phonetic graph if the system is operating,

or simulating operation, in real time. In this case, the phonetic

graph is extended to the right as each new portion of the acoustic

input is analyzed; having to wait until the entire utterance has

been heard before beginning a match can destroy much of the moti

vation for real time processing. But the phonemic graph is even

less likely to be present and complete when the matching begins,

for the very process of hypothesizing new words almost requires,

especially for top-down prediction, that some previously hypothe

sized words already be rated.

Furthermore, good matches are determined by extending

previously calculated sub-matches strictly to the right. Conse

quently, a "gap" in which either the segmentation and labeling

routines or the word hypothesization routines are unable to make

any guesses will completely block the matching algorithm.
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An additional problem is that while the set of hypothesized

word sequences contains at most one correct sequence, it may be

expected to include many incorrect sequences. When two or more

matches "merge" at some common node in the phonemic graph, the

worst matches can be discarded, but, until that time, as much

effort is expended on exploring a hopelessly bad match as on a

promising one.

Clearly, these problems must be dealt with if the phone-

phoneme matching algorithm is to prove viable in a real speech

recognition system.

The following principle makes possible a large step in this

direction.

Assumption

The variation in a phonetic transcription on one side of a
stressed vowel or pause, whether due to speaker variability
or recognition error, is independent of the context on the
other side of that stressed vowel or pause.

We will use the term "anchor point" to refer to phonetic

pauses or stressed vowels, and to the beginning and end of an

utterance.

To the extent that this assumption is true, we are justified

in breaking up the phonetic and phonemic graphs into sections

between anchor points, and computing best matches separately

within each section. The overall best match is then obtained

simply by concatenating the best matches from each section. Not

only is such a procedure more efficient than the original algo

rithm, but it helps to solve the problems associated with the

practical U3e of the algorithm.
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A further modification is that whenever a match has been

extended to the end of a word, that word is rated according to

the cost of that portion of the match spanning the word. If this

match later turns out to be sub-optimal, then the word's rating is

adjusted accordingly. But in any case, the initial rating provides

a lower bound for the word1 s eventual rating which can be used,

in the absence of any better information, to focus the efforts of

the top-down word prediction modules.

A third change is that, althou^i the matching algorithm was

previously described in terms of left to ri^it processing, both

right to left and left to right matches can be determined by

essentially the same algorithm.

The implementation of the matching technique within Hearsay

II combines all these modifications, so that it is no longer

necessary to wait until the entire utterance has been input and

all word sequences hypothesized before matching can begin. The

tentative rating of words during the determination of a best match

triggers further activity by the word hypothesizing modules. And

by extending matches both to the right and to the left of each

anchor point, it is possible to surround gaps with words whose

ratings are approximately known, so that top-down predictions of

words occurring within the gap can be made more easily.

By totally abandoning matches when their total cost exceeds

some threshold (adjusted for the length of the match), it is also

possible to reduce the amount of time spent in rejecting bad

matches, though this also introduces the possibility of overlooking

what may actually be the best match.
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These techniques are currently implemented in an experimental

Hearsay II module named MAP, which actually contains three sepa

rate "knowledge sources." The first two are extremely simple:

PAUSE identifies pauses at the phonetic level and hypothesizes

corresponding word boundaries at the surnemic level; ANCHOR

identifies stressed vowels (located by another module within

Hearsay II as described by Smith [1975]) and pauses as anchor

points. The surnemic segments or boundaries corresponding to these

phonetic positions are also marked, thereby effectively dividing

the utterance into non-overlapping sections.

The third, most complex, component of the module, named

MATCH, determines the best sequence of surnemes within each such

section of the utterance, using algorithm 3 modified as suggested

above.

Presently, a cost matrix as described in section V is used

to specify the rule costs.

The testing of this module is still in a very early stage.

It has not yet been completely integrated into the Hearsay II

system; the few test cases so far evaluated have used the actual

phonetic transcription produced by Hearsay, but the hypothesized

word sequences have been manually selected. We hope to reach a

point soon at which use of the module will become routine, per

mitting detailed comparisons of its performance with other

phone-surneme matching techniques currently used in Hearsay II.
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