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Abstract

For a one-parameter process of the form

Xt =XQ +f *sdWg +( <igds
Jo Jo

where Wis aWiener process and |<f>dW is astochastic integral, a twice

continuously differentiable function f(X ) is again expressible as

the sum of a stochastic integral and an ordinary integral via the

Ito differentiation formula. In this paper we present a generalization

for the stochastic integrals associated with two-parameter Wiener

process.

2

Let ^Wz,z ^ Rt^ ^e a Wiener process with a two-dimensional

parameter. Erstwhile, we have defined stochastic integrals |<J>dW and

Ji//dWdW, as well as. mixed integrals IhdzdW and jgdWdz. Now, let X be

a two-parameter process defined by the sum of these four integrals and

an ordinary Lebesgue integral. The objective of this paper is to

represent a suitably differentiable function f(X ) as such a sum once
z

again. In the process we will derive the (basically one-dimensional)

differentiation formulas of f(X ) on increasing paths in R .
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1. Introduction.

2
Let R denote the positive quadrant of the plane. For two points

2
a = (a1,a2), b = (b-i>0 in R, we denote a JL b if a1 < b. and a2 <_ b_.

A family of a-fields {J^ , z 6 R } is said to be increasing if a< b *>

vJ„ S. «/L« A, two-parameter stochastic process {X , j£, z £ R,} is said
a d z z t

to be a martingale if

(1»1) E(X,|^r ) = X almost surely whenever b *»" a.

One of the simplest examples of 2-parameter martingales is the

2
Wiener process. We say {W ,zG R+} is a Wiener process if it is Gaussian,

zero-mean, with

(1.2) EWaWb =min(a1,b1) min(a2,b2) Va, b<= R*

Consider any increasing family of a-fields {J?,z€ RT} such that, (1)

W* ls ^-measurable for every z, and (2) for b^ a AW = WL - W, t v-z z b (a1,b2)

W(b a)+Wa is ^~lndePendent• It is easy to verify that
y 2(W , J-y z £ R } is a martingale.

z z •

In view of the close connection between martingales and stochastic

integrals in the one-parameter case, the possibility of defining stochastic

integrals of the form



(1.3) Z, s f <f> dW

as martingales suggests itself readily. This was done by Wong [3],

and by Cairoli [ 1 ] who used it to study a class of stochastic differential

equations. Wong and Zakai [ 4] noted that stochastic integrals of the

form (3) were clearly incomplete for any reasonable calculus. In particular,

unlike the one-parameter case, not every martingale defined on the sample

space of a Wiener process can be represented in the form of (3). For

such representations a second stochastic integral is needed and was intro

duced in [ 4]. In the process, a differentiation formula was derived

for those transformations f(W , z) which are themselves martingales. While
z

this formula has already found some applications [ 5], it is inadequate

for a general calculus.

The natural question is the following: Let X be defined as the sum
Z

of a Lebesgue integral and stochastic integrals of the first and second

types, i.e.,

(1.4) X =I 6dc+ f «> dWr +f * ,dW dW ,

Let f(x,z) be a suitably differentiable function. Can f(X ,z) again be
Z

expressed as a sum of three integrals as in (4)? The answer, interestingly,

is no. For a complete generalization of the Ito lemma, we need the mixed

area integrals introduced in [ 6]. The purpose of this paper is to

derive the general differentiation formula and some related results.
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2. Notations and Preliminaries.

Let a - (a-, a«) and b « (b-, b„) be two points in the positive

2
quadrant R, . We denote a^b if a. < b. and a0 < b_, a-<-< b if a, < b.

t 1 — 12 — 2 11

and a2 < b2, a>( b if a. < b. and a. > b„, a^b if a, < b- and a« > b_.

Furthermore, we shall adopt the notations:

a0b = (a1,b2)

aAb* (minU^bp, min(a2,b2))

aVb* (max(a1,b1), max(a2,b2))

Note that if aA b then a© b = aA b, if b/a then a® b = a V b.

Note also that a(x)b ®c = a ® c.

2 2
For a fixed point a € R , R will denote the rectangle {z: z € r*

• a +

zX a}. Let (fi, *J->(P) be a probability space, and let {^ ,z€ R }
z a

be a family of a-subfields such that:

F ) zJL z* implies J? C J f
x z z

F2^ 0 contains a11 nul1 sets of c? (0 denotes the origin)

F-) For every z, ^ = O J? f
z i v_ ^— z

F.) For each z, _? = ^ A and v? = >3* are
4 s z z(E>a z a®z

conditionally independent given ^ .
z

The first three conditions are natural ones, and the fourth one was

introduced in [2].
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Definition: A stochastic process {M , z £ R } is a martingale if:
———z a

(1) for each z M is ^-measurable, (2) for each z e|m I < «>, (3) z -<z*
z z ' z'

implies E(M ,|-J ) = M almost surely.

Let z* >>z. Then (z, z1] will denote the rectangle {?: £ > ^> z and

£-< z1}. If {X , z 6 R } is a stochastic process then we will denote
Z ci

X(z, zf] = X , - X ^ f - Z .^ + X
z1 zQ<)z z'Qyz z

Several martingale related concepts were defined by Cairoli and Walsh [2]

in terms of X(z, z']. These were slightly modified in [6]. In the

following definitions X « {X , z G R } is assumed to be ^-adapted and
z a z

integrable for each z, and the defining condition is to hold for all

z 44 z1:

Definitions: (a) X is a weak martingale if E[X(z, z1] IJ ] = 0
= • z

(b) X is a strong martingale if it vanishes at the axis and

E[X(z, z'] \j\ v>*] =0.

(c) X is an i-martingale (i » 1, 2) if E[X(z, z1] |.? *] =0

and X q0 ^Xn(x)z^ is a one~Parameter

martingale for i - 1 (i c 2).

With these definitions, a strong martingale is also a martingale, a

process is a martingale if and only if it is both a 1-martingale and a

2-martingale (see [2]), and either a 1-martingale or a 2-martingale is

also a weak martingale.
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3. Stochastic Integrals.

Let M be a continuous square integrable strong martingale. Then,

four types of stochastic integrals have been defined: ([6])

KcdHtdv

k ?i dC dM?,

/ifi . dM dr/

In this paper we shall consider only the special case where M = W is

a two-parameter Wiener process, which can be defined as a continuous strong

2
martingale such that X = W - Area (R ) is a martingale. Next, we shall

z z z

summarize the principal properties of stochastic integrals with respect

to W.

Let {W , J , z G R } be a Wiener process. Let {<*> , z 6 R } be a
z z a xz a

process such that:

(3.1) (a) <J> is bimeasurable function of (w,z).

(b) 1 E*2 dc <.
Ra C

and for each z

either (c ) <j> is jF-measurable
0 z z

or (cn) <J> is JF -measurable
± z z
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v- 2
or (c9) $ ^s Jr -^measurable

£m Z Z

Let ^f. denote the space of § satisfying (a), (b) and (c.). For (J> € "^,

i= 0, 1, 2, the stochastic integral / <J>r dWr is well-defined. If we
a

define

(3.2) (♦ •W)z =J *c dW? -jIc ^z*c dW;, zSRa
z a

then the process <f> o W is a strong martingale if <J> £ ?f , a 1-martingale

if <f> G }f and a 2-martingale if <f> € )/ Furthermore, define

(3.3) ..z ,T - ..,, „ -.z T? ^
z

Then Xis amartingale if 4, ty ^ ?f0, a1-martingale if <J>, ij> G ">7^,
and a 2-martingale if <J>, ij> £ ?£. In all cases continuous versions can

be chosen.

Proposition 3.1. Let {X , z £ R } be a process defined by

X " (♦ oW) (* <» W) rJ <j>r *r dC

•X0 +J f<z'K mXn + J f<z' Z) dW,z u R
z

where X is v?-measurable and f satisfies the conditions
0 0

(3.4) (a) f(z,e) = 0 unless x, 4 z

(b) f(z,c) = f(C©z,c)

((b1) f(z, c) = f(z® C,0)

(c) For each z€r f(z, •) € 3^

((c«) f(Z, •) e y2>

-6-



Then, X is a 1-martingale (respectively, a 2-martingale)
z

proof: Consider the first case. Let z* >• z. Then

E(Xz' l^z} =1 f(z',OdWc+X0
Rz®z'

=| f(c®z',C)dWc +ZQ
Rz®z'

=J f(c®z®z',C)dWc +XQ
5®Z

z x z

Therefore,

E{X(z,z<]| Z\) ^E{X2, -Xz(g)z, -Xzl0z +xj^>

=° " E{Xz'®z - Xz^z}

= ~ {Xz®z'®z " Xzl'3"z}

= 0

The proof is identical for the 2-martingale case. «

Remark: Except for notational differences and an explicit display of

the dependence of the integrand on limit of integration, proposition

3.1 is a restatement of proposition 2.3 of Cairoli and Walsh [2].

Next, consider functions iKu),CCf), C> C1 e R » such that
a

(3.5) (a) \\> is a measurable process and for each (c, Cf) i|> f
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is 3^ , .-measurable.

(b) f E*? „» dcdc1 <°°
•'R _.

a a
R xR ?,C

(c) *r ,i = ° unless C A Cf

Consider a function satisfying (3.5) and of the form

(3.6) i|t , = ty for £ £ A and £* e B

= 0 otherwise

where A and B are rectangles. We define

f ^ rl dW^ dW^, =^W(A) W(B)
•Jr xR

a a
'r xR E'5 c ?

f *r rf dc dW ,-«Area(A) W(B)
'R xR ^ ^

a a

f 4> .dW dcf =*W(A) Area(B)
R xR
a a

For \\> which is a sum of such functions, the integrals are defined by

linearity. For a general if> satisfying (3.5) the integrals are defined by

approximations and passage to quadratic-mean limit. Finally, for \\>

satisfying conditions (a) and (b) of (3.5) but not (c) we define the

integrals as being the same as those with i|> , replaced by I(c A. C*)^

where K^AC1) = 1 or 0 according as £X £f or not. We shall denote

by yf the space of functions satisfying (3.5) (a) and (b).
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Proposition 3.2. Let ty G ~y( and define

(3.7) X «f * dW dW ,
2 •'R x R M <• C

z z

Ylz •J *r r' dSdWr'±Z JR xr 5.5 5
z z

•iY2z = J ^r r« dWCdC»22 R xr £>£ C
z z

Then, X, Y^ Y2 are respectively a martingale, a 1-martingale, and a

2-martingale for which almost surely sample continuous versions can be

chosen. Furthermore, let

(3.8) f(z, cf) =| 1(5 C')iJv r. dWr
z

f2(z,c) =1 I(cAc')ij/ r, dW .
z

8,(z, V) =1 I(CXCf)*r r, d^

Then,

Z

1g (z, C) =| I(CAC')^ „, d?;'
'r C,C

z

-J fx(z,(3.9) X^ =| f^z,?') dW,,
z

z ^R 1 c

=1 f9(z,c)dWr
JR 2 C
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(3.10) Ylz «J 8l(z,. 5^)dW5,
z

I= 1 f (z, C)d?
R £m

z

(3-u) Y2Z -f H<z' *)dwc
K

Z

"I ^ C')dc'
R

Proof: Let V? denote the space of all functions ty which are sums

of functions satisfying both (3.5) and (3.6). The conclusions of the

propositions are obvious for ty £ 3i . For ^ satisfying <n let {\\> }

be a sequence in ^f such that

B* -*II2 =[ E(* ,-* _,)2 dCd?1 —+0
n ^ n, c,,c, c,,c, n^J0

and define f and g. by using \p in (3.8). Then

J E[fin(z,c)-fi(z,c)]2 dC <B*n - *B2 —>0
R n-**>

z

and

J E[g. (z,c)-g,(z,c)]2 dC <Area(R ) B* - *B2 >0
•'R in 1 z n n-**>

z

Hence, if we denote X =1 if; , dW dW . , thennz JR xR rn£,C C C
z z

EU - f Mz.c'JdW.]2 <2E(X - X )2 +2lU - *B2 >0
•'r * n-**>

z
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Similarly,

E[Ylz - J f2(z,0dC]2 12E(Ylz - Ylnz)2 +2Area(Rz) B^ - ^2
R

z

n-*»

These two cases are prototypical of all the others.

The martingale-properties can be proved using approximations, but they

also follow directly from the iterated integrals by using proposition 3.1.

Continuity is proved by showing that a subsequence of {i/> } can be so chosen

that the resulting approximations of X and Y. converge uniformly almost

surely. n

Remark: Proposition 3.2 might be viewed as stochastic Fubini's theorems.

As in the one-dimensional parameter case, we would like to extend

the stochastic integrals to integrands which are square-integrable almost

surely. This can be done and will be given in a forthcoming paper, but

we have no proof that the resulting processes defined by the four types

of stochastic integrals are then sample continuous. For the derivation

of the differentiation formulas, we shall extend the stochastic integrals

as follows: Instead of conditions (3.1b) and (3.5b), assume
>

(3.1b1) sup |<J> | < » almost surely
a

(3.5b1) sup U .| < «x> almost surely
C, Cf £ R 5f 5

For stochastic integrals of the first type, choose an increasing

sequence K such that

(P(8upU |>K )<1/n2
C

-11-



and

Kn if *?>Kn

-Kn if *c <-Kn

1Note that I EA d? < » and
R n?

a

PhlSfk WdV.fR *ncdWcl>0)

_£ P(sup|<J>nC| >Kn) <1/n

Therefore, Borel-Cantilli lemma implies that the sequence

JR *nS d»C
z

converges uniformly with probability 1. We now define I <t> d£ as the
JR ^

limit, which being the uniform limit of sample-continuous process is

itself sample continuous.

Stochastic integrals of the second type and mixed integrals can

be defined under condition (3.5b') in a similar way, and the resulting

processes are again sample continuous. In all these cases martingales

properties must be replaced by the corresponding "local" martingale

properties in a way similar to the one-dimensional parameter case.

4. Formulas on Partial Differentiation

In [ 6 ] we have shown that under suitable differentiability

-12-



conditions, every weak martingale can be represented as the sum of

stochastic integrals of the four types. If we call processes of the

form X = (weak martingale) + I u dC weak semi-martingales, then our

z

principal result (section 5) will be a representation of sufficiently

smooth functions F(X ) as weak semi-martingales once again, via a

differentiation formula.

Suppose that {X , z G R } is a process of the form
z a

(4.1) X »X +1 f(z,0 dW + I u(z,c) dC
Z ° "'r *- JR

z z

where f satisfies the conditions of proposition of 3.1 to make the stochastic

integral J f(z^)dW^ a1-martingale and usatisfies u(z, 5) =u(c0z,t).
R

z

Let z = (s,t) and c = (a,x). Then £®z = (a,t) and by setting

f((ff,t),(a,-r)) = f(t;a,x) and u((o ,t), (a ,t)) = u(t;a,x), we can

reexpress X as

(4.2) X
s

as

=X + f f(t,c)dW +f u(t,0 dC
s,t s,t

Xg t is a one-parameter semimartingale in s for each t. Rewriting it

,s ±

(4*3) Xs,t =X0 +Ms +/ [f «<t,a,T) dx] da

we get the one-parameter formula

(4.4) F(Xs,t} =F(V +f F'(Xa,t){dMa + f S<t»cy»T> dT:I dc,}

+Vo F"(Xo,t>d<Mt»Mt>a
-13-



for any twice continously differentiable F. Equation (4.4) can be rewritten

as

*<*..t> mF(V +f0f0 ^(Xajt){f(t;a,T) dWaT

+ u(t;a,x) dadx}

s t

+ j[f V"t*n J f2(t;a,x) dadx

or

(4.5) F(Xz) =F(XQ) +J F'(X^(E)2){f(C®x,c)dWc +u(c®8,c)dc>
R

+i4F"(Wf2(c@z,c)dc
z

«F(XQ) +J F'(X?@z){f(z,C)dWc +u(z,c)dc)
R

z

*2J F"(Xir/5s_)f2(z,C)dC
R

z

.2

Proposition 4.1. Let X, , z € R , k = 1, 2, •••;, n, be processes defined
kz a

by

R R
z z

Suppose that for each k f satisfies the conditions of proposition 3.1 to

make the stochastic integral a 1-martingale and u,(z,0 = u,(C©z,C).

Let X * (X-, Xof •••, X ). and F(X) be a function with continuous partials
l z n

up to the second order. Then,

-14-



(4.7) F(Xz) =F(X()) +L/"Fk(X?@z)[fk(z,c)dWc +u^z.Odc]
kR

z

+iT,J *w<ia8>,)fk<*.of1(».c>dc
k. i R

z

where Ffc and F^ denote partial derivatives. Alternatively, if f

satisfy the conditions of proposition 3.1 to make the stochastic integral

a 2-martingale and u^z,?) = ufc(z®c,?) then

(4.7') F(Xz) «F(XQ) +£ |Fk(Xz©c)[fk(z'C)dWC +Vz>C)dC]
z

+*£tl Fk*(Xz®C)fk(z^ Vz'?><*
' z

An important special case of a process X which is of the form (4.6)

is given by

(4*8) Xz =J 6r ^ +J MW, +f *r r, dW dW
2 Z Z Z

( 8C c, dcdW , +f h .dWdC
•Jr xR ^ 5 JR XR C,C C

+

z z VRz

which can be written in the form of (4.6) in two ways, with either

f(z,C) =<j>c +J I(cf X. C)[^r?rdWr, +g>.t ^dc']

(4.9)

z

+J KCu(z,C) - e +J I(cU C)h . dW.
R s» >t £

z

-15-



or

(4.10)

f(z,C) = 4> + KC A C*)[*r r,dW ,+ h fdc']
R

z

u(z,c) =ec +J Kc >i c1) g£,c»dwc»
z

It is easy to verify that in the first case because of the term I(c* A C)»

f(z, O « f(C®z,c) and u(z,c) = u(c®z,c) and for the second case

f(z,C) = f(z0C?) and u(z,c) = u(z®c,c). (See illustration.)

We note that for a fixed £, f(z,e) and u(z,c) as given by (4.9)

and (4.10) are 1 and 2 semi-martingales, and differentiation rules apply

once again.

5. The Ito Lemma for Stochastic Integrals in the Plane.

Let Z. , z e R , k = l,2,...,m, be processes defined by
kz a

(5-D \z -ha +IR Vc +IR Vwc +IR xR Vc.C dVV
z z z z

t..„fk,?,c,dcdw?'+LD8k.c,?'dVt'
z z z z

If we set

(5.2) u^z.O =Afc +J Kac')*k>CiC.dWc +{ I(ac')fk>,)C.dC
R K„

and

(5.3) vk(«,c') =ekc, +{ KcAe')^fC>e.diie
R

z

-16-



then (5.1) can be rewritten as

(5-4) xkz =xko +f V2>s'>dv +f V8^,)dc
R ' 'R

z z

which is of the same form as (4.6), and u, and v satisfy the conditions

for (4.7). Therefore, we have

(5.5) F(Xz) =F(ZQ) +E J Fk(V®z)[uk(z,C,)dV +Vz»C,)dC,]
z

k., x> R

Now, (5.1) can also be reexpressed as

(5'6) \z =\o +J fuk(z»C)dWc +vk(z,C)dC]
R

z

with u, and v, given by

(5.7) ^(z.c) =Ak? +J IW)^^,^, +H.^.dc'
R

z

(5.8) vk(z,o = e + KoccOf. r r,dW .J.k..,„ ~k? J .^ i-k,cic.«»c
z

Observe that because of the term I(c*Cf) in the integrals u, (z,C)

- {^(z®?,^) and vk(z,c) =vfc(z®c,?). Therefore, for any fixed point

(5*9) V®z " V =J [^(C^cOdW +vk(c'®?,C)dc]
V®z~V

i". T(U^')[u (c'®C,C)dWr + v. (c'(S>r.,OdC]
R K ^ K

z

-17-



The three equations (5.2), (5.3) and (5.9) are all of the same

form, viz.,

(5.10) Y(z,c') =o +J I(UC')[3r r,dWr +Yr r,dc]
Z

which is a 2-semimartingale for each fixed C1. Therefore, we can reexpress

the integrands of (5.5) using (4.7), the differentiation formula for

2-semimartingales, e.g.,

Woz5 Vz'«'> =Fk(xc->+kc-

+|r I( '̂)Fk(Xc,@c)[*k(C>c,dW? +fk)S>c,dC]

+J K^C,)uk(c,©c,c') £ Fk£(Xc.®c)t«£(?'®?.C)dW
Z

+ v^C'^COdc]

+f iw)iE Fk*<V0^k,c,c' V^,o]dc
R

z

R &,m
z '

If this tedious but straightforward procedure is applied to every term

of the integrand in (5.5), we get the following:

Proposition 5.1. Let X, , z G R , k = l,2,...,n, be process defined by
xCZ EL

(5.1), where the integrands are almost surely bounded. Let F(x), x £ R ,

be a function with continuous mixed partials through the fourth order.

Then,

-18-



(5.11) F(Xz) =F(XQ) +| Fk(Xc) [^ dW^ +6k d?]
R

z

+iJR Fu(VVV!

+J^xb/'̂ V-'V* +VV'̂ k^W

+IR XR [Fk<V)fk+ rtt(V')(V«\V
z z

4 FUm%?•>WmJd<dV

+JR XR [Fk(XCV?,)gk +Wc^WW
z z

+2WW^V^W5'

+IR XR ^^"^(V^kWAV IVt>

+WSW'1 (Mkfit*>+ 2 Wm +I VW

^WV'VAV^'

when u and v have arguments (^VC'jC1), u and v have arguments UvV,C)>

Y, f and g have arguments (C.C1) and all repeated indices are summed

from 1 to n. Observe that we have made use of the relationship

eve* = c'®c if c^c'.
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Because of its complexity, the final expression for the differentiation

formula may not be as useful as the partial differentiation formulas

which give rise to it. Specifically, we are referring to (5.5) and the

three Bqs. (5.2), (5.3) and (5.9). Note that (5.5) is a representation

of F(X ) as a 1-semimartingale, and (5.2), (5.3) and (5.9) provide a

representation of the integrands as 2-semimartingales. An alternative

form with the roles of 1 and 2 semimartingales reversed also exists. It

is useful to summarize these results as follows.

(5.12) F(Xz) =F(XQ) +f VV®z)[uk(z,C')dV +vk(z,c')dcf ]
J R

z

+2f FU(XC'®z)uk(z-?,)Vz'?')d?

J.F(XQ) +j VXz©?)[Vz'5)dWC +VZ'C)d5]
R

z

+i/R Vxz®c)0k(z'c)Vz'5)d?
z

(5.13) \C,0Z =\c, +j KUC^I^C'̂ .C.OdW^ +vk(C,®C,C)dC]
R

z

^z®c =*kc +I K&M:,)[uk<c,®c,c,>dwcf +v^c'̂ CC^dc']
R

z

(5.14) ^(z.C) =V +f ICC*')^,^.*,. +J KWC')fk>c>c.dC
R z

z

R ""* " "R,
z z
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(5.15) vk(z,c') =6k?, +j I(US')gk(C)C,dW

Vz.c> •ekc +Jr i(^')fk>c,?ldw?'
z

As an application consider the problem of characterizing a positive

square-integrable martingale M on the sample space of a Wiener process.

From [4] we know that M has a representation of the form

(5.16) M =M +J ♦ dW +f * tdW dW .
z z z

without less of generality we can assume M = 1. Now, suppose <J> and ij>

are almost surely bounded. Then, write

(5.17) M =1+f u(z,cf)dW .
2 JR 5

where

=1+1 u(z,c)dW
JR S

(5.18) u(z,cf) =<|) .+J I(CACf)t/; ,dW
s «/R £»C £

z

u(z,C) =*r +J KUC')1 r,dW ,
z

Equation (5.12) now yields

(5.19) WMz =|r |.(.,t')/«ttg|Hl{, -|J W.,?')/^,^]^'
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The second equation in (5.17) yields

(5.20) M?t(g)z -M?t +f I(a?l)u(C,®C,C)dW(
z

The first equation in (5.18) can now be used with (5.20) to yield

h(z.c') = [uCz.C1)/^,^]

R
z

where a , = (<(> f/M t)

h(z,e) =u(z,c)/Mz(^

and

3r r, = [(*r r./Mrx/r,) - havc^MhUVC'^mCv-C')

We now have the following alternative representations for Mz

Mz -expjf h(z,C')dWcl -|f ^(z.Odc'j
z z

|f h(z,C)dWc-|J h2(z,c)dc|M = exp
z .fR

z

Mz = exptfRVWRxRBc,c'dVv}
Z Z Z

-HR^-HRX/-idcd?'
z z z

-I" 3 Jhd.vC'̂ ^dW dc' +h(cVC\£)di;dW .
h xR *•* 5

z z

- h(cvc,,C,)n(cv^l,C)dCdc']
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z z z

The function h, h are related to a and B by the equations

h(z.c') =oc, +j 3c>cJdWc - hfcvc'.Odc]
z

h(z.C) = ac+J 3c>c,[dWc, - h(cVC,,C')dc']
z

The application of these results to transformation of probability

measures will be considered in a separate paper.

6. Integration with Respect to Paths

The formulas on partial differentiation given in section 4 can be

interpreted as formulas on horizontal and vertical paths, relating path

integrals to stochastic (area) integrals. So interpreted, they are

not unlike the Green's formulas of Cairoli and Walsh [2],

Let r be an increasing path (r : (z(t), 0 < t < 1; t > s ** z(t)> z(s)})

connecting points zQ and zf (zf>z ). Let D- be the area below T, and
r rD2 the area to the left of r. It is clear that D, and D2 intersect only

on T and their union is R -R . Let <J> be a measurable process such
Zf z0

that

f 2(6.1) I <f> d? < «» almost surely
•'R -R q

Zf z0

For each point c in R -R let cn denote the smallest point on V such
zf z0 r

that C„>-C' We say $ is T-adapted if 4> is^ measurable for each

C G R -R . For such a <J> define
Zf z0

T
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(6*2) ^ =^ if Ce D±

= 0 otherwise

r "^iThen <J>. is adapted to v7 and

I,(6.3) *£,-] *[ dBc

defines a local i-martingale, which is a one-parameter continuous local

martingale for z € r, with

(6.4) <<.^>z={R*i5*;?d?. zer
z

Hence,

(6.5) M^M^+M^

is a continuous local martingale on V and

(6.6) <Mr,Mr> = J *^dC, z e r
Z Jr -R C

2 Z0

r r
If za is the origin then <fr- + <J>0r = <J> for all C in R . Hence,

0 1C 2C C zf

it is tempting to write

(6.7) fR ♦c<WC "JR *Jc "c.+J,♦*,. «. + I *2C dW^
K

Z Z Z

and use the right hand side to define the stochastic integral 4>°W.

However, for this to be justified we would have to show that the right

hand side is independent of I\ Specifically, we need to show the

following:
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Lemma Let Y and P be two increasing paths, both starting from the

origin and passing through z, such that <j> is adapted to both r and r».

Then,

(6.8) ja#Jc«c+J|B4*c-f <»e +f <dW?
z *z Kz Rz

proof* with no loss of generality we can assume that both V and I"

r r * rr1 r r*
end at z. Then <J> and <J> differ only on the sets (D'lV ) and 0)1^. )

Observe that for every point c in these sets CrA£r = £. Since <J> is
1 2

adapted to both paths, for every £ in these sets <J> is measurable with

respect to 3 - *? nJ . Hence,
' S F2

XODt JDinD" VnD^

for i£j. This completes the proof. *

Let r be an increasing path starting from the origin and let (j> be

T adapted. Let M be a continuous martingale on r defined by

(6.9) Mz =J $dW , zGr
R

z

Let f be a process defined on r, adapted to {^3" ,z G r} , and satisfying

(6.10) J f* 4>^dc <« a.s.
•'r ^r ?

z

T
for each z G T. Then, the path integral fo3M is well-defined as a

continuous local martingale cm f, and U equal Lo
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(6.11) (f°aMr) =I f 4yiW , zGr
R T

z

with

(6.12) <f1.aifr,£2.»!r>8.f fuf2 fa , zGr
r *»r "t

z

For a point z let H and V denote the horizontal and vertical
z z

lines connecting z to the axes. Note that for r = Hz £r is C®z and

for r =» V , Cr is z®C. Hence,
Z 1

'••I(6.13) (fan,- I fc@z*?dwc forr =Hz
K
z

I f ,~ <f> dW for r=VJR z®rc C z
z

We can now generalize proposition 4.1 as follows:

Proposition 6.1. Let r be an increasing path starting from the origin,

Let X, , z G r» k = 1,2,...,n, be continuous local semimartingales

defined by

Lwl
R K
z z

where <J>k are V adapted. Let X denote (X- X2,...,Xn) and let F(X) be a

function with continuous mixed partial derivative up to second order.

(6.15) F(Xz) -F(X0) +f Fk(X )[*kcdWc +u^dc]
Rz r

+4 1 F, n(X ) <t», <t>„ dc zG r
R ^r

z
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where F^ and F denote partial derivatives, and summation over all

repeated indices is implied.

We note that a stochastic integral of the second type

(6.16) M - i A dW dW .
R xR
z z

can be reexpressed in the form

(6.17) M =f A dWr
z Jr c c

z

in a multitude of ways. Take any increasing path r from the origin

to z and define

(6-18) *c-f rVac V,,dV+{ ^'^c^V

Then, (j) is T adapted and

(6.19) I A dW = I ty t dW dW ,
•Jd C £ Jt> vt> £»c c c'R * "" "R xR

z z z

It follows that on any increasing path

(6.20) <M,M>r =1 I I .. * t dW ,+ \ I,i* 4W , dc
z ?vc,GD1 CV?'^D2

Cairoli and Walsh [2] considered path integrals of the form

(f©3M) where f has certain stochastic partial derivatives and obtained

a Green's formula. Our development of the path integral as a stochastic

(area) integral makes the nature of the Green's formula, (at least in
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the special case and modified form which we treat) rather transparent,

Let M be a strong martingale of the form

(6.21) M =| AdW„ zGR
z

we shall write dM for d> dW . Let f be a function which has a
z z z z

representation

®0 +L luz®KmK +Vz®CdC]<6-22> fz =fz®0 +.R
z

= frtr\ +1 [u A dM + v A d?] , Vz G r0®z JR l £®z £ C®z J * a

Observe that (6.22) implies f can be represented as a path integral

with respect to 3M and 3s (= path length) on V and H .
z z

Next, we consider |f3M on horizontal and vertical paths. On a

horizontal path we have

(6.23) (£.8H>H -f V@2dV
Z iv

Using the first equation of (6.22), we can write

(6.24) f r~ - f „. = I [u ,A dM +-v t/a dc]
V®z~V

For any 5' G R , the set R l/~ - R , is identical to the set

U : C G Rz. C>CCf}. Hence
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(6-25) V®2 -V =JR ^ '̂̂ V®^? +yc.0cde]
Z

={r K '̂HW^+Vv^1
and (6.23) becomes

(6.26) (f03M)__ = I f dM + | u ,dM dM t + f v fd?dM f
Hz jR C ? JrxR ^ 5 5' JRxR CVCf C'

z z z z z

Similarly, the corresponding expression for (f°3M)v is given by
z

(6.27) (f<>3M) =J fdM +f u dM dM .+f y tdM dC1
z •'R s * •'R XR tvt * ^ VR xR ^ c,

z z z z z

If we define for a decreasing path T

(fo3M)r = - (fo3M)?

where T denotes V in the opposite direction, then (6.26) and (6.27)

suffice to show that for a rectangle D

(6.28) (fo3M)^ - f (u t-u ,) dM dM .'3D JDxDv eve1 eve1 e ef

+ I v ,drdM .- ( v .dM dr'
Jnvn W C* JnvT, eve' e ^'DxD *** s •'DxD

where D is taken in the clockwise direction. Finally, for a region

D whose boundary is piecewise pure (i.e., a parametric representation

of the boundary z(t) « (x(t),y(t)), 0 <_ t <_ 1, has piecewise monotonic
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components), (6.28) follows by approximating 3D by stepped paths as

is done in [2]. Equation (6.28) is the Green's theorem of Cairoli and

Walsh.
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