
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



OPEN-LOOP UNSTABLE CONVOLUTION FEEDBACK SYSTEMS

WITH DYNAMICAL FEEDBACKS

by

F, M, Callier and C, A. Desoer

Memorandum No. ERL-M539

12 August 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



a - -r Aug. 18, 1974Automatica paper Revised ^ ^ 19?5
Mar. 19, 1975
Aug. 11, 1975

Open-loop Unstable Convolution Feedback Systems

+

with Dynamical Feedbacks,

by F.M. Callier and C.A. Desoer

Abstract

This paper considers distributed multivariable convolution feedback

systems characterized by y = G- * e-, y = G« * e2,e- = u- - y and

&2 = uo + vi wnere tne subsystem transfer functions G- and G? both admit

a pseudo-coprime factorization in the subalgebra of absolutely summable

distributions of order zero. The most general result, Theorem 1, gives

necessary and sufficient conditions for stability of the system. This

condition is specialized to the lumped case in Theorem 1L. Finally for

distributed systems which have a finite number of open-loop unstable

poles Theorem ID gives an algorithmic test for stability. The graphical

interpretation of both Theorem 1 and ID is given in detail, and illustrated

by examples.
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I. Introduction

This paper gives necessary and sufficient conditions for the

stability of distributed n-input n-output convolution feedback systems

that are open-loop unstable. An example of a system which this new

theory can handle is described by (see Fig. 1 for notations)

-/2s1 ,
-\

s(s+1) is+2+e"s
G^s) =

(s2+l)2 ; (s-2)2

; G2(s) =

-s
e , -s

2 + e(s-l)Z

s

s-2

1

0 sWs +1 _

Note that the matrix transfer functions G., and G„ are unstable and

contain multiple poles in the closed right half-plane; they include

also delay terms and transcendental functions. In fact the new theory

presented below can handle any combination of polynomials in s and delay

terms encountered in practice in transfer functions provided these

contain a finite number of unstable poles.

The stability of distributed n-input n-output convolution feedback

systems that are open-loop unstable has been discussed in [2,4,5,6,14].

In [6] and [4,5] the case of constant nonsingular feedback, respectively,

stable feedback was considered. In these two cases the stability of

the closed loop system was guaranteed by requiring that the transfer

functions from a. to e1 and to y.. be stable (only u^ was considered as

input) and it can be shown that the presence of output disturbances

represented by the "input" u2 cannot cause instability. This is no

longer the case when we allow both the feedforward and the feedback to

be unstable, as considered in this paper and [14]: suppose that the

transfer functions from u- to e1 and to y1 are stable, then stability

is guaranteed only when inputs are applied at u^ however output
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disturbances u« could excite unstable modes of G« and cause closed

loop instability! For this reason, as opposed to [14], we consider

two inputs u.. and u« and consequently two errors e.. and e„ and two

outputs y-, and y„; therefore we have eight matrix transfer functions

from u. to e. and y. for i,i = 1,2. It is shown in Section III of

this paper that a) for stability considerations it is sufficient to

consider the four matrix transfer functions from u to e. for i,j = 1,2

and that b) these can be aggregated to form the input-error transfer

matrix of a unity feedback system giving insight to the problem. The

necessity of considering each one of these four matrix transfer functions has

been shown in a subsequent contribution [20]; any three of them may be

stable while the fourth is unstable!

In [14],simple open-loop unstable poles were considered and the key

tool was the decomposition lemma. Unfortunately that technique does not

allow poles on the jto-axis and is cumbersome when multiple unstable poles

are present. In the present paper G.. and G2 may have multiple unstable

poles in the closed right half plane. To tackle this most general

distributed case elegantly we use in section IV the recently developed

pseudo-coprime factorization technique [4,5] and develop a "characteristic

polynomial"—generalizing the characteristic polynomial familiar from the

lumped case—to obtain the necessary and sufficient conditions for

stability. These conditions are shown to be testable graphically.

In section V the specialization to the lumped case is easily

carried out. Section VI considers in detail the practically important

situation of distributed subsystems with a finite number of unstable poles;

it describes two algorithms for testing stability and it includes two examples.

Section II collects once and for all useful definition and facts.

All proofs are collected in the Appendix.
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11• Useful Definitions and Facts.

Throughout the paper we shall use the convolution algebra CX [1,2]:

recall that fbelongs to (X iff, for t<0,f(t) =0, and,for t>0,f(t) =

fa(t) + £ f±*(*-t±) where ffl(.) belongs to L1^,"), f 6t (the field
i—0 oo 1

of complex numbers) for all i, £ |f±| <~, 0=tQ, t± >0for i>1, and
<S(-) is the Dirac delta "function". Thus f is a complex-valued distribu

tion of order zero with support on (P?+. An n-vector v,(nxn matrix A), is

said to be in a*, ((J?*11 resp.), iff all its elements are in GL Let f

denote the Laplace transform off: fbelongs to the convolution algebra

(2 if and only if fbelongs to the algebra Q (with pointwise product).
An element f of CI is invertible in Q iff inf |f(s)| >0, [3] p. 150;

nxn Re s > 0
an element Aof a is invertible in anXn iff" inf |det A(s) |>0,

Re s > 0

[5] Appendix D.3.3. In the sequel <B+, g+, <En*n(s) will"denote respectively

the closed right-half of the complex plane, the open right-half of the

complex plane and the noncommutative ring of nxn matrices whose entries

are rational functions in s with complex coefficients, (if n = 1 we

simply write C(s)). An element of <EnXn(s) is said to be (strictly)

ProPer if it is (zero) bounded at infinity. We shall be concerned with

nxn matrix-valued Laplace transformable distributions (L.t.d.) G with

support on R+ whose Laplace transforms G admit so-called pseudo-coprime

factorizations, [4], [5] Sec. IV.4. In order to alleviate the notation,

elements in d will also be denoted by script letters.
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Definition 1 [4,5]: A pair of elements (# , J£. ) where ^ , & belong

to CL is said to be pseudo-right-coprime (p.r.c.) in 0-5lXn iff there

exist elements *U, V*, Vj in CXnXn such that (i) det 0^(s) ?* o whenever

s e (B f and (ii)

^(s)?€r(s) +/U'(s) ©r(s) =V(s) for all sG <E+. (1)

If in the above inf |det ^(s)|>0, then the pair (T& ,Q )is said
Res >0 r r

to be right-coprime (r.c.) in anxn.

Definition 2 [4,5]: Given a L.t.d. G with support on R , the ordered

pair (T?r» #r) is said to be a pseudo-right-coprime factorization (p.r.c.f.)

of G in dnxn iff

(i) G(s) =7tr(s) JBr(s)*"1 for all sG<B+, (2)#

(ii) the pair (r£r, J9rr> is p.r.c. in &nXn,

(iii) whenever (s.) is a sequence in <E with Is I -*• », we have
i=l + i

lim inf |det 0* (s.)| > 0.
i -> co r 1

The definition of a pseudo-left-coprime (p.A.c.) pair (7^,, J90), a left-

coprime (£.c.) pair (rf£, 0"^), and a pseudo-left-coprime factorization

(p.A.c.f.) (TfAf &g) of Gin Cln n is completely similar: replace the

subscript r by the subscript I in the above definitions and interchange

the order of the factors in (1) and (2). In our later work we will need

a slightly more involved factorization, hence the definition:

The factorization (2) can always be performed algorithmically for the cases
of section V and VI. The factorization (2) leads to formulae very close to
the familiar ones encountered in the case of single-input single-output
lumped systems.
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Definition 3: Given a L.t.d. G with support on If? , the ordered triple

(&vyt, #2), where &±9 Tt and &2 are elements in 0Lnxn, is said to
be a pseudo-left-right-coprime factorization (p.fc.r.c.f.) of G in <XnXn

iff

(i) G(s) =&1(8)"1T^(s) ^(s)"1 for all s€<E+, (3)

(ii) the pair (&±9 K) is p.A.c. and the pair (If, J^) is p.r.c.

(iii) whenever (s.) is a sequence in C with Is. I -»• » We have
1 i=l + i

lim inf |det J&.(s.)| > 0 for j = 1, 2.
i -*- 00 J ±

Comment: If a given Laplace transform G admits a pseudo-coprime factoriza

tion, then Gis meromorphic in «+ and all ^-singularities of Gare contained
in a bounded subset of <E+» Thus G can only have poles as singularities in

G+ and the jto axis may contain singularities, which, however, cannot be

poles.

Fact 1: Let G be a L.t.d. with support on IF? and let G admit a p.r.c.f.

(TC' ^r} and P-*'c-f- <^» J^> ±n <lnXn. ^t so S(D+ and let ®(sq)
denote any sufficiently small disk centered on s in <E. Under these

o

conditions

G is unbounded in B(s )He (4)

if and only if any one of the following equivalent conditions hold

either det J& (s ) = 0, (5)

or det &£(sQ) -0. (6)
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The proof is in the Appendix. We are now ready to start our system

description.

III. System Description and Definition of Stability.

We consider the feedback system S shown on Fig. 1; u., u« are inputs;

e^ e2 are errors; y.^ y2 are outputs. The u , e ,y for i = 1, 2 are

functions from R+, (defined as [0,~))> into <Dn, (the complex n-vectors).+

Both subsystems denoted by G * and G* are causal, possibly unstable,

convolution subsystems. Thus we have the basic equations

e2 = u2 + y± (8)

vl = Gl * ex (9)

y2 = G2 * e2 <10>

where 6^, G2 are the complex-valued nxn matrix impulse responses of the

subsystems. We assume that, for i = 1, 2,

(i) G is a L.t.d. with support on IR , (11)

t
In certain manipulations (expressing cosines in exponential form) and
in certain models (as a result of band-pass to low-pass transformations),
the expressions become complex-valued. So for simplicity, we allow them
to be complex valued throughout. Also to simplify the description of the
results we assume that the u^s, e±,s, y±,s, (i = 1, 2), have n-components.
If that is not the case one may insert appropriate modifications or simply
add to the matrices G and the vectors u., y , e elements that are
identically zero or one, at appropriate places.
§

If for some c e <c, exp(-ct)G(t) is a distribution of slow growth, then,
for Re s > c, the Laplace transform of G is well defined and is an
analytic function of s, [22,p.310, 23,p.213].
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(ii) G± is such that the G admit a p.r.c.f.

(Kir' eir} and a P-A-c-f- Cn££. fi^)

To avoid trivial singular cases, we assume that

(12)

det [I +G2(s) (^(s)] =det [I +^(s) ^(s)] f 0in <E+. (13)

This ensures us that the system S viewed as a map from
u.

into both

and is specified by a well-defined matrix transfer function.

Observe that (7)-(10) can be rewritten in the form

G2(s)
S

^(s)

u2(s)
for all s € cfi

G1(s) I

i.e. considering the input-error system:

H satisfies
e

G2(s)

u.

u,

fl (8)
-1

- G1(s) I
for all s in (D .

Furthermore considering the input-output system:

the input-output transfer function H satisfies

G1(s) 0

u.

u,

H (s) =
y

H (s) for all s in <C.
eN +

G2(s)

Introducing the symplectic matrix J, [17],
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j£
0 I

-I 0

the relation between H and H becomes
e y

or

H = I - JH
e y

H = -J + JH ,
y e

_1
where we used J = -J.

Hence

h e a 2nx2n
h e a

2nx2n

(15a)

(16)

(17)

(18)

Definition 4 (definition of stability): The system S described by (7)-(10)

is said to be Qj-stable iff

and

h e a
y

h e a
e

2nx2n
(19)

2nx2n
(20)

Comments: (i) Q-stability implies that, for any p € [!,»], the system

S viewed as taking the input into the error and the output
u,

is L -stable, [2]. Furthermore S takes continuous and bounded

Ly2.

inputs (almost periodic inputs, periodic inputs, resp.) into outputs and

errors belonging to the same classes, resp. [18].

(ii) Because of (18) for OL-stability to hold it is necessary

and sufficient that (20) holds. Let us relate the system under considera

tion with systems with unity feedback [19]. Simple calculations establish
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the following.

Fact_2. Consider the system S described by (7-11) and (13); let
T T T

xTTv TT ttu = (U;L, u2) , e = (e^, e^) , y =(y*, y*) . iet

G(s) =
G2(s)

-G±M
(21)

then the system S (see Fig. 2) is described by

e = u - G * e (22)

y = J~ G * e (23)

det[I + G(s)] i 0 for se <c+. (24)

Comment. Such unity feedback systems have been studied in detail in

[4], [5], [6]. However direct application of these results does not

take advantage of the fact that G defined in (21) has a very special

form. Thus one of the thrusts of this paper is to take full advantage

of this special structure and obtain the corresponding physical

interpretations.

IV. Main Result.

The main result is Theorem I below. To clarify the mathematical

structure of Theorem I we state a preliminary lemma.

Lemma 1. Consider the system S described by (7)-(ll) and (13); let G,

defined by (21), have p.A.r.c.f. (J31,'fi£, $2). Under these conditions,

S is d-stable (25)
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if and only if

det[©1(s) ©2(s) +Tf(s)]| >0. (26)inf

Re s > 0

Proof: see Appendix.

Lemma 1 is an extension to distributed systems of the theorem in [21].

Remarks, (i) If (Tt ,©" ) is a p.r.c.f. of G, then (I, Ti , &) is a

p.A.r.c.f. of G; similarly, if (7^, E^)isa p.Jt.c.f. of Gthen (£^»T#A, I)
is a p.A.r.c.f. of G. The corresponding necessary and sufficient conditions

for (X-stability become, respectively,

inf

Re s >^

inf

0

Re s >^ 0

det[£>r(s) +7¥r(s)]| >0 , (27)

det[J9£(s) +T2£(a)]| >0 . (28)

(ii) The proof of Lemma 1 actually shows that if the determinant

in (26) is zero at some s G $+, then Ghas apole at s. (Compare with

Fact 1).

Fact 2 has connected the given system to a unity feedback system

characterized by G (see (21) to (23)). Lemma 1 above, gives stability

conditions in terms of factorization of G. It remains to exploit the

particular structure of G to obtain the required factorizations of 6 in

terms of those of the subsystems G. and G„.

Lemma 2: Let G be as in (21) and let the G for i = 1, 2 admit pseudo-

coprime factorizations as in (12).
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Under these conditions

(i)

(ii)

TC

"u o
"2A

(iii) (t:

I 0

(iv)
Br.

11

n

&
2r

n

Ph.
o

^
lr

2r

Jt
U 0

is a p.r.c.f. of G,

is a p.r.c.f. of G,

0 IJ

I 0

0 ©
L.

>is a p.£.r.c.f,

of G,

is a p.&.r.c.f.

The proof is in the Appendix.

We are now in a position to apply directly the mathematical results

of Lemmas 1 and 2 to the problem at hand. The result of the substitutions

is immediate, therefore the steps of the proof are left to the reader.

Theorem 1. Consider the system S described by (7)-(13). Under these

conditions, the system S is CL-stable if and only if any one of the four

following equivalent conditions is satisfied:

(i) inf
Re s > 0

det

£lr(8> ^(S)

-TClr(s) #2r(s)

-12-
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(ii) inf
Re s > 0

(iii) inf
Re s > 0

(iv) inf
Re s > 0

B
2%

(s)
ri

21
(s)

det

*u«
te

ll
(s)

> 0,

det[^2Jl(s) ^lr(s) +^(8) ^r(s)]

det[^u(s) ^2r(e) +^2£(8) T^(s)]

(34)

> 0, (35)

> 0. (36)

Comments. (i) The four expressions (33)-(36) give necessary and sufficient

conditions for (^.-stability in terms of the factorizations (12) of the two

subsystems. In a very rough way, we may think of them as "characteristic

polynomials" (valid for the closed right-half plane only) of the closed

loop system S. This interpretation will be made precise and rigorous in

the discussion of the lumped case below. In view of Fact 1 and Lemma 1,

we see that if any one of these expressions goes to zero in (D , so must

the other three.

(ii) The conditions above require the G fs to be factorized.

/\ nxn

This is easily done in the lumped case, (G. is a proper element of <C (s))

[7,9,10]; also in the distributed case when G. has a finite number of

unstable poles [4,5].

Remark. It is important to note that the 6c-stability conditions (33)-(36)

are closely related to the return difference; more precisely.

det

^lr(s) ^(s)

~^lr(s) ^2r(s)
=det(l +G2(8)^(8)) det ^lr(s) det ^r(s),

(37)
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det =det(l +e2(s)ei(s)) det &u(s) det ^,(s), (38)
J

<toti©-2t<,) )3lr(s) +T<^(s) 7^r(s)] =det(l +62(.) GjGo)

det£^.(s) det ^(s). (39)

det[£u(s) ^r(s) +Ttn(s) T^r(8)] =det(l +G2(s) G^s))

det Pu(s) det £%r(s). (40)

In the distributed case, the expressions in the left-hand side of

(33)-(36) are transcendental functions and there is no general algorithm

for testing analytically these conditions. They can, however, be tested

graphically by using Theorem 2 of [13]. For simplicity we shall state

the result for (33) only. Let

ft, 7%.lr 2r
A(s) a det

-7%, 0'lr 2r

, A (s) = almost periodic part of A

J

The meaning of h is clear: A6{1, hence A is the sum of all the
ap -st aP

terms of A of the form a.e . As Is | •* » in (E,, A(s) •* A (s).
i ' • + ap

Theorem 1f. Consider the system S defined by (7)-(13). Let s = a + jw

and define A and A as in (41). Under these conditions, S is ^-stable

if and only if

(i) lim A(a) £ 0,
0* -*• + «>

-14-
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(ii) inf |A(jw)| > 0, (43)
a) e R

(iii) the mean angular velocity of o> h- A (jw) is zero, (44)
ap

(iv) the Nyquist curve id w- A(jw)/A (ju)) , with w increasing from - »
ap

to », does not encircle the origin of the complex plane. (45)

An example is given below.

V. The lumped system case.

In the lumped case, the transfer functions G. are proper (bounded

at infinity) elements of <D (s) , the noncommutative ring of nxn matrices

nxnr
whose elements are rational functions with coefficients in <E. Let (E [s]

be the ring of nxn polynomial matrices with coefficients in <E. There

exist well known procedures to factor any proper G.(s) €= <E (s) as a

ratio of. polynomial matrices

G±(s) =N±r(s) D±r(s)"1 =Du(s)_1 Ni£(s) (46)

where (N. ,D. ) are right coprime and (N^**^©) are left coprime;

Furthermore D , (D ), can be made column proper, (row proper), and the

polynomials det D.As) and det D (s) can be made monic. [7,8,9,10].

The lumped system case is covered by Theorem 1 by the following device:

it is easy to find polynomial matrices M. G (D [s] such that, [4,5],

Nir "i^1 l^ir £ 0. nX" and D±r M^1 »^ 6 fl nXn (46a)

and G. = Ti. fcT. is a p.r.c.f.. The recipe is as follows:
i ir ir r
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Choose

M. (s) - diag[(s+l) 1, (s+1) 2, ..., (s+1) n]
ir

(46b)

where 6fc is the highest power of s in the k -column of D ,k = 1, 2, ...,

n. The same procedure can be applied to the left factorizations. Conse

quently, for the lumped case, we have procedures to obtain the factoriza

tion postulated in (12). If we apply Theorem 1 to these factorizations,

we obtain after a few manipulations the following result:

Theorem 1L. Consider the system S described by (7) to (10), and where

* nxn *>

the Gi(s) G <E (s), are proper and satisfy (13). Let the G. be factored

as in (46). Under these conditions, the lumped system S is (J.-stable if

and only if any one of the four polynomials below satisfy the stated

conditions:

(i) det
Dlr(s) N2r(s)

Nlr(s) D2r(s)
$ 0 for all s e <C+ , (47)

D2,(s) N2£(s)
(ii) det

- Nu(s) Du(s)
$ 0 for all s e <c+ , (48)

(iii) det[D2jl(s) Dlr(s) + N2A(s) Nlr(s)] * 0 for all s e <c+ (49)

(iv) det[Du(s) D2r(s) + Nu(s) N2r(s)] t 0 for all s G <£+ . (50)

Remarks. (i) The four polynomial conditions can of course be expressed

also in terms of the return difference as in (37)-(40).
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(ii) Under the assumptions of Theorem 1L, we may think of the

lumped subsystems S. in terms of one of their minimal representations

[A., B., C ,D ]. Call x1 and x« the corresponding states. With these

data, one may calculate for the feedback system S a representation
T T

T T T T[A, B, C, D] with input u= (u^u^ ,output y = (y1,y2) and state
T T

x= (x-,x«) , [12]. For such a choice of state, input and output, the

representation [A, B, C, D] is completely observable and completely

controllable, hence minimal. The polynomials in (47)-(50) are, modulo

a non-zero constant factor, equal to the characteristic polynomial of

the matrix A.

^ A.

(iii) It should be stressed that neither G.. nor G« is assumed to

be stable, hence by [20] we know that any of the four submatrices in

H may be unstable while the other three submatrices are stable.
e

Therefore the coprime factorization and characteristic polynomial

approach developed here may be more efficient than the calculation of

A.

the four submatrices of H and testing each one of them for stability.

The reader should keep in mind that the multiplication and inversion

of matrices of rational functions is a very costly operation: indeed

when two rational functions are added one has to find the least common

multiple of the denominators in order to obtain the result as a ratio

of coprime polynomials; similarly when two rational functions n1/d1

and ^9^2 are muitipiied one has to cancel all common factors between

n^ and d2, and n2 and d-. In contrast manipulations with matrices with

polynomial elements are quite easy: each polynomial is stored and

manipulated as the ordered sequence of its coefficients: addition of

polynomials corresponds to term by term addition of the sequences, and

-17-



multiplication corresponds to the convolution of the sequences.

VI. The Distributed Case with a finite number of open-loop unstable poles.

An important case to consider is that where each subsystem G has a

finite number of unstable poles, more precisely, poles in C . For this

case, the general conditions of Theorem 1 above, can be made explicit

and the tests be performed graphically.

Consider the system S described by (7)-(13) and assume that for

i = 1, 2

G±(s) =R(i)(s) +G(i)(s) for all sin <E+ (51)

where, for i = 1, 2,

a) the R^ ' are strictly proper elements of <EnXn(s); (52)

i (i^b) {Pik^i is the family of pairwise-distinct poles of Rv '; (53)

c) Re pik ^0 for k = 1, 2, ..., j^; (54)

d) G<i} belong to dn*n. (55)
P

In section V, it was shown how to construct a p.r.c.f. (7j£ , K7 )
ir' ir;

and a p.A.c.f. (1% , 0. ) for the R{1), i= 1, 2. Then it is easy to(i)

see that if we define

r?„ &7Z.. + &_ a(i) (56)
i.1 14 It. p

. ^"fy +G(i) &t
ir Ir p ^lr"^ k"^ +i(i) ^<, (57)
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the pairs (H\0, & 0) and (7#, ,fr) are a p.A.c.f., resp. ap.r.c.f.,
TLA' ir ?ir» ' ir

of the G . ([4], [5], sec. IV.4). We are now in a position to apply Theorem 1

to the system described above. The conclusion is stated as

Theorem ID. Consider the system S described by (7)-(ll), (51)-(55) and

satisfying (13). Let (N. ,D±r) and (N±A, D±£) be any right-coprime, and

left-coprime, resp., polynomial matrix factorizations of the unstable

(1)parts Rv ' of the transfer functions G., i = 1, 2.

Under these conditions

S is 6L-stable

if and only if

i) inf |det [I + G2(s) G^s)]! >0 , (58)
Re s > 0

ii) any one of the four equivalent conditions is satisfied: for

det

k = 1, 2, ..., £., and i = 1, 2

Dlr(plk>
*(2)

!N2r(Pik)+Gp (Pik)D2r(Pik>
I

^Ir^-^^^^rM D2r(pik>

$ 0

(59)

D2A(pik> H2t*lk> +D2lfrik> fit2> (pik>
+ 0 . (60)det

-NU<Pik>-Dl£<Plk>6p(1)<Pik> DU(plk>

det»>2*<pik> Dlr<pik> +<N2*(pik> +D2A(plk> %(2)<plk»-

Vlk^p^ik^lr^ik^*0 '
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dettDlA<pik> D2r(pik> +<NU<pik> +DU<pik> 5p(1)(pik)>-
-(2) <62>

The Proof is in the Appendix.

Remarks. (i) The conditions (59) to (62) have a very natural interpretation:

they prevent H^ (and, hence, H ) becoming unbounded in a small neighborhood

of the Pik's. This is clear from (46 a-b) and the necessity proof of Lemma 1.

(ii) For the subsystems considered in Theorem ID, we have

proposed a specific method for obtaining the required pseudo coprime

factorizations; this leads to the question: what is the effect on the

four equivalent expressions (33) to (36) when we choose other pseudo

coprime factorizations? Some simple manipulations based on the fact

below establish that as one goes from one factorization to the other,

each of these expressions is multiplied by a factor k(s) analytic in <E ,

bounded in (E and bounded away from zero in (C . The fact in question is

Fact 3. Let G be an nxn matrix-valued L.t.d. with support on In,. Let

(~7\, ^>5 ((T?r, ^r), resp.), be any_ p.fc.c.f., (p.r.c.f., resp.) of
G. Let G have a finite number of poles in <E,. Then

det & (s) « k(s) det ©1(a) for all s e <E
r & "t*

o

where k(«) is analytic in <E , bounded on (D and bounded away from zero

on <E .

The proof of Fact 3 is in the appendix. The necessary and sufficient

conditions of Theorem ID can be tested graphically. Again the basic

tool is Theorem 2 of [13] and we use the concepts of [13]. To simplify

notations, let
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r(s) = det[I + G.(8)^(3)], r (s) =almost periodic part of r(s). (63)

Let

A 6
n = number of C -zeros of det(D. D_ ), counting multiplicities. (64)

Let

jo)., i = 1, 2, ..., m, denote the jw-axis poles of G- and of G«.

The reason for treating the ju)-axis poles separately is that, in the

distributed case, it is not in general possible to continue analytically

the transfer functions G- and G„ into the open left half plane. Con

sequently, in tracing the Nyquist contour we are forced to perform

indentations on the right at each jw-axis pole of G.. and G„. With these

notations, we can state the following

Theorem ID1. Consider the system S described in Theorem ID and use the

notation defined above. Under these conditions, S is CL-stable if and

only if

(i) lim r(a)'*0; (65)
<j -*• + 00

(ii) inf |r(ja))| > 0; (66)
a) € R

(iii) the mean angular velocity of oj H- r (jw) is zero; (67)
ap

(iv) the Nyquist curve of wh- r(jto)/r (joo) as s moves up along (68)
ap

the jw-axis from - » to + », (with right indentations at each

jw-axis pole), encircles the origin of the complex plane n -

times in the counterclockwise sense;
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(v)

det
Dlr(^i>

-Nlr(jV-6p(1)UV Dlr(ja,i)

M2r^+ap(2)«V D2r(^i>"

D2r(Jwi>

<fi 0

J (69)

for i = 1, 2, ..., m.

The proof is given in the Appendix.

Since in most cases graphical tests have major computational

advantages over analytic tests, we give below abbreviated versions of

algorithms for stability tests.

Algorithm I.

Step 1: Obtain the subsystem transfer matrices G. in the form given

by (51).

Step 2: Obtain (Nir»Dir)» a right coprime factorization of the unstable
(i)parts R of the G^ by the procedure described in [7, chapter 1] or

[5, p. 64-65].

Step 3: Determine n as given by (64).

Step 4: Calculate r(s) and r (s) as given by (63).
ap

Step 5: Apply the graphical test as given by Theorem ID1.

Comments: i) step 1 can be achieved for transfer functions of lumped differ

ential delay systems with a finite number of delays by multiple applications

of the decomposition lemma of [14]; ii) in most cases one knows the

00 "*St4
time-lags t. of r (s) = 52 3^e ,0 = t < t., i > 0: r (s) can° i ap r^0 i > o i ap

then be identified by inspection or if need be by Fourier

analysis of the almost periodic asymptote of u w- r(jw), [24, pp. 23

et seq.]; iii) (67) can be tested by looking at the map w »-> arg r (jtu):
ap
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given (66), (67) is satisfied iff this map is bounded, [13]; iv) if there

are many jw-axis poles, checking (69) might in some cases be very

tedious: in that case one can make use of the graphical test of Theorem

1'.

Algorithm II.

Step 1: Obtain the subsystem transfer matrices G. in the form given

by (51).

Step 2: Obtain (]ftir,<Clr)> apseudo right coprime factorization of

the G^, as described in the introduction of section VI.

Step 3: Determine A(s) and A (s) as given by (41).

Step 4: Apply the graphical test as given by Theorem 1».

Example I. Consider the system described as follows:

Gx(s) =

-s5/(s+3) j e
i

-s
j 1/8 0 j 1/s

5/(s+3) | e"s
i

__ S i ^

Nlr(s) = diag(0, 1), D (s) = diag(l, s)

G2(s) =

0 | 10(s+l)/(s-l) 0 | 20/(s-l)

N2r(s) = diag(0, 20), D2r = diag(l, s-1)
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There is one simple f+-zero of det(Dlr D^) ,namely, +1and
jco-axis pole of G and G, at 0. Hence n =1. Now

x z p

lr

one

det

1 "g(1) »i ilr p lr

IN +Gn(2) D9
i 2r p 2r

= (s+10) (s-l).+ 20 (74)
-N

2r

We apply Theorem ID1. Using (74), condition (69) is obviously satisfied.

-1 -1r(s) = det[I + G2(s) G^s)] = (s + 9s + 10) (s-1)"1 s (75)

Hence conditions (65) and (66) are satisfied. The Nyquist diagram

required by condition (68) is shown on Fig. 3. Clearly (68) is satisfied.

Since r&p(s) =1 for this case, (67) is satisfied. Therefore the closed

loop system S is (J-stable.

Example II. Consider the same system as above but apply the graphical

test of Theorem V. We use the same factorization (46 a-b), (56) and

(57):

&lr =diag(l, s/(s+l)); 7*. =diag(0, l/(s+l));
lr

**'
5/(s+3) se"S/(s+l)

-s
1/(8+1)

R>2r =diagfl, (s-l)/(s+l)];7£2r =diag[0, 20/(s+1)]; T?2r - diag[0, 10]

In the present case (see (41))

A(s) = (s2 + 9s + 10) (s+1)"2, A (s) - 1,
ap
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Immediately, conditions (42), (43) and (44) are satisfied. To check

(45), the Nyquist diagram u h- A(jw)/A (ju)) is plotted on Fig. 4: it
ap

shows that condition (45) holds. In conclusion the system S is CL-stable.

Conclusions

This paper derived necessary and sufficient conditions for the

OC-stability of a distributed continuous-time, multivariable, linear,

time-invariant feedback system made of unstable subsystems. In the

most general theorem, (Theorem 1) , the only data required was the pseudo

coprime factorization of the subsystems G and G . Theorem 1' showed

how these conditions could be tested graphically. Next it was shown how

Theorem 1 specialized for lumped systems: the conditions were given in

Theorem 1L. Next, for systems whose transfer functions have only a

finite number of unstable poles, an algorithm for obtaining the pseudo

coprime factorization was described and used to derive the stability

conditions: see Theorem ID. Theorem ID1 showed how these conditions

can be tested graphically. Finally, examples illustrated the techniques.

It should be stressed that, for ease of exposition, we assumed that

the transfer functions (^ and G were square. If G- and (L are rectangular,

all the formulae given are still valid, the only change required is the

dimensions of the matrices involved.
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Appendix

Proof of Fact 1.

**. By assumption, (5) holds. For a proof by contradiction, suppose that

(4) is false, i.e. Gis bounded in 6(s )n <E . Now by (1) and (2)

-W(s) G(s) +l^(s) -2/(8) 0(b)"1 Vs €(C+. (A.l)

Consider any sequence (s,)°° in <C, with s, •* s . Since (4) is false, the
l--r lO '

left hand side of (A.l) is bounded on the sequence, while the right hand

side is unbounded because det ^ (s±) $0for i=0, 1, 2, ... and (5).
Consequently (5) implies (4).

=>. By assumption, (4) holds. Hence G(s.) =1%A (sJ •?7^(sJ)/det[©/"(s )],
l ii i •• j. * £' j *

where /»£(s.) is the matrix of cofactors of ©^(sJ),is unbounded as s ->- s .
x r i j i o

Since ?>r(s) and^X. are bounded on <E+, this requires that (5) be true./^

Proof of Lemma 1.

We have G=£) ~X li 0 ~X and (26). From Fact 2,

He =(I +G)"1 =d^fy +n)'1 Px (A2)

By (26), (£>xa2 +̂ )~1 6 <X2nX2n, [2,5]. Hence He €(X2nX2n as a
product of three elements in the algebra.

=>. By assumption (25) holds, equivalently H <= ^2nx2n. since (J&l TV, £f0)
e ±7 v 2

is a p.Jt.r.c.f. of G, it is easy to show that (£> , ^J©; +T#) and

^1^2 +~^» ^ are P*^*c* and p.r.c. respectively. Hence, for i =1, 2,
there exist elements 1^, \h, ty± in CL2nX2tl with det V±(s) ^0in G+
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such that

<fri^+7^i +^i=yi (A3)

tf2(^£-2+72) +^%=-^ (M)

For the purpose of a proof by contradiction assume that (26) is false.

Therefore, either

there is asequence (s1)°° in <E+ with |s |-»• °> such that

or

lim
i ->• oo

det[^1(si)<e2(si) +Tt(s±)] - 0 (A5)

there is an sq G<E+ such that det[^1(sQ)©2(s ) +7%(s )] =0. (A6)

We show first that (A5) leads to a contradiction. From (A2)

det He(s±) =det ©^(s.) det ^(s^/dett&^s^fc^) +~^(s±)]
(A7)

By definition 3 , the first two factors are bounded away from zero

on the tail of the sequence; by (A5), the denominator goes to zero.

Hence (A7) implies that ib- He(s ) is an unbounded sequence. This

contradicts the assumption that H belongs to the algebra CL 2nx2n.

Hence (A5) is false. Next we show that (A6) leads to a contradiction.

From (A3) and (A4) we obtain

mx + (e±B2 +^r1p1i^ =(9^2 +7Z)-1 zji (as)

Recalling that for i=1, 2, det ^(sq) j 0, (A6) implies that the right
hand side of (A8) becomes unbounded as s -*• s . Hence (©1 fS" + »&) yOl

-30-



becomes unbounded. Now use (A2) to write (A4) as follows

V2% +V-2 He =V^ISt, +7^)-1 Qr

Again the right hand side becomes unbounded hence H also becomes
e

unbounded as s •*• s . This contradiction implies that (A6) is false.

(A9)

Proof of Lemma 2.

To prove the lemma, requirements (i), (ii) and (iii) of the Definition 2

(or 3, as required) need be established. In all cases, (i) follows by

calculation from (21) and the definition of pseudo-coprime factorization;

(iii) follows from the requirements on the ^T *s and 1d? 's. We now

prove (ii) for the pair (29); more precisely, we prove that the pair

/
-n.2r fr

'%* 0

lr

0 9

^

2r

is p.r.c. in (X,2nx2n

By condition (ii) of Definition 2 , for i = 1, 2, there are elements

Zl±t V*, 1/f± in CLnXn with det V^s) t 0 in <E+ such that

Hence

V- ~fr
lr

o -*- o n 2r

•xT 0"
2r

•U2 o "^r °
J

from which (A10) follows. The proof of the left coprimeness of (30)

-31-
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is entirely similar. To prove (31), we must prove that

o rt.2%

the pair

-tflr °

&, 0
lr

is p.r.c. in (X.2nx2n (A12)

Since ('£. , fd ) constitute a p.r.c. factorization there are elements

^, IK TJ[ in CLnXn with det T^(s) #0in <C+ such that

^rTi,-+T^x-i4"»

1/" ° >>, o~"
+

0 I 0 I

o -It n
21

Jt, 0
lr

- (A13)

7J o
(A14)

-J

hence (A12) is established. The other pseudo coprime factorizations in

(31) and (32) are established in the same way.//

Proof of Theorem ID.

Without loss of generality, we may assume that the D , (D , resp.), are
ir l/w

column-proper, (row-proper, resp.) and that the polynomial det D (s) ,

(det D (s) ,resp.) is monic. Consequently det 1b. (s) and det J9[,o(s)

tend to 1 as s -»• °°. Since we have the pseudo-coprime factorizations of the G^?s,

we may apply Theorem 1. For the (X stability of S it is necessary and

sufficient that (33)-(36) hold, or better still, that the right-hand sides

of (37)-(40) be bounded away from zero in C+. Now by construction,

det <&±AS) ^° and det <&. (s) $0for all s^ C+ except at the Pikfs»
where they are both zero, for k = 1, 2, ..., l±t and i = 1, 2. Therefore

S is CL-stable if and only if (58) holds as well as one of the four

equivalent conditions that follow:
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for k = 1, 2, ..., &., and i = 1, 2

^i.(p^) 7^o.(p,JlrNrik 2rvrik'
det 1 0 ,

^Ir^W *&<**>

&io(v<0 "^ooCP.iJ2JT^ik 2%Nrik;
det

^li*lk> ^U<Pik>
* 0 ,

det^2*<Pik> ^lr<*ik> +T4l<*ik> "^ik^ *° •

d.ti^cp^) 02r(Pik) +%(Plk) ^r(Plk)] * o.

(A15)

(A16)

(A17)

(A18)

Now in each of these determinantal expressions we can factor out the

"multiplier" matrices M±r and M±A (see (46a)) and since det M (s) and

det Mi&(s) are bounded away from zero in <D , the four conditions (59)-(62)

are equivalent to the four conditions above.//

Proof of Theorem ID*

Theorem l1 gives a graphical test for guaranteeing that A(s), the left

hand side of (37), is bounded away from zero on C . Now from (37) and

(63) we have

A(s) =r(s) detU7lr(s)/72r(s)]; (A19a)

furthermore, r(s) is meromorphic in C, since by (12), A(s) and

&et[<0- (s)oCl (S)J area) analytic in $,, b) bounded and continuous in

C+, and det[«^, (s)*02 (s)] is bounded away from zero as |s| -*- «>. It
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follows also that a) for some ft, r(joj) is continuous and bounded on

(-co,-fi] and [n,«>); b) on [-fi,fi], r(joi) is continuous and bounded except

in some intervals centered on the jo^'s, which are jw-singularities of

r(s), where r(s) is unbounded, and which, by (A19a), occur necessarily

at zeros of dettC^Ju^]*

Therefore A(s) is bounded away from zero in C+ if and only if

a) r(s) is bounded away from zero in <D+ and b) each C+-zero of

detC/?-, «££ ) is cancelled by an unbounded singularity of r(s) so that

their product is different from zero. (If the zero is in J+, then the

singularity of r(s) has to be a pole of the same order). Now, by

(A19a) and (64), the number of C+ -poles of r(s) is at most np, (counting

multiplicities). Consequently, A(s) is bounded away from zero in C+

if and only if (i) exact (unbounded singularity)-zero cancellation occurs

on the jw-axis, i.e. (69) holds; (ii) r(s) is bounded away from zero in

C, and each of its C, -poles is cancelled by at. -zero of detUS^Qr*'

Condition (ii) is tested graphically by (65), (66), (67) and (68),

([13],Theorem 2).

Proof of Fact 3.

Assertion I: If 8o£I+ is azero of order 1of det ^.(s), (^(s), resp.)
A

then & is the maximal order of sn as a pole of any minor of G(s).

Since ({% , & ) is a p.r.c.f. of G(s),

©r(s)
rank = n for all s e <E+

It (s)
r

-34-
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Let us express any minor of order p of G = 7& fJ in terms of minors of

order p of ofi and minors of order n-p of Kf• By we'll known methods

and notations [15, p. 21-22], we consider the minor of G made of the inter

section of rows i_, i , ..., i and columns k,, k , k , denoted by
i l p 1 2 p

k h ••• ^
.i, v l> and we obtain
ki H ••• p/

^/''^"vr1'2""kklk2"-kp/ 1<*1<*2< —<£p-n Vl42"-V \klk2 —kp
ii i« ... i \ / 5L +it /k_ kn ... k
12 p\ £«. v v^ / 1 2 n-ZL -%[. . . <-»" e;1 <£.< £, <...<£< n r \ £- Hn ... £ / X\ll il ... V- "1 "2 ''' " *p - " \*l *2 '" V \*i x2

detcS"
r

*Z2i

(A. 20)

where L <1 < ,., < i and L' < Jl! < ... < i1 , k- < k„ < ... < k
J- ^ p i Z n-p 12 p

and k| <k^ < ... <k' form a complete system of indices 1, 2, ..., n.

Observe that the numerator of the above expression is proportional to

the Laplace expansion, [16] Exercise 7.23, of the minor of order n of

•yV obtained by adjoining rows i^ i2, ..., i of "Jl to rows k!,

k2 kn-p* of ^r For a11 s in <E+' (A*19) imPlies that at least
one sueh minor of order n is nonzero, hence there exists at least one minor

of some order p of G whose numerator, as given by (A.20), is nonzero.

Hence the assertion I follows. The proof for G=Up /T* is entirely
similar.

II. Consider

k(s) =det J5fr(s)/det ^(s) . (A21)
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By assumption det ^(s) and det ^(s) G tf, hence kis analytic in

<C+ except, maybe, at zeros of det #£(s). By assumption Ghas afinite
number of <E+-poles, hence by Fact 1, det J5£ and det ££. can have zeros
only at these poles. Furthermore at each pole, say p ,det ff and det

Vz have zeros of the same order because that order is equal, by assetion

I, to the maximal order of Pq as apole of all minors of G. Hence by

(A21), in any sufficiently small neighborhood of p ,k(s) is bounded

and bounded away from zero. Hence k(s) is bounded and bounded away from

zero on compact subsets of C+. The same holds at infinity, because

along any sequence (8±fCC+ with |s.|+-, det fifr(8±) and det J%(B±)
are both bounded, (because they belong to d) and both bounded away from

zero because of the pseudo coprime factorizations.
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Footnote

f
In certain manipulations (expressing cosines in exponential form) and

in certain models (as a result of band-pass to low-pass transformations),

the expressions become complex-valued. So for simplicity, we allow them

to be complex valued throughout. Also to simplify the description of the

results we assume that the u^s, e±,s, y^s (i = 1, 2), have n-

components. If that is not the case one may insert appropriate modifi

cations or simply add to the matrices G. and the vectors uJt y , e
i i i i

elements that are identically zero or one, at appropriate places.

§
If for some c G <D, exp(-ct)G(t) is a distribution of slow growth, then,

for Re s > c, the Laplace transform of G is well defined and is an

analytic function of s, [22,p.310, 23,p.213].

The factorization (2) can always be performed algorithmically for the

cases of section V and VI. The factorization (2) leads to formulas

very close to the familiar one encountered in the case of single-input

single-output lumped systems.



Figure Captions

Fig. 1. The System S.

Fig. 2. The Convolution Feedback System S

Fig. 3. Nyquist plot for example 1.

Fig. 4. Nyquist plot for example 2.
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