

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

NDPROG

A NONDETERMINISTIC PROGRAMMING LANGUAGE OF W.A. WOODS1*

by

Ronald I. Becker

Department of Mathematics
University of Capetown

Cape
South Africa

and

Computational Speech and Language Processing Group
Electronics Research Laboratory

University of California at Berkeley
Berkeley, California 94720

t
Research sponsored in part by Defense Advanced Research Project Agency of

GrLScol^SsS^ m0nit°red ^ ^ U'S' ^ ReSeSrCh 0ff±Ce Und6r

TABLE OF CONTENTS

Page
1. Foreword i

2. Informal Description of the Language t 2

3. Description of the Language 4

3.1 Remarks ..,...,.,... 4
3.2 Program Syntax f 5
3.3 The Operation of NDPROG and STEP .!.!!. 7
3.4 Variables * 8
3.5 The List ALTS ..!!..!. 10
3.6 Transfer of Control , [12
3.7 Successful Completion 13
3.8 Conditional Edges , " 14
3.9 Parallel Computation [] 14
3.10 Subroutines , 15
3.11 Running Nondeterministic Program [20
3.12 Summary of System-Defined Functions and Variables 22

4. Running From Cards on the CDC 6400 23

5. References 94

6. Examples
24

6.1 Testnet , . . , . 24
6.2 Queens , 25
6.3 Grammar , 25

7, Listing of Program Packet f 31

1. Foreword

This report is a description of NDPROG, a programming language for

running nondeterministic programs. It was written by W.A. Woods in INTERLISP

(see [1]) and has been rewritten with minor changes to run in LO UTEX LISP

1.5.9.1 (see [2]) on the CDC 6400. The program consists of a set of LISP

routines which are listed in Section 6 below.

Our interest in NDPROG is primarily due to its simplicity. Most of the

other nondeterministic programming languages are large and complex in their

implementation. NDPROG is small and simple, which means that it is easily

understood and easily implemented in various LISP systems. NDPROG is thus

a good vehicle for experimenting with additional nondeterministic language

features.

NDPROG is based on Woods1 ATN parser (see [3]). ATN grammars can, in

fact, be written as NDPROG programs. The example in 5.3 written by the

author implements many of the essential features of this type of parser

and provides an extensive use of the features of the program, NDPROG should

provide a simple, flexible system for experimenting with various ATN parsing

strategies. Another such parsing system is Ron Kaplan's GSP (see [4]).

We have had limited experience with running programs in the language

and this must therefore be viewed as a preliminary report of this version.

Needless to say, any faults in implementation and any faults due to changes

should not be attributed to Dr. Woods.

Section 2 is an informal description and a brief introduction to

nondeterministic programs. Section 3 provides a detailed description of

the language and some insight into the workings of the program. Section 4

provides running instructions for the CDC 6400. Section 5 has some examples

of programs, the first of which illustrates the workings of many of the

functions in the packet. Section 6 has a listing of the program.

I would like to thank Michael O'Malley for suggesting this project and

for his continuing interest in it.

2. Information Description of the Language

This section presents an informal description of some aspects of the

language and a short introduction to nondeterministic programming. (For

some references to nondeterministic programming see [5], Chapter 2.) It

should be noted that certain remarks here concerning the program are only

half-truths and Section 3 should be consulted for an exact description.

The body of a program is of the form:

(LABEL1 (A)
J- •

(A)
(LABEL3 (Z1)

(A.)) :

(LABEL2 (B1) (V)

(B>)

where the (Ar) are LISP forms. The program starts by evaluting the forms

of LABELl in turn. These may include transfers to other labels, in which

case the forms of that label are evaluated in turn.

The program is nondeterministic in the following sense: There is a goal

(e.g. to find the solution to a specific problem). The programmer must test

at appropriate points whether the goal has been reached. If it has been

attained, the program stops successfully. If the test is negative, the program

continues. If a dead end is reached, the program backtracks to a point where

a choice was made between several alternatives or where certain forms belong

ing to a node were stored for later execution. It then proceeds on the new

course until success occurs or another backtrack is made. If no more alter

natives remain, the program ends in failure.

Example. We give an example in informal language. The program will

thread an arbitrary maze. We use the term "stoppoint" to denote a point

in the maze at which there is either a "break" in a wall or a "dead end".

(Stoppoints are marked with dots in the sketch and dead ends have a cross

in addition.)

Entrance
x

• • •

• • •

r~x"

X
• • •

Exit

(INITIAL (PASS THROUGH ENTRANCE TO FIRST STOPPOINT)

(GO TO CHOOSE))

(CHOOSE (IF THERE ARE BREAKS BEFORE YOU WHICH YOU HAVE NOT PASSED

THROUGH, SELECT ONE, STORE THE REST, PASS THROUGH, WALK TO

NEXT STOPPOINT, GO TO TEST)

(IF THERE ARE PATHS BEFORE YOU WHICH YOU HAVE NOT TRAVERSED,

SELECT ONE, STORE THE REST, WALK ALONG PATH TO FIRST STOPPOINT,

GO TO TEST))

(TEST (IF DEAD END, BACKTRACK ALONG PATH JUST TRAVERSED TO THE

LAST STOPPOINT)

(IF ONE OF THE BREAKS IS "EXIT" THEN SUCCESS)

(ELSE GO TO CHOOSE))

Note that when backtracking occurs, the point returned to is governed by

node "CHOOSE" and a choice is made according to the forms evaluated in CHOOSE.

A further aid to visualization is to imagine oneself walking through the maze

unravelling a ball of string,

3. Description of the Language

3.1 Remarks

We describe the format of nondeterministic programs and the various

LISP functions provided for use by the programmer. The forms which the

program evaluates will usually contain functions defined in the program

packet. We state the arguments of each function and indicate whether they

are evaluated when used in a form or not. When a program has been constructed,

it may be run by using functions described in Section 3.11.

FEXPR Conventions. FEXPR's can have a list of arbitrary length as

argument. However when for example only two elements a. and a of such

a list are used in the FEXPR, we adopt the convention of saying that the

arguments are these two: a-; a«.

Calling the FEXPR for by using evalquote would require

FN((ax a2)) .

Calling it by eval would require

(FN a± a2) .

If the program subsequently evaluates, for example, a (yielding the same

effect as if ax were evaluated and &2 not) we will say that a. is

evaluated and a2 not. For a bad side effect of FEXPR use, see 3.10(b),

Notation for Functions, LISP functions will be written in a meta-notation,

i.e. in small letters and underlined, e.g. fn. When used in code, we write

FN (i.e. capitals).

Notation for Variables. In text, we use capital letters, e.g. VAR is

used for a variable. In describing arguments of functions, we use small

letters.

3.2 Program Syntax

A BNF form for the syntax of a program is:

<PR0G> ::= (<IDENT>(LAMBDA<ARGS>(NDPROG<BODY>)))

<IDENT> ::= LISP identifier

<B0DY> ::= <SEGMENT>+

<SEGMENT> ::= (<NODE><BRANCH>)

<BRANCH> ::= <EDGE>+

<N0DE>

<EDGE>

<ARGS>

= LISP identifier

= LISP form

= LISP list of identifiers INIL

Here "+" means a string of one or more occurrences of the term. The various

nodes should have distinct identifiers.

Notation. We use segment, branch, node, edge, etc, to denote the

corresponding syntactic entities. (Observe, however, that in the coding,

"body" is described by the variable BRANCHES.) We usually write edges as

(Ax) ,(A2) ,...,(B^

Any LISP function can be used in the LISP forms which constitute the

edges. This includes SET and SETQ (which can normally be executed only

in PROG's in LISP).

Example. The following is a program which illustrates the terminology.

It involves no backtracking.

(FIVEH (LAMBDA NIL (NDPROG

(GLOOPl (SETR Tl 0)

(SETR T2 1)

(TO GL00P2))

(GL00P2 (SETR Tl (PLUS (GETRT1)(GETRT2)))

(SETR T2 (ADD1 (GETRT1)))

(TO GL00P3))

(GL00P3 (IF (GREATERP (GETRT1) 500)(SUCCESS (GETRT2)))

(SETR T2 (ADD1 (GETRT2)))

(TO GL00P2)))))

N

The program finds the least positive integer N such that Jn > 500 .
n^l

Here, GL00P2 is a node; ((SETR Tl 0)(SETR T2 1)(TO GL00P2)) is a branch;

(TO GL00P3) is an edge; (GLOOPl (SETR Tl 0)(SETRT2 1)(TO GLOOP2)) is a

segment.

3.3 The Operation of NDPROG and STEP

(!) ndprog[segl;.,.;segn] FEXPR

segl,,..,segn are segments (see 3.2). ndprog is the general overseer. It

controls the start position; it decides which node or edge to work on next;

it keeps a list of alternatives in the list ALTS; it decides when to stop

computing. The start position is governed by the free variable SEQUENT

(which must be given a value in a function that calls ndprog).

If SEQUENT = *T* (*T* is the value of the atom T), ndprog starts

on the first edge in segl and evaluates the edges in turn. If a transfer

to another node is made, it starts on the first edge of that node and continues.

If a success edge is evaluated (see 3.7) the program will stop and return

a value (unless, perhaps, parallel computation is underway, in which case

it may continue for awhile (see 3.9)). If the last edge of a segment is

evaluated and it does not involve a transfer, the program backtracks by

transferring to the "best" alternative on ALTS (see 3.5), This also occurs

if abort (see 3.6) or suspend (see 3.5) is the function in an edge.

We define a configuration to be a list of the form (Branch Node Regs

Prob Prev * Tl T2 T3 T4 T5) where Branch is a branch of the ndprog, Node

is a node and the other variables will be explained in Section 3.5. (However

PREV is not used in this implementation as yet.) A configuration may be

thought of as representing the position of the program at some instant and

has no information about past backtracking history, etc. In the coding, IC

represents a configuration. If SEQUENT = a list of configurations, then

ndprog starts computing from the first configuration on the list, i.e. from

the first edge on Branch with the given values of Node, Regs, etc, The

remaining configurations on the list are placed in ALTS.

The value returned by ndprog is important. It is a list L such

that car L is the list of success values obtained and cdr L is the list

of configurations remaining in ALTS. The next success value can be obtained

by running ndprog with SEQUENT = cdr L. Sections 3.10 and 3.11 deal with

these questions in more detail. If no success occurs, NIL is returned.

Value: List L such that car L = list of successes and cdr L = list

of configurations remaining in ALTS. If there is no success,

NIL is returned.

(2) step[config] EXPR

config is a configuration as described in (1), step is called by ndprog

to evaluate the edges of a node. It is not usually used explicitly in user-

defined programs.

Value; Returns *END*

3,4 Variables

We divide the variables that may be used by the programmer into two

types and describe the use of each.

(a) Variables of Type 1. These variables are not destroyed when the

program backtracks. We describe by example how to obtain and use two variables

of type 1 (any number can be obtained similarly).

Example.

(DOSOMETHING (LAMBDA (VARl VAR2) (NDPROG

(NOD (SETQ VARl 2)

(SETQ VAR2 VARl)))))

(This is an EXPR).

The function could be called (see 3.11) by for example

SEQUEVAL((DOSOMETHING NIL NIL) T) .

Then VARl and VAR2 would be NIL initially.

Note, Global variables could also be used, using CSET and CSETQ,

0>) Variables of Type 2, These variables are not preserved when the

program chooses an alternative from ALTS. There are two sorts of type 2

variables:

(i) The list REGS can be used to store an unlimited number of

variables and their values. Storage and retrieval are accomplished by the

following functions:

(3) setr[reg;form] FEXPR

(form is evaluated, reg is not.) This adds the pair (reg, forml) to

the front of the list REGS where forml is the value of form.

Value: Returns the value of form.

W getr[reg] FEXPR

This gets the last value that reg was set to by setr (i.e., the CDR

of the top pair in REGS whose left-hand member is reg). If reg was

not previously set, the value NIL is returned.

Value: If reg was previously set by setr, the value is returned.
If not, NIL is returned.

(ii) Six variables *, Tl, T2, T3, T4, T5 are available for use.

They may be set using SET and SETQ and their values retrieved like normal

10

LISP variables. The reason for having these is that REGS stores all

previous settings of all its variables. If a variable is reset frequently

this can use too much space. These six variables suffer from the disadvantage

that it is difficult to give them mnemonic names (any method of doing so

seems to involve a cost in use convenience).

Warning. Care should be taken not to use the system variables in

user-defined (deterministic) subroutines. In particular, A$- Z$ should

not be used. TEMP, TEMPOR, etc. are dangerous.

3.5 The List ALTS

The variable ALTS contains a list of configurations which are the

unused alternatives. (See 3.3(1) for a definition of configuration.) When

the program backtracks it picks the "best" configuration in ALTS (in a

sense described below) and restarts in this state.

(a) Weights. When an alternative configuration is put into ALTS,

the position Prob is set to a real number. Normally the number is the

current value of the variable PROB. (However see (c) and (d) below for

methods of storing configurations with other weights.) Initially, PROB

is set to 100. To change PROB use

(5) prob[N] EXPR

This gives PROB the value N.

Value: N

Note. When ndprog selects an alternative to backtrack to, it chooses

that member of ALTS which is the "most recently set alternative of highest

11

weight" (but see (d) below). This will be referred to as the "best alter*-

native". Evaluating (DETOUR) does the selecting. Evaluating (ALTGEN)

will place the unevaluated remainder of the current branch on ALTS with

weight PROB. detour and altgen are not normally used by the programmer

explicitly.

0>) Maximum and Minimum Weights. Ths variables MAXPR and MINPR

store the maximum weight to which an alternative has been set during the

program to date and the minimum weight, respectively. Initially, they are

both set to 100. Thus MAXPR is never less than 100.

(c) Storing a Branch and then Proceeding.

(6) save[N;(A-);...;(A)] FEXPR
J. n

N is evaluated if N^T; (A^,...,(AJ are not. This will place the

branch (A^,..., (Aq) on the altlist with Node equal to the current

node, Prob equal to the value of N, if N is a real number, and remaining

variables equal to their current values. If N = T, the weight is the

current value of Prob. Execution proceeds by evaluating the form following

the one with the save.

Value: The list of those alternatives to be stored during the current
execution of STEP.

(d) Storing a Branch and Selecting an Alternative.

(7) suspend[N] EXPR

If a segment of the form

(SEG (Ax)•••(A±)(SUSPEND N)(A±+1)•••(A))

12

is evaluated, the branch ((A. 1),,,(A)) will be placed on the bottom of

the ALTS list with Prob N and current values of the other variables.

Then the program selects the best alternative on ALTS and starts at that

configuration. Similarly for

(IF TEST (Ax)•••(A±)(SUSPEND N)(A±+1)•••(A))
and

(TRY •..) ,

(See 3, for if and try.)

Value: Returns *END.

3.6 Transfer of Control

(8) to[node] FEXPR

Node is the name of a node in the program. The program will next start

evaluating the edges of node. It does not store the remaining edges of

the branch in ALTS.

Value: *END

(8a) tol[node] EXPR

As in (8), but tol is an EXPR. This is useful for "computed GOTOfs

(9) abort[nil] EXPR

t „ti

Transfers to the best configuration on ALTS. The remaining edges of the

branch are not stored in ALTS.

Value: *END

13

Note. The edge (ABORT) will execute the function abort.

(10) resume[ic] EXPR

The argument is a list of the form

(Branch Node Regs Prob Prev *) .

When the next occasion arises for choosing anew alternative or using to,

the program will instead resume execution at configuration ic. If a to

was encountered, the configuration to which to transfers will be tackled

after ic. Resume could be used to restart at a given Branch and Node

with a different set of variables Regs, Prob. etc.

Value: Immaterial.

3.7 Successful Completion

(11) success[value] EXPR

This will cause the program to terminate when the current IC's have all had

step, applied to them. The value of "value" will be part of the car of

the value returned by ndprog. (If there were parallel computations, this
car could be a list of successful values obtained.)

Value: *END

Note. A program may be capable of finding a number of successful

values if allowed to use the remaining alternatives. To find all the values,
sequall can be used. To find the next value, sequeval or sequapply
could be used (see 3.11),

14

3.8 Conditional Edges

(12) if[test;(A.);...;(A)] FEXPR
± n

The variable test is evaluated, the others not. Here test is. a predicate

and (A,)»**(A) are edges. If test does not evaluate to NIL,
1 n

(A-),.,., (A) are evaluated and the remaining edges of the current node are
1 n

stored on ALTS. The edges will normally involve some control transfer

(e.g. to), for if not, the program will pick the best alternative on complet

ing the evaluation of (A). If test evaluates to NIL, the next edge
n

following i£ is evaluated, etc.

Value: ((A-)'"(A))
1 n

Note. A LISP cond can be used as well. If it is desired to execute

several actions, a variant of if may be used as follows:

(13) try[test; (A^ ;...; (Ar)] FEXPR

The variable test is evaluated, the others not. This works in the same way

as if except that if (A) is evaluated and no transfer occurs, the next
— n

edge following try is evaluated, etc.

Value: ((A^ •••(An))

3.9 Parallel Computation

(14) split[b1;...;bn] FEXPR

Here b..,... ,b are branches. The program starts evaluating the edges on

branch b.. and continues with this path until either

15

(a) a to or resume edge is encountered

(b) a success, abort or suspend edge is encountered or a branch

terminates without transfer.

The same is done for b2>...,b , If there are any branches ending as in (a),

the remaining edges after the split edge are placed in ALTS and the

computation continues as follows: The paths for those branches classified

under (a) will continue in parallel until all end as in (b), If there have

been any successes, these will be returned by the program and it will terminate,

If not, the best alternative in ALTS is taken.

Note. Some parallel computation can be done using resume (3.6(10))

but we will not discuss this at all.

3.10 Subroutines

(a) Deterministic subroutines are best written in LISP, in the

usual way, as functions. If the function is to be used as the function

evaluated in an edge, the program can be made to take the best alternative

on ALTS on completion of the edge by returning the value *END, Any other

value returned will cause the program to continue with the next edge.

We devote our attention below to nondeterministic subroutines. We

distinguish three types and then discuss passing variables to subroutines,

(°) Subroutines Integrated Into a Calling Program.

(15) ndsetrfreg;form] FEXPR

The variable form is evaluated, reg is not.

(15a) ndsetrl[reg;form;sequent] EXPR

All variables are evaluated.

16

Both of these are sometimes useful. (NDSETR FORM) is equivalent to

(NDSETRl(QUOTE REG)FORM). However, in the latter, FORM is evaluated before

ndsetrl is applied while in ndsetr, FORM is evaluated "inside" the

function. (See warning at end of (b)). Suppose an edge in a program has

the form

(NDSETR REG (NDFN ARG1-•'ARGN)) ,

where ndfn is a nondeterministic function. The effect will be as follows:

The first success values of ndfn will be placed in register REG in the

list REGS. If there are none, REG will have its previous value. Then

the program places in ALTS the remaining unevaluated edges of the current

branch, but headed by another ndsetr edge which will start with the best

alternative remaining in ndfn and set REG to the next success values of

ndfn when its turn comes up. The edge after ndsetr is then evaluated, etc.

This process will continue if the alternative keeps being used, until all

success values of ndfn are used up. Hence the subroutine ndfn is

effectively integrated into the calling program. If ndfn has no success

values (or none remaining), the program picks the best alternative in its

own ALTS and restarts there.

Value: A list of first success values, if any. If not, *END.

Warning. Care must be taken to avoid the following type of error:

If we define rout as a FEXPR

(ROUT (LAMBDA(Z)

(NDSETR REG (EVAL Z))))

then the edge (ROUT PROGR) will obtain the first success values of (PROGR)

17

correctly, but it will place on the ALTS list to be executed an edge of

the form

(NDSETRl REG (EVAL Z)(restart configuration))

and if and when this is eventually evaluated, the subroutine will have exited

from rout and Z will no longer have a binding. The correct effect can

be obtained by using (NDSETRl (QUOTE REG) Z T) in rout. The trouble

with the first version is that eval[Z] is not evaluated before ndsetr.

but internally to the latter.

(c) Non-integrated Subroutines. The user may wish to find one or

several values of a nondeterministic subroutine and decide himself what to

do with them and the remaining alternatives. This situation is dealt with

in the next Section 3.11 (see the note there).

<d) The Case Where Form in (15) is Deterministic. Specifically, we

suppose that we have a function fn which returns a list as value (e.g.

the list could be a list of next states in a game). We can use (16) below

to generate the states one at a time and place an ndsetr edge on the ALTS

list with the remaining states. Thus

(NDSETR REG (SEQ (FN ARG1*•»ARGN)))

will place the first element of the list in REG and store a generating

function in ALTS. When detour picks this alternative, the next member

of the list will be generated and placed in REG, etc.

(16) seq[list] EXPR

This allows the program to try a sequence of values one at a time as discussed

above.

18

Value: Immaterial.

(e) Passing Variables to Nondeterministic Subroutines. To pass

variables to nondeterministic subroutines, use:

(17) sendr[reg; form] FEXPR

Form is evaluated, reg is not. If used together with passr and initpass

as explained below, sendr places the pair (reg. forml) (where forml is

the value of form) in the list REGS of the next nondeterministic function

evaluated by the current program.

Value: Returns the value of form,

(18) passr[] EXPR

The function has argument list NIL. passr should be the first edge evaluated

by a nondeterministic routine to which one wishes to pass values. The subrou

tine should not evaluate this edge again. The list of values passed will

contain all variables which have appeared in sendr edges since the last

nondeterministic subroutine (if any) was evaluated. The list of values passed

will appear as the initial value of REGS in the subroutine. If there were

no sendr edges since the last nondeterministic subroutine, REGS will

be NIL initially.

Value: The new value of REGS.

The variable SREGS is a global variable and care must be taken in

backtracking, since the program will now store a copy of SREGS in ALTS.

Thus there should be no backtracking between the sendr edges and the

subroutine call. This in a departure from the nondeterministic philosophy

19

and will be remedied in later versions. However, the situation is no worse

than if arguments are passed by using a (LAMBDA NIL (argl,,.,)) in the

subroutine. The present method is very flexible. SREGS must also be

initialized. This can be done by calling

(19) initpass[] EXPR

The argument list is NIL. This initializes SREGS to NIL. Care must

be taken that this instruction is not repeated an unwanted number of times.

It is therefore best to include the call to evalquote

INITPASS NIL

before the nondeterministic programs are called.

Value: NIL

Example.

(SUBR (LAMBDA NIL (NDPROG

(BEGIN (PASSR)

(TO Nl))

(Nl (SUCCESS (GETR NUMBER))))))

(MAINPR (LAMBDA NIL (NDPROG

(PASS (SENDR NUMBER 3)

(NDSETR NUM (SUBR))

(SUCCESS (CAR NUM))))))

Then

INITPASS NIL

SEQEVAL((MAINPR) *T*)

will have as value a list whose car is 3.

20

Note. The procedure can also pass variables back from subroutines,

but this is perhaps best with ndsetr.

3.11 Running Nondeterministic Programs

The following functions supply a value for the free variables SEQUENT

and are the analogue of LISP functions eval and apply for nondeterministic

programs. (Remember that in LISP, *T* is the value of the atom T,)

(20) seqevalfform;sequent] EXPR

This evaluates form with the given value of sequent. Form should be a

LISP form containing a nondeterministic program. Sequent can have value

either *T* (in which case the function in form is evaluated starting at the

first segment) or else sequent can be a list of configurations for the

function (in which case the function is evaluated starting from the first

configuration).

Value: A list L. car L is the first success value and cdr L is

the list of alternative configurations after the first success.

(21) run[ndfn] EXPR

This function has a free variable SEQUENT. It causes the function ndfn

to be applied to the null list (so ndfn must be a (LAMBDA NIL(»-*

function. It prints a list of the first successes, puts it into car SEQEUNT

and puts the remaining alternatives into cdr SEQUENT.

Value: The first success of ndfn.

(22) seqall[form] FEXPR

21

Form should be a LISP form containing a nondeterministic program. It returns

a list of all the success values the program can obtain.

Value: List of all success values.

Note, seqeval can return a list of alternatives in the cdr of its

return values. These could be used in seqeval again to restart the program

in an alternative configuration and look for another success. This corresponds

to case (b) of (3.10).

Examples. Suppose for convenience that ndfn has a null argument list.

1) (CAR (SEQEVAL (QUOTE (NDFN)) T)) will evaluate to the first

success values of ndfn.

2) (SETQ Tl (CDR (SEQEVAL (QUOTE (NDFN)) T)))

(CAR (SEQEVAL (QUOTE (NDFN)) Tl))

would yield the next success, etc.

3) SEQEVAL ((RUN (QUOTE NDFN)) *T*)

22

3.12 Summary of System-Defined Variables and Functions

Function Arguments Type Section Number

ABORT NIL EXPR 3.6 9

GETR REG FEXPR 3.4 4

IF TEST;^);...;^) FEXPR 3.8 12

INITPASS NIL EXPR 3.10 19

NDPROG SEG1;...;SEGN FEXPR 3.3 1

NDSETR REG;FORM FEXPR 3.10 15

NDSETRl REG;FORM; SEQUENT EXPR 3.10 15a

PASSR NIL EXPR 3.10 18

PROB N EXPR 3.5 5

RESUME IC EXPR 3.6 10

RUN NDFN EXPR 3.11 21

SAVE N; (Ax);...;(An) FEXPR 3.5 6

SEQ LIST EXPR 3.10 16

SEQALL FORM FEXPR 3.11 22

SEQEVAL FORM;SEQUENT EXPR 3.11 20

SENDR REG;FORMf FEXPR 3.10 17

SETR REG;FORM FEXPR 3.4 3

SPLIT B1;...;BN FEXPR 3.9 14

STEP EXPR 3.3 2

SUCCESS VALUE EXPR 3.7 11

SUSPEND N EXPR 3.5 7

TO NODE FEXPR 3.6 8

TOl NODE EXPR 3.6 8a

TRY TEST;^);...;^) FEXPR 3.8 13

t denotes• evaluated. See 3.1 for con\rentions.

23

Variables Section

BRANCH, EDGE, NODE 3.2

ALTS 3.3, 3.5

REGS 3.4

*, Tl, T2, T3, T4, T5 3.4

PROB, MAXPR, MINPR 3.5

IC 3.3

SEQUENT 3.3, 3.11

SREGS 3.10

4. Running from Cards on the CDC 6400

The card sequence is as follows:

Job card (60K memory for grammar, 40K for NDPROG)
X,LISP

7-8-9

Blank card

Nondeterministic programming packet

Packet 1

Data cards

Packet 2

Packet n

Data cards

FIN

6-7-8-9

Here packetl,...,packetn are user-defined packets.

24

5. References

[1] Teitelman, Warren. INTERLISP Reference Manual. Xerox Palo Alto Research
Center, Palo Alto, 1974.

[2] Greenwalt, E.M., Morris, James B. Jr., Singleton, Don J. The University
of Texas 6400/6600 LISP 1.5. The University of Texas at Austin Computa
tion Center.

[3] Woods, W.A. Transition network grammars for natural language analysis,
CACM 13, 10 (1970) 591-606.

[4] Kaplan, R. A general syntactic processor, in Rustin, R. Natural Language
Processing, Algorithmics Press, New York, 1973.

[5] Nilsson, Nils J. Problem Solving Methods in Artificial Intelligence.
McGraw-Hill, New York, 1971.

[6] Woods, W.A., Kaplan, R.M. and Nash-Webber, B., The Lunar Sciences
National Language Information Processing System: Final Report, BBN
Report 2378. Bolt, Beranek and Newman Inc, Cambridge, Mass., June 1972.

6. Examples

6.1 Testnet

This a test program written by W.A. Woods which uses many of the func

tions in the program packet. If seqall is applied to testnet it returns

the list of values

(TWO ONE THREE FOUR FIVE (SND.TWO) (SND.ONE) (SND.THREE) (SND.FOUR))

It is instructive to follow this program.

25

5.2 Queens

This program of W.A, Woods solves the 8Queens problem. (See [5],

Chapter 4, Section 6 for a discussion.) Its first solution is:

X

X

X

X

X

X

X

X

Time on the CDC 6400 was about 1 minute. The auxiliary function sdiff is

needed. It takes the set difference between its first argument and its

second.

5.3 ATN Grammars

A version of Wood's ATN parser has been programmed in the language.

Only a few simple grammars have been tried and the system is still experimental

and could do with some cleaning up. The main feature in the ATN grammars

that has not been programmed is leftr. This can be done, but is not exten

sively used. We describe briefly how the system works, outlining only the

different formalism from the report [6], which should be consulted for a full

account of the operation. The listing following and the examples of a dic

tionary and grammar should be consulted. The grammar is taken from Woods [3].

No lexical analysis is done.

26

(a) Calling Sequence. The following sequence of calling functions

should be employed.

INITPASS NIL o.

DEFINEV(dictionary entries)

DEFINE((

(MNGRAM (LAMBDA NIL (NDPROG

(PASS (PASSR)

(SETQ * (GETR LEX))

(T01 (GETR ENTPT)))

Grammar nodes and edges

)))

))

SEQEVAL((RUN (QUOTE PARSER)) *T*)

(Data) TRACEDGE TRACEREGS

(SENTENCE)

The last data item should be a single list which is the sentence to

be parsed. It is read in by parser. For a discussion of TRACEDGE,

TRACEREGS, see (f) below.

The sentence

(THE FOOTBALL WAS BELIEVED TO HAVE BEEN KICKED BY THE BOY)

is parsed as

(S DCL (NP (PRO SOMEONE))(TNS PAST)

(VP (V (BELIEVE) (S DCL

(NP DEF (NBOY)(NUSG))(TNS (PAST PERFECT))

(VP (V KICK)(NP DEF (N FOOTBALL) (NUSG))))))

(b) Dictionary. As in [6].

27

(c) The grammar edges are of the following type:

(IF FORM (Ax) •••(An) (TO LABEL2))

We describe the various types of edges:

*) Cat: Edges. Here FORM is a LISP form using the function

car[categjtesv] FEXPR

tesv is evaluated, categ is not. If the current word has category categ

and tesv is true it returns *T*, else NIL.

Example. (IF (CAT N T) (SETR SUBJ *) (ADVANCE) (TO NP/N))

(* and advance are explained below),

ii) Push Edges. Two functions are used here:

push[tesv] EXPR

This is used in the "tesv" position of the if statement and if tesv is

non-null it allows computation of the rest of the if,

pushto[node] FEXPR

pushto regards mngram as a subroutine and makes a recursive call to it

with entrypoint Node.

Example. (IF (PUSH (TRANS(GETRV)))(SENDR SUBJ *)(PUSHTO VP/)(JUMP)(TO VP/V))

Note, jump must be used with push edges,

iii) Pop Edges. The function used is

pop[tesv] EXPR

28

If test is true, the list in reg HOLD is essentially empty and this is

an embedded computation. It returns *T*. If conditions are as above and

the computation is not embedded but the sentence is at an end, *T* is

returned. Else NIL is returned.

Example. (IF (POP T)(SUCCEED(NPBUILD NIL)))

A succeed form must appear on the edge.

iv) Wrd Edges.

wrd[word;tesv] FEXPR

tesv is evaluated, word is not. If tesv is true and word = current

word being scanned, it returns *T*; else NIL.

v) Mem Edges.

mem[sev;tesv] FEXPR

If tesv is true and sev contains the current word being scanned, it

returns *T*, else NIL.

vi) Vir Edges. The function used is

vir[categ;tesv] FEXPR

tesv is evaluated, categ is not. If categ is car of an element on

the list in HOLD, it returns true and deletes this element from the list

HOLD. Else it returns NIL.

jump must be used with vir.

29

(<*) Jump and Advance. Advancing the string and getting the next word

must be done by hand. Immediately before a to form, either (JUMP) or

(ADVANCE) must be included. The former leaves the string and word scanned

as they are, the latter advances one word.

Note, push, jump and vir edges must use (JUMP), car, wrd and

mem edges must use (ADVANCE), susp and sve edges could use either,

vii) Jump Edges. The function in the "tesv" position is

jmp[test] EXPR

It allows evaluation of the rest of the if edge if test is non-null.

Example. (IF (JMP (GETR)) (SETR V *) (JUMP) (TO NP/))

Note, jump must be used with jmp.

viii) Suspend Edges. The function used in tesv position is

susp[N;tesv] EXPR

Suspends the rest of the unused edges corresponding to the current node with

Prob the value of N, if tesv is non-null, then executes the rest of

the if.

Example, (a) (IF (SUSP 80 TST))

(b) (IF (SUSP PROB TST)(SETR OBJ *)(JUMP)(TO Ql))

Note. Jump or advance could be used with susp, depending on what

is done on the arc.

30

ix) SVE Edges. The function in tesv position is

sve[tesv] EXPR

If tesv is non-null, the rest of the ±f_ edge is evaluated.

Example. (IF (SVE T) (A-)'• ••(A)(SAVE N (A4Jj •••(A)) (A _,,) •••(A))
J. n l+J. n n+x m

(e) The Variable *. This variable, of type 2, points to the current

object being considered (e.g. word or phrase).

(f) The values of TRACEDGE and TRACEREGS determine whether or not

tracing is done. If both are NIL, no tracing is done. If TRACEAGE is

non-null, the current node and edge being scanned are tested and any jumps

and advances noted. If TRACEREGS is non-null, the current value of REGS

and of * are printed. If both are non-null, all of the above is printed.

The first two s-expressions read in data must be the values of these

variables.

(g) Other Functions, buildq, getf, etc, are the same as in ATN

grammars. A number of useful functions have been omitted here (e.g. addl,

addr). Most of these are easily transcribed to the current situation.

li'ftr1 s can be done but provide a little more trouble in programming.

31

DLFLIST((
(IF

(LAMBDA (AS)

(COND

(TENAL (CAR A$ >MPR0G? (ALTGEN) <SETQ BRANCH (COR A$))))
(GETR

(LAMBDA (B*)
(ASSOC1 (CAR B$) REGS)))

(NDPROG

(LAMBDA (BRANCHES)

(PROG (IC*S NIC*S ALTS NALTS Ic VAL*S MAXPR MINPR)
(SETQ MAXPR (SE1Q MINPR lQO))
(COND

((EQ SEQUENT T) (SETQ IC*S

(LIST (ICe (CDAR RRANCHES) (CAAR BRANCHES) NIL 100 NIL NIL
NIL NIL NIL NIL NIL))))

((SETQ ALTS (CuR SEQUENT)) (SETQ IC*S (DETOUR)))
(T (RFTUKN NIL)))

LP

(WHILE IC*S (SETQ IC (CAR IC*S)) (SETQ IC*S (CDR IC#S))
(APPLY (FUNCTION STEP) IC)>

(SETQ ALTS (NCONC (REVERSE NALTS) ALTS))
(SETQ NALTS MIL)
(COND

(NIC*S (PROG* (PROG2

(SETQ IC*$ (REVERSE NIC*S)) (SETQ NIC*S NIL)) (60 LP)))
(VAL*S (RETURN (CONS VAL*S ALTS)))
(ALTS (PR0G2 (SETu lc*S (DETOUR)) (60 LP)))
(T (RETURN NIL))))))

(NDSETR

(LAMBDA (C$)
(NDSETRl (CAR C*) (CaDR CS) T)))

(NDSETR2

(LAMBDA(D$)

(NDSETRl (CAR D*) (CaDR OS) (CaDDR 0%))))
(SAVE

(LAMBDA (E$)
(PROG (TEMP TEM)
(COND

((EQ (CAR E$) (QUOTE T)) (SAVE1 (CAR E$)))
((SETQ TEMP (EVAL (CAR E$))) (PROG NIL

(SETQ TEM PROB) (SETQ PROB TEMP) (SAVEl (CDR E$))
(MAXMIN PRUB)

(SETQ PROb TEM)))))))
(SENDR

(LAMBDA (F$)

(SENDR1 (CAR F$) (EVAL (CADR F$)))))
(SEQALL

(LAMBDA (GS)

(SEQALL1 (CAR G»)) ,))
(SETR

(LAMBDA (H$)

(SETR1 (CAR H$) (CADR H$))))
(SPLIT

32

(LAMBDA
IPR06

(SETQ

(StTQ

(MAPC

(IS)
(TNIC*S TVAL/S)
TNlC*S NlL*S>
TVAL^S VAL*S>
1$ (FUNCTION (LAMBDA (X) (APPLY
(ICF X NODE REGS PROB PREV

)))))

(COND
((AND (EQUAL TNIC*S
(T (PR0G2 (Al16EN)

(TO (LAMBDA (J*) (Tul (CAR
(TRY

(K$)

(TEMP)
T£MP PROB)
hpXPR)

((EVAL (CaR
(ALTbFM)

TEMP))))

(FUNCTION STEP)
Tl T2 T3 T4 T5

NIC*S) (EQUAL TVAL*S VAL*S)) T)
(RETURN (QUOTE »END)))))))>

JS))))

(LAMBDA
(PROG

(SETQ

(PROR

(COND Kfr)) (PR062
(StTQ BRANCH (CDP KS)))))

(PKUH

(WHILE
(LAMBDA

(PROG

(SETQ

LO (COND

((NULL

(SETQ

LI (COND
((NULL T*$) (GO LO)))

(EVAL (CAR T*S))
(SETQ T$S (CDR 1*4) >
(GO LJ))))
)FEXPR)

Dtp 1NE((

(ABORT
(LAMBDA NIL (PROb ()

(RETURN (QUOTE *£ND>)
(ALTGEN

(LAMBDA NIL
(COND (BRANCH (STORALT

<L*)

(IE** TSA)
TE*$ (CAR L*))

(EVAL TE44))
T$!f> (CDR LS>))

(RETURN NIL)))

)))

(ICF BRANCH

(T NIL))))

(ASSOC1

(LAMbUA (A R) (COND
((NULL B) NIL)
((tQUAL A (CAAR «)> <OOAR B>)
(T (ASSOC] A (CUR B))))))

(UETOUR
(LAMBDA NIL

(PKuG (LOC LOCW BEoT bt'STW VAL)
LO

(COND
((NULL ALTS) (RETURN NIL))

NODE PEGS PROB
Tl T2 T3 T4

((NULL (CAR ALTS)) (PROG?
(SETU Al.Tb (CDR ALTS))

(Stlu HtST (StTtf LOC ALTS))
(GO LO))))

PREV

T5) NIL))

33

(SETQ BESTW (IC/PROb (CAR ALTS)))

(COND

((NULL LOC) (PROG2 (PROG2
(SETQ VAL (CAR BEST)) (RPLACA BEST NIL))
(RETURN (LIST VaL))))

((NULL (CAR LOC)) NIL)

((GREATERP (SETQ LOCW (IC/PROB (CAR LOC))) BESTW) (PR032
(SETQ RESrw LOC*) (SETQ qEST LOC))))

(SETQ LOC (CDR LOC))
(GO L]))))

(GETNODE

(LAMBDA (NODE)

(ASSOC1 NODE BRANCHES)))
(IC/PROB

(LAMBDA(IC)
(CADDDR TO))

(ICF

(LAMBDA (BRANCH NUDE REGS PROB PREV * Tl T? T3
T4 T5)

(LIST BRANCH NUOE REGS PROB PREV * Tl T2 T3
TA T5)))

(INITPASS
(LAMBDA NIL

(CSETQ SREGS NIL)))
(MAPC

(LAMBDA (X F)

(COND

((NULL X) NIL)

(T (PR0G2 (F (CAR X)) (MAPC (CDR X) F))))))
(MAXMIN

(LAMBDA (N)

(COND

((GREATERP N MAXPR) (SETQ MaXPR N))
((GREATERP N MINPR) T)
(T (SETQ MINPR N)))))

(NDSETRl

(LAMBDA (REG FORM SEQUENT)
(PROG ()

(SETQ SEQUENT (SEQEVAL FORM SEQUENT))
(COND

((NULL SEQUENT) (RtTURN (QUOTE *END)))
((CDR SEQUENT) (STORALT

(ICF (CONS (LIST (QUOTE NDSETR2) RE6 FORM SEQUENT) BRANCH)
NODE REGS PROB PREV » Tl T2 T3 U T5) NIL))

(RtTURN (SETRi R£6 (uUOTE (CAR SEQUENT)))))))
(Passr

(LAMBDA NIL
(PROG NIL

(SETQ REGS (NcONC SR£GS REGS))
(CSETQ SREGS NIL)
(RETURN REGS))))

(PROB

(LAMBDA (N)
(SETQ PROB fc)))

(RESUME

34

(LAMBDA (IC)

(PROG ()

(SETQ NIC*S (CONS IC NIC*S))
(CUNO ((NULL BRANCH) (RETURN (QUOTE *END)))))))

(RUN

(LAMBDA (NDFN)

(PROG (SOLN TEMP)

(SfcTQ TEMP (NDFN))

(StTQ SOLN (CAR TEMP))
(PRINT (QUOTE SOLUTIONS)) (TERPRI NIL)
(PRINT SOLN))))

(SaVEI

(LAMBDA (BRANCH)
(ALTGEN)))

(SEO
(LAMBDA (LIST)

(COND
((EQUAL SEQUtNT T) LIST) (T (CDR SEQUENT)))))

(SENDR1
(LAMbDA (REG FORM)

(PROG (TEMP*)

(CSETQ SREGS (CuNS (CONS REG (SETQ TEMPS FORM)) SREGS))
(RETURN TEMP*))))

(SEQALL1

(LAMBDA(FORM)

(PRUG(SEQUENT TtMp)

(StTQ SEQUENT T)

(WHILE (SETQ SEQUENT (SEQEVAL FORM SEQUENT))
(SETQ TEMP (NCONC TEMP (CAR SEQUENT))))

(RETURN TEMP))))

(SEQEVAL

(LAMBDA (FORM SEQUENT)
(EVAL FORM)))

(SFTRl

(LAMBDA (REG FORM) (PROG (TEM$)

(StTQ REGS (CONS (CONS REG (SETQ TEM$ (EVAL FORM))) REGS))
(RtTURN TEMi))))

(STEP

(LAMbDA (BRANCH NUDE REGS PROB PREV

» Tl T2 T3 T4 T5)

(PROG (EDGE)
LO

(COND ((NULL BRANCH) (RETURN (QUOTE *END«))))

(StTQ EDGE (CAR BHANCH))
(SETQ BRANCH (CUR BRANCH))

(COND

((EQUAL (EVAL EDGE) (QUOTE *ENU)) (GO END)))

(GO LO)

END

(RETURN (QUOTE »END*)))))

(STORALf
(LAMBDA (ALT NFLAb)

(COND
(NFLAG (SLT^J ALTS (NCONC ALTS (LIST ALT))))

(T (SETQ KALIS (CUNS ALT NALTS))))))
(SUCCESS

35

(LAMBDA (VALUE)
(PROG ()

(StTQ VAL*S (NCONC VAL*S (LIST VALUE)))
(RETURN (QUOTE *END)))))

(SUSPEND

(LAMBDA (N)

(PROG ()
(MAXMIN N)

(STORALT (ICF BRANCH NODE REGS N PREV * Tl T2 T3
T4 T5) T)

(RETURN (QUOTE »£NO)))))
(TCI

(LAMBDA (NO)

(PROG ()

(SETQ NIC*S (CONS (ICF (GETNOoE (CAR ND)) (CAR ND) REGS PROB
PREV * Tl T2 T3 T4 T5) NIC*S))

(RETURN (QUOTE *END)))))
))

STOP))))))))))))

DEFINE((

(TESTNET

(LAMBDA NIL

(NDPROG

(BEGIN (SETR REGISTER (QUOTE ONE))
(SAVE 90 (TO END))

(SETR REGISTER (QUOTE TWO))
(TRY T (TO END))
(SUSPEND 80)

(SPLIT ((SETR REGISTER (QUOTE THREE)) (TO END))
((SETR REGISTER (QUOTE FOUR)) (TO END)))

(IF T (SUCCESS (QUOTE FIVE))))
(IF T (SUSPENQ 60) (SUCCESS (CONS (QUOTE SND)

(GETR REGISTER))))
(SUCCESS (GETR REGISTER))))))

(END

))

SI OP))))))))))))

DtFlNE((

(SDIFF
(LAMBDA (A B) (COND

((NULL A) NIL)

((MEMBER (CAR A) B)

(T (CONS (CAR A)
(QUEENS

(LAMBDA NIL

(NDPROG

(START (SETR COL 1)

(TO GENERATE))
(GENERATE (NDSETR ROW

(TO CHECM)
(CHECK (SETR Dl (PLUS

(SETR 02 (PLUS
(COND

((OR (MEMBER

(SDIFF (CDR
(SDIFF (CDR A)

A) B))

6))))))

(SEQ (SDIFF (QUOTE (12 3 4 5 6 7
(GETR ROWS))))

(GETR COL) (GETR ROW) (MINUS i)))
(GETR COL) 8 (MINUS (GETR ROW))))

(GETR Dl) (GETR DlAGl))

8))

36

(MEMBER (GETR D2) (GETR DIAG2)))
(ABORT)) (T T))

(SETR ROwS (CONS (GETR ROW) (GETR ROWS)))
(SFTR UIAG1 (CONS (GETR Dl) (GETR OIAG1)))
(SETR DIAG2 (CONS (GETR 02) (GETR DIAG2)))
(SETR SOLN (CONS (CONS (GETR COL) (GETR ROW))

(GETR SOLN)))

(COND
((tQUAL* (GETR COL) 8) (SUCCESS (GETR SOLN)))
(T (SETR COL (ADD1 (GETR COL)))))

(TO GtNtHAlt)))))

))

STOP))))))))))))

DtELIST((

(CAT (LAMBDA (NS») (CAT! (CAR N$) (EVAL (CADR N$)))))
(MEM (LAMBDA (R3>) (MEM] (CAR R$) (CADR R$))))
(PUSHTU

(LAMBUA (S*)

(PROG NIL
(SENDR STRING (GtTR STRING))
(SENDR LEX (GETR LEX))
(SENDR EMBED T)

(StNpR ENTPT (CAR Si))

(COND ((EQ (NDStTR * (MNGRAM)) (QUOTE *END))
(RETURN (QUOTE »END))))

(PASSR)

(SETQ * (CAR (GtTR *M))

(RETURN <M)))

(VIR (LAMBDA (TSO (VlRl (CAR TS) (EVAL (CADR T$))) .))
(WRD (LAMbDA (V*) (WRD1 (CAR V*) (EVAL (CADR V4)))))

)FtXPR)

DtFINt((

(ADVANCt

(LAMbDA NIL

(PROG (TF)

(COND (TRACEDGE (PR0G2 (TERPRI NIL) (PRINT (QUOTE ADVANCING)))))
(StTQ T£ (GETR STRING))

(COND

((NULL TE) (RETURN (QUOTE *END)))
((NULL (CDR f£)) (SETQ « (SETR LEX NIL)))
(T (SETQ # (SETR LEX (CADR TE)))))

(SETR STRING (CUR Tt)))))
(CAT1

(LAMbDA (CAT TEST)
(FRUG (TEMP)

(TRACES)

(COND ((NULL TEST) (RfcTURN NIL)))

(COND

((SETQ TEMP (DICTCHEC* (GETR LEX) CAT)) (PR0G2 (PROG NIL
(StTQ » (CAAR TEMP)) (SETR FEATURES (CDAR TEMP)))
(RETURN (Car TEMP))))

(T (HETURfN NIL))))))

(JMF

(LAMbUA (TEST)

37

(PKOG NIL
(TRACES)

(COND (TEST (RETURN T))))))
(JUMP

(LAMBDA NIL

(PRO<3 Nil.

(CUND (TRACEDGE (PROu? (TERPRI NIL) (PRINT (QUOTE JUMPING)))))
(SETQ • (GETR LEX)))))

(MEM!

(LAMbDA (LIST TEST)
(PROG?
(TRACES)

(CUND

((NULL TEST) NIL)
((MEMBER # LIST) T)
(T NIL)))))

(PARSER

(LAMBDA NIL
(NDPROG

(PARSE

(CSETQ TRACEDGE (RtAU NIL))
(CSETQ TRACEREGS (READ NIL))
(StNDR LEX (CAR (SETR STRING (SENDR STRING (READ NIL)))))
(StNpR ENTPT (QUOTE S/))
(NDSETR PARSES (MNGRaM))
(TERPRI NIL)

(PRINT (QUOTE SENTENCE)) (TERPRI NIL)
(PRINT (GETR STRING))
(TERPRI NIL) (TERPRI NIL)
(PRINT (QUOTE (RARSES OF SENTENCE)))
(TERPRI NIL)

(PRINTLIST (CAR (GETR PARSES)))
(TERPRI NIL) (TtRPRI NIL)
(SUCCESS (QUOTE DONE))))))

(POP

(LAMbDA (TEST)

(PROti NIL

(TRACES)

(COND ((NULL TEST) (RETURN NIL)))
(COND ((NULLIS (GtTR HOLD)) (SETR HOLD NIL))

(T (RETURN NIL)))

(CUND ((AND (NULL (GtTR EMBED)) (GETR STRING)) (RETURN NIL)))
(COND ((GETR EMbED) (RR0G2

(SENDR STRING (GETR STRING))
(SENDR LEX (GETR LEX)))))

(RETURN T))))
(PUSH

(LAMBDA (TEST)

(PROG NIL
(TRACES)

(COND (TEST (RETURN T))))))
(SVE

(LAMBDA (TEST)
(PRUG NIL
(TRACES)

(COND (TEST (RETURN T))))))

38

(SUSP

(LAMBDA (N TEST)
(PRO(i NIL

(TRACES)
(COND (TEST (PRUb? (SUSPEND N) (RETURN T)))))))

(VIR1

(LAMBDA (CAT TST)

(PROG (TM HLIST)

(THACES)

(StTQ HLIST (GETR MOLD))

LI

(CUND ((OR (NULL HLIST)(EQUAL HLIST (QUOTE (NIL)))) (RETURN NIL)))
(COND ((OR (NULL (CAR HLIST)) (EQUAL (CAR HLIST) (QUOTE (NIL))))

(PROG* (StTQ HLIST (CDR HLIST)) (GO LI))))
(StTQ TM (CAR HlIST))

(COND

((AND TM (EQ (CAAK TM) CAT) TST) (PR0G2 (PROG NIL
(SETR HOLD (MLL TM (GETR HOLD)))

(StTQ » (CAH TM))
(SETR FEATURES (CDR TM))) (RETURN TM)))

((StTQ HLIST (CDR HLIST)) (GO LI))
(T (RETURN NIL))))))

(WRD1

(LAMBDA (WORD TEST)

(PROG?

(TRACES)

(COND

((NULL TEST) NIL)

((EQ * WORD) \>
(T NIL)))))

))

SI UP))))))))))))

DtFLlSTt (

(bUlLDQ (LAMBDA (M*) (bUlLD M$)M
(DEFINtV

(LAMBDA (PS)
(MAP P* (FUNCTtUN (LAMbDA (X) (CStT (CAAR X) (CDAR X)))))))

(GETF (LAMBDA (US) (GETFl (CARDS))))

)FEXPR)

DtFlNE((

(APPEND1

(LAMBDA (X Y)

(COND ((NULL X) Y)

(T (CONS (CAR A) (APPENDl (CDR X) Y))))))
(BUILD (LAMBDA (AWbS) (PROG (X)

(StTQ X (CAR ARob))

(StTQ ARGS (CDR AhGS))

(RETURN(BUILD) A)))))

(HUILDl (LAMBDA (X) (CUND

((tQ X (QUOTe »)) »)

((LU X (QUOTF +))(PRUU NIL
(StTQ X (CAR ARGS))

(St TO aRC-S (CDR ARGS))

(RLlUHN (ASSOC1 X RE^S))))
((Lw A (UUOU =)) (RRUG Nil.

(SETQ
(StTQ

(RETURN (EVAL
((NOT (L1STP X)) X)

((EQ (CAR X) (QUOTE $))

(MAPCONC (CDR X) (FUNCTION (LAMBDA
(APPtNDl (bUILDT Y) NIL)))))

(T (BUILD2 X)))))

(BUILD2 (LAMBDA (X) (COND
((NULL X) NIL)

((NOT (LISTP X)) (MUILDT X))
(T

(CONS
(DICTCHECK

(LAMBDA

(PKOG

(COND
((NULL
((ATOM

((ATOM

39

X (CAR ARGS))
ARGS (CDR ARGS))
X))))

(Y)

(BUILD) (CAR X)) (BUILD2 (CDR X)))))))

(LEX CAT)

(DICTFORM)

(SETQ DICTFORM (GET (EVAL LEX)
DICTFURM) (GO LI))
(CAR DICTFORM)) (RETURN (LIST DICTFORM)))

(T (RETURN DICTFORM)))

CAT))) (RETURN NIL))

LI

(COND

HE.0 CAT (QUOTE N)) (RETURN (LIST
(SELECT DICTFORM

((QUOTE REG)(CONS
((QUOTE

((QUOTt

((QUOTt

((QUOTt

((QUOTt

ES

its

IRR

mass

s

LEX

(CONS
(CONS

(CONS
(CONS

(CONS

(QUOTE
LEX

LtX

LEX
LEX

LEX

((NUMBER

((NUMBER SG)))))

(QUOTE ((NUMBER SG))

SG))

SG))

SG))

SG))

((EQ

((EQ

((EQ

)

(CONS DICTFURM (uUOTf

))))

CAT (QUOTE

(QUOTE

(QUOTE

(QUOTE

(QUOTE
SG))))

CAT (QUOTE
DICTFORM w

V)) (RETURN (LIST (CONS LEX
PRESENT) (PNCODE X3SG)

ADJ)) (RETURN (LIST (LIST

) (RETURN (LIST (LIST LEX
DICTFORM))))))))

((NUMBER
((NUMBER
(TNUMBER
((NUMBER

(QUOTE((TNS
(UNTENSED)))))))

LEX))))

))))
(T (RETURN (LIST (LIST

(GET1 (LAMBDA (L P) (COND
((NULL L) NIL)
((EQ (CAR L) P) (CDR L))
(T (GETl (CDR DP)))))

(GETF)

(LAMBDA (FEATURE)
(PROG (TEMP)

(COND
((NULL (SETQ TtMP (CAR

(RETURN

(ASSOCl
NIL))

FEATURE (GETR FEATURES)))))

(T

(HOLD

(LAMBDA
(SETR

(1NTRANS(LAMBDA (V)

(RETURN TtMP))))))

(FORM* FEATURtSi)

HOLD (CONS (CONS FORMS FEATURES*)
(MEMBtR (QUOTE INTRANS)

(GETl (EVAL V)
(KILL (LAMBDA (A Y) (CONu

((NOT (LISTP Y)) /)

(GETR HOLD)))))

(QUOTE FEATURES)))))

40

((E«J (CAR Y)X) (CDR Y))

(T (CONS (CAR Y) (KILL X (CDR Y)))))))
(LISTP

(LAMbDA (A)

(AND (NOT (NUMBtRP A)) (NOT (ATOM X)))))
(MAPCONC (LAMBDA (X F) (COND

((NULL A) NIL) (T (NCONC (F (CAP X)) (MAPCONC (CDR X) F))))))
(MODAL (LAMBDA (A)

(MtMbER # (QUOTt (DO WILL MMODAL SHALL CAN MAY MUST)))))
(NPBUILD

(LAMbDA NIL

(PROG (TFMP)
(SETQ TEMP (BUILDQ ($ (NP) s a (♦ (NU ♦)) = «)

(COND

((GETR DEI) (LIST (GETR DET)))
(T NIL))

(REVERSE (GE1H ADJb))

N NU (REVERSE (GETR NMODS))

(COND
((GETR NR) (wUILUQ (% (NR) s) (REVERSE (GETR NR))))
(T NIL))))

(RtTURN (COND ((GETR NEG) IHUILDQ (NP ♦ =) NEb TEMP))
(T TEMP))))))

(NULLIS

(LAMBDA (L)

(CUND

((NULL L) T)
((AND (CAR L) (NOT (EQUAL (CAR L) (QUOTE (NIL))))) NIL)
(T (NULLIS (K,OH L))))))

(PRINTLIST ,
(LAMBDA (LIST)

(COND
((NULL LIST) (PRINT NIL))
((NULL (CDR LIST)) (PRINT (CAR LIST)))
(T (PR0G2 (P^LNJ (CAR LIST)) (PRINTLIST (CDR LIST)))))))

(S-TRANS (LAMBDA (V) (MEMBER (QUOTE S-TRANS) (GETl (EVAL V)
(QUOTt FEATURES)))))

(TRANS(LAMbDA (X) (PRUb (TtMP)

(RtTURN (OR (Nul (SETQ TEMP (GET) (EVAL X) (QUOTE FEATURES))))
(MFM8EP (QUOTE TRANS) TEMP))))))

(TRACES

(LAMBDA NIL
(F'ROC, NIL.

(CONi) (TRACEDGE (PROb NIL (TERPRI NIL) (PRINT (QUOTE TRYING))
(TERPRI NIL) (PRIN1 (QUOTE *NODE)) (PPINl bLANK)
(PRINT NODE) (TtRPRI NIL) (PRINT EDGE))))

(COND (TRACEREGS (PRUG NIL (TERPRI NIL) (PRINT REGS) (TERPRI NIL)
(PRIN1 UJUUTt *")) (PRINl BLANK) (PRIN] (QUOTE =))
(PRIN) BLANK) (PRINT *))))

)))

))

SI OP))))))))))))

DtF INF. ((

(MNdRAM

(LAMbDA NIL

41

(NDPROG
(f-ASS (PASSR)

(StTQ * (GETR LtX))
(TOl (GETR ENTPT))
)

(S/ (IK (CAT AUA T)
(SEIR V *) (SETR TNS (GETF TNS))

(SETR TYPt (VJUOTE Q)) (ADVANCE) (TO Ql))
(IF (PUSH T)

(PUSHTO NP/)

(qi dF^PusHSnJ *' (StTK TYPk ((K,0Tt L)cu> <JUMP) (T0 Q?)))
(PUSHTO NP/)

(SETR SUhJ *) (JUMP) (TO Q3)))
i^'d (IF (CAT V T)

(SETR V *)• (SETR TNS (GETF TNS)) (ADVANCE) (TO Q3)))
(WJ llh (CAT V (AND (GtTF PASTPART) (EQ (GETR V) (QUOTE BE))))

(HOLD (GtTR SUBJ) NIL) (SETP SUBJ (BUILUQ (NP (PRO SOMEONE))))
(SETR AGFLAG T) (StTR V *) (ADVANCE) (TO Q3))

(IF (CAT V (AND (GtTF PASTPART) (EQ (GETR V) (QUOTE HAVE))))
(SE.TR TNS (LIST (btTP TNS) (QUOTE PERFECT)))
(SETR V <M (ADVANCE) (TO Q3))

(IF (PUSH (TRANS (GETR V)))
(PUSHTO NP/)

(SETR OBJ ») (JUMP) (TO Q4))
(IF (VIR NP (TRANS (GETR V)))

(SETR OBJ «) (JUMP) (TO Q4))
(IF (PUP (INTRANS (GETR V)))

(SUCCESS (BUILDQ (S + ♦ (TNS ♦> (VP (V ♦))) TYPE SUpj TNS V))))
<Q4 (IF (WRD BY (GEIR AGFLAG))

(SETR AGFLAG NIL) lADVANCE) (TO Q7))
(IF (wRD TO (S-fRANS (GETR V)))

(ADVANCE) (TO QS))
(IF (HOP T)

(SUCCESS (BUILUQ (S ♦ ♦ (TNS ♦) (VP (V ♦) ♦)) TYPE SUBJ TNS V
OBJ))))

(Q* (IF (RUSH T)

(SENDR SUBJ (GEIR ObJ)) (SENDR TNS (GETR TNS))
(SENDR TVPE (QUOTE DCL))
(PUSHTO VP/)

(SETR OBJ *) (JUMP) (TO Q6)))
(Wf> (IE (WRD Br (GETR AGFLAG))

(SETR AGFLAG NIL) (ADVANCE) (TO Q7))
(IF (PUP T)

(SUCCESS (HUiLDQ (S ♦ ♦ (TNS ♦) (Vp (V ♦) ♦)) TYPE SUBJ TNS V
OBJ)))).

(07 (IF (PUSH T)

(PUSHTO NP/)

(SETR SUBJ *) (JUMP) (TO Q6)))
JVP/ (IF (CAT V (GETF UNTENSED)) (SETR V *) (ADVANCE) (TO Q3)))

(IF (CAT DET T)

(SETR DET *) (ADVANCF) (TO NP/UET))
(IF (JMP T)

(JUMP) (!Q NR/DET)))
(NP/DET

(IF

(NP/N

(IF

(IF

(CAT N T)
SETR N (BUILUQ (N <M))
SETR NU (GETF NUMBER))

ADVANCE)
TO NP/N)))

N T)

ADJS (BUILUQ (ADJ

N (BUILDU (N *)))

NU (GETF NUMBER))

42

♦> N))

(ADVANCE) (TO S/POP))

SUBJ (CaDR (GETR N))) (JUMP) (TO S/POP)))
(S/POP

(CAT

SETR

SETR
SETR
T

SETR

(A

(bE V

(BEEN

(BELIEVE V

(bELIEVED

(BOY

(bOYS

(bY PREP)

(FOOTBALL N S

(FOOTBALLS N

(GREEN ADJ

(HAD V

(HARD ADJ
(HAS V

(HAVE V

(MCK V

(MCKED

(MCKS

(SOMETIMES

(1 HE

(TO PREP)
(wAS V (Bt (TNS
(wILL V

(wOULD V
)

SI UP))))))))))

(IF

)))

))

DEF'l

(Bt

V (b

(POP T)

SUCCESS (NPbUILD))))

MEV(

DET INDEF)
(TNS PRES) (UNTENSED T)))
E (PASTPART T) (TNS PAST) (PNCODE ANY)))
FEATURES TRANS S-TRANS)

V (BELIEVE (TNS PAST) (PASTPART T) (PNCODE ANY)) FEATURES

TRANS S-TRANS)
N S (BOY (inU SG)))

N (BUY (Ni) PL)))

(FOOTBALL (NU SG)))
(FOOTBALL {\4lt PL)))

*)

(HAVE (INS PAST) (PASTPART T)

*•)

(HAVE (TNS PRES) (PNcODE
FEATURES (TRANS PASSIVE INTRANS))
(HAVE (TNS PRES) (UNTENSED T) (PNCODE X3SG)))

(KICK (TNS PRES) (UNTENSED T) (PNCODE X3SG))
FEATURE

V

V

ADV

DET

S TRANS

(KICK (TNS
(KICK (TNS

IRR

DEF)

)

PAST)
PRES)

(PASTPART T)

(PNCODE ANY)))

P3SG))

(PNCODE
(PNCODE

)

ANY)))
P3SG)))

PaST) (PASTPAPT T)
(WILL (TnS PRES)
(WILL (TNS PAST)

(PNCODE ANY)))

(PASTPART T)
(PNCOOE

(PNCODE

ANY)))

ANY)))

	Copyright notice 1975
	ERL-537

