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ABSTRACT

This paper is concerned with the problem of finding efficient hashing

schemes for answering basic queries (queries specified by a conjunction of

attribute-value equalities), in a multi-attribute file residing in a secon

dary storage device.

A model problem is examined in which the n attributes in a record

occur independently of one another, and for which the probability that

a query specifies values for a particular subset of the attributes is

given.

For this model it is shown that in many cases, rectangular

(or multiple key) hashing schemes - hashing schemes that partition an n-

dimensional attribute-value space into a regular lattice of rectangular

sets in n-space - have near minimal average page access, in the class

of all balanced hash functions from an attribute-value space, onto a

given number of pages of equal size, in a secondary storage device.

t
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I. INTRODUCTION

1. Overview

Consider an n-dimensional file (relation) F,consisting of records

of the form (x-,x«,...,x ) chosen from a space of all possible records

K = K-x...xK , and suppose that F is to be stored in a number (say p) of

pages of equal size in a secondary storage device. This paper is

concerned with the problem of finding efficient hashing schemes for

answering basic queries from such a file. A basic query, otherwise known

as a partial-match query, specifies particular values for some subset of

the attributes (components) of the records in a given file, and requires

for its answer all records in the file possessing the specified attribute

values. A hash function, on the other hand, is a mapping from the space K

of all possible records, onto the p given pages, assigning to each record

the page wherein it is to be stored in case it belongs to the file under

consideration. We shall henceforth concern ourselves only with balanced

hash functions, which informally speaking, have the property that they

t
distribute the records in a typical file F evenly among the p given pages.

Notice that a hash function can be characterized by the way it partitions

the record space into parts each of which corresponds to a given page.

One measure of the difficulty of answering a query Q from a file

organized according to a hash function f, is the number of pages that must

be examined if one is to give a complete answer to Q. Of course we shall

assume that the algorithm for answering Q does not have any prior information

about the contents of the file F, so that, neglecting page overflow, the

This informal statement suffices for the present introductory discussion.
All formal definitions, including that of a balanced hash function, appear
in the next section.
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number of pages that must be examined to answer Q depends only on Q

and on the particular hash function being used. Thus, given a probability

measure on the set of basic queries, the average number of pages that must

be accessed to answer a basic query from a file organized according to a

hash function f, may be taken as an appropriate overall measure of the

performance of the filing scheme defined by f.

Simply stated then, the problem is to design a hash function

minimizing such an average page access.

The general problem of file organization for efficient retrieval

of records selected using several keys (attributes), or combinations of

keys, has received considerable attention in the literature during the

past decade [1,3,4,7,9,12-17]. An excellent summary of some of the work

in this field may be found in Knuth [11, Section 6.5]. The problem of

finding hash functions with minimal average page access for multi-

attribute queries was apparently first discussed in Welch [16]. Welch

considers a file F with binary valued attributes, and assumes that the

records in F are uniformly distributed in a record space, and that all

basic queries are equally likely. His so-called "bucketing problem" then

requires a partition of the record space into p parts of equal size,

minimizing the average page access for the induced (balanced) hash function.

Rivest [14] has furnished an elegant solution to the above problem for

a general discrete record space,

K = Knx...xK , K. = {1,2,...,u,} , i < i < n.
1 n l i — —

His approach relies on the simple observation that the average number of

pages accessed to answer a query is minimized, if the average access to

each individual page is minimized. Accordingly he defines an optimal

bucket as a part of the record space K, with the property that the average
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number of queries needing that part for their answer, is a minimum over

all parts having the same size. He is then able to characterize the

general shape of such optimal buckets. In fact it turns out that in many

cases very simple geometrical configurations, e.g. n-dimensional cubes,

achieve the above minimum. One can then say, for example, that if it is

possible to partition the record space K into p cubical parts, then the

induced hash function onto p pages is optimal: it achieves minimum

average page access.

Evidently however, uniformity assumptions made on the occurrence of

records and queries in order to obtain the above results, restrict to

some extent their applicability. This paper represents an initial attempt

at removing some of these assumptions. Specifically we consider a

continuous n-dimensional record space, K = K-x.-.xK , K C R, 1 £ i <_ n,

and assume that the occurrence of records in a given file is governed

by a probability density P„(x) on K, which is independent in the n

attributes. We then assume that for each subset c of the attributes, the

probability to that a query specifies the attributes in c is given but

arbitrary. Also among queries specifying a given subset, say (i ,...,!.},

of the attributes, we assume that the probability that a query specifies

the values v. ,...,vJ , is identical to the probability that a record
1, i.
1 3

attains these values.

The problem again is to find a balanced hash function minimizing

the average page access for answering basic queries, given the parameters

P (x) , and a) , c C {l,...,n}.

Here, one can similarly define an optimal bucket and attempt to

characterize its shape. The principal result of this paper then is that

in many cases an n-dimensional rectangle has an optimal shape for the
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above problem. It follows that a partition of the record space K into

parts of the form,

I* x I? x...x ln , i <j <w , 1 <i <n,
3± 32 jn - i~ i - -

with a suitable choice of the integers N., 1 £ i _< n, and of the component

parts I. , 1 _£ j. _i N., 1 JS i £ n, often induces a near optimal balanced
Ji

hash function on K.

For obvious reasons we have chosen to call hash functions of the

above kind "rectangular hash functions" in this paper. Such hash functions

were originally introduced in the literature by Rothnie and Lozano in [15],

where they are referred to as "multiple key hash functions," and where their

behaviour in answering single attribute queries is investigated in detail.

2. Records, Files, Queries, and Hash Functions

Basic Definitions and Assumptions

i) Definition 1

By a record we mean an n-tuple of the form,

(x1,x2,...,xn) x± G K± = [ai,b±]C R, 1 <. i£ n.

The components xn,...,x , of a record are also known as attributes or
i n,

keys, and the record space

K = K± x«..x Kn,

will also be referred to as the attribute-value space or the key space.

Definition 2

A file or a relation is a set of records.

We assume that the file A to be stored can be time varying, but

has approximately constant size |a|.
-5-



Definition 3

A basic query or a partial match query is a request for all records

in a file having specified values for a given subset of the attributes.

A basic query can be represented by a set of attribute-value equalities.

For example,

xl = 2> x3 = 5' x10 = °

is a representation of a basic query whose answer is the set:

{r e A| r= (X;L, •••, xn) A X]L =2A x3 =5A x1Q =0} .

Definition 4

Consider a subset c = {I-,...,!.} of the set of attributes {l,2,...,n}

A query of type c is a basic query in which the set of attributes specified

is c. For example the query,

X]_ = 2, x3 = 5

is of type {1,3}.

ii) A Model for the Occurrence of Records in a File

We shall assume in this paper a probabilistic model for the generation

of records in a file A. This, of course, is not to say that records in a

real world file are normally generated according to a known probability

density, but that in many situations the occurrence of records in a file

may be reasonably approximated by a probabilistic model.

In particular we shall assume that the records in A are generated

independently of one another and randomly according to a given continuous
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probability density PK(x) on the attribute-value space K, which we shall

refer to as the data probability density.

In what follows we shall only be concerned with the case where the

data probability density is independent in the attributes, i.e. where,

PK<S> "PKlX...xK (X1 xn> =PK, <xi>*""x PK <*„> •
In 1 n

This will simplify the analysis considerably, and may be a legitimate

assumption for an attribute-value space in which the attributes are

intrinsically unrelated. An example may be,

last name x city of residence x make of car

in a Department of Motor Vehicles (DMV) file.

iii) Assumptions Concerning the Probability of Queries

The problem we would like to be able to solve is as follows.

Given the data probability density P (x), and a probability density

on the set of basic queries, find a hash function having minimal average

page access in answering basic queries.

However, in the absence of further assumptions about the query

probabilities, the problem seems intractable mathematically and is

perhaps overspecified from a practical point of view, as it is unrealistic

to expect detailed estimates of query probabilities that are very

reliable. The following assumption goes considerably beyond the

assumption of uniformity of the query probabilities, but does not require

detailed estimation of the latter.

We let the probability density that a query of type c = {i.,...,!.}

specifies the values v. ,...,v , be given by a function of the form,

1 J
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qc(vi --^i )= "> PK <v± >x— x Pk (v, )•ix i. CK^ ix K i. (1)

This is perhaps the most reasonable first order assumption that one may

make about query probabilities. In the first place it assumes that the

probability, u^, that a query is of type c is given. (Notice that one

can expect to arrive at a reasonable estimate of u) by monitoring incoming

queries.) Within each query type, however, it assumes that the denser

the data is in some neighborhood, the more frequent are the queries in

that same neighborhood. This means for example, that among queries

specifying a last name in the DMV file of the last section, queries using

the name Smith occur proportionally more frequently than those using the

name Goldstein.

iv) Balanced Hash Functions

Treating the records in a file A as indecomposable objects that are

to be stored one by one, let us assume that it takes b bits to store a

representation of each. Let us also assume that for the purpose of storing

the records in A, we provided with p = |a|/s primary pages (together with

a few overflow pages) of size sb bits each in a secondary storage device.

A balanced hash function into p pages is then a function from the

attribute-value space K onto the set of pages {l,»««,p}, for which a set

S. of points mapping into a given page i, (1 <_ i <^ p) , has probability

1/p (according to the probability density PR(x)).

Since the sets S., 1 <_ i _< p, partition the attribute-value space

K, we shall also regard a balanced hash function as a partition of K into

p parts of equal probability, with the interpretation that records whose
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attribute values are in the kth part will be stored in the kth page

(overflow being negligible and handled by chaining).

The requirement of balancedness, of course, stems from the assumptions

that the records are generated according to the probability density P (x),
K

and that the pages have equal size.

3. Problem Statement

In answering queries we assume that no auxiliary information is

available about the set of records presently in storage. The retrieval

algorithm is then very simple:

given a query,

v - v xi9 =V"' xi. =vi.112 2 J J

access the kth page if and only if the kth part (i.e. the part of the key

space associated with the kth page) contains a point _t = (t^,...,tn)

such that

t - v ,....,t - V .

11 i i

Now for a set X C r and a subset of coordinates

c = {i ,...,i.} £ {l,...,n},

let the projection of X on the cartesian product of the coordinates in

c be denoted by it (X):

* (X) = {(v. ,...,v. )| ^t = (t ,...,t ) e X,
c i, l. ' —'— 1 n

t. =v. , t. =v. ,...,t. =v. }
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It is then easy to see that the kth page is needed for a query

i, 1, i. i.
1 1 J J

of type c = (^,...,1 )

if and only if (v. ,...,v. ) ^ tt (X.)

where X, is the part of the key space corresponding to the kth page.

Hence using the query probabilities q (v. ,...,v. ), c C {l,...,n},
C Xl xj

given in (1), the average number of times the kth page is needed to

answer a basic query is,

2-f 1 %^i '•••»t< )dt. ...dt. = 2^t a) P(tt (X,))
c = fi ^^ i > J c xi 1-5 xi ^a r ii \ c c V'c tli»-#*»1j-r ^f (y ) 1 3 1 J cC{l,...,n}
C {l,...,n} c *

where for c= {i^i^ .. ,i.. }, P(ttc(X)) is the probability of the set it (X)

induced by the data probability density PK(x):

P(ir (X)) =1 P (t )... P (t )dt ...dt m
J m \ xl ki, xj \ \jirc(X) -1

Therefore, letting a be the average number of pages accessed in order

to answer a basic query, we have, by the additive property of averages,

P

I=Z E »cp(*c<v>-
k=l c ^- {1,. ..,n}

The problem of finding an optimal hashing scheme for our model, can now

be stated as follows.
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Given probabilities or weights to corresponding to each subset c

of the attributes {l,...,n}, find a partition of the attribute value space

K, into p parts x1,'»,^ , such that,

P<V • J%®dxl" dx„ =f - (2)

and

k=l c C {!,...,n}

is minimized.

4. A Canonical Problem: Uniform Data on the Unit n-Cube

Consider the problem (2) of the last section with the additional

condition that the attribute values have a uniform probability density

on the unit n-cube: P„(x) = 1 for x£ [0,1] =K. It can be restated
K

as follows:

Find a partition of [0,1] into p parts X 9... X f such that,

\\\ = 1/P
and

P

a = j > 03 17T (X, )I is minimized,
k=l c £ {1,...,n}

where for a set T C RJ, |T| denotes the size or the volume of T in RJ .

We are now going to show that by suitable 'stretching' of the coordi

nates, any problem of the form (2) can be reduced to a corresponding

'uniform' problem of type (3).

-11-
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Lemma 1

There is a one to one correspondence between the feasible solutions

to the problem (2), and the feasible solutions to the related problem (3),

in such a way that the corresponding solutions achieve identical values <}

for their respective objective functions.

Outline of Proof

Without loss of generality assume PR (x^ 4 0 for all x± £ K± =
i

[a.,b.], 1 < i < n.
11 — —

The desired one to one correspondence between partitions of K

and those of the unit n-cube, is induced by the following bijection:

S: KlX...x K + [0,l]n ,

g(x1,..-,xn) = (81(x1)»,,,»gn(xrl))

x.

where g„.(x..) = I Pv (t)dt , l<i<n,

x.

It is now trivial to show that g induces a bijection from partitions

of K onto partitions of [0,1] , which bijection satisfies the condition

of the lemma.

Thus, for the purpose of finding optimal partitions of a rectangular

attribute-value space K» with a data probability density that is independent

in the n attributes, it is sufficient to consider the problem (3) above.

5. Solution Strategy

Although our proof techniques are different, we follow a strategy
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identical to that used by Rivest [14] , in tackling the above problem.

Let a* = inf \^ w|ir (X)| (4)
c C{l,...,n}

|X| = 1/p

X C [0,l]n

and let us designate parts X of [0,l]n which achieve this infimum, as

optimal parts. It then follows from (3) that for any balanced partition

of [0,1] , the average page access a is bounded below by the quantity

p V

£

a ^ p a . (5)

This lower bound is achievable if and only if the attribute-value space

[0,1] can be covered by disjoint optimal parts.

As will be seen in section 2, Rivest's proof of the optimality of

cubical parts for the case where all basic queries are equally likely,

does not carry over to the present more general case. To tackle the

present problem we consider a slightly different lower bound, which may

in some cases be weaker than pa (and therefore of little use) , but turns

out to be equal to pa in many cases.

In particular let

a = infp -- ^ WCUC(X)| (6)
X CRn cc {l,2,...n}
|X| = 1/p

and designate parts achieving this infimum, as optimal parts of Rn.

Then since
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*

a < a ,
P - P*

we see that the quantity pa is also a lower bound on the average page

access, which is tight if and only if,

a) an optimal part of Rn fits within the bounds of the key space

[0,1] , i.e. a = a ,
P P

and b) the key space [0,1] can be covered by disjoint optimal parts.

In section 2 we show that while searching for optimal parts of Rn,

it is sufficient to restrict ones attention to rectangular solids in Rn,

and hence the problem of finding such parts reduces to a simple constrained

optimization problem.

Our computational results presented in section 3, indicate, that

in a great many cases, optimal rectangles in R do fit within the bounds

of the unit n-cube, and one can in fact partition the unit n-cube into

approximately optimal parts, obtaining a hashing scheme with approximately

minimal retrieval time as measured by the average number of pages accessed

to answer basic queries.
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II. The Minimal Projection Property of Rectangular Sets in R

1. Motivation

To find optimal parts of R and hence the lower bound pa of the last

section on the average page access, we have to solve the following optimi

zation problem.

Given probabilities u> , for each c C {l,2,...,n},

find X C Rn

to minimize ^ "J^c^' (7)
c C {1,2,...n}

such that |x| = 1/p ,

where it (X) is the projection of X on the cartesian product of the

coordinates in c, and for a set iCr, |t| denotes the volume of T in

Rj.

In this section we are going to prove that the above minimum, if it

exists, is achievable by a rectangular set in R , that is, a set of the

form,

X=LxLx..,xI I,. <= R 1 < i <. n.
12 n l —

The crucial step in this proof is to regard the average projection

/ j u) |it (X) I, of a set X on subsets of coordinates, as a
c C {1 n}

"generalized perimeter" of X. We are then in a position to utilize

proof techniques employed in the solution of the so-called isoperimetric

problem [10, Chapter 2]: the problem of maximizing the volume of a set

in Rn given its perimeter, (or equivalently the problem minimizing the
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the perimeter of a set given its volume) . One such proof technique due

to Steiner [2, Chapter 1] follows.

The problem is to find a plane figure of a given perimeter having

maximal area. To begin with it is trivial to verify that a plane figure

that is not convex cannot have maximal area among all figures with the

same perimeter.

2
Now given a convex figure A in R , let ft be a straight line that

divides A into two parts A. and A«, in such a way that the perimeter of

A is halved. Without loss of generality let |A-| >^ |A~|.

One can then replace A„ by the reflection of A- on the line A, whereby

one obtains a set of equal perimeter but possibly larger area. (Figure 1)

Figure 1

-16-



A subsequent construction shows that if the original figure were not a

circle, then one can modify the derived symmetric figure, to obtain a

figure of larger area but the same perimeter. Hence the maximum area of

a figure of a given perimeter, if it exists, is attained by a circle.

The elegant use of symmetry in the above proof can be adapted to

solve the problem of minimizing the average projection of a set of size s

2
in R , as follows.

2
Let x1 and x« represent the two coordinates in R . Given a set
2

XCr , construct m lines parallel to the x« axis in such a way that they

divide X into m+1 subsets Xrt,Xn,...,X of equal size,
0 1m

(See figure 2, for the case m=l, where the construction is almost identical

to Steiner's reflection.)

*
Let X ^ have minimum projection, it., on the x. axis,

i

it* =lir^X *)| <I^CX^I, 0<i <m. (8)

Now for each k, 0 < k < m, construct a copy X, of X ., by translating the

*

latter a distance kir. along the x.. axis,

Xk ={(x1+ kir*,x2)|(xrx2) ex #}.
i

. m

Notice that |X± H x. |=0 for i± j, and let X « U X^,,
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X| (shaded)

n,(X)

n2(x,)=
n2(x0) i

ni(x0) ni(X|)

The set X satisfies:
m

1. |XJ = (nrH)|X J = |X|

ni(jT0) "n^>
n,(x,*)

2. IVV1 = <*+DlVx *}i
i

m

0

(the inequality follows from (8))

and 3. MXI>I = K<x *>l2V m

m

< |tt9( ux.)| = K(x)|.
z 0

-18-

Figure 2



*

Hence X has the same area as X, but its projection on either coordinate

*is no larger than that of X. For large m, X is approximately rectangular

*

and it is reasonable that as m -> », X tends to a rectangle, and hence
m

that the average projection of a plane figure of a given size must be

minimized by a rectangle.

The same type of argument works in higher dimensions, the only

difference being that tt.(X.) is everywhere replaced by,

(0•c -'c (Vlall subsets c_ of 11

{l,...,n} containing 1

and similarly ir-CX.) is replaced by the corresponding summation over all

subsets of coordinates not containing the first.

In an n-dimensional situation, however, it is again reasonable that

as m •> «>, the sets X approach a set of the form

[a,b] x X11"1 x""1 C r""1,

in which case by repeating the argument for the remaining dimensions, one

obtains a rectangular solid in R .

The above arguments of course, though intuitively appealing, are

non-rigorous. The next section contains the details of a more rigorous

statement of the same ideas.

2. The Minimal Projection Property of Rectangular Sets

Theorem 1

If the problem (7),
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minimize 7 * w |tt (X) | (w >0)
cC{i,...,n} c c C~

such that X C R , |x| = 1/p,has an optimal solution, then it has a

rectangular optimal solution, x* =I-x...xIn, I.Cr, 1<±<n.
To prove the theorem we shall first have to develop some notation,

.n

Let R = R1 x R2 x... x Rr where R ,1 <_ i <_ n, are n copies of the

real line.

Let cQ denote a subset of the set {2,3,...,n} of coordinates, and given c

let c± = cQ U {1}.

Then given sets,

we let

X C R x R- x... .x R
n 1 2 n

X _ C r x.. #x R
n-1 2 n

1. X (t) = {(x ,..., x )|(t,x0,..., x ) e x }

2. HXn-l»0= £ 0) ITT (X J
c ' cn n-1cQC{2,...,n} u0 ^0

where by definition we let

ri x i a

* "-1 I0 X •-,
n-1 y

3- "Xr, i[|i = Z^t w Î (x i)n_1 ± cx =^U {1} cl' c0 n-X
cQ £ {2,...,n}
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and 4. Ux II = 7. a) Itt (X )I.
n f- ri • , c' c n •

c <- {1,... ,nj

Lemma 2

Let X be a subset of R such that |x| = 1/p. Then there exists a

rectangular set, Y = I-. x ... x I , I. Cr, 1 < i < n, such that,

|Y| = 1/p

and llYll < llxll.

Proof

Let X be a subset of R , and without loss of generality assume

there is an interval I = {x|a < (<)x < (<)b> C r, such that |x(t)| ^ 0

if and only if t £ I.

In case X(t) 4 <\> for some t £ I, replace X by

U {t}xX(t) ,
t^l

obtaining a set of equal volume but possibly smaller average projection.

Now

llxll = Zj o>c|Trc(X)|
c C {!,...,n}

l^ u> U (X)| + Z-r

Since X = U {t} xX(t),
ten

-21-
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we have that,

ir (X) = U {t}i,(x(t),,
i tei c0

and hence

Also

lv(x>l • k (x(t))
i Jo

dt

TT (X) n» ( U {t} X X(t))
co co tei

= TT ( u X(t)).
co tei

Therefore

11X11 = Z-T 0). |v <u x<fc»l
c0 S {2,...,n} u0 co tei

2L, u> f U (X(t»|dt
= {1} U cn Cl J C0

+

c.

c0 —t2>" «»n^

=I 2-r 03 Itt (X(t)) |dt
J c. = {1} U cn cl c0
a 1 0

cQ C {2,...,n}

* E
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r t=I Ox(t)Bx dt + II u x(t)«0.
a

t

Letting f(t) = I|x(x)|dx, tG I, we see that since |x(t)| is non-
a

vanishing for x S= I, f(t) is monotone in this region. Hence in the

expression for II xll, we can change variables from distance t, to volume

v = f(t).

t
This may in some sense be regarded as the canonical decomposition of the
average projection of X. Rivest [14] also starts with a similar expression
in his proofs which then proceed along the following lines.

Let t be a point such that

then

|x(t)| > |x(t)| V t e I.

b

llxll >_ l llx(t)Il1dt +Hx(t)0o,

and hence,

min

X^ C [0,1]
n —

n

n1
= 1/P

IX
n

$

mm

h(t)dt = 1/p

b

1( min fix (t) H_> dt

'Xn-l(t)l = h(t)

(9)

+ min llx -(t)0
'Xn-l(t)l = maxh<t)

Now in case all weights 03c are equal, Hx^U)!^ «= "X^^^o' Substi"
tuting the latter in (9), he obtains a recursion inequality relating the
minimum average projection in n dimensions, "xll, to the minimum average
projection in n-1 dimensions, "XJ?Li(t) Uq.

Replacing all inequalities by equalities, one can solve the resulting
recursion formulae obtaining a lower bound on Hx^l• This lower bound
then turns out to agree with the average projection of a cubical set of
size 1/p.

It follows that the above line of reasoning will yield optimal
solutions, if and only if, the corresponding recursion inequalities (9)
are tight. However, in a general situation in which the weights o>c are
arbitrary, this is not necessarily the case. (The interested reader
may utilize Theorem 1 to verify this fact for the example to be given
in section III. 6.)
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Since dt = i , > i we have,

11x11 =| »x^»i Tx^TT +'Ucd X(v)"°- (10)

Now by a well known property of averages, there exists a point

* * *

v = f(t ), t G I

v* e f(i)

with the property that

llx(v*)IL f/j> |,x(v)1|
<P .v/ ,1 dv. (11)

|X(v*)|- J l«'>

Combining (10) and (11) above, and using the fact that 0 U X(v)'L _>
* v€f(I) °

IIX(v )H0, we have

-, llx(v*)H. .
llxll >±- ^ + llX(v )IL

"P |X(v*)| °

^llx(t*)IL + llx(t*)IL
P|x(t*)| 1 °

= llYn_1ll where Y11"1 = I x X(t*),

_ 1and I. is any subset of the real line satisfying 11-^| - p|x(t*) I*

Thus there exists a set Yn of the form I, x X(t*) , with no larger

average projection than that of X , but with the same volume 1/p.

The same proof can be used inductively to show that:

if there exists a set,
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Yn"k =^...xL^. xX(t*1,...,t*), X(t*,...,t*) CRn k

such that |Yn~k| = |x|

and llvn~kllYn"^ll < llxll

then there exists a set,

such that

X — 1... X • • •XJ-| ,.. X -A.\ t- f • • • 9 I-., t^i /

* * _ n-k-l

^••••'WCR

,Yn-k-l, _ , n-k, = , .

and

hn"k"H < iiYn-kn < iixii.

But then for k = n-1, Yn = Y is rectangular . qed.

Proof of Theorem 1

Theorem 1 now follows as a trivial corollary of Lemma 2.

Corollary 1

If the weights cor,-.,... ,iiir i for single attribute queries

positive then,

are

1. There exists a rectangular optimal solution to the problem (7)

minimize / * o) |it (X)
c C {!,..,,n>

such that X C Rn, |x| = 1/p .

-25-



2. The dimensions s ,s2,..., sr of an optimal rectangle are

unique and are given by the solution to the local optimality conditions:

to II s. = X/ps. = u/s. 1 <_ j <_ n,
J c ^ {1,... ,n> i<=c

(12)
n

n s. = 1/p .
1 J

Proof

1. By Lemma 2, there exists an optimal solution to the problem iff

there exists a rectangular optimal solution. Thus in searching for an

optimal solution we can restrict our attention solely to rectangular sets

l..x«»«xl , I. C r, which for our purposes are completely characterized by

their dimensions s = |l.|. But the average projection of such a rectangu

lar set on hyperplanes defined by a cartesian product of the coordinates

is just,

Z^/ oj n s.. (13)
c C {1,... ,n} i^c

Hence we need to prove that if the weights for single attribute queries

are positive, then the problem

minimize / * w II s.
c C {1,... ,n} i£c

n

such that II s. = 1/p (and therefore s. > 0 for all i, 1 _< i <^ n)
1

has an optimal solution. The latter is a simple problem in geometric

programming [6] and can be analyzed more simply if we use the transformations,

zi = *«« V
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to obtain an equivalent problem:

w eJ
c

iGc
0) €

C

c C {l,...,n}

(14)

such that y z. = - Jig p.

1

Now let z be any feasible solution to the above problem, and let y = u(z).

Then any other feasible solution z = (z-,...,z ), for which u(z) <_ y, must

satisfy:

zi
w,.1e<y 1 < l < n.
{1} — - -

z. £ y., where y, = Jig y - £g iDr.i, l£i£n.or

Thus z is bounded in the compact region Z of R defined by:

2}i ="*geP

z. < y. 1 < i < n.
l — i — —

Now Z ^ d>, since z €= Z .

Hence, since uis a continuous function, it attains a minimum in Z , which

is also the global minimum of u for all z €= R such that

n

X)i --*V
qed.
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2. Using the arithmetic-geometric inequality, it can be shown

easily that the functions

£-iGc
e are convex.

Hence the objective function in (14) is convex. Furthermore if the

singleton weights, w^-. 1£ i <. n, are positive, then it is easy to see

that the objective function is in fact strictly convex. Since the feasible
n

region {z|/ z\ =- ig p } is also convex, it follows that any locally
1

optimum solution is the unique global optimum to the problem, and hence

can be found using the local optimality conditions (12).

qed.

3. Summary

In this section we have shown that the infimum of (6):

a = inf 2-f wU (X)|
P XCRn cC{l....,n} C C

|X| = 1/p

can be found by considering only rectangular sets in Rn.

By Corollary 1, there is a very rich class of parameter values, co

(c C {l,...,n}), for which this infimum is in fact achievable, and there

fore can be found using well known optimization techniques in R .

If an optimal rectangle yielding the above infimum fits within the

key space [0,1] , then the lower bound pa on the average number of pages

accessed to answer basic queries can be expected to be approximately

tight: one can expect to be able to partition the unit n-cube into
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approximately optimal rectangles, obtaining a hashing scheme with near

minimal retrieval time. Computational results presented in the next

section, tend to confirm this belief.

Unfortunately, however, in rare cases where the number of pages is

too small, and/or, the query weights are too lopsided, optimal parts of

R may not fit within the key space [0,1] . In such cases the results

of this paper merely provide a (perhaps weak) lower bound on the average

number of pages accessed to answer basic queries.

We conjecture, however, that in such cases the quantity (4),

a* = inf 2^ w I* WI
P XC [0,l]n c C {l,...,n} C C

|X| = 1/p

n

is again attainable by a rectangular subset of [0,1] , and that the

lower bound (5), pa , will again be approximately tight.
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III. Conclusions

1. Summary

A hash function can be characterized by the way it partitions a

given attribute-value space K into parts each of which corresponds to a

page in memory.

We have considered a model in which K is a rectangular subset of R ,

from which a given number of records are chosen independently of one

another and randomly according to a continuous probability density PR(x),

which is independent in the n attributes. In this context we have looked

at the problem of efficiently answering basic queries.

In case pages in memory have equal size, it is natural to restrict

oneTs attention to partitions of the key space K into parts of equal

probability; such partitions are known as balanced partitions.

The problem is then to find a balanced partition of the key space K

yielding minimal average page access in answering basic queries. In

taking this average we have assumed, for each subset c of the attributes,

an arbitrary probability w that a query specifies all and only the attributes

in c. Also, for queries specifying a given subset of the attributes,

the assumption is that the query probability density at a given point,

say v. ,...,v. , is proportional to the probability density that a record
Xl Xj

takes on the values v. ,...,v. .
i i •
1 3

To solve the above problem, given an arbitrary data probability density

P„(x) =P__ (x..)x-••xP_, (x ), we first show that it is sufficient to consider
&• — K._. 1 K n

1 n

only the case in which,

K= [0,1]°, and PR(x) = 1.
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Letting p be the number of pages in memory necessary to store the

records in a file, it is then easy to see that the quantity, p x (minimum

average projection of a part of R of size 1/p, on a cartesian product of

coordinates) is a lower bound on the minimum average page access for the

latter problem.

In section 2 we showed that, in order to find the minimum average

projection of a part of R , of a fixed size, it is sufficient to consider

only rectangular parts of R . It follows that if the key space [0,1] ,

can be partitioned into such optimal rectangular parts, then the

induced hash function achieves minimum average page access.

This, however, may not be possible: in the first place, an optimal part

of R may not fit within our key space [0,1] (if a side of an optimal

rectangle happens to be greater than 1); secondly, even if such parts do

fit within the unit n-cube, it may not be possible to cover the latter

with disjoint optimal parts.

The former problem is serious and requires further research, but

seems to occur rather infrequently for large p.

The latter is somewhat less serious. If an optimal part fits within

the unit n-cube, then it is not hard to convince oneself that it will be

possible in a majority of cases, to partition the unit n-cube into ap

proximately optimal parts, given that the parts are reasonably small

(that the number of pages is reasonably large.)

2. Computational Results.

To test the seriousness of the above problems, we computed the
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dimensions of an optimal part of R , for a number of cases in 3 and 4

dimensions. Twenty trials were made in each case, for which the query weights

(unnormalized probabilities) were chosen randomly once from the integers

1,2,...,100, and again from the integers 1, 10, and 100. The results of

these computations are summarized in Table 1.

As can be seen, the number of solutions that are out of bounds

i.e. for which at least one side of an optimal rectangle is greater than

1, is quite small. In cases where optimal parts are inbounds, it is of

course extremely unlikely that the key space [0,1] can be covered by

disjoint optimal rectangles, i.e. that each side of an optimal rectangle

is an integral divisor of 1. We therefore tried to find slightly smaller

rectangular parts of approximately the same shape, whose sides were in

fact integral divisors of 1. This 'roundoff•process introduces two

sources of error. On the one hand since the parts are smaller than 1/p, the

number of parts is greater than p and hence more pages are required in

memory: an extra storage cost. On the other hand, since there are more

pages in total, the average page access may be larger than the minimum

possible using p pages: an extra time cost. The latter error is estimated

by comparing the average page access after roundoff, with the derived lower

bound (5) for p pages.

These roundoff errors, however, were again found to be small:

less than 10% in all cases considered and less than 5% in most.

-32-



I
CO

I

NUMBER QUERY NUMBER
DIMENSION OF WEIGHT OF

(n) PAGES SELECTION TRIALS
(P)

1,000

1,000

1,000

10,000

1,000

10,000

Random

From 20

1,2,3,...,100

Random

From

1,10,100
20

Random

From 20

1,2,3,...,100

Random

From 20

1,2,3,...,100

Random

From

1,10,100

Random

From

1,10,100

20

20

Table 1

ROUNDOFF ERRORS

STORAGE TIME

£ 5% £ 10% 1 5% <_ 10%
5% < 5% <

16 20

18 0 18

11 12

14 19

11 15

15 17

NUMBER

OF

SOLUTIONS

OUT OF BOUNDS



3. Near Optimal Hash Functions for a Relation with Independent Attributes

Using Lemma 1 (section 1.4), we can now characterize near optimal

partitions of a general relation with independent attributes.

In particular what needs to be done is to invert the function g:

K -»• [0,1] used in proving the lemma, and to consider the corresponding

induced mapping from partitions of [0,1] onto partitions of K» Again,

the details are trivial and will be left to the reader.

We are then in a position to conclude that for the model presented in

this paper, the problem of finding optimum hash functions, is adequately

solved in many cases as follows.

Step 1

Use the query probabilities w and the number of pages p to solve the

equations (12) or otherwise find optimal parts (rectangles) of R of

size 1/p.

Step 2

In many situations the dimensions of an optimal part

of R will be less than 1 for reasonably large p. If this is the case,

then find a rectangular part of R , of slightly smaller size, but ap

proximately the same shape, whose sides are integral divisors of 1, say

V V ' Nn

Step 3

In the original key space K divide each coordinate i, into N parts

of equal probability, according to the probability density P„ (x ). Let
i

these parts be denoted by,
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I. » 1 < j. < N., 1 < i < n.3± - Ji - 1 - -

The cartesian products of such parts in different coordinates,

T1 T2 T11I. X I. x*•»x I,,
Jl J2 J,

form a balanced partition of the attribute-value space into a number of parts

that is slightly greater than p. In most situations the extra number of

pages needed for storage, and the extra number of pages accessed per query

in the induced hashing scheme is small, particularly if one

takes into consideration the fact that it is desirable to leave some slack

in each page to avoid excessive overflow. Hence in most cases the

induced hashing scheme has near minimal average page access.

4. Problems with Discrete Data

Throughout this paper it has been assumed that the given attribute-

value space is intrinsically continuous in nature. In case of discrete

data our analysis will work for any continuous approximation of the discrete

data and query probabilities, and hence the resulting lower bounds will

still be valid. However, if the number of possible values of an attribute

is too small, then it may not be possible even to approximate step 3 of

the above procedure. Thus, in cases where a small number of values of

an attribute occur most frequently, a more detailed analysis of the situation

is required. (See Rivest [14] for the uniform binary case.)

1* Hash functions induced by such partitions were first introduced by Rothnie
and Lozano [15], where they are referred to as 'multiple key hash functions.'
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5. Ease of Addressing

In considering the problem of finding optimal hash functions we have

so far chosen to ignore problems of addressing, or the process of computing

a desired hash function on the one hand, and of finding the storage locations

of pages that need to be accessed to answer a query, on the other hand.

This process, of course, may in itself require the storage and retrieval

of parameter values used in address calculation, which will have to be

accounted for in any overall evaluation of the efficiency of a hashing

scheme.

We claim, however, that the simple rectangular hash functions derived

above, lend themselves to easy addressing, with relatively small expendi

tures of storage and time, as compared with memory and time requirements

for the storage and retrieval of the actual data.

For a justification of this claim we refer the reader to Rothnie

and Lozano [15]. Briefly stated, a rectangular (multiple key) hash function

on an n-dimensional attribute-value space can be thought of as a composition

of n simple hash functions, one for each attribute. The mechanism for

computing any one of these hash functions would then be identical to that

used in address calculation for retrieval via a single (primary) key, about

which a great deal is known. One may for example use a simple, possibly

randomizing, function of an attribute (see Knuth [11] Section 6.4, Hashing),

or an order-preserving function df an attribute, whose computation can be

aided by a tree structure (see Knuth [11] Section 6.2.4 Multiway Trees,

and Held and Stonebraker [8] Section 9, Generalized Directories).

6. Example

We illustrate the process of finding near optimal hash functions as

described above, by the following example in 3 dimensions. Let us consider
-36-



the simplified DMV file in which there is a record for each registered

automobile in California, and each record has the form,

V.X, »x« ,x~j

where

x- £ F = {family names}

x„ £ C = {cities in California}

x_ <= M = {auto manufacturers}, and x-., x«, and x«,

independently of one another.

A record may, of course, contain other pertinent information about

a registered automobile. We shall assume however, that such information

is not used for record selection, so that its exclusion does not alter

the analysis.

There are 8 basic query types associated with this file, corresponding

to the 8 subsets of the set of attributes {1,2,3}. We represent these

query types mnemonically by,

6 , 1, 2, 3, 12, 13, 23, and 123.

(The query type 8 contains a single query asking for all the records in

the file, while a query of type 12 say, may be, retrieve all records for

which,

last name = Smith and city of residence = Berkeley.)

Suppose by monitoring incoming queries for a period of time, we

determine the following query probabilities:
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a6 = °' wl " 10°/142 w2 = 1/142 af3 - 10/142

uj12 =10/142, a»13 =1/142, u,23 =10/142, Wl23 =10/142.

Suppose further that the volume of data at hand requires 1000 pages

for its storage. In that case,

3
1. From (13) to find optimal parts of R we need to minimize,

100 sx + s2 + 10 s3 + 10 8^2 + s1s3 + 10 s2s3 + 10 s^s^ (16)

such that sis2s3 = ^L/1000'

The last term 10 s-s^s- is a constant (- 0.01) and does not enter into

the minimization. Hence corresponding to the local optimality conditions

(12) we have:

& & i(
100 + 10 s2 + s = \i/s1

1+ 10 s* + 10 s* = u/s*

10 + s± + 10 s2 = y/s3

SjS^ = 1/1000

3
Solving these, we find the dimensions of an optimal part of R to be:

s* z 0.0146

s* = 0.775

s* s 0.0887
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3
Notice that such an optimal rectangle in R can fit within the unit n-cube,

This means that the minimum average number of times a page, corresponding

to a part of the key space, FxCxM, of probability 1/1000, is accessed to

answer a query is,

1/142 (100 s +s +10 s* +10s* s2 +ss +10s*s +0.01) =0.0277.

Hence the lower bound (5) implies that the average page access is bounded

below by

1000 x 0.0277 =27.7 pages/query.

* * *

2. As expected s , s?, s. are not integral divisors of 1 and hence

the unit cube cannot be partitioned into 1000 optimal pages. However

taking,

s±= ij =0.011

s2=|= 1.0

S3 = IT = °'091

we obtain slightly smaller parts of size 0.000999, but of approximately

the same shape, 1001 of which will exactly partition the unit cube. This

roundoff process requires 1 extra page, or 0.1% more storage space. Also

the average page access for this rectangular partition is
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1001(100 s1 + s2 + 10 s3 + 10 s^ +s^ + 10 s2s3 + 0.01)/142

i

=28.5 pages/query, or 2.9% more than the derived lower bound,

27.7 pages/query.

3. Thus in order to find an approximately optimal partition of the

original attribute-value space, FxCxM, we first divide the last name field

into 91 intervals of equal probability, F_, F-,..., Fg-. (Each interval

F, , will contain the last names of owners of 1/91, or 1.1%, of automobiles

in California.) We then divide the make of car field into 11 intervals

M-,..., M11, of equal probability.

The rectangles

F1xCxM„ 1 < k < 91
k I — —

1 < I < 11

then form a near optimal partition of the key space FxCxM, and the corres

ponding hash function achieves approximately minimal average retreival

time.
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