

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

TV STORAGE STRUCTURES FOR RELATIONAL DATA BASE MANAGEMENT SYSTEMS
»•'

+••.' '

by

Gerald David Held

Memorandum No. ERL-M533

11 August 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

4&

i

11

Storage Structures for Relational Data Base Management Systems

Ph.D. Gerald David Held EECS

Signature __
Chairman of Committee

ABSTRACT

Storage structures are examined which allow efficient access to

information in a relational data base management system. The

major areas investigated are: 1) storage structures for data

relations, 2) storage structures for auxiliary information to

speed access to data, and 3) a strategy for selecting structures

based on query statistics.

First, a large class of possible storage structures for data

relations is examined. A generalized directory structure is

defined and is shown to provide better performance than either

normal directories or simple order preserving functions. An

algorithm for constructing generalized directories is described

with complexity which is linear in file size and results of ex

periments using the algorithm are given. Tradeoffs between

dynamic directories (i.e. continuously reorganizing) and static

\ directories (i.e. periodically reorganizing) are discussed.

Static directories are shown to be preferable on the basis of

secondary index, concurrency, and directory size considerations.

Next, several types of auxiliary storage structures are con

sidered. Secondary indices on functions of attributes are intro

duced and a method for reusing aggregation information is

Ill

presented. Finally, a general strategy for making storage struc

ture choices is presented. The query model previously used for

*l key selection is extended to provide more accurate choice of key
i

domains. The strategy selects data relation storage structures,
#

primary key domains and auxiliary structures.

IV

ACKNOWLEDGMENTS

It is my pleasure to acknowledge the many contributions and con

tinual encouragement that I have received from Professor Stone-

braker. I am also grateful to Professor Wong for his suggestions

and counseling and to Professor Maron for reading the manuscript.

In addition, thanks are due to my fellow students on the INGRES

project who are making relational data base systems a reality.

This work would not have been undertaken if it were not for the

support I have received from my friends at RCA in obtaining the

David Sarnoff Fellowship.

Finally I would like to thank Constance, Jennifer, and Jessica,

for their encouragement and understanding.

Partial research sponsored by the U.S. Army Research Office

Durham Grant DAHC04-74-G0087 and the National Science Foundation

Grant DCR75-03839.

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

CHAPTER 1 Introduction 1

1.1 Evolution of Data Base Management 1

1.2 Data Model 2

1♦3 Query Language 4

1.4 Implementation Issues 4

1.5 Overview of the Dissertation 6

CHAPTER 2 Storage Structure Considerations 8

2.1 Storage Structure Model 8

2.2 Cost of Key to Address Computation 13

2.3 Address Space Partition 13

2.4 Order Preservation 14

CHAPTER 3 Key to Address Functions 16

3.1 Randomizing Functions 16

3.2 Simple Order Preserving Functions 18

3.3 Directory Structures 20

3.4 Generalized Directories 21

3.5 Static vs Dynamic Directories 34

3.6 A Set of Storage Structures for Relations 47

CHAPTER 4 Auxiliary Structures 49

VI

4.1 Secondary Indices on Attributes 49

4.2 Secondary Indices on Functions of Attributes 52

4.3 Predicates on a Single Relation 55

4.4 Predicates on Multiple Relations 56

4.5 Aggregation 59

4.6 A Set of Auxiliary Information Structures 60

CHAPTER 5 Storage Structure Selection Strategy 61

5.1 Dynamic and Periodic Decisions 62

5.2 The Key Selection Problem 64

5.3 An Improved Model for Key Selection 67

5.4 Obtaining Parameters 71

5.5 Extensions to the Selection Process 74

5.6 Cost of an Optimal Solution 80

5.7 Performance Monitoring 85

CHAPTER 6 Conclusions and Future Research 87

6.1 Storage Structures for Data Relations 87

6.2 Auxiliary Structures 89

6.3 Storage Structure Selection Strategy 89

APPENDIX A QUEL 92

APPENDIX B Decomposition 97

APPENDIX C Access Methods 100

References 104

Related Bibliography 112

CHAPTER 1

Introduction

1.1 Evolution of Data Base Management

Data base management systems are currently undergoing an evolu

tion similar to that which programming languages and operating

systems have previously gone through. This evolution consists of

understanding the basic issues in the field, analyzing tradeoffs

of different solutions and designing general algorithms to solve

the problems. Each evolution has begun with individual, ad hoc

solutions to problems in a way specific to the problem at hand.

As similarities between many problems are discovered, more basic

and general algorithms are devised. As the performance of the

general algorithms is improved and approaches that of the specif

ic solutions, the general techniques are more frequently applied.

This evolution toward more general tools for problem solving

allows for easier and less complicated solutions at an occasional

cost of computer time. The evolution of data base management

systems has progressed to the point where systems exist (such as

[C0DA71a]) to aid in data definition and low level procedure

writing. However the processing of user queries into operations

on the data base is still an ad hoc procedure specific to the

problem at hand. Recently, several systems have been proposed

for specifying general queries at a high level. These systems

propose to provide general procedures for processing the queries.

It is the purpose of this dissertation to examine some of the

issues involved in making such general data base management sys

tems approach the efficiency of problem specific solutions.

1.2 Data Model

Of the many possible data models, the three most widely con

sidered for use in data base management systems are the network

model [C0DA71a], the hierarchic model [IBM70], and the relational

model [C0DD70]. There has been considerable debate as to which

of these models should be used [CODD74, DATE74, WHIT74, BACH74,

SIBL74, LUCK74, STON75]. We have chosen the relational model for

three reasons. First, a major argument against the relational

model has been that it could not be implemented efficiently. It

is our desire to investigate this charge by examining one of the

major implementation problems of such a system. Second, this

model offers a simple and uniform view of data to the user. And

third, the relational model makes a clear separation between the

user's data model and the underlying storage structures thus mak

ing automatic storage structure selection feasible. It is impor

tant to note that this work can, for the most part, be applied to

a data base system which uses a network or hierarchic data model

as long as there is a clear separation between the user's data

model and the actual storage structures which implement that

model.

Formally we define the relational model as follows. Given sets

D1,...,DN (not necessarily distinct) aRELATION R(D1,...,DN> is

a subset of the Cartesian product D..x...xD^. In other words, R

is a collection of N-tuples X = (X1,...,XN) where X± is an ele

ment of D. for i in {1,... ,N}. The sets D^...,^ are called

DOMAINS of R and R has DEGREE N. The only restriction put on

relations is that they be normalized. Hence, every domain must

be SIMPLE, i.e. it cannot have members which are themselves rela

tions.

Clearly, R can be thought of as a table with elements of R ap

pearing as rows and with columns labeled by domain names as il-

employee relation

ituple iname Idept Isalary{manager {birth {start !

,' 11 Adams jcandy | 12000!Baker ! 1939! 1965!
! 2|Baker !admin ! 20000jHarding ! 19271 1955!
i 3!Harding Iadmin ! 310001 none { 1917! 1949!
! 4'Johnson itoy ! 14000!Harding ! 1946! 1966!

i 51 Jones itoy ! 14000!Johnson ! 1943! 1968!
J 6!Smith itoy ! 10000!Jones ! 1950! 1970!

Figure 1.1 A Sample Relation

lustrated in figure 1.1. The figure indicates an EMPLOYEE rela

tion with domains NAME, DEPT, SALARY, MANAGER, BIRTH year, and

START year. Each employee has a manager (except for Harding who

is presumably the company president), a salary, a birth year, a

start year, and is in a department.

Each column in a tabular representation for Rcan be thought of

as a function mapping R into D.. These functions will be called

ATTRIBUTES. An attribute will not be separately designated but

will be identified by the domain defining it. For a more de

tailed discussion of the relational model see [C0DD70, C0DD71b,
C0DD72a].

1.3 Query Language

Although the work described here is, for the most part, applica

ble to any relational data base system, it is convenient to con

sider questions which arise in the discussion in terms of a

specific system and query language. The system chosen is INGRES

[HELD75a] and its query language, QUEL, which have been developed

at the University of California, Berkeley. At this point, the

reader who is unfamiliar with QUEL is advised to refer to Appen

dix A where a short description of QUEL is given along with a few

examples.

1.4 Implementation Issues

The construction of a high level data base management system

involves several building blocks. Figure 1.2 indicates the

pieces which are used in INGRES and are typical for such a sys

tem. These pieces are now briefly described in the order that a

query is processed. First is the query formulation box which

*\

Query Formulation
i
i

V

Parser
i

V

Query Modification
i

V

Decomposition
i
i

V

One Variable Query Processor
i

V

Access Method Interface

Figure 1.2 INGRES Implementation

provides a method of posing queries. This function may take the

form of an interactive text editor, a graphics interface

[MCD075], an interactive English-like language [CODD74a] , or it

may be a part of a host programming language. The next part of

the system is a parser which recognizes correct queries and con

verts them to a more convenient form for further processing. The

following processing step is query modification. Here high level

protection and integrity constraints are added [STON74,STON74d]

and queries on virtual relations [CHAM75] are changed to queries

on real relations. At this point the actual data retrieval or

update request is understood and processing of the request be

gins. Several approaches have been suggested for breaking down

the, possibly very complex, query and arriving at the required

answer [MCD074, ASTR74, SMIT75, PECH75]. The approach taken in

INGRES is called decomposition [W0NG75] and is described briefly

in Appendix B. In this approach, queries are broken down into

successively simpler queries until a point is reached where a

query involves only asingle relation. At this point, an access

processor actually retrieves tuples from the relation, tests to

see if they meet the qualification, and displays the results or

makes the requested updates. To access and update the relation,
the access monitor makes use of aset of access methods (see
Appendix C) which provide arelational view of data and support a
variety of actual storage structures. It appears that the two

major areas in the above description which have the most effect

on the efficiency of the data base system are decomposition and

choice of storage structures. The research described here deals
with the second of these major problems.

1.5 Overview of the Dissertation

The main goal of this research is to explore the ways in which

storage structures for data can be chosen wisely in order to pro
vide arelational view of data to the user while providing fast

access and update capabilities to the relational data base

management system. To this end, we have divided the problem into

the following the parts: 1) Choosing aset of storage structures

for data relations, 2) Choosing a set of auxiliary information

structures, and 3) Defining a strategy for making storage struc

ture decisions. The dissertation is organized as. follows.

Chapters 2 and 3 are concerned with choosing agood set of

storage structures to implement data relations. Chapter 2 in-

troduces the terminology and storage model used in the rest of

the dissertation and examines several issues in determining the

usefulness of storage structures. Chapter 3 considers several

classes of storage structures and indicates the usefulness of

each. Generalized directories are introduces and are shown to

provide better performance than either normal directories or sim

ple order preserving functions. An algorithm for constructing

generalized directories is described and results of experimental

use of the algorithm are presented. Static directories are shown

to be preferred to dynamic directories on the basis of secondary

index, concurrency, and directory size considerations. Chapter 4

considers what redundant information might usefully be stored to

speed access to data. This redundant data includes secondary

indices (inversions) and other information which is used in pro

cessing a query. Secondary indices on functions of attributes

are introduced and a method is presented for reusing aggregation

information. Chapter 5 presents a general strategy for choosing

storage structures including which domains should be primary keys

and which domains (if any) should be secondary keys. The stra

tegy presented builds on previous work in the area of secondary

index selection. The query model previously used is modified to

provide better choice of secondary keys and is then extended to

handle primary key selection, and primary structure choice. Also

in this chapter, a method is described for obtaining the parame

ters needed for the selection process. Chapter 6 discusses con

clusions and directions for future research.

CHAPTER 2

Storage Structure Considerations

We will now describe a model for secondary storage and define the

terminology used throughout the dissertation. The remainder of

this chapter will examine several considerations which are impor

tant in choosing a storage structure. These considerations will

form the basis of our investigation of a useful set of storage

structures in the next chapter. The discussion in this and the

next chapter will be concerned with structures for primary data

storage whereas issues involved with auxiliary data storage (i.e.

secondary indices) will be considered in chapter 4.

2.1 Storage Structure Model

In data base management systems, the stored data is of such large

volume and of such long lifetime that it is only economical to

store the data on low cost storage devices. We refer to these

devices as "secondary storage" as opposed to the faster "main

storage" which is used primarily as a temporary storage area dur

ing actual data processing. Depending on the actual hardware

involved in a system, certain types of devices may be classified

as main or secondary. We will not attempt to classify devices

into one category or the other except to say that at the time of

this writing, main storage typically consists of devices like

*9

O '

fast registers, cache memories, monolithic memories, and core

memories. Secondary storage normally includes disks, drums, and

magnetic tapes. As technology changes, different devices will be

included in each category, however, as technology improves, there

will probably always be a significant difference in cost, size,

and performance between some set of main storage devices and a

different set of secondary storage devices. By the nature of the

data in a data base system, it will almost always reside on

secondary storage with portions of it being transferred to main

storage for processing. We refer to the basic quantity of data

transferred between main and secondary storage as a "page". A

major assumption throughout this work is that the transfer of

pages between main and secondary memory is costly and that by the

nature of data base processing, this page transfer time will be

the dominant cost with actual computation time being small in

comparison. It is therefore the goal in data base storage struc

ture selection to choose methods of storing data on secondary

memory that will tend to minimize the number of page transfers

which occur. This remains a valid goal as long as there contin

ues to be orders of magnitude difference in speed between main

and secondary memory and as long as data base processing contin

ues to involve a high ratio of data search to cmputation.

There are many ways to classify all of the possible data struc

tures which might be used to store relations on secondary memory.

We first divide all storage structures into two classes, keyed

structures and non-keyed structures. A keyed structure is one in

10

which a domain (or combination of domains) of a tuple is used to

determine where in secondary storage the tuple should be stored.

This domain is called the "primary storage structure key", "pri

mary key", or simply, the "key". For instance in the EMPLOYEE

relation, NAME might be the key domain. In such structures, when

a value of the key domain is specified (i.e. NAME = "Jones"), the

tuple(s) having the specified value can be located directly

without a full scan of the relation. On the other hand, a non-

keyed structure is one in which the tuples are stored using some

criteria which is independent of the value of the tuple. Exam

ples of non-keyed structures are stacks, queues, and unordered

tables.

Non-keyed structures do not provide any ability to limit the

number of tuples examined when specific values of one or more

domains are supplied. As a result of this characteristic, non-

keyed structures are only of interest for special purpose func

tions in a relational data base system. Such special purposes

may include moving data back and forth between the data manage

ment system and other programs, storing temporary or intermediate

relations, and other situations which will require full passes

over the relation. We will therefore confine our investigation

to storage structures which store tuples as a function of one or

more key domains.

To begin the discussion of keyed structures, we define several

terms which will be used in the remainder of the paper.

'•*.•

11

K key space - a set of possible values for the key domain.

The key domain (or primary key) is the domain of the rela

tion which is used in determining the storage location for

tuples in the relation. Several domains may combined to

form a single key. However for this discussion we will as

sume only one domain is used. The key space will be taken

to be the interval (a,b) of the real line since other data

encodings may be transformed to this set.

F key distribution - a usually unknown probability distribu

tion function which describes how the keys are distributed

over the range (a,b).

N the number of tuples in the relation

{KV...,KN} the Nkeys, K^K, present in the relation. This is

a sample from F. To simplify notation, we will assume the

sample has been ordered so that K^ <. Ki+1 for all i.

A address space - a set of integers {1,2,...,P}, each member

of the set representing a secondary storage location (page)

capable of storing one or more tuples. These P pages are

referred to as the "primary pages". When a primary page

becomes full, one or more "overflow pages" are linked to it.

P the number of primary pages

C tuple capacity of a page - the number of tuples that can be

accommodated on a single page of secondary storage, (page

12

size divided by tuple size)

C' key capacity of a page - the number of keys that can be
»

accommodated on a single page of secondary storage, (page

size divided by key domain size)

H key to address function - a mapping from key values to ad

dresses H:K->A.

S parameter set - a set of parameters which are used in the

key to address transformation, H.

OCF occupancy factor - a measure of secondary storage space

usage. It is defined as the total secondary storage space

used (primary plus overflow pages) divided by minimum possi

ble space (the minimum space is N/C).

ACF access factor - average number of data page accesses to

reach a tuple. This includes the primary data page access

and all overflow page accesses but does not include any

accesses required by the key to address transformation.

Figure 2.1 shows a small set of sample keys with some of the

above parameters specified. This sample set of keys will be used t-

in chapter 3 to illustrate each of the types of key to address

functions considered. The differences between types of keyed

structures lie in the definition of the key to address function,

H. The remainder of this chapter discusses desirable conditions

for the function to meet.

I

Key Space 0 < K < 100

Address Space 0 < A < 10

P = 10

C = 2

N = 20

{K^...,^} = {1,3,4,7,9,11,12,15,16,19,

23,34,38,47,55,62,70,83,90,98}

Figure 2.1 A Sample Set of Data

13

2.2 Cost of Key to Address Computation

The first condition essentially states that the key to address

computation should not be so complex (in terms of number of

parameters) that it requires secondary memory accesses to fetch

parameters during address computation.

Condition ±.

The function should not introduce additional secondary

storage accesses in order to compute an address.

2.3 Address Space Partition

Condition 2 requires that pages in secondary storage are used in

a uniform manner so that overflow areas are not heavily used.

Overflow areas are necessary when more than C tuples are mapped

to a single address. To access tuples on an overflow page,

14

first the primary page (the one determined by H) must be accessed

and then the overflow page(s) is accessed. The added accesses

necessary to retrieve tuples on overflow pages increases ACF.

Condition 2.

The function should map the given sample of the key space

uniformly across the address space.

2.4 Order Preservation

Up to this point, we have implied that when a key value is speci

fied, it appears in the qualification of the query in the form

KEY = VALUE. Queries may, however, involve ranges on domain

values. For example

RETRIEVE (Target-list) WHERE E.SALARY < 10000

Certain key to address functions have the property that there is

no correspondence between the order of the keys and the order of

the addresses to which they are assigned. These functions are of

little value in selecting tuples from a range of key values. For

this reason, a third condition often must be imposed on the key

to address function.

Condition 3.

The function should be an order preserving function (i.e. if

K1 < K2 then H(K.,) < H(K2)).

This condition is important whenever it is expected that queries

15

will involve qualifications which specify a range on the primary

key. In such cases it is important to limit the number of tuples

scanned to those in the specified range.

A key to address function which satisfied these three conditions

would provide efficient data access for the queries in a rela

tional query language.

16

CHAPTER 3

Key to Address Functions

We know of no storage structure that satisfies all three condi

tions specified in chapter 2 independent of the data stored. In

this chapter, several possible structures will be examined which

meet some of the conditions. First, randomizing functions will

be treated. This type of structure is useful when order preser

vation (condition 3) is not important. Next we will discuss sim

ple order preserving functions (which usually satisfy conditions

1 and 3 but not 2). Then we consider directory structures (which

usually obey conditions 2 and 3 but not 1). Next we discuss gen

eralized directories (which offer a continuum of possibilities

.between the previous two types). Finally we will look at the

tradeoffs between two types of directories, dynamic and static.

3«1 Randomizing Functions

A class of functions which usually meets the first two of these

conditions is known as randomizing or hash functions. Here, H is

chosen so as to spread the keys randomly across the address

space. Figure 3-1 shows our example data from chapter 2 with one

possible randomizing function. Randomizing functions have been

investigated extensively [MORR68, LUM71a, LUM73, DEUT75] and most

of these functions have a very small number of parameters. These

Page Keys Assigned to Page

0 ! 70 90 !

1 1 11

2

3

12 62

3 23 83

4

5

6

4 34

15 55

16

7 7 47

8 ! 38 98

9 ' 9 19

17

H(k) = k mod 10

Figure 3.1 Randomizing Function

functions have the advantage that they meet both conditions 1 and

2 for a large class of key distribution, F. An excellent compi

lation of various randomizing functions is given in [LUM71a]. A

tutorial on randomizing functions, including a good set of addi

tional references, is found in [MAUR75].

Randomizing functions provide an excellent response to the needs

of queries involving equality on the key domain. For a given key

value, the function H will return the address which contains all

tuples possessing that key value. For example, if the EMPLOYEE

relation were randomized with SALARY as the key domain, then the

18

query

RETRIEVE (Target-list) WHERE E.SALARY = 10000

would only require an average of ACF accesses to find all quali

fying tuples. For the above reasons, we will include randomizing

functions in the set of basic storage structures to be used to

support data relations. They will be used to implement relations

which are accessed on equality of the key domain.

3.2 Simple Order Preserving Functions

This class of functions requires only minimal parameters as in

the case of randomizing functions, yet also preserves order in

the address space. An example from this class of functions is to

take the j leftmost bits of the key as the address [RIVE74], The

value of j is chosen in order to give an address space of 2^

values. Another simple, order preserving function is one which

divides the key range (a,b) into equal size buckets and assigns

one of the P address values to each bucket. Here H is defined as

H(k) = |P(k-a)/(b-a)J

where [_xj denotes the least integer greater than x. This func

tion on the example data is shown in Figure 3.2. Note how the

uneven distribution in key space is directly reflected in the

poor partition of the address space.

The advantage of these functions is that they satisfy condition 1

and thus do not introduce any significant overhead in computation

Page Keys Assigned to Page

0 1 3 4 7 9

1 11 12 15 16 19

2 23

3 34 38

4 47

55

62

5

6

7 70

8 83

9 90 98

H(k) = |_k/10j

Figure 3-2 Simple Order Preserving Function

19

of addresses. The problem with all functions of this type is

that the distribution in address space is directly dependent on

the distribution in key space. So unless there is uniformity in

the sample key values, there will be bunching in address space

which implies many overflows and/or much wasted primary space.

Note that for a highly skewed distribution, a simple order

preserving function may assign almost al\ keys to the same ad

dress causing ACF to approach N (i.e. access time can be linear

in N). Therefore we conclude that simple order preserving func

tions should be used only when it can be determined that "reason

able" uniformity exists in the key space.

20

3.3 Directory Structures

A normal directory structure is a function which is constructed

such that each.page contains the same number of tuples and there

are initially no overflow pages used. One such function is

S = {Li jLi = Kcn, i=1,N/C}

with

H(k) = i for L, < k < L. - .
i — 1+1

Here, the parameters of the function are the low key values on

each page of secondary storage. Figure 3-3 shows the sample data

using the above directory function. This function satisfies con

dition 2, however it has N/C parameters which means that for

non-trivial values of N, the parameters must be stored in secon

dary memory (violating condition 1). For large values of N, the

parameters themselves need to be located via a key to address

function, thus creating the common multilevel directory structure

(i.e. ISAM [IBM66]). Each level of the directory adds an addi

tional access to the cost of computing a tuple address. The aver

age access time for a tuple is then the directory access time

plus the single data page access (here ACF is 1)

L0Gc. N/C + 1

Despite the cost of directory accesses, this structure is

currently widely used when ordering is required. One reason for

this choice is that for directories the worst case access time is

logarithmic (to a large base) in N whereas simple order preserv-

Page Keys Assigned to Page

0 1 3

1 4 7

2 9 11

3 12 15

4 16 19

5 23 34

6 38 47

7 55 62

8 70 83

9 ! 90 98

H(k) = 0 for 0 < k < 4
1 for 4 < k < 9
2 for 9 < k < 12

9 for 90 i k < 100

Figure 3.3 A Directory

ing functions may be linear in N.

3.4 Generalized Directories

21

We now combine the two previous ideas into a structure which

meets conditions 2 and 3 and has fewer parameters than normal

directories. The parameters of a "generalized directory", H, are

an ordered set of pairs:

22

S={(L.,A.) |L.<K, A.<A, L.<Li+l,A.<Ai+1, i=1,M}

The key to address mapping, H, is:

H(k) =A. + L(A.+1 -A.)(k -Li)/(Li+1 -L.)J
for L. <k<L.+1

This type of function divides the key space into M intervals

which may be of varying sizes and assigns to the ith interval

Ai+1 " Ai P^es of secondary storage. Within an interval a sim

ple order preserving function is used to divide the key range

equally into the pages assigned to that region. Functions of

this nature have been investigated by [FEHR75] and [WHIT75].

Figure 3.4 indicates one generalized directory for the sample
data.

A "data independent directory" is one in which the choice of H is

made without any knowledge of the distribution of keys within the

interval (a,b). An example of such a directory is the simple

order preserving function described above where

M = 2

(L1,A1) = (a,1)

(L2,A2) = (b,P)

A "data dependent directory" is one in which the sample

{K^...,^} from the unknown distribution, F, of keys and is used

during construction of H. One example of a data dependent direc

tory is the normal directory discussed above where the L. are

Page I Keys Assigned to Page

o ! 1 3 !

1 4 7 !

2 9 11

3

4

5

12 15

16 19

. 23 34

6 . 38 47

7 ! 55 62

8 ! 70 83

9 ! 90 98

H(k) = l_k/4J for 0 < k < 20
5 + |_(k-20)/l6J for 20 < k < 100

Figure 3.4 Generalized Directory

23

chosen to be the low keys on each secondary storage page.

S={(L^A.) !Li =K±#c, Ai =Ai-1+1, i=1,N/C}

We define a best general directory to be one which satisfies the

following optimization problem.

given a collection {K..,...,KN} of keys

choose H (as defined above)

with minimum average access time

L0GC' M + ACF

24

subject to the constraint that the total storage space is

less than some factor, f^ greater than the minimum possible

storage requirement (N/C pages)

i.e. OCF < f.
1

The solution to this problem will provide a directory which has

the best average access time for the given limitation on total

storage space. This optimization attempts to minimize the size,

M, of the directory while keeping the overflows to a minimum and

remaining within the storage constraints.

Usually the performance of the two limiting cases of generalized

directories, simple order preserving functions and pure direc

tories, will not be optimal. In the case of data independent

directories, the directory may not be a close approximation of

the actual distribution, F, or the initial sample {K„,... x,}.
1 7 N

Therefore, H may map more than C tuples to many addresses requir

ing the use of excessive overflow pages. On the other hand, nor

mal directories provide an even distribution of keys over address

space, however; they require a large number of entries in the

directory. Thus average access time in the normal directory may

be larger than necessary because of the need to make several

accesses to compute the address.

An optimal solution to the above problem would require a prohibi

tive amount of computation due to the number of degrees of free

dom. There are many approaches which could be taken in attempt

ing to solve a simpler problem that approximates the one stated

25

above. We have chosen to look for an approach which can be im

plemented by an algorithm which only requires a single pass over

the data relation. We therefore redefine the problem as that of

finding a minimum directory size (minimum M) for fixed limits on

the access factor (ACF) and the occupancy factor (OCF). In this

way the inclusion of C' as a parameter is avoided. Even a best

solution to this problem would require many passes over the data

file (sample keys), so we now outline an algorithm which provides

a solution to the second problem with a single pass over the

data. Hopefully, this is a good approximation to the first op

timization problem.

In the following description, we will refer to the "step width"

of the directory function. By this we mean the size of the inter

val in key space which is mapped to a single value (page) in

address space for a given interval of the function (i.e. for the

interval from L. to L. 1 the step width is (L. 1 - L.)/(A. 1-

A.)).

The algorithm scans the data keys once from lowest key value to

highest. At the beginning of the scan, several guesses are made

at the step width of the function. As data keys are read, the

performance of each of the guesses is measured by computing the

access factor and the occupancy factor which would result if that

guess were used. When a point is reached in reading data keys

where none of the guesses continues to meet the fixed limits, f-

and f«, on occupancy and access factors,

26

OCF < f1 and ACF < f

then the point just before the last guess fails is taken as the

next entry in the directory. This guess is taken as the step

width between the previous entry and the new one. A new set of

guesses is then made and the algorithm repeats as above until the

last data key is read.

Some comments on the guesses:

1. As a result of the large difference between I/O speeds and

computation speeds there should be enough CPU time available

during a scan of the relation to allow a sizable number of

guesses (NGUESS) to be made and tested.

2. If the first key to be scanned in the new interval is K.,

then one of the guesses is chosen to be K. r-K. (i.e. a
1+L» 1

step width for which the first page is exactly filled). In

the worst case, this guess will be chosen and will meet the

constraints for one page of data keys, resulting in a normal

directory structure.

3. By choosing the guesses to be (Ki+c#2^ " Ki)/2J for
j=0,NGUESS-1 we choose points logarithmically distant from

the current point and thus get approximations to the slope

of the function of both a local and global nature.

The following point should also be carefully noted.

As extra space is made available to the algorithm (by in

creasing the limit on OCF), the algorithm produces a smaller

and smaller directory. This is the opposite of what hap-

27

pens in a normal directory which increases in size as extra

data space is provided. (Recall that in a normal directory

> there is one parameter for each data page. So, if addition

al data pages are allocated, the directory will grow in

size.)

Some Experimental Results

The following several figures illustrate the performance of the

algorithm in a series of experiments. Each graph shows the size

of the directory produced by the algorithm against varying occu

pancy factors. In each case, the size of the directory is given

as a percent of the minimum possible normal directory size. The

occupancy factor is shown as a percentage of additional storage

space beyond the minimum possible space for the relation under

consideration (i.e. 100(0CF-1)).

The first experiment compares the performance of the algorithm on

two data relations, one uniformly distributed and the other non-

uniformly distributed. The first relation contains 10,000 8-

digit numbers in the range 0 to 99,999,999 which were produced by

a random number generator. The second relation contains 7,100

I'l names of property owners in Alameda County, California. The dis

tribution of numbers is very nearly uniform while the distribu-

tion of names, as would be expected, is quite non-uniform. Fig

ure 3*5 shows results for these two relations for ACF close to 1

(no additional access cost) and also for the name data ACF=1.6.

For the nearly uniform number data, an order of magnitude reduc-

100+

604-
percent
of

minimum 50+
normal

directory
size 40

v - NAMES ACF=1.05
x - NAMES ACF=1.6

O - NUMBERS ACFr1.05

28

0 10 20 30 40 50 60 70 80 90 100

percent additional space : 100(OCF-1)

Figure 3.5 Uniform and Non-uniform Data

tion in directory size is achieved at a cost of approximately 22

percent in additional data space and two order of magnitudes

reduction in directory size is achieved with about 38 percent

added storage. For the same limit on access factor, the reduc

tion in directory size for the non-uniform data is not nearly as

great. When ACF is relaxed to 1.6 a two thirds reduction in

directory size is realized at a cost of 20 percent in storage

, 1

29

space. For the key size and page size under consideration, if

this reduction saves one directory level, then the net savings in

access time is 1 - 0.6 = 0.4 accesses per directory search.

The next experiment tests the consistency of the algorithm's per

formance on two similar sets of data. One set of data is the

7,100 names used previously. The other set of data is 4,760

names of property owners in San Mateo County, California. Figure

3.6 shows that the results of the algorithm are approximately the

same for both sets of names.

All of the above experiments were run using NGUESS=10. Figure

3.7 shows the Alameda County name data re-run with 5, 10, and 20

guesses. Although 5 guesses showed somewhat worse performance

than 10 guesses, increasing the number of guesses beyond 10 pro

vides almost no improvement in the algorithm's performance. This

experiment verified that a small number of guesses (which add

little to the running time of the algorithm) provide results

which are as good as those achieved with a large number of

60+

percent
of

minimum 50+

normal

directory
size

0+~

10 20 30

v - NAMES ACF=1.05
x - NAMES ACF=1.6

40 50 60
—+-

70 80

-H +

90 100

30

percent additional space : 100(OCF-1)

Figure 3.6 Consistency

guesses (which may add substantially to the running time).

The next results indicate the effect of different data page capa

cities on the algorithm. Again the Alameda County names are used

with ACF=1.6. In all of the previous experiments, the page capa

city (number of tuples on a data page) was set at 10. Here we

use values of 5, 10, 50, and 100 for the page capacity. As seen

percent
of

minimum 50+

normal

directory
size 40+

30+

20+

10+

v - 5 GUESSES
o - 10 GUESSES

x - 20 GUESSES

31

Oh H -J H H H H H H H +

0 10 20 30 40 50 60 70 80 90 100

percent additional space : 100(OCF-1)

Figure 3.7 Number of Guesses

in Figure 3.8, with a large page capacity (50 or 100 tuples) and

with 30 percent or more extra space, the algorithm performed sub

stantially better than for the smaller page capacities. One pos

sible explanation is that by sampling every 50 or 100 data

points, the function which is being approximated is a smoother

function.

60
percent
of

minimum 50+
normal

directory
size 40+

o - PAGE CAPACITY = 5
x - PAGE CAPACITY = 10
v - PAGE CAPACITY = 50 or 100

32

percent additional space : 100(OCF-1)

Figure 3.8 Page Capacity

Finally, in figure 3.9, we re-plot the original Alameda Cbunty

data but instead of using percent of minimum directory size, we

use percent of normal directory size for each value of additional

space. Thus a normal directory would require 50 percent more

parameters than the minimum normal directory if 50 percent added

free data space were desired. This graph indicates the improve

ment which would be gained by using a generalized directory over

33

a normal directory for different occupancy factors. This graph

is very important for two reasons. First, in almost any applica

tion where updates are occurring, a normal directory would be

built with a certain percentage of free space. Secondly, the

algorithm described for generating generalized directories works

well when supplied with some amount of free space at directory

creation time. These two facts support the contention that even

for non-uniform data, generalized directories are preferred over

normal directory structures.

The generalized directory provides a structure which complements

the randomizing function. We include it in the set of storage

structures used to implement relations and will use it whenever

queries involving ranges on the primary key are expected. Such a

structure will take advantage of whatever uniformity exists in

data sets and will never give worse performance than a normal

directory.

100+

60
percent
of

50+

normal

directory
size 40+

30

20+

10+

o - NAMES ACF =1.05
x - NAMES ACF = 1.6

0 10 20 30 40 50 60 70 80 '90 100

percent additional space : 100(OCF-1)

Figure 3.9 Additional Space

3.5 Static vs Dynamic Directories

34

In the above discussion we have only been concerned with the pro

cess of building key to address functions and using them for data

retrieval. We now consider the problem of choosing a structure

35

which will be useful in an environment which includes updates to

the relation (REPLACE, DELETE, and APPEND). We consider two dif

ferent approaches to the problem of maintaining directory struc

tures in this environment.

Dynamic Directory Structures

The B-tree [BAYE70] is one example of a class of storage struc

tures which we call a "dynamic directory" because it is dynami

cally reorganized during updates to provide a balanced search

tree (or directory) at all times.

Basically, a B-tree is a balanced tree with between k+1 and 2k+1

sons for any given node. The parameter k is determined by the

page size and data characteristics. An example of a B-tree for

k=1 is shown in figure 3.10. Here, space exists on each page for

two data tuples and three pointers. (In the figure we indicate

only the key portion of the tuple.) Note that the tuples are in

collating sequence if the tree is scanned in postorder. Note

also that the number of page accesses required to reference any

given tuple is logarithmic in the number of data tuples.

The major advantage of this structure is that the tree can be

kept balanced during insertions and deletions with a known (and

small) worst case update cost. Hence, a small worst case search

time is always guaranteed.

For example, the tuple with key ALL can be added to the tree with

only three page accesses and stored in the empty space on page A.

36

Figure 3.10 A B-Tree

However, because page B is full, insertion of a tuple with key

ELF would cause B to be split into two pages, and a tuple to be

moved to a higher level node. This in turn causes page C to

split as well; the resultant structure is the balanced tree shown

in figure 3.11. It is important to note the necessity here of

relocating tuples within the relation; such address modifications

will later be shown to be potentially troublesome.

There are several variations on the basic dynamic directory theme

which offer certain obvious advantages over B-trees [KNUT73,

KEEH74]. The original proposal placed entire tuples in directory

37

o!0!p!A!o!

Figure 3.11 The Updated B-Tree

pages. In fact, placing only keys in the directory increases k

and reduces the height of the tree. Hence, data pages can be

accessed with fewer retrievals from secondary storage. Also,

the minimum number of tuples per page can be increased beyond k+1

by employing an overflow strategy onto adjacent pages which

reduces the number of page splits. This idea underlies B*-trees

[KNUT73]. VSAM [KEEH74] is another variant of dynamic direc

tories. In the sequel we will be concerned solely with dynamic

directory structures having only keys in the directory levels.

38

Static Directory Structures

Storage structures for which index levels are not changed dynami

cally, such as ISAM [IBM66J, will be termed "static directories".

Figure 3.12 represents one such structure for the same data used

in figure 3.10. Four important features of static directories
should be noted:

1) The index levels are formed by recording the high key on
each data page.

2) Once formed, the index levels are NOT dynamically altered

(in contrast to a dynamic directory).

3) As aconsequence of (2), only one pointer per index page

is required. In our example, the three data pages pointed

to can be logically (or physically) contiguous. Because of

this pointer suppression, we have assumed three keys will

fit on a static directory page instead of the two in a

dynamic directory.

4) Additions to the structure of figure 3-12 are handled by

chaining into overflow areas. The addition of a tuple for

ALL would cause page A to split, and an overflow page to be

allocated and chained onto page A as shown in figure 3.13.

Note that existing tuples are not moved and that their ord

ering within a primary page and its overflow pages is not

guaranteed. If tuples must be kept in collating sequence,

however, they can easily be chained together. Garbage col-

>.

39

lection on deleted tuples is also easily accomplished,

though the mechanism is not discussed here.

'AlBjE,'

\
!A!A!
!D!P'

B!B|
A!Oio

'D!Y[
DjFjOj jAIOIOi

PjVTJIl !D!Y! j

!D!E!
.'oiG.'p

JGJGJ.

!G!H!M!
o!A!o!A!

/

Figure 3.12 A Static Structure

As a storage structure for a single isolated data file, dynamic

directories appear very useful, however, in a data base environ

ment we feel there are three important points to be considered

before adopting such a structure.

Points of Comparison Between Dynamic and Static Directories

1. Secondary Indices

If it becomes necessary to access a relation on some portion of a

!AiA! i
{D|P!«
•IDITI

40

1

/
I A I

'I I

'T I

Figure 3.13 A Portion of the Updated Static Structure

tuple that is not a directory key, a complete sequential scan of

the relation may be required. In our sample data base, for in

stance, to access all tuples with keys ending in Y would entail

just such a search. This problem is often alleviated, however,

by using secondary indices [STON74c].

In the case of secondary indices, an index relation is created

which contains pairs of attribute values and pointers to tuples

in the primary relation which have that value. Figure 3.14 gives

an example of a secondary index that might be used in conjunction

with the structure of figure 3-10; ->BAD indicates a pointer to

the tuple for BAD in the primary relation.

Independent of the storage structure chosen for the data rela

tion, there is always some amount of overhead in maintaining such

indices during updates to the primary relation. When the data

! B ->LAB j
! D ->BAD !
! D ->ADD !

! D ->MAD ,'
! D ->FAD ,'
! G ->HOG !
! G ->EGG !
! G ->DOG !

! P ->GAP !
! T ->APT j
! Y ->BOY !
.!. Y ->HAY !

41

Figure 3.14 An Inversion on the Last Letter of a Key

relation is updated, so, too must the indices be updated to re

flect newly added, deleted, or changed values of the inverted

attributes. If the data relation is a dynamic directory, howev

er, secondary updates may also be generated in the course of

dynamic reorganization. These additional updates occur whenever

a primary update causes data pages to split or merge (as in the

second insertion into the B-tree of figure 3.10). In such cases

tuples must be moved to new pages and be assigned new logical (or

physical) page addresses. Every tuple which is assigned a new

address then requires an update for each existing secondary in

dex. Such additional updates could be avoided if the secondary

index used the primary key of the data tuple instead of its ad

dress as a pointer. This approach, however, entails primary key

decoding through the directory for each access using a secondary

index.

2. Concurrency

42

The second problem with dynamic structures arises when concurrent

processes use the same relation. Suppose two processes are

simultaneously accessing adynamic directory; one inserting a

tuple and the other scanning a portion of the tree. Suppose

further that the scanning process is partway through a page when

the updating process causes that page to be split by an inser

tion. This rearrangement will leave the scanning process point

ing to a wrong (or non existent) tuple unless the updating pro

cess alters the scan pointer in a non-trivial way.

Other problems arise when two processes concurrently update the

same B*-tree. Suppose that two processes are adding tuples to

adjacent pages in the tree, and that both pages are full. First,

each process must lock the page it is updating before it can be

altered. Then, each must examine the two adjacent pages to see

if tuples can be spilled into them to avoid a page split. Unfor

tunately, they will find that one of the two adjacent pages has

already been locked by the competing process. Clearly, this

deadlock condition must be recognized and broken.

3. Directory Height

The third problem with dynamic structures involves the height of

the directory tree. Because pages are split on the fly in a

dynamic directory, explicit pointers to data pages must be

present in the higher levels of a dynamic directory. Notice, for

example, that space must be left for three pointers on each page

of figure 3.10. These pointers consume space and limit the value

43

of k that can be attained.

These problems can all be avoided in static directory structures.

A static directory can have the property that tuples are never

moved if chaining between tuples in the primary and overflow

areas is allowed, or if the tuples on a given page and its over

flow pages are not kept in collating sequence (figure 3.13). If

this is the case, pointers can be safely used in secondary in

dices. Moreover, the directory itself is static; an updating

process need only lock the page it is modifying. Also, since

tuples are not moved there is no danger of creating intermediate

pointers to non-existent tuples. In addition, directory pointers

can easily be suppressed, increasing the fanout possible (often

by as much as a factor of two). Frequently, this will save one

level in the directory. Also, reduction of directory height in

static directories can be accomplished using the generalized

directory described previously. However, generalized dynamic

directories are not practical since a dynamic change in a segment

of a generalized directory may require the movement of many pages

full of tuples (the better the generalized directory, the worse

the effect of a change would be).

In order to further compare performance, we present a simple

example. Suppose pointers and keys are both four bytes in length

and that the page size is 512 bytes (this is the page size used

in the UNIX operating system [RITC73] on top of which INGRES is

implemented). In this case, each node in a B*-tree (assuming

44

only keys are present in the index levels) has between 32 and 63

sons. On the other hand, the number of sons for an indexed

structure similar to figure 3.12 is 127. The following table
indicates the height of the tree for various sizes of primary
data relations being indexed. In both cases we assume the index
nodes are completely full.

number of data pages tree height with static directory

2-127 2

128-16,129 3

16,130-2,048,383 4

number of data pages tree height with dynamic directory

2-63 2

64-3,968 3

3,969-250,047 4

250,048-15,752,961 5

The important point to note from the table is that a static

directory saves alevel in the tree for any relation between 3969

and 16,129 pages (roughly 2-15 million bytes) and for relations

over 125 million bytes. For such relations, a static directory

requires one less disk read than a dynamic directory for each

retrieval request. Of course, this example is sensitive to the

page size, key size and pointer size chosen. However, a level is

saved in many situations.

Finally, we look at the reorganization cost of static and dynamic

45

directories. We have already seen that static directories (espe

cially generalized static directories) very often save a level in

directory height when compared to a dynamic directory on the same

data. The following analysis considers those cases where the

static directory saves one level in directory height and compares

the access costs to a dynamic directory. Vfe make the following

assumptions:

1. Both relations are initially loaded with P primary data

pages each containing C* < C tuples (where C is the maximum

number of tuples possible on a data page).

2. No overflow pages are initially used.

3. The height of the static directory is one less than the

height of the dynamic directory.

4. The queries in the period after the relation is loaded con

sist of R retrievals and I inserts.

Let Q be the probability that a page splits (or overflows) during

the course of the I inserts. Here we assume that the probability

of a page splitting twice is negligible. Because of the differ

ence in directory height, we know that for retrievals the static

directory saves one access if the desired data page has not over

flowed and there is no savings if the page has overflowed. For

inserts, there are three cases to consider. First, if the page

is not split, the static directory saves one level. Also, if the

current insert causes a page split, one access is saved. Final

ly, if the page was already split, the two directories require

the same number of accesses.

46

Now we assume the worst case query makeup for the static direc

tory; all Iinserts occur before the Rretrievals are processed.

The inserts and retrievals are followed by a reorganization of

the static directory. The net access savings by the static

directory is retrieval savings plus insert savings minus reorgan

ization cost. The retrieval savings is R(1-Q) while the insert

savings is the number of page splits, QP, plus the sum of all

inserts onto primary data pages. To approximate this last fig
ure, we will assume that when the directory was built, each data

page was built with only space for one additional tuple (i.e.

C* = C-1). Thus the sura of inserts onto data pages must be at

least QP making the total savings from insertions at least 2QP.

Finally the cost of reorganizing the static directory is assumed

to require access to all primary data pages plus all overflow

pages. This cost is P(1+Q) accesses. When the net savings from

all of the above accesses is positive

R(1-Q) + 2QP - P(1+Q) > o

then the static directory will have saved enough accesses to pay

for reorganization. This equation simplifies to R>Pfor posi

tive values of S (for S=0 no reorganization is required). The

results indicate that, under the assumptions stated, static

directories can be reorganized at any time after the number of

retrievals has reached the number of pages in the original rela

tion and still out perform dynamic directories. Thus under these

assumptions (which tend to favor dynamic directories), the result

indicates that static directories are preferable in all cases

47

except those where update frequency is so high that a reorganiza

tion is required before P retrievals are requested.

3.6 A Set of Storage Structures for Relations

We know of no single storage structure which satisfies all three

conditions specified in chapter two. We have therefore looked

for a set of structures which can be used in different cases

which will satisfy some of the conditions. In cases where order

preservation is not important, randomizing functions satisfy the

remaining two conditions. In the cases where order preservation

is important, we have chosen generalized directories as the

structure which most closely satisfies the remaining two condi

tions. For these directories we have provided a linear algorithm

for their creation and have argued that a static directory is to

be preferred to one which is dynamically reorganized. We now

briefly mention that for either the randomizing or directory

structures, data compression techniques [GOTT75] can be used to

provide a savings in secondary storage space at a cost of in

creased computation time for decoding and encoding during re

trieval and update. Adding a compressed form for each of the two

structures gives us the set of storage structures which are used

to implement relations in INGRES:

1. Randomized Structures

2. Generalized Directory Structures

3. Compressed Randomized Strucutres

48

4. Compressed Generalized Directory Structures

Or

49

CHAPTER 4

Auxiliary Structures

Thus far we have considered different choices of storage struc

tures for data relations. These choices provide fast access to

tuples if the key domain(s) is specified. In this chapter, we

will consider methods of storing additional redundant information

which will increase access speed when the primary access key is

not specified and some other secondary domains are specified.

Also we will consider how redundant data storage can speed the

processing of aggregates, aggregate functions, and multi-relation

queries. Each of the following sections will examine a potential

auxiliary structure. For each structure, references will be

given to previous uses of such a structure (if any), an example

in QUEL will be given of when the structure would be useful, an

indication will be made as to the difficulty of updating the

structure, and finally a judgement as to the structures overall

value will be made. We begin with the most common form of auxi

liary structure, the secondary index.

4.1 Secondary Indices on Attributes

A secondary index (inversion) on a domain is a binary relation

between values of the domain and tuples (or tuple identifiers)

from the data relation. The reason for creating a secondary

50

index is to provide fast access via the index domain when the

data relation key is unavailable. For example, in the query

RETRIEVE E.NAME WHERE E.SALARY = 10000

a full scan of the EMPLOYEE relation would normally be required

if the key for that relation were, for instance, NAME. However,

if a secondary index existed on SALARY, the number of employee

tuples examined could be substantially limited. To create the

index requires an operation equivalent to

RETRIEVE INTO SALINDEX(E.SALARY, PTR= E.TID)

Figure 4.1 shows the result of this query when applied to the

salindex relation

!salaryjptr

! 10000! 6!
! 12000! 1!
! 14000! 4!
! 14000! 5!
! 20000! 2!
! 31000! 3!

Figure 4.1 A Simple Index

EMPLOYEE relation from chapter 1. Now if this relation is organ

ized so that SALARY is the key domain, then when a value for

SALARY is supplied, only a small number of tuples need be ac

cessed from the index and the PTR domain provides direct access

to the appropriate tuples in the EMPLOYEE relation.

Secondary indices are used in many data base management systems.

In TDMS [BLIE67, BLIE68] all domains are indexed, while in most

other systems, only a fraction of the domains are indexed. When-

51

ever values are specified for more than one indexed domain, then

list processing techniques may be used to create a list of possi

bly qualifying tuple id's. This reduces the number of tuples in

the data relation which must be examined. Reducing the number of

data tuples examined is important in that each tuple examined via

an index can be assumed to require an additional page access

[ROTH74a], In systems with a hierarchy of physical storage dev

ices, the indices may be kept in faster memory than the data

relation. This justifies increased index processing (like list

intersection) in order to reduce the more costly data relation

accesses.

A combined index, as described in [LUM70] and [MULL71], is

another approach which takes advantage of several domain values

being specified. Here, the index relation consists of a projec

tion of several domains and the TID from the data relation in

stead of just a single domain as in a simple index. If the

index relation is ordered on all projected domains from left to

right, then specifying values for any left subset of the index

domains will limit the number of data tuples examined. The more

left domain values specified, the finer will be the resolution on

the data relation. Combined indices have the advantage that list

processing is not necessary in order to get a fine resolution,

however, for k attribute values to be useful in improving resolu

tion, the k attributes must be the leftmost k attributes of the

index.

52

Updating secondary indices is a straightforward operation. If an

update statement results in a number of before and after images

of tuples (as is the case in INGRES), then an index update must

only delete the before value of the attribute from the index and

insert the after value. Since the index itself is keyed on the

attribute and a value is provided for the attribute in both the

delete and insert operations, the update cost is only the cost of

2 key to address transformations. Each APPEND or DELETE query

will require all secondary indices to be updated for each tuple

added or removed from the data relation. A REPLACE query will

require updates to all secondary indices which include domains

that were modified in the data relation (all domains named in the

target-list of the REPLACE). A combined index on k domains will

require about 1/k of the work required to update k single domain

indices.

4.2 Secondary Indices on Functions of Attributes

A simple generalization of secondary indices allows them to be

useful in many cases where the normal secondary index can not be

used. The following example illustrates such a case.

RETRIEVE E.NAME WHERE SQRT(E.XYZ) = 4

AND E.START - E.BIRTH r 25

Assuming that the data relation, EMPLOYEE, is keyed on NAME, one

might attempt to utilize secondary indices on XYZ, BIRTH, or

START to limit the scan of EMPLOYEE. However, in the cases of

53

BIRTH and START, there is no value specified for either of the

attributes alone. And in the case of XYZ, it would require tak

ing the inverse of the SQRT function to put the clause into the

form E.XYZ = 16 which could then make use of an index on XYZ. In

order to handle this type of query efficiently, we generalize

secondary indices to allow indices on functions of attributes as

well as indices on simple attributes. Now an index could be

maintained for values of SQRT(E.XYZ) or for values of E.START-

E.BIRTH. Figure 4.2 indicates an attribute function index on

start_age relation

age i
i ptr

20! 4

20| 6

251 5
26! 1

28! 2

32! 3

Figure 4.2 An Attribute Function Index

E.START-E.BIRTH. Two points must be considered about such in

dices: 1) recognition of when they can be used, and 2) how they

are updated. The recognition problem can be solved to varying

degrees of completeness. One approach is to take attribute func

tions as they appear in the query and look them up in a table of

indices for attribute functions. More complete approaches will

make greater attempts to find indices which exist for equivalent

functions. This may be done by putting clauses into a canonical

form. For instance, some arithmetic expression manipulation may

54

be done to put constants on the right of a relational operator

(=,<»>, etc.). Also, attributes may be commuted to order them

alphabetically (or by domain number) in the expression. So the

clause

X.B - 5 + X.A < X.C

might have the canonical form

X.A + X.B - X.C < 5

The number of equivalent expressions which can be recognized will

depend on the goodness of the arithmetic expression manipulator.

It is believed, however, that only a few forms for an expression

will normally be used and so even a very simple expression mani

pulation algorithm will probably suffice.

The second concern with generalization of secondary indices is in

conjunction with updates. If updates to the data relation gen

erate before and after images of tuples for use in secondary

index updates (as is done in INGRES), then the updating of gen

eral indices is straightforward. Whenever any attribute in the

attribute function being indexed is involved in an update, the

attribute function must be calculated on both the before and

after image of the tuple. If a difference exists, the before

value is deleted from the index and the after value is added.

Thus the update procedure is almost identical to simple indices

and is not a problem.

There are many cases where a function of one or more attributes

is frequently specified in queries, but being computable from

55

other attributes it need not be stored as a new attribute. It is

in such cases that the generalization of indices to attribute

functions is very important.

4.3 Predicates on a Single Relation

We have thus far considered auxiliary structures for simple at

tributes and attribute functions. The next larger piece of a

query is the clause. The clause is a truth valued unit which may

form the entire qualification or may be joined to other clauses

by boolean operators to make up the qualification. In this sec

tion we will discuss clauses which involve only a single variable

(one relation). These clauses are predicates which perform a

restriction on the relation. An example of such a clause is

E.DEPT = "toy" .

If the same clause appears frequently enough in queries, it would

be convenient to be able to quickly identify the restricted sub

set of the relation which satisfy the clause. This can be done

by creating an auxiliary relation which contains TID's of only

the restricted set. To create such an auxiliary relation for the

example requires the query

RETRIEVE INTO TOY_DEPT(PTR= E.TID) WHERE E.DEPT="toy"

For predicates on single relations, the recognition and update

problems are very similar to those for secondary indices on func

tions of attributes. Actually, the only difference between the

two are 1) the size of the auxiliary relation may be considerably

56

smaller for predicates, but 2) the secondary index may be useful

in more queries (i.e. may be used in several clauses). The

predicate is in fact a restriction of an attribute function

secondary index. In cases where there are a small number of

values for the attribute function and/or where a particular value

is used very frequently, the predicate relation may be preferred.

Amore obvious use of predicates is where they involve more than

one relation.

4.4 Predicates on Multiple Relations

When aclause involves more than one variable (relation), the

meaning is that it is a restriction of the cross product space of

all relations involved. One use of this type of clause is to

provide inter-relation access paths similar to DBTG sets

[C0DA71a]. Avery common example of such aclause is the EQUI-

JOIN as typified by the clause

E. MANAGER = M.NAME

which links employees to their respective manager, (the range of

Mis also EMPLOYEE). The predicate here involves two tuple vari

ables ranging over the same relation; however, in general, the

range of these variables may be (and normally is) over two dif

ferent relations. The useful auxiliary relation here is the

relation of all pairs of TID's which satisfy the predicate. To

form the auxiliary relation requires the query

RETRIEVE INTO EMP__MGR__LINK(EMPPTR=E.TID,MGRPTR=M.TID)

WHERE E.MANAGER = M.NAME

emp_mgrj.ink relation

empptrimgrptr!

1! 2
2! 3
4! 3
5! 4
6! 5

Figure 4.3 A Multiple Relation Link

Figure 4.3 indicates the result of this query. In the worst

case, this relation may be of size equal to the size of the cross

product of the relations involved. However, it is common that

the relationship links each tuple in one relation to only one

tuple in the other. In such cases, the number of tuples in the

link relation is on the order of the number of tuples in one of

the data relations. It is in these cases that the existence of a

multi-relation link can greatly reduce the number of tuples exam

ined in a search. The use of this type of links in relational

systems was first suggested in [TSIC75].

Again one must return to the two questions of recognition and

update. As in the case of attribute functions and single rela

tion predicates, the recognition problem is one of attempting to

put the clause into a semi-canonical form and then to do a simple

look up to see if an auxiliary structure exists. The update

problem, however, is considerably more difficult. The problem is

57

58

that each relation which is involved in the multi-relation predi

cate is updated individually. To understand the amount of work

required to update a multi-relation predicate, consider the case

of a predicate, Q(X,Y), over two relations X and Y where the two

relations are the same size (N tuples) and the attributes in

volved in the predicate are not themselves indexed. A more com

plete treatment of links which considers combinations of links

and secondary indices will appear in [STON75b]. In the case

under consideration, if a single tuple, x, is added (APPENDed) to

relation X, then all N tuples in relation Y must be tested to see

if they satisfy the predicate Q(x,Y). For each tuple in Y which

satisfies the predicate, a new tuple is added to the link rela

tion. Deletions from either relation require a scan of the link

relation to remove all tuples with the deleted TID. This opera

tion can be made fast for one of the relations by making the

pointer to that relation the key of the link relation. Modifica

tion of a tuple in either relation (using REPLACE) requires

essentially the work of a DELETE followed by an APPEND. Thus we

see that updating multi-relation links can be very expensive.

Multi-relation predicates may still be useful in a non-updated

fashion. The additional cost is small to create the auxiliary

relation during the processing of a query involving such a predi

cate. If subsequent queries involve one or more uses of the aux

iliary structure before an update occurs, then the auxiliary

structure will have been worthwhile. When an update occurs to

any relation involved in the multi-relation predicate, then the

59

auxiliary structure is discarded. This type of structure will be

useful in applications where a complicated access path is used

frequently for retrievals, and updates occur infrequently or

periodically.

4.5 Aggregation

Another part of a query which lends itself to an auxiliary struc

ture is aggregation. In many applications, it will be common for

certain aggregates and aggregate functions to be re-used fre

quently. A single auxiliary relation can be maintained which

contains all aggregate values that have been calculated. The

recognition problem is again similar to that mentioned above.

The update problem for aggregates, as was the case for multi-

relation predicates, is prohibitively expensive. The cost, how

ever, is very small to maintain non-updated aggregate values.

All that is required is a single auxiliary relation like

AGGVALUES(RELID, AGGTOKENS, AGGVAL, AGGTIME) where RELID speci

fies the relation over which the aggregation has been performed,

AGGTOKENS is the canonical form of the aggregation, AGGVAL is the

value computed, and AGGTIME is the time at which the aggregation

occurred. When an aggregation appears in a query, it is first

looked up in the AGGVALUES relation (where RELID and AGGTOKENS

are the primary access key). If it is found and the AGGTIME is

more recent than the last modification time to the data relation,

then the value, AGGVAL, is used. Otherwise a new value for the

60

aggregate is calculated and entered into the AGGVALUES relation

after being used in the query. A similar approach can be used

for aggregation over several relations and for aggregate func

tions. In the case of aggregate functions, the aggregate func

tion is maintained as another auxiliary relation and the

AGGVALUES relation would contain the name of the aggregate func

tion relation instead of a simple AGGVAL.

4.6 A Set of Auxiliary Information Structures

In this chapter we have presented several possible types of auxi

liary structures which might be used to speed access to data

relations. We have considered structures which correspond to

increasingly larger portions of a query from the simple attribute

through the multi-relation predicate and aggregate functions.

The structures which have been found useful are:

1. Secondary indices on simple attributes

2. Secondary indices on attribute functions

3. Non-updated aggregate values and aggregate functions

Multi-relation predicates were found to be of some value in cer

tain retrieve-only situations but they will not be considered in

the remainder of the discussion. The next chapter will take the

set of storage structures from chapter three and the set of auxi

liary structures from this chapter and provide a strategy for

determining which structures should be used for a particular data

relation.

61

CHAPTER 5

Storage Structure Selection Strategy

V/e have described previously the set of storage structures which

will be used to implement data relations and a set of auxiliary

structures used to speed access to data. Now we consider the

problem of making specific choices from this set of alternatives

for a particular data base. First, in section 5.1, a general

strategy for storage structure choices is described. This stra

tegy includes dynamic adaption to the local demands of a single

query and periodic response to statistics covering a sequence of

many interactions. Almost all previous work in the area of

storage structure selection has been done on selection of secon

dary indices. In section 5.2, this work is reviewed and in 5.3,

we define a more widely applicable model for solving the secon

dary key selection problem. Then in section 5.4, a method for

obtaining each of the parameters in the model is described. The

model is extended, in section 5.5, to handle attribute function

indices, primary key selection, and data relation storage struc

ture. Next, we look at the computational cost of the selection

process and indicate that heuristics must be used for large prob

lems. The desirable characteristics of such an algorithm are

described and one possible algorithm is presented. Finally, in

section 5.7, we suggest a method of monitoring the performance of

the choices made.

62

5.1 Dynamic and Periodic Decisions

Our overall strategy recognizes two environments in which storage

structure decisions must be made. The first situation occurs

during the processing of queries (decomposition) and choices here

will be referred to as dynamic decisions. These are decisions

for storage structure changes which affect the processing of the

current query and which must be carried out immediately to have

an effect.

An example of a dynamic decision is the building of a secondary

index on an attribute in order to speed the processing of a

multi-relation query. For instance, in the query

RANGE OF E IS EMPLOYEE

RANGE OF D IS DEPARTMENT

RETRIEVE (E.NAME, D.LOCATION)

WHERE E.DEPT = D.NAME

we require all pairs of employees and departments where the

employee's department (DEPT) is the same as the name in the

department tuple. If E.DEPT and D.NAME are not key attributes

then all pairs must be examined. If, however, an index is dynam

ically created for one of these attributes, say D.NAME, then for

each employee tuple E.DEPT can be used as a key value to the

D.NAME index. The non-indexed search requires a complete scan of

the department relation for each employee tuple, whereas the

indexed method requires only a single index search for each em

ployee tuple. Another example of a dynamic decision is the dis-

63

carding of a secondary index instead of updating it during the

update of a data relation.

Dynamic decisions are an important part of the total storage

structure selection strategy. However, each of these decisions

is closely tied to the query processing strategy (decomposition)

and for that reason we leave this type of decision to be con

sidered as part of the decomposition problem [WONG75].

The second type of storage structure choice is made during

periods of low system usage and is called a periodic decision.

This type of decision adjusts storage structures to the needs of

the average query as opposed to any specific query. An example

of such a decision is to change the storage structure of a rela

tion from randomized to sorted or to create a new secondary index

on a frequently referenced attribute. In making periodic deci

sions, the actual problem to be solved is:

Given a database with many relations, select a storage

structure for each relation and a set of auxiliary struc

tures which optimize future query/update performance.

What we require is a process for selecting data relation storage

structure, primary key domain, and secondary indices (both simple

and attribute function indices). The remainder of this chapter

deals with a solution to this problem. The approach used is to

start with the selection of secondary indices and then to extend

the process to handle the remainder of the problem. First, pre

vious work on secondary index selection is reviewed.

64

5.2 The Key Selection Problem

The problem of secondary index selection has been studied by King

[KING74], Stonebraker [STON72, STON74c] and Schkolnick [SCHK74,
SCHK75J. In each paper, amodel of queries and storage struc

tures is presented, a cost function for comparing indices is

given, and finally one or more theorems are described which limit

the number of choices to be tested in finding an optimal set of

indices. Even with the most complete set of theorems [SCHK75],

the optimization problem requires nearly complete enumeration to

solve. We will therefore not concentrate on reducing the size of

the optimization problem, but on providing a model and cost func

tion which more accurately reflect the data base environment.

For now we assume that the optimization problem is to be solved

by complete enumeration and we return to the cost of solving the

optimization problem in section 5.6.

King uses a simple query model in which each qualification may

specify the value of only a single attribute. Stonebraker and

Schkolnick allow any number of attributes to be specified but

make the strong assumption that specification of any attribute is

independent of the specification of any other attribute. The

models of Stonebraker and Schkolnick are almost identical. Here,

we describe the model as presented in [SCHK75]. The complete set

of assumptions that is used is as follows:

1. Queries may involve only one relation.

2. Queries may specify the values of any of the attributes but

65

the specification is only for equality to the value.

3. Attribute i is specified with probability p. and is indepen

dent of the probability of any other attribute being speci

fied (i.e. p^ =p±Pj, pijk =P±PjPk» etc.).

4. Attribute i has 1/d. distinct values present in the relation

and each value is equally likely to be specified.

5. The probability that a query is an update is U. Updates

change the value of a single domain of a single tuple and

each attribute is equally likely to be updated.

Along with these assumptions, a description is given of the steps

involved in processing a query and their associated costs. Given

a set, D, of attributes which are indexed, the average cost for

processing a query is calculated as follows. (Note that some of

the equations have been slightly modified in order to conform to

our cost criterion of page accesses as opposed to the seek and

transfer time used in [SCHK75].

1. List Formation - The first step in processing a query is to

form the lists of tuple identifiers (TIDs) for any attribute

which is specified in the query and is in the index set.

This cost is proportional to the length of the TID list for

the specified value of the attribute. This length is, on

the average, Nd. where d. is the reciprocal of the number of

distinct values for domain i. Thus, if C' TIDs are re

trieved on each access to an index page, then the average

number of accesses to form a list is Nd./C and for all
1

indices in the set D, the expected cost is

66

2 p.Nd./C
i<D * x

2. List Intersection - If more than one list is available, list

intersection is performed to create a list of TIDs to be

retrieved from the data relation. The cost of this step is

considered negligible since it is done in main memory.

3. Tuple Access - All TID's on the resulting list are used to

access tuples in the data relation. As a result of assump

tions 3 and 4, each list restricts the number of tuples to

be accessed by p^+O-p^. So the expected number of tu

ples retrieved on any query is

W UD (p.d +l-p) .

4. Tuple Processing - As tuples are retrieved they are tested

against the complete qualification and further processing

(printing, etc.) takes place. (Tuples retrieved which do

not qualify are commonly referred to as "false drops").

This cost is independent of the index set chosen and is

therefore not considered.

5. Update Cost - If the query was an update, the appropriate

members of the index set must be updated. In [SCHK75] up

dates are considered to be separate queries which modify

only a single data tuple. Since the m attributes are equal

ly likely to be updated, the cost is given as

(1/m) 2 Nd./C
i«D 1

The total expected cost of a query for the set D of indices is

(1-U)(query cost) + U(update cost)

which is

(1-U)(I p,Nd./C
i«D x

+ N HO (p,d.+1-p.)
i<D

) + U(2 Nd./C)
i«D

67

5.3 An Improved Model for Key Selection

The independence assumption made above leads to a simple

analysis; however, it is not an accurate model of the many cases

where attributes are highly correlated (positively or negatively)

in their appearance in a qualification. We choose a model which

allows such dependence between attributes to affect key selec

tion. The set of assumptions stated above is used with the fol

lowing two important changes:

3*. Attribute i is specified with probability p±. Attributes i

and j are specified together in the same query with proba

bility p. .(not necessarily equal to PjPj)- And pijk=0 for
all i,j,k; that is, the probability of any three attributes

being specified together is negligible.

5*. Attribute i requires an average update cost of ui for each

query. That is, u. equals the total cost of maintaining an

index on attribute i for the set of queries under considera

tion divided by the number of queries.

This model allows important first order correlations between

attributes to be reflected in index selection. The following

68

analysis could straightforwardly be extended to include second

order correlations by using values for p and letting p.., n=0,
iJK ljkl

however, this makes the formulas more difficult to follow.

A second important part of the query model is the manner in which

updates are treated. All QUEL-type updates (see Appendix A) are

assumed to be allowed and a simple and accurate measure of update

cost for each attribute is used. A description of how values for

u± are calculated will be given later.

We now form our cost function based on the processing steps

described earlier.

1. List Formation - Recall that the average cost of forming a

list for attribute i is Ndj./C'. Instead of forming the

expected cost of all such lists, the list formation cost

will be added in step 3.

2. List Intersection - Again this step is considered negligible

in cost.

3. Tuple Access - Since we have assumed p. .. =0 for all i,j,k

then the expected cost of accessing tuples can be broken

down into 3 cases. Included in each case is the appropriate

cost of list formation from step 1.

i) Two attributes from the index set are specified. Here

the cost of the two list formations is added to the

cost of tuple access. The assumption made here (as in

previous papers) is that the selectivity of the two

attributes taken together is the product of their indi-

69

vidual selectivities (i.e. d.. =d^.). So for this

case, the expected cost of list formation and tuple

access is

N(2 P^(d,d. + (d.+d.)/C)) .
i,j<D 1J X J J

ii) Exactly one attribute from the index set is specified.

In this case the cost of one list formation is added to

the cost of tuple access yielding an expected cost of

N< ^DPi_only (di +di/Cr) >
***** Pi_pnly =Pi "^Pij '

iii) No attribute from the index set is specified. Here,

although all N tuples must be accessed, in a sequen

tial scan of the relation, pages of C tuples at a time

may be accessed. Hence, N/C accesses must be made for

a complete scan and the expected cost for this case is

(N/C)(1-2 P± only"2 mPjm)•
i<D 1-on±v i,j«D iJ

4. Tuple Processing - Again this cost is not considered.

5. Update Cost - If the query was an update, the appropriate

members of the index set must be updated. The average cost

per query of such updates is uif so for all indices the cost

is

2 u. .
i<D

Adding all of the costs, the expected cost of a query for the set

D of indices is

70

N(i.JO1^ +lWC'>

+LPi-only (di+ di/c'}

+(1 "f,npi only ~? J>u>/C

) + 2 u.
i<D x

The following example illustrates one important type of situation

where the above cost function is superior to previous cost func

tions ([SCHK75] in particular). The example is for a relation

which has 3 attributes, the first of which is very frequent in

appearance and is independent of the other two. The remaining

two attributes are mutually exclusive in their appearance. We

assume the selectivity of each attribute is the same (i.e.

d^d^d^). We also constrain the number of indices allowed to be

two. The parameters of interest are

P1 = .9 P2 = .5 P3 = .5

P12 = -^5 P23 =0

P13 = .45

d1 = d2 = d- = .01

N = 10,000

C = 1 C = 10

u1 = u2 = u^ = 0

Below are shown the costs as calculated for each of the three

possible pairs of indices. The costs are given in expected

number of accesses to process a query. The first cost function,

[SCHK75], is labelled C0ST1 and the new cost function is in the

71

column labelled C0ST2. As we see from the tabulation, using

C0ST1, attribute 1 would be selected along with one of the other

attributes. However, C0ST2 takes into consideration the fact

that by choosing attributes 2 and 3, all queries will have at

least one index available for use and thus will not require any

complete scans of the data relation.

D ! C0ST1 ! C0ST2 i

{1,2} ! 550 ! 550 !
{1,3} I 550 ! 550 !
{2,3} ! 2250 ! 100 !

The example illustrates the importance of including joint proba

bilities in the cost function. Another common example of a case

in which C0ST2 will make a better choice than C0ST1 is when two

attributes are very likely to appear together.

5.4 Obtaining Parameters

Defining a model and cost function is a fruitless exercise if it

is difficult or impossible to obtain values for parameters of the

model. In this section, we describe a set of relations which may

be used to maintain statistical information on interaction condi

tions and we indicate the queries necessary to obtain values for

each of the parameters used in the above cost function. We begin

by describing the three statistics relations.

OUALSTATS (QRYID, RELID, ATTID)

This relation provides a record of attributes which appear res-

72

trictively in aqualification. Each query is assigned a unique

identifier, QRYID. For every attribute that restricts the qual

ification of the query, an entry is made in QUALSTATS with the

attribute identifier (ATTID) and the relation to which that at

tribute belongs (RELID). In this way, QUALSTATS maintains attri

bute usage information for all attributes in all relations of a

database.

UPDATESTATS (QRYID, QRYMODE, RESRELID, NUMUPS)

This relation records the number of tuples updated (NUMUPS) in

the result relation (RESRELID) during an APPEND, DELETE or

REPLACE query. Again, QRYID is a unique query identifier and

QRYMODE indicates the type of update (APPEND, DELETE, or

REPLACE).

REPLACESTATS (QRYID, ATTID)

This relation records which attributes are affected during a

REPLACE query. Recall that APPEND and DELETE affect entire tu

ples while REPLACE may modify one or several attributes of a

tuple. This relation contains an entry for each attribute which

is updated in a REPLACE query.

To obtain the frequency, p , that each attribute of a relation

appears restrictively in a qualification, the following aggregate

function is used

RANGE OF Q IS QUALSTATS

COUNT(Q.QRYID BY Q.ATTID WHERE O.RELID="relname")/NUMQRY

The aggregate function produces a table of frequencies with an

73

entry for each attribute (ATTID). ffere NUMQRY is the total

number of queries in which the relation ("relname") was involved.

NUMQRY = COUNT UNIQUE(Q.QRYID WHERE Q.RELID="relname")

The joint frequencies, p. ., are obtained with

RANGE OF Q1 IS QUALSTATS

RANGE OF Q2 IS QUALSTATS

C0UNT(Q1.QRYID BY Q1.ATTID,Q2.ATTID

WHERE Q1.QRYID=Q2.QRYID

AND Q1.RELID=Q2.RELID="relname"

)/NUMQRY

The calculation of update costs for each attribute, u^ involves

two parts. Recall that u^ is the cost that would be incurred to

update an index on attribute i if that index existed. The first

part of the cost comes from additions and deletions. Each of

these updates requires a corresponding addition or deletion from

each index in the index set. The second cost is for tuple modif

ication (REPLACE) which requires an old value to be removed from

the appropriate index and a new value to be added (2 operations).

Thus the proper calculation of the u.'s is

RANGE OF U IS UPDATESTATS

RANGE OF R IS REPLACESTATS

RANGE OF Q IS QRYSTATS

(SUM(U.NUMUPS WHERE U.QRYMODE £ "replace"

AND U.RESRELID = "relname"

)

74

+

SUM(U.NUMUPS*2 BY Q.ATTID WHERE U.QRYMODE = "replace"

AND U.QRYID = R.QRYID

AND U.RESRELID = "relname"

AND R.ATTID = Q.ATTID

)

)/NUMQRY

Finally, the number of unique values for each attribute, 1/d.,

can be found by using COUNT UNIQUE for each attribute or more

likely an estimate of N/di can be maintained using sampling tech

niques.

Among the assumptions stated above, we assumed that the queries

are only over a single relation. Although the selection process

does not take into account the processing strategy for multi-

relation queries, the process of obtaining parameters just

described works as well on multi-relation queries. Therefore we

can gather statistics from general QUEL queries, even though the

use of these parameters in the model will only optimize the

selection of keys on one relation at a time.

5.5 Extensions to the Selection Process

In chapters 3 and 4, a set of storage structures for data rela

tions and a set of auxiliary structures were presented. The

selection process just described is now extended to make the

75

necessary selections from both of these sets.

Selection of Auxiliary Structures

The selection process just presented chooses attributes for sim

ple secondary indices. The other auxiliary structures presented

in chapter 4 which must be handled are aggregate values and in

dices on attribute functions. In chapter 4 we described a method

of maintaining aggregate values. Now we treat the selection of

attribute function indices.

Extending the selection process to include secondary indices on

attribute functions is essentially a matter of additional book

keeping. An attribute function can be viewed as a function which

creates a new attribute from an old one (i.e. it adds a new

column to the relation). Thus, each attribute function can be

treated as a new simple attribute with its own values for p. and

p. .. A relation similar to QUALSTATS can be used to gather the

necessary statistics. Instead of storing an attribute identifier

(ATTID), the query processor stores the canonical form of the

attribute function. The major difference between an attribute

function and a simple attribute is that a separate value for ui

need not be maintained. Since updates to an attribute function

index are required at exactly the same times as updates to the

attribute used in the function, the value of u for the simple

attribute is identical to the value of u for the attribute func

tion .

76

Selection of Primary Storage Structures

We turn now to the problem of selecting from the storage struc

tures for data relations considered in chapter 3. First we con

sider selecting which of the domains is to be the primary key,

then we add to the selection process the choice of primary struc

ture type (randomized or directory).

In order to extend the selection procedure to include selection

of the primary key, the following modifications are required.

First, the problem is restated as: choose the pair (D,k) which

minimizes the cost function where D is a set of secondary keys

and k is the primary key. If the primary key is specified in a

qualification, we assume that it will be used and no secondary

indices will be used. Now the cost function must be modified as

follows:

1. For each attribute i £ k, set p. = p.-p-k and set p., = 0 to

reflect the use of the primary key as just described.

2. For the tuple access part of the cost function, introduce a

fourth case:

iv)Primary key specified. In this case, no list formation

is done. Also, since the key to address function will

group equal key-valued tuples together, C tuples are

retrieved with each page access. Thus the cost of pri

mary key access is Np. d,/C .

3. The cost of updates to the primary key must be reflected in

the update cost. Recall that the update cost is the addi-

77

tional cost required to update auxiliary structures when an

update to the data relation occurs. APPEND and DELETE

queries do not cause any additional updates. However a

modification of the primary key (by REPLACE) requires the

tuple to be relocated (by the key to address function) and

thus each secondary index must be updated to reflect the

change. In order to compute this cost, recall that the

update cost for an attribute, u., was obtained in two parts;

the APPEND, DELETE cost plus the REPLACE cost. If we record

1 2
these intermediate parameters as u (APPEND, DELETE) and u

1 2
(REPLACE) then u.=u.+u7 and the total update cost becomes

2 (u?+uf) + u^!D!
i«D x x K

At this point, we have a process for selecting a primary key, k,

and a set, D, of secondary keys. We are still working under the

assumption that only equality specifications are used in queries.

Using this assumption randomized structures are always selected

as the storage structure since they provide faster key to ad

dress transformation than directories. Assumption 2 above is

now relaxed to be:

2*. Queries may specify attributes to be equal to a value or to

be within a range of values.

This extension requires a modification to the method of obtaining

parameters. As before, p. is the probability that attribute i is

specified (on equality) in the qualification and d. is the selec

tivity of that specification. Now, let r be the probability

that attribute i is specified by a range in the qualification and

78

let d.T be the selectivity of the average range specification for

attribute i. Every time an attribute is specified to be within a

range of values, the selectivity of that range must be estimated.

One approach to such an estimate is to assume a uniform distribu

tion of values for the attribute and then simply take the size of

the range divided by the maximum range for the attribute

(MAX(X.A)-MIN(X.A)) as the selectivity.

Returning to the choice between randomized and directory struc

tures, we saw in chapter 3 the difference between the two struc

tures lies in how the key is specified. For equality specifica

tions, randomized structures provide access to data in approxi

mately one access while directories require several additional

accesses to traverse the directory (usually between 2 and 5 addi

tional accesses). However, when a range is specified for the

key, randomizing functions require an entire scan of the relation

(N/C accesses) while a directory requires a number of accesses

proportional to the size of the range. Given that queries on a

range of the primary key appear with frequency r. and that the

average size of the range specified is d^, the expected cost for

case (iv) using a directory is

rk(t+dkN/C) + Pk<t+dkN/c) (iv.a)
where t is the additional number of accesses required for the key

to address transformation in the directory (values of t almost

always being in the range 2 to 5). If a randomizing stucture is

used, the expected cost is

rk(N/C) + Pk(dkN/C) (iv.b)

79

Comparing the two equations, we see that if no range queries are

used (r. =0) then a randomized structure is always preferable.

However, if range queries are specified at all (**k>0) tnen a

directory is generally preferable. For example, with

pk = .50 rk = .01

dk = .001 dk = .01

N = 10,000 C = 10

t = 3

the cost (iv.a) for a directory is 2.13 accesses while for a ran

domizing function the cost (iv.b) is 10.5 accesses.

The selection process can now choose the primary key, primary

structure type, and secondary indices all at once by finding the

triple (D,k,TYPE) which minimizes the modified cost function.

Here TYPE indicates either a randomized or directory primary

storage structure type. If TYPE indicates a directory then cost

(iv.a) is used and if TYPE indicates a randomized structure then

cost (iv.b) is used. Thus, for the extended selection process,

the cost function is

N(2 P,,(d.d. + (d.+d.)/C)
i,j<D 1J x J x J

+ 2 P- , (d. + d,/C)
i«D 1-only x

+ (1-2 Pi only"2 pii " rk "Pk)/Ci«D 1-only i,j<D 1J K K

) + primary(TYPE)

+2 (uj +uh +u^!D!
±<D 1 1 *

80

where primary(TYPE) is either (iv.a) or (iv.b) depending on the

value of TYPE.

A similar extension can be made for choosing the storage struc

ture (randomized or directory) for each secondary index. Howev

er, as shown in [ROTH74a], it is very unlikely that secondary

indices involving ranges are useful. We will not therefore give

the revised cost function for allowing range specifications

through secondary indices. It is however a straightforward exer

cise to introduce r± and d^ into the cost function for secondary

indices.

5.6 Cost of an Optimal Solution

To this point, we have presented a method for selecting secondary

keys and have indicated extensions necessary to choose among the

storage structure alternatives that derive from the adoption of

primary and auxiliary structures of chapters 3 and 4. What

remains to be discussed is the cost of this decision process. To

begin the discussion, we consider the secondary key selection

method without extensions. If a relation has m domains, then an

optimal set of secondary indices can be found by calculating the

cost function for each of the 2ra possible sets of indices and

selecting the one with the smallest cost. In many cases the

number of sets to be tested can be substantially reduced by tak

ing note of the following two facts. First, there normally ex

ists a subset of the domains which are never specified restric-

&

81

tively in the qualification (i.e. pi=0). These domains need not

be considered in key selection process since they would never be

chosen. Secondly, there is very often a constraint placed on the

number of indices allowed for any relation. This further reduces

the subsets of domains to those of size less than the limit.

Thus, if we let ra* be the number of domains which have pi>0 and L

be the limit on the number of indices for a relation, then the

number of sets which must be examined to find an optimal solution

is 2 (•) . The following table shows the number of sets
i=1,L 1

which must be tested for a variety of values of m* and L. The

entries indicate the order of magnitude (power of 10) of the set

size.

L

3 5 10 20 50 100

m'

3 1

5 1 1

10 2 3 3
20 3 4 6 6

50 4 6 10 13 14
100 5 8 13 21 29 29

We expect that for many applications, typical values of m* and L

will be such that the number of index sets tested will be reason

able. For instance, if computation of the cost function for a

single choice of D requires processing time on the order of a

millisecond, then for m*=20 and L=5 the time to compute an op

timal set is on the order of tens of seconds. However, as the

number of domains and allowable indices becomes large, say m*=50

and L=20, the time to test all possibilities is several years.

Even using the simpler model of [SCHK75] and the theorems

82

presented there to limit the number of sets tested, the computa

tion with m*=50 would take years to complete. If primary key and

storage structure selection are added to the process, then the

number of sets to be tested becomes 2 2i(m*) . The addition
i=1,L 1

of attribute function indices to the selection process will in

crease the value of m* depending on the number of attribute func

tions being considered.

If, in addition to the previous extensions, we are interested in

allowing concatenation of domains to be keys (as in combined

indices of chapter 4), then the combinitorics become unmanageable

for even very small values of m* (for m*=5 the number of possible

simple and combined index sets is 230). So in this case as well

as the original problem with large ra*, a heuristic is needed in

order to find a solution in a reasonable amount of time.

We now present one possible heuristic for solving the selection

problem.

Step 1 - Initialization

Given the set of potential keys, D (which is all of the

attributes plus any attribute functions being considered),

partition D into three mutually exclusive subsets, D , D. ,
p a o7

and De. Da is the set of all domains which are no longer

under consideration and initially contains all attributes

which have pi=0. D^ is the set of domains which have al

ready been selected to be keys and is initially empty. D

is the set of candidate attributes (those attributes not yet

/>

83

chosen but still under consideration) and is initially D -

v
Step 2 - Find next z best keys

Find the set D*, a subset of D^ of size <z, such that D*
c —•

union D. minimizes the cost function for all such sets.

Step 3 - Add the next z best keys to the current set.

If the addition of D* does not improve the cost of D^ then

terminate the algorithm, else set D. equal to the union of

D. and D* and repeat steps 2 and 3»

The algorithm reduces the complexity of the problem by making the

selection process an incremental one. There are several impor

tant points to note about an incremental algorithm such as this:

1. Obviously the choice of the parameter z is very important.

If z is chosen to be large then the performance of the al

gorithm will approach that of complete enumeration as will

its complexity. If z is chosen to be 1 then the algorithm

will add only one new index to the set on each iteration.

It is very easy to construct cases where adding one index at

a time will produce results which are far from optimal (the

example given in section 5.3 is one such case). With z

chosen to be 3 or i|, cases can still be found where the

algorithm will make bad choices, however, such cases require

a complicated type of dependency to exist between several

attributes.

2. The algorithm can be used to extend the index set after a

period of time has elapsed. That is, a set of indices can

84

be chosen and then statistics may be gathered over some

additional period of time. When the second set of statis

tics are examined, the decision process can consider the

question of adding or removing attributes from the set. In

either case, step 1 is skipped and replaced by initializing

Db to be the current set of indices. Step 2 as given above

then allows the addition of z more keys to the set. Removal

of the z least important keys from the current set is accom

plished by finding the best D* which is a subset of Di and

of size |D*i-z.

3. Since indices are added incrementally, an optimization over

all relations in the data base can be achieved as opposed to

the optimization previously described which works only over

a single relation. To get some inter-relation optimization,

step 2 is performed once for each relation. Then the im

provement in cost of D* union D. over D. alone is noted for

each relation. The relation having the greatest improvement

in cost is the one for which step 3 is performed and those

indices are actually created. Step 2 is then performed

again for the relation selected and the process of selecting

the most improved relation continues until a system wide

limit on the number of secondary indices is reached. More

sophisticated choices can be made by considering both in

crease in performance and the size of secondary indices.

4. In cases where D is very large, a modification to the al

gorithm can further reduce the number of sets tested. Be-

/^

85

fore step 2 is performed, each attribute in the set D can

be given a rating which indicates the likelihood that it

will be chosen in the set of the next z best keys. This

likelihood rating would be a function of one or several of

the parameters of the cost function. The set D would then

be divided into two parts; the y most likely which would be

used in step 2 and the remainder which would be saved for

later consideration. Now, by adjusting the values of the

parameters y and z, the number of cases tested in step 2 can

be kept as small as necessary.

The algorithm suggested here is one of several possible methods

of providing an approximate, yet fast solution to the selection

problem. We suggest that more work is required in designing and

testing algorithms which provide an even more accurate model of

the data base environment.

5.7 Performance Monitoring

Any method of key selection which is based on query statistics

makes the implicit assumption that past queries are representa

tive of future ones. In many cases, this is a good assumption,

however, it is always somewhat inaccurate. Along with this

assumption, each approach to index selection makes other assump

tions which make solution of the problem more tractable. Each

assumption increases the chances that the optimal solution to the

86

stated problem will be non-optimal for the real problem of

selecting the set of indices which best satisfy future queries.

It is for this reason that some performance measure must be pro

vided which can determine if the indices selected are, in fact,

being utilized as expected. The important point to note is that

no matter what optimization problem is solved and whether the

solution is exact or approximate, the problem statement will have

built into it certain assumptions which will make any solution

only an approximate solution. It is because of the approximate

nature of all solutions that performance monitoring is required.

A relation can easily be maintained which keeps up to date an

indication of the utility of all indices in the data base. Such

a relation might simply have the form INDEX_USAGE (INDEXJJAME,

VALUE). A tuple is maintained for each index and whenever the

index is used in query processing the number of accesses saved

are added to the VALUE attribute. When the index is updated the

number of accesses necessary to perform the update are subtracted

from VALUE. The VALUE reflects the actual performance of the

index set. This VALUE will give a good indication of which in

dices are useful in repetitious processing steps such as join

terras where an index is used repeatedly during tuple substitu

tion. The INDEXJJSAGE relation allows for an easy comparison of

the worth of indices on different relations. Also, this provides

a good way to compare indices that were created by a dynamic

decision to those created by the index selection procedure.

87

CHAPTER 6

Conclusions and Future Research

This dissertation has examined the choice of storage structures

for relational data base management systems. We have described a

set of structures to store data relations, a set of auxiliary

relations, and a strategy for storage structure selection. In

this chapter, we briefly summarize the highlights of the work and

indicate directions for future research.

6.1 Storage Structures for Data Relations

In chapter 2, we specified three desirable conditions to be met

by key to address functions. Since no function could be found

which satisfied all three of the conditions independent of the

data stored, a set of structures which would satisfy some of the

conditions was examined. Randomizing functions were chosen as a

structure to be used when order preservation was not important.

For cases where order preservation was required, a generalized

directory structure was introduced which performs at least as

well as (and often better than) either normal directory struc

tures or simple order preserving functions. Generalized direc

tories provide a continuum of functions between simple order

preserving functions at one extreme and normal directories at the

other. An area which may prove fruitful for future research is

88

the set of functions which provide a continuum between simple

order preserving functions and randomizing functions. It seeems

likely that a class of functions exists which are more order

preserving than randomizing functions yet provide a better dis

tribution of keys across address space than do simple order

preserving functions.

We described an algorithm for creating generalized directories

which requires only a single pass over the data relation.

Several experiments using the algorithm on a variety of data were

described. These experiments indicate that for nearly uniform

data, a generalized directory can be produced which requires only

a small fraction of the number of parameters in a normal direc

tory. For non-uniform data, a large reduction in directory size

is possible if additional space is available and if some amount

of page overflowing is allowed.

Next, the question of reorganization of directory structures was

considered. Under a wide variety of circumstances, static direc

tory structures were found to be superior to dynamic (continually

reorganizing) structures. The reorganization of generalized

static directories seems to be another promising area for future

work. Since generalized directories are defined in segments, it

appears that a method of partial reorganization could be devised.

In such a scheme, only those segments of the directory which were

in need of reorganiztion would be affected (i.e. only part of the

directory would be modified).

89

6.2 Auxiliary Structures

In chapter 4 we were interested in finding information which

could be stored in auxiliary relations which would be useful in

speeding access to data relations. The approach used was to

start with the simplest element of the query, the attribute, and

work toward successively more complex pieces of the query, at

each step considering an auxiliary structure to speed processing

of that step. Secondary indices on simple attributes and attri

bute functions were found to be useful and easily maintainable.

Combined indices are useful as an alternative to list processing

techniques on several simple indices. Multi-relation predicates

are costly to update but may be useful in retrieve-only situa

tions where the predicate greatly restricts the cross product

space of the relations involved. A more detailed evaluation of

the tradeoffs involved with multi-relation links is currently

under way [STON75]. An interesting question to consider in this

context is whether a network data base foundation can be used as

a basis for implementing an efficient relational system.

Also in chapter 4, a method of reusing aggregation information

was introduced which requires very little overhead.

6.3 Storage Structure Selection Strategy

The first thing which must be realized when attempting to auto

mate the selection of storage structures is the great complexity

90

of the problem. The approach that we have taken is to start with

a small part of the problem, secondary key selection, and build

upon it. A more widely applicable model of queries than that

previously used was presented which resulted in a cost function

that provides improved secondary index selection. A method for

obtaining the parameters of the model was described in terms of a

set of statistical relations and the queries necessary to extract

the desired parameters. Extensions to the selection process were

described for attribute function indices, primary key selection

and primary storage structure type selection (i.e. randomized or

directory). The cost of the selection process was found to be

reasonable when a small to moderate number of keys were under

consideration. When there are a large number of keys to be con

sidered, it appears that heuristics are required. One such

heuristic was suggested which is an incremental selection pro

cess. However, much more work is needed in developing good al

gorithms which use a more accurate model of the data base and

limit substatially the number of possible solutions tested.

Finally a method was described to monitor the performance of the

key selection process and remove poorly performing secondary

indices. This too is an area in which more work is required.

There must be methods to measure the performance of each storage

structure in order that poorly performing structures can be iden

tified.

We have taken a first step in examining the alternatives for

/&

91

storage structures to support a relational data •base system.

Many assumptions have been made in order to make this complex

problem tractable. The need now is for extensions which provide

a more accurate reflection of the data base environment.

92

APPENDIX A

QUEL

QUEL (QUEry Language) has points in common with Data

Language/ALPHA [CODD71], SQUARE [BOYC73] and SEQUEL [CHAM74] in

that it is a complete [C0DD72] query language which frees the

programmer from concern for how data structures are implemented

and what algorithms are operating on stored data. As such it

facilitates a considerable degree of data independence [STON74b].

The sample relation from chapter one is used in the following

set of examples which illustrate the QUEL language. For a de

tailed description of the language see [HELD75a] and for informa

tion on using the language in INGRES see [STON75a, ZOOK75].

A QUEL interaction includes at least one RANGE statement of the

form:

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables which

will be used as arguments for tuples. These are called TUPLE

VARIABLES. The purpose of this statement is to specify the rela

tion over which each variable ranges.

Moreover, an interaction includes one or more statements of the

form:

Command Result-name(Target-list)

«**

93

WHERE Qualification

Here, Command is either RETRIEVE, APPEND, REPLACE, or DELETE.

For RETRIEVE and APPEND, Result-name is the name of the relation

which qualifying tuples will be retrieved into or appended to.

For REPLACE and DELETE, Result-name is the name of a tuple vari

able which, through the qualification, identifies tuples to be

modified or deleted. The Target-list is a list of the form

Result-domain = Function, ...

Here, the Result-domain's are domain names in the result relation

which are to be assigned the value of the corresponding function.

The following suggest valid QUEL interactions. A complete

description of the language is presented in [HELD75a].

Example A. 1 Find the age of employee Jones

RANGE OF E IS EMPLOYEE

RETRIEVE INTO W(AGE = 1975 - E.BIRTH)

WHERE E.NAME = 'Jones'

Here, E is a tuple variable which ranges over the EMPLOYEE rela

tion and all tuples in that relation are found which satisfy the

qualification E.NAME = 'Jones'. The result of the query is a new

relation, W, which has a single attribute, AGE, that has been

calculated for each qualifying tuple. If the result relation is

omitted, qualifying tuples are printed on the user's terminal.

Also, in the Target-list, the 'Result-domain =' may be omitted if

Function is of the form Variable.Attribute (i.e. NAME = E.NAME

94

may be written as E.NAME - see example A.6).

Example A.2 Insert the tuple (Jackson, candy, 13000, Baker,

1945, 1975) into EMPLOYEE.

APPEND TO EMPLOYEE(NAME = 'Jackson', DEPT = 'candy', ^

SALARY = 13000, MGR = 'Baker',

BIRTH = 1945, START = 1975)

Here, the result relation EMPLOYEE is modified by adding the

indicated tuple to the relation.

Example A.3 Delete the information about employee Jackson.

RANGE OF E IS EMPLOYEE

DELETE E WHERE E.NAME = 'Jackson'

Here, the tuples corresponding to all employees named Jackson are

deleted from EMPLOYEE.

Example A.4 Give a 10 percent raise to Jones

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1 * E.SALARY)

WHERE E.NAME = 'Jones'

Here, E.SALARY is to be replaced by 1.1*E.SALARY for those tuples

in EMPLOYEE where E.NAME = 'Jones'. (Note that the keywords IS

and BY may be used interchangeably with 'r' in any QUEL state

ment.)

't

95

Also, QUEL contains aggregation operators including COUNT, SUM,

MAX, MIN, AVG and the set operator SET. Two examples of the use

V of aggregation follow.

*

Example A.5 Replace the salary of all toy department employees

by the average toy department salary.

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY AVG(E.SALARY WHERE E.DEPT = 'toy'))

WHERE E.DEPT = 'toy'

Here, AVG is to be taken of the salary attribute for those tuples

satisfying the qualification E.DEPT r 'toy'. Note that

AVG(E.SALARY WHERE E.DEPT= 'toy') is scalar valued and conse

quently will be called an AGGREGATE. More general aggregations

are possible as suggested by the following example.

Example A.6 Find those departments whose average salary

exceeds the company wide average salary, both averages to be tak

en only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPLOYEE

RETRIEVE INTO HIGHPAY(E.DEPT)

\ WHERE AVG(E.SALARY BY E.DEPT WHERE E.SALARY > 10000)

>

AVG(E.SALARY WHERE E.SALARY > 10000)

Here, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is an

AGGREGATE FUNCTION and takes a value for each Value of E.DEPT.

96

This value is the aggregate AVG(E.SALARY WHERE E.SALARY>10000

AND E.DEPT = value). The qualification expression for the state

ment is then true for departments for which this aggregate func

tion exceeds the aggregate AVG(E.SALARY WHERE E.SALARY> 10000).

°J

97

APPENDIX B

Decomposition

The basic mechanism of processing statements in QUEL now follows.

All update statements are processed into one or more RETRIEVE

statements followed by a sequence of calls to the access methods

(see Appendix C) to insert, delete or modify tuples. A RETRIEVE

statement with more than one tuple variable is decomposed into a

sequence of RETRIEVE statements each with a single tuple variable

as described in [HELD75a]. The mechanism used is one of "tuple

substitution". Here, we describe the algorithm for aggregate

free interactions

Consider a query involving one or more tuple variables X =

(X-,...,XN) with a range R..X...XR... Denote the qualification by

Q(X) and suppose Q(X) is expanded into conjunctive normal form

so that it consists of clauses connected by AND with each clause

containing atomic formulas connected by OR. An atomic formula

can contain only the boolean operator NOT.

Algorithm

1. stop if query has only a single variable

2. For each variable, say X1 with Range R^ collect all

attributes which depend on X1 and all clauses in the qualif

ication which depend only on X-. Say D..,...,Dk are the

attributes and the clauses put together yield Q1(X).

Issue the query:

RANGE OF X1 IS R

RETRIEVE INTO R^.DI,... ,X1 .Dk)

98

WHERE QKX^

3. Replace the range R1 in the original query by R'. The

purpose of 2. and 3. is to limit each tuple variable to as

small a relation as possible before continuing to step 4.

4. Take the variable with the fewest tuples in its range and

substitute in turn the values of its tuples. This reduces

the number of variables by one. After each substitution

repeat 1.-3.

Step 4 is called tuple substitution and represents the most

time-consuming step for multivariable queries. The choice of

which variable to substitute for is critical. Our criterion (the

one with the fewest tuple variables) is by no means optimal in

general.

In this manner a multivariable query is reduced to a sequence of

one-variable queries and calls to the access methods to obtain

4
tuples for substitution. A one variable query is interpreted by

a "one-variable query processor" (OVQP). This processor accesses ^

tuples from the indicated relation one at a time, checks if the

qu.il iPication is true for that tuple and if so assembles the tar

get list attributes and inserts them into the result relation.

99

Besides interpreting the qualification and target list, this pro

cessor must:

1. ascertain if any secondary indices [STON74c] can profit

ably be used to speed access.

2. attempt to restrict the number of tuples accessed to less

than all tuples in the relation.

The above description of the decomposition process works for any

aggregate free QUEL query. The actual decomposition process used

in INGRES uses several other techniques to break apart queries in

such a way as to reduce the processing complexity.

100

APPENDIX C

Access Methods

To find all the tuples in a relation which satisfy the indicated

qualification, the one variable query processor (OVQP) must ei

ther access and test all tuples in the relation or else must

determine that only a subset of the relation need be tested with

knowledge that the remainder of the relation can not satisfy the

qualification. One way the OVQP might make such a determination

is indicated in the following example. If the EMPLOYEE relation

is sorted on increasing values of the SALARY domain, then in pro

cessing the query:

RANGE OF E IS EMPLOYEE

RETRIEVE E.NAME

WHERE E.SAURY < 10000 AND E.MGR = 'Jones'

the OVQP can stop testing tuples as soon as a tuple is encoun

tered which has the SALARY domain greater than 10000. Depending

on the particular storage structure which is in use for a given

relation and the domains specified in the qualification, the OVQP

may or may not be able to limit the number of tuples examined. J

Instead of having the OVQP and higher level software be concerned

v/ith this problem, a relational access method interface language

(AMI) has been implemented. This language frees higher level

software from details of actual storage structures and thus al

lows restructuring of relations for more efficient operation as

&

101

interaction conditions change. It has points in common with Gam

ma Zero [BJOR73], XRM [LORI74], and ZETA [CZAR75]. Relation

access and update through AMI is accomplshed in the following

:. manner.

1. A scan of a relation is begun by using the FIND statement to

supply any information in the qualification which might be

of help in limiting the range of the scan. FIND examines

the information provided, and in conjunction with a

knowledge of the storage structure used to implement the

relation, determines starting and ending points for the

scan.

2. Begining from the starting point tuples are accessed, one at

a time, using the GET statement until the ending point is

reached where GET returns an end of scan condition. The

programmer may not assume that the tuples will be returned

in any particular order.

3. Each tuple has a unique identifier called the tuple id (TID)

which is returned with the tuple. This tuple id may be used

to refer back to the tuple for re-access or updating (usual-

| ly done after the qualification has been tested for the

tuple).

4. INSERT, DELETE, and REPLACE statements are supported for all

storage structures and respectively, add one new tuple to a

relation, remove one tuple, or change the value of an exist-

102

ing tuple. When using REPLACE or DELETE the user must sup

ply a TID to indicate which tuple is to be affected.

5. Apart from scan retrieval, GET also supports direct re

trieval of tuples given a TID. This function is used in

supporting secondary indices. Briefly, a secondary index is

useful for limiting the number of tuples accessed in cases

where a value for the primary domain (i.e. the domain used

for ordering, for example SALARY above) is not present in

the qualification. A secondary index is a relation which

has one or more domains from the original relation along

with a pointer domain which is an identifier of a tuple in

the indexed relation. For instance, if SALARY is the order

ing domain in EMPLOYEE it might be useful to have a secon

dary index on NAME. To build the secondary index all that

is needed is a query of the form:

RANGE OF E IS EMPLOYEE

RETRIEVE INTO NAMEINDEX(E.NAME,PTRrE.TID)

This relation may then be stored in a structure which has

NAME as the primary (ordering) domain. When a query on the

EMPLOYEE relation specifies a value for NAME, the OVQP may

access tuples in the NAMEINDEX relation and use the domain

PTR as a TID to be supplied to GET which will return the

corresponding tuple in the EMPLOYEE relation. Although two

relations must be used to access tuples, a costly scan of

the whole EMPLOYEE relation may be avoidable.

103

For AMI to support a new storage structure the following must be

done.

1. A correspondence must be defined between a TID and a physi

cal position in the structure.

2. There must be a linear ordering defined on TID's so that

successive calls to GET will return all tuples in the rela

tion.

3. FIND, GET, REPLACE, DELETE, and INSERT functions must be

implemented for the new structure.

104

References

ASTR74 Astrahan, M.M. & Chamberlin, D.D., "Implementation of a

Structured English Query Language", IBM Research Report

RJ-1464, Oct. 1974.

Bachman, C., "The Data Set View vs. The Relational

View", Proc. 1974 ACM-SIGFIDET Workshop on Data Descrip

tion, Access and Control, Ann Arbor, Mich., May 1974.

Bayer, R. & McCreight, E., "Organization and Maintenance

of Large Ordered Indices", Proc. 1970 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Hous

ton, Texas, Nov. 1970.

Bjorner, D. & Codd, E.F. & Deckert, I.L. & Traiger,

I.L., "The Gamma Zero n-ary Relational Data Base Inter

face: Specifications of Objects and Operations", IBM San

Jose Research Report RJ1200, Apr. 1973.

Blier, R.E., "Treating Hierarchical Data Structures in

the SDC Time-Shared Data Management System (TDMS)",

Proc. ACM 22nd Natl. Cbnf., pp. 41-59, 1967.

Blier, R. & Vorkaus, A., "File Organization in the SDC

Time Shared Data Management System (TDMS)", Proc. 1968

IFIP Congress, 1968.

BOYC73 Boyce, R. & et. al., "Specifying Queries as Relational

BACH74

BAYE70

BJOR73

BLIE67

BLIE68

*•»

105

Expressions: SQUARE", IBM Research, San Jose, Ca., RJ

1291, Oct. 1973.

CHAM74 Chamberlin, D. & Boyce, R., "SEQUEL: A Structured

Ehglish Query Language", Proc. 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Ann

Arbor, Mich., May 1974.

CHAM75 Chamberlin, D.D. & Gray, J.N., & Traiger, I.L., "Views,

Authorization and Locking in a Relational Data Base Sys

tem", Proc. 1975 NCC, pp. 425-430, AFIPS Press, May

1975.

C0DA71a Committee on Data Systems Languages, "CODASYL Data Base

Task Group Report", ACM, New York, 1971.

CODD70 Codd, E.F., "A Relational Model of Data for Large Shared

Data Banks", CACM, Vol. 13 No. 6, pp. 377-387, June,

1970.

C0DD71 Codd, E.F., "A Data Base Sublanguage Founded on the

Relational Calculus", Proc. 1971 ACM-SIGFIDET Workshop

on Data Description, Access and Control, San Diego, CA,

Nov. 1971.

C0DD71b Codd, E.F., "Normalized Data Base Structures: A Brief

Tutorial", Proc' 1971 ACM-SIGFIDET Workshop on Data

Description, Access and Control, San Diego, CA, Nov.

1971.

C0DD72 Codd, E.F., "Relational Completeness of Data Base Sub

languages", Courant Computer Science Symposium 6, May

1972.

C0DD72a

CODD74

CODD74a

CZAR75

DATE74

DEUT75

FEHR75

GOTT75

106

Codd, E.F., "Further Normalization of the Data Base

Relational Model", Courant Computer Science Symposium 6,
Prentice-Hall May 1971.

Codd, E.F. & Date, C.J., "Interactive Support for Non-

Programmers, The Relational and Network Approaches",

Proc. 1974 ACM-SIGFIDET Workshop on Data Description,

Access and Control, Ann Arbor, Mich., May 1974.

Codd, E.F., "Seven Steps to Rendevous with the Casual

User", Proc. IFIP TC-2 Working Conference on Data Base

Management Systems, Cargese, Corsica, Apr. 1974.

Czarnik, B. & Schuster, T. & Tsichritzis, D., "ZETA: A

Relational Datat Base Management System", Proc. ACM-

PACIFIC 75 Conf., pp. 21-25, Apr. 1975.

Date, C.J. & Codd, E.F., "The Relational and Network

Approaches: Comparison of the Aplication Programming

Interfaces", Proc. 1974 ACM-SIGFIDET Workshop on Data

Description, Access and Control, Ann Arbor, Mich., Nfey

1974.

Deutscher, R.F. & Tremblay, J.P., & Sorenson, P.G.,

"Distribution-Dependant Hashing Functions and their

Characteristics", Proc. 1975 ACM-SIGMOD Workshop, May

1975.

Fehr, E.S., "A Cost Study of Directory Structures for

Ordered Files", Master's Thesis, University of Texas at

Austin, Jan. 1975.

Gottlieb, D. et. al., "A Classification of Compression

r

#

*•>

107

Methods and their Usefulness in a Large Data Processing

Center", Proc. 1975 NCC, pp. 453-458, AFIPS Press, May

1975.

HELD75a Held, G.D. & Stonebraker, M. & Wong, E., "INGRES - A

Relational Data Base Management System", Proc. 1975 NCC,

AFIPS Press, 1975.

IBM66 IBM Corp., "OS ISAM Logic", IBM, White Plains, N.Y.,

GY28-6618.

IBM70 IBM Corp., "IMS/360 Applications Description Manual",

IBM, White Plains, N.Y., GH-20-0765

KEEH74 Keehn, D.G. & Lacy, J.O., "VSAM Data Set Design Parame

ters", IBM Systems Journal, Vol. 13, No. 3, PP. 186-213,

1974.

KING74 King, W.F., "On the Selection of Indices for a File",

IBM Research RJ-1341, San Jose, Jan. 1974.

KNUT73 Knuth, D., "The Art of Computer Programming, Vol. 3",

Addison Wesley, Reading, Mass. 1973*

LORI74 Lorie, R.A., "XRM- An Extended (n-ary) Relational

Memory11, IBM Cambridge Scientific Center Tech. Rep.

320-2096, Jan. 1974.

LUCK74 Lucking, J., "Data Base Languages, in particular DDL

Development at CODASYL", Proc. 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Ann

Arbor, Mich., May 1974.

LUM70 Lum, V.Y., "Multiattribute Retrieval with Combined

Indices", CACM Vol. 13, No. 11, pp.660-665, Nov. 1970.

LUM71a

LUM73

MAUR75

MCD074

MCD075

M0RR68

MULL71

PECH75

RITC73

RIVE74

108

Lum, V.Y. & Yuen, P.S.T. & Dodd, M., "Key-to-Address

Transform Techniques: AFundamental Performance Study on

Large Existing Formatted Files", CACM Vol. 14, No. 4,

pp. 228-239, Apr. 1971.

Lum, V.Y., "General Performance Analysis of Key-to-

Address Transformation Methods Using an Abstract File

Concept", CACM Vol. 16, No. 10, pp. 603-612, Oct. 1973.

Maurer, W.D. & Lewis, T.G., "Hash Table Methods", ACM

Computing Surveys, Vol. 7, Ito. 1, pp. 5-20, Mar. 1975.

McDonald, N. & Stonebraker, M. & Wong, E., "Preliminary

Specification of INGRES", University of California,

Electronics Research Laboratory, Memorandum No.

M435-436, April 1974.

McDonald, N. & Stonebraker, M., "Cupid — The Friendly

Query Language", Proc. ACM-Pacific 75 Conf., Apr. 1975.

Morris, R., "Scatter Storage Techniques", CACM Vol. 11,

No. 1, pp. 38-44, Jan 1968.

Mullin, J., "Retrieval-Update Speed Tradeoffs Using Com

bined Indices", CACM Vol.14, No.12, pp. 775-776, Dec.

1971.

Pecherer, R.M., "Efficient Evaluation of Expressions in

a Relational Algebra", Proc. ACM-Pacific 75 Conference,

pp. 44-49, Apr. 1975.

Ritchie, D. & Thompson, K., "The UNIX Time Sharing Sys

tem", CACM Vol. 17, No. 7, pp. 365-375, July 1974.

Rivest, R.L., "Analysis of Associative Retrieval Algor-

<%

9-

\

V

109

. ithms", IRIA Report No. 54, Feb. 1974.

ROTH74a Rothnie, J.B. & Lozano, T., "Attribute Based File Organ

ization in a Paged Memory Environment", CACM Vol. 17,

No. 2, Feb. 1974.

SCHK74 Schkolnick, M., "The Optimal Selection of Indices for

Files", Research Report, Department of Computer Science,

Carnegie-Mellon Univ., Nov. 1974.

SCHK75 Schkolnick, M., "The Optimal Selection of Secondary

Indices for Files", Proc. 1975 SIGMOD Workshop, May

1975.

SIBL74 Sibley, E., "On the Equivalence of Data Base Systems",

Proc. 1974 ACM-SIGFIDET Workshop on Data Description,

Access and Control, Ann Arbor, Mich., May 1974.

SMIT75 Smith, J.M. & Chang, P.Y.T., "Optimizing the Performance

of a Relational Data Base Interface", Proc. 1975 SIGMOD

Workshop, May 1975.

ST0N72 Stonebraker, M., "Retrieval Efficiency Using Combined

Indices", Proc. 1972 ACM-SIGFIDET Workshop on Data

Description, Access and Control,

STON74 Stonebraker, M. & Wong, E., "Access Control in a Rela

tional Data Base Management System by Query Modifica

tion", Proc. 1974 ACM National Conference, San Diego,

Ca., Nov. 1974

STON74b Stonebraker, M, "A Functional View of Data Indepen

dence", Proc. 1974 ACM-SIGFIDET Workshop on Data

Description, Access and Control, Ann Arbor, Mich., May

110

1974.

STON74c Stonebraker, M., "The Choice of Partial Inversions and

Combined Indices", International Journal of Computer and

Information Sciences, Vol.3, No.2, 1974.

STON74d Stonebraker, M., "High Level Integrity Assurance in

Relational Data Base Management Systems", Univ. of Cali

fornia, Berkeley, ERL Mem. No. M473, Aug. 1974.

STON75 Stonebraker, M. & Held, G.D., "Networks, Hierarchies,

and Relations in Data Base Management Systems", Proc.

ACM-Pacific 75 Conf., Apr. 1975.

STON75a Stonebraker, M.R., "Getting Started in INGRES - A Tu

torial", University of California, Berkeley, ERL Mem.

No. ERL-M518, Apr. 1975.

STON75b Stonebraker, M.R., "Using a Network Foundation for a

Relational Data Base System", To appear.

TSIC75 Tsichritzis, D., "A Network Framework for Relational

Implementation", University of Toronto, Computer Systems

Research Group Report CSRG-51, Feb. 1975

WHIT74 Whitney, V.K.M., "Relational Data Management Implementa

tion Techniques", Proc. 1974 ACM-SIGFIDET Workshop on

Data Description, Access and Control, Ann Arbor, Mich.,

May 1974.

WHIT75 Whitt, J.D. & Sullenberger, A.G., "The Algorithm Sequen

tial Access Method: An Alternative to Index Sequential",

CACM Vol. 18, No. 3, PP. 174-176, Mar. 1975.

WONG75 Wong, E., "Decomposition - Query Processing in INGRES",

V

111

Private Communication, May 1975.

ZOOK75 Zook, W. & Youssefi, K. & Kreps, P. & Held, G. & Ford,

J., "INGRES - Reference Manual", University of Califor

nia, Berkeley, ERL Mem. No. ERL-M519, Apr. 1975.

112

Related Bibliography

ASH68 Ash, W. & Sibley, E.H., "TRAMP, An Interpretive Associa

tive Processor with Deductive Capabilities", Proc. ACM

23rd Natl. Conf., Brandon Systems Press, Princeton N.J.,

pp.143-156, 1968.

ASTR75 Astrahan, M.M. & Lorie, R.A., "SEQUEL - XRM, A Relation

al System", Proc. ACM-PACIFIC 75 Conf., pp. 34-38, Apr.

1975.

BACH65 Bachman, C.W., "Software for Random Access Processing",

Datamation, pp. 36-41, Apr. 1965.

BACH73 Bachman, C.W., "The Programmer as Navigator", CACM Vol.

16, No. 11, pp.653-658, Nov. 1973.

Baer, R.M. & Brock, P., "Natural Sorting over Permuta

tion Spaces", Math. Comp. Vol. 22, pp. 385-410, 1968.

Bell, C.J., "A Relational Model for Information Re

trieval and the Processing of Linguistic Data", IBM

Research Report RC1705, Yorktown Heights, New York, Nov.

1966.

BOYC73a Boyce, R. & Chamberlin, D., "Using a Structured English

Query Language as a Data Definition Facility", IBM

Research Laboratory, San Jose, Ca. RJ 1318, Dec. 1973.

BRAC72 Bracchi, G., "A Language for a Relational Data Base

Management System", Proc. 6th Annual Princeton Conf. on

BAER68

BELL66

4

V

113

Info. Science and Systems, Mar. 1972.

BR0W71 Browne, P. & Steinauer, D., "A Model for Access Con

trol", Proc. 1971 ACM-SIGFIDET Workshop on Data Descrip

tion, Access and Control, San Diego, CA, Nov. 1971.

BUCH63 Bucholz & Werner, "File Organization and Addressing",

IBM Systems Journal, Vol. 2, pp. 86-111, June 1973*

CHEA72 Chiang, T.C., "A File Structure for Large Data Bases",

Ph.D. Dissertation, Univ. of California, Berkeley, 1972.

CHIL68 Childs, D.L., "Description of a Set Theoretic Data

Structure", Proc. 1968 FJCC Part 1, pp. 557-564

C0DA71 Committee on Data Systems Languages, "Feature Analysis

of Generalized Data Base Management Systems", ACM, New

York May 1971.

CODA74 Committee on Data Systems Languages, "Data Description

Language", Handbook #112, U.S. Department of Commerce,

January, 1974.

CODD74b Codd, E.F., "Recent Investigations in Relational Data

Base Systems", Information Processing 74, North Holland,

Amsterdam

C0LL72 Collmeyer, A., "Implications of Data Independence on the

Architecture of Data Base Management Systems", Proc.

1972 ACM-SIGFIDET Workshop on Data Description, Access

and Control,

COPE74 Copeland, G.P. & Su, S.Y.W., "A High Level Data Sub

language for a Context-addressed Segment-sequential

Memory", Proc. 1974 ACM-SIGFIDET Workshop on Data

114

Description, Access and Control, Ann Arbor, Mich., May

1974.

DATE71 Date, C.J. & Hopewell, P., "File Definition and Logical

Data Independence", Proc. 1971 ACM-SIGFIDET Wbrkshop on

Data Description, Access and Control, San Diego, CA,

Nov. 1971.

DATE71a Date, C.J. & Hopewell, P., "Storage Structure and Physi

cal Data Independence", Proc. 1971 ACM-SIGFIDET Workshop

on Data Description, Access and Control, San Diego, CA,

Nov. 1971.

DATE72 Date, C.J., "Relational Data Base Systems: A Tutorial",

Proc. of the C0INS-72 Symposium, Dec. 1972.

DEL073 Delobel, C. & Casey, R.G., "Decomposition of a Data Base

and the Theory of Boolean Switching Functions", IBM

Journal of Research and Development, Sep. 1973.

ESWA73 Eswaren, K., "Consecutive Retrieval Information System",

Ph.D. Dissertation, Univ. of California, Berkeley, 1973.

EVER74 Everest, G., "Concurrent Update Control and Data Base

Integrity", 1974 IFIP Conference on Data Base Management

Systems, Cargese Corsica, April 1974.

FARL75 Farley, J.H.G. & Schuster, S.A., "Query Execution and

Index Selection for Relational Data Bases", University

of Toronto Technical Report CSG-53, March 1975.

FELD69 Feldman, J.A. & Rovner, P.D., "An Algol-Based Associa

tive Language", CACM Vol.12, No.8, pp.439-449, Aug.

1969.

* 9

\}

115

FREI70 Friedman, T., "The Authorization Problem in Shared

Files", IBM Systems Journal Vol. 9 No. 4, 1970.

G0LD70 Goldstein, R.C. & Strnad, A.L., "The MacAims Data

Management System", Proc. 1970 ACM-SIGFIDET Workshop on

Data Description, Access and Control, Houston, Texas,

Nov. 1970.

GRIE71 Gries, D., "Compiler Construction for Digital Comput

ers", Wiley & Sons, New York 1971, PP. 315-317

GUST71 Gustafson, R.A., "Elements of the Randomized Combina

torial File Structure", Proc. Symp. on Information

Storage & Retrieval, ACM, pp. 163-174, Apr. 1971.

HEAT71 Heath, I.J., "Unacceptable File Operations in a Rela

tional Data Base", Proc. 1971 ACM-SIGFIDET Workshop on

Data Description, Access and Control, San Diego, CA,

Nov. 1971.

HELD75 Held, G.D. & Stonebraker, M., "Storage Structures and

Access Methods in the Relational Data Base Management

System, INGRES", Proc. ACM-Pacific 75 Conf., Apr. 1975.

HOUS75 Housel, B.C. et. al., "DEFINE: A Non-Procedural Data

Description Language for Defining Information Easily",

Proc. ACM-PACIFIC 75 Conf., pp. 62-70, Apr. 1975.

HSIA70 Hsiao D. & Harray, F., "A Formal System for Information

Retrieval from Files", CACM, Vol. 13, No. 2, pp. 67-73,

Feb. 1970.

ISAA56 Isaac, E.J. & Singleton, R.C, "Sorting by Address Cal

culation", JACM Vol.3, No. 2, pp. 169-174, Feb. 1956.

116

JOHN74 Johnson, S.C., "YACC, Yet Another Compiler-Compiler",

UNIX Programmer's Manual, Bell Telephone Labs, Mirray

Hill, N.J., July 1974.

JORD75 Jordan, D.E., "Implementing Production Systems with

Relational Data Bases", Proc. ACM-PACIFIC 75 Conf.,

PP.39-43, Apr. 1975.

KERN74 Kernighan, B.W., "A Tutorial Introduction to the ED Text

Editor", UNIX Programmer's Manual, Bell Telephone Labs,

Murray Hill, N.J. July 1974

KN0T71 Knott, G.D. , "Expandable Open Addressing Hash Table

Storage and Retrieval", Proc. 1971 ACM-SIGFIDET Workshop

on Data Description, Access and Control, San Diego, CA,

Nov. 1971.

KNOT74 Knott, G.D., "Hashing Functions", British Computer Jour

nal

KNUT69 Knuth, D., "The Art of Computer Programming, Vol 1.",

Addison Wesley, Reading, Mass. 1969.

KRON65 Kronmal, R.A. & Tarter, M.E., "Cumulative Polygon

Address Calculation Sorting", Proc. 20th National ACM

Conf., ACM, pp. 376-384, 1965.

LEFK69 Lefkovitz, D., "File Structures for On-Line Systems",

Spartan Press, Vfeshington, D.C., 1969.

LEVI65 Levien, R.E. & Maron, M.E., "Relational Data File: A

Tool for Mechanized Inference Execution and Data Re

trieval", Rand Corp. Mem. RM-4793-PR, Santa Monica, CA,

Dec. 1965.

V*

?*

117

LEVI67 Levien, R.E. & Maron, M.E., "A Computer System for

Inference Execution and Data Retrieval", CACM Vol. 10,

No. 11, pp. 715-721, Nov. 1967.

LEVI69 Levien, R.E., "Relational Data File: Experience with a

System for Propositional Data Storage and Inference Exe

cution", Rand Corp. Mem. RM-5947-PR, Santa Monica, CA,

Apr. 1969.

LORI70 Lorie, R.A. & Symonds, A.J., "A Schema for Describing a

Relational Data Base", Proc. 1970 ACM-SIGFIDET Workshop

on Data Description, Access and Control, Houston, Texas,

Nov. 1970.

L0WE68 Lowe, T.C., "The Influence of Data Base Characteristics

and Usage on Direct Access File Organization", JACM

Vol.15, No.4, pp.535-548, Oct. 1968.

LUM71 Lum, V.Y. & Ling, H., "An Optimization Problem on the

Selection of Secondary Keys", Proc. ACM Natl. Conf.

1971, PP.349-356.

MCGE69 McGee, W.C., "Generalized File Processing", Annual Re

view in Automatic Programming Vol. 5, No. 13», pp.

77-l49,Pergamon Press, New York, 1969.

MCIN73 Mcintosh, S. & Griffel, D., "Data Management for a Penny

a Byte", Computer Decisions, May 1973«

NIEV74 Nievergelt, J., "Binary Search Trees and File Organiza

tion", ACM Computing Surveys Vol. 6, No. 3, pp. 195-207,

Sept. 1974.

N0TL72 Notley, M.G., "The Peterlee IS/1 System", IBM UK Scien-

OLLE68

118

tific Centre Report UKSC-0018, Mar. 1972.

Olle, T.W., "A Non-Procedural Language for Retrieving

Information from Data Bases", IFIP Congress, Edinburgh,

North-Holland, Amsterdam, Aug. 1968.

0WEN71 Owens, R., "Evaluation of Access Authorization Charac

teristics of Derived Data Sets", Proc. 1971 ACM-

SIGFIDET Workshop on Data Description, Access and Con

trol, San Diego, CA, Nov. 1971.

0WEN71b Owens, R., "Primary Access Control in Large Scale Time-

Shared Decision Systems", Project MAC Report TR-89,

M.I.T., Cambridge, Mass., July 1971.

PALE70 Palermo, F., "A Quantitative Approach to the Selection

of Secondary Indices", Formatted File Organization Tech

niques, IBM Research, San Jose, Mar. 1970.

PALE72 Palermo, E.P., "A Data Base Search Problem", Proc. 4th

International Symposium on Computers and Information

Science, Miami Beach, Dec. 1972.

RAMA71 Ramamoorthy, C.V. & Blevins, P.R., "Arranging Frequency

Dependent Data on Sequential Memories", Proc. 1971 SJCC,

AFIPS, Vol. 38, pp. 545-556, 1971.

RAMI71 , "RAMIS - Users Manual", Mathematica, Inc., Princeton,

New Jersey.

RISS73 Rissanen, J. & Delobel, C, "Decomposition of Files, a

Basis for Data Storage and Retrieval", IBM San Jose

Research Report RJ-1220, May 1973.

RITC74 Ritchie, D.M., "C Reference Manual", UNIX Programmer's

vf

4

4

%

119

Manual, Bell Telephone Labs, Murray Hill, N.J. July

1974.

RITC74a Ritchie, D. & Thompson, K., "UNIX Programmer's Manual",

Bell Telephone Labs, Murray Hill, N.J. June 1975

R0TH72 Rothnie, J.B., "The Design of Generalized Data Manage

ment Systems", Ph.D. Dissertation, Dept. of Civil Engr.,

M.I.T., 1972.

R0TH74 Rothnie, J., "An Approach to Implementing a Relational

Data Base Management System", Proc. 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Ann

Arbor, Mich., May 1974.

SEVE72 Severence, D.G., "Some Generalized Modeling Structures

for Use in Design of File Organizations", Ph.D. Disser

tation, Univ. of Michigan, 1972.

SEVE74 Severance, D.G., "Identifier Search Mechanisms: A Survey

and Generalized Model", ACM Computing Surveys Vol. 6,

No. 3, PP.175-194, Sept. 1974.

SIBL73 Sibley, E. & Taylor, R., "A Data Definition and Mapping

Language", CACM Vol.16, No.12, Dec. 1973.

STEU74 Steuert, J. & Goldman, J., "The Relational Data Manage

ment System: A Perspective", Proc. 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Ann

Arbor, Mich., May 1974.

SYM070 Symonds, A.J. & Lorie, R.A., "A Schema for Describing a

Relational Data Base", Proc. 1970 ACM-SIGFIDET Workshop

on Data Description, Access and Control, Houston, Texas,

TAHA72

TART68

WAGN73

WEIS69

WHIT72

W0NG71

ZL0075

120

Nov. 1970.

Tahani, V., "A General Conceptual Framework for Informa

tion Retrieval Systems", Ph.D. Dissertation, Univ. of

California, Berkeley, 1972.

Tarter, M.E. & Kronmal, R. A., "Estimation of the Cumu

lative by Fourier Series Methods and Application to the

Insertion Problem", Proc. 23rd National ACM Conference,

ACM, pp. 491-497, 1968.

Wagner, R.E., "Indexing Design Considerations", IBM Sys

tems Journal, Vol. 12, No. 4, pp. 351-367, 1973.

Weissman, C., "Security Controls in the ADEPT-50 Time

Sharing System", Proc. 1969 Fall Joint Computer Confer

ence, Nov. 1969.

Whitney, V.K.M., "RDMS: A Relational Data Management

System", Report CS 80, General Motors Research, Warren,

Mich., Dec. 1972.

Wong, E. & Chiang, T., "Canonical Structure in Attribute

Based File Organization", CACM Vol.14, No.9, Sep. 1971.

Zloof, M.M., "Query by Example", Proc. 1975 NCC, pp.

431-438, AFIPS Press, May 1975.

;

	Copyright notice 1975
	ERL-533
	ERL-533 (1 of 2)
	ERL-533 (2 of 2)

