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Abstract

A generalized method of tearing, or diakoptics, for solving large-

scale networks is derived. The idea of diakoptics is viewed as simply

the partition of branches and the Kirchhoff laws. A solution algorithm

which incorporates the sparse matrix techniques is presented. A generic

condition under which the algorithm can be applied is given. The

algorithm can be implemented utilizing parallel computation scheme or

series computation scheme, if the network can be torn apart. The

computational comparison between the diakoptic analysis and the

conventional analysis is studied.
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I. Introduction

Consider a network o\| consisting of many subnetworks

°^1,0^2' ••*»c^'ic interconnected together by the branches t1, t9, ..., t
(Fig. 1). Such networks are common in practice, e.g. large-scale

interconnected power systems. We may view the set of branches t.,...,t

as having the property that their removal tears the network apart into

several independent subnetworks. The orgiinal suggestion of the method

of tearing, or "diakoptics", is to solve the network problem in two

steps: (i) subnetwork level: one tears away the branches t,, t2, ..., t

and solves the subnetworks;^,o\f2> •••,cAlk independently, (ii)
interconnection level: one somehow combines these results with the

branch variables associated with t^, t2, .... t. to obtain the overall

solution.

The idea of tearing was introduced by Kron [1]. He applied the

concept to solve a certain class of networks. His derivation of the

approach is based on the concepts from tensor analysis. Happ [2] has

expanded the theory and applications along the same line. Kron's derivation

is obscure. Branin [3] has attempted to clarify the concepts. Recently

Chua and Chen [4] have shown that diakoptics can be derived from the

generalized hybrid analysis.

Kron introduced the idea of diakoptics to solve a network by first

removing some branches. We present a simple derivation to remove the

mystery caused by the previous derivations of diakoptics. We view the.

basic idea of diakoptics as merely the partition of the branches and the

Kirchhoff laws. Our version of diakoptics is more general and includes

all the previous results as special cases.
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Diakoptics was developed as an approach to solve large-scale

networks. In practice large-scale networks are usually sparsely

connected. We present a solution algorithm for diakoptic analysis

which incorporates sparse matrix technqiues [5,6]. The solution algorithm

can be applied provided a generic condition on the network is satisfied.

If the network may be "torn apart," then the algorithm can be carried

out using parallel computation scheme or series computation scheme.

It has been questioned as to whether the diakoptic approach always

saves computation, if the sparse matrix techniques are employed. We use

an example to demonstrate that as to the total number of computation,

diakoptics may or may not save. We also present a special case where

diakoptics does not save computation.

II. Diakoptic node analysis

Let (Jvf be a connected network having (n+1) nodes, v = {nQ,n..,... ,n },

and b branches, 6 = {b-, ,b«,... ,b,}, with linear time-invariant elements

and sinusoidal sources. Consider the network (Jv) in the sinusoidal steady-

state. Phasor notations will be used throughout this paper. Let the

branch voltages and currents be denoted by v = (v, ,v2>•••>v, ) and

i = (i., ,i«,.. .i, ), respectively. In the node analysis [7] one node is
2

selected as the datum node. The n node-to-datum voltages V = (V-^V^,...»V)

are used as network variables. The basic idea of tearing is to discriminate

3
certain branches, henceforth called tearing branches, against the remaining

branches. The set of branches $ is thus partitioned into two classes,

8 and 8 . We use subscript r and t to denote quantities pertaining to

We assume that the sinusoidal steady-state response ofcJD exists. In fact,
assumption 2 guarantees it.
2
Our terminologies and most of the notations agree with ref. 7.

3
Any subset of branches may be chosen as tearing branches in our derivation.

However to achieve the computational advantages it is desired to choose
those branches whose removal will tear the network apart.
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the remaining branches and the tearing branches, respectively, e.g.,

v = (vr,vt) and i= (ir,it).

Each branch is assumed to have the general form shown in Fig. 2

[7, pp. 409-414], Each branch in general includes a voltage source v . and
Stv

a current source igk, and mutual coupling may exist between branches.

We shall however make the following assumption,which is desirable from

computational viewpoint [8, Remark 2], though it is not necessary for

the derivation.

Assumption 1 There is no mutual coupling between the tearing branches and

the remaining branches.

Let yr denote the branch admittance matrix of the remaining branches

and zfc denote the branch impedance matrix of the tearing branches. The

branch relations are expressed as:

i =i +yv -yv
r sr Jrr ;r sr

t st t t t st

Let us also partition the set of nodes v. If the removal of the

tearing branches results in many separate parts, one of them contains

the original datum node; for all the other separate parts, we pick a

5 6
node from each of them. Let v denote the set of all these nodes.

Let \>Q denote the set of all other nodes. Hence v is partitioned into

Vq and vc. We use subscript o and c to denote quantities pertaining to

4
A maximal connected subnetwork of an unconnected network is called a
separate part [7,p.387].

If a separate part contains more than one node, then the choice of the
node can be arbitrary. However it may be desirable to pick one among
the nodes which are connected by the tearing branches (See footnote 12).
c

As will be clear later, the node voltages associated with vc will be
calculated at the interconnection level, and v0 contains all the other nodes,
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v and v respectively, hence V = (V ,V ). The set of nodes that are
o c r J o c

connected only by the tearing branches is a subset of v . For our later

reference, we denote this set of nodes by v „ and denote the complement

of v o with respect to v by v ,.
c2 F c cl

The foregoing partition of branches and nodes gives rise to a

o

natural partition of the reduced incidence matrix A,

A = v

8 $pr pt

A A
r t

a afc
r t

The network variables are constrained by the Kirchhoff current law

(KCL), Kirchhoff voltage law (KVL), and the branch relations (BR). The

constraints in node analysis are expressed as follows:

(KCL)
fVr + Vt " °

la i + a,i =0

T T
v = A V + a V

c

r

"t'c

rv = A v + a V(KVL) Jr *° I
Ivt =AtV0 +.V

(BR)
{i =i +yv -yv

r sr Jr r r

v. = v . + zi,. - z^i

sr

t"st

An isolated node is a separate part.

(1)

(2)

(3)

(4)

(5)

(6)

8
The rows of A correspond to the nodes (deleting the datum) and the columns
of A correspond to the branches [7,p.417].
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We shall call the network resulted from Jj by removing all the

tearing branches and the nodes in v , the torn-network ofJU.

Remark * SuPP°se vc2 is empty.9 The KCL, KVL, and BR for the torn-
network are expressed as:

'A i =0 ,7x
(KCL) J rr (7)

(A ± = C
I r r

la i = 0r\ " u (8)

(KVL) vr =Ajvo +a^Vc (9)
(BR) ir = isr + yrvr - yrvsr (10)

The standard procedure for node analysis in this case is to substitute

(9) into (10), and then substitute the result into (7) and (8) to obtain

equations of the variables V.

Since the idea of tearing involves solving the torn network as the

first step, let us compare eqs. (7) (8) (9) (10) with (1) (2) (3) (5).

This suggests the following procedure: We substitute (3) into (5) and

then substitute the result into (1) and (2) to obtain eqs (11) and (13)

below. The remaining two equations (4) and (6) are combined into eq. (12)

below

VrArVo +Vt +VrarVc =Jo (11)

AtVo " Vt + atVc = E (12)

VA +Vt +VrarVc =Jc (13)

9
This assumption is only for notational convenience, otherwise J in
eq. (8) would be J -, etc. c

cl
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or

T
A y A
r r r

a v A
r r r

-z

A TA y a
rr r

V
o

J
o

T

at
T

a y a
r r r

\ = E

V
c

J
c

(14)

where J = A y v - A ii . J =ayv -ai and E = v . - z i ..
o rr sr r sr* c rr sr r sr sk t st

Equation (14) will be referred to as the diakoptic node equation. The

process of arriving eq. (14) and the solution of it will be referred to

as the diakoptic node analysis.

Remark 2 The diakoptic node equation may also be derived from block

Gaussian elimination. Equations (10)-(6) are rearranged as:

I -y
J_r

I -A -a
t _t

I -A -a
r r

*r_ *t_
_2_ _2t__
ar

Block Gaussian elimination yields:

I
"yr i

r

I -ATAt vt
I -AT

r

T
-a

r
V

r

T
A y A
rr r At

A TA y a
rJ r r

V
o

4 -z
t

T

at s
T

ay A
rr r at

T
a y a
rr r

V
c
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Thus, eq. (16) is equivalent to eqs. (l)-(6) because the former is

obtained from the latter by elementary row operations. Note that the

lower right part of eq. (16) gives eq. (14).

Remark 3 Equation (14) can also be expressed as

T
A y A
r r r

A T
A y a
rr r

V
o

J'
o

T

at it = 0

T
a y a

r r r
V

c c

where

i„y A
r r i

-z.

jt -*t -^t +zl\f

^ - "Vsr +Vrvsr " Vst +Vt\t

J = -a i +ayv -ai +azv
c r sr r*r sr t st t t st

(14')

and

If we first transform all the voltage sources into current sources

[7, p. 413], the equivalent current sources for the tearing branches

(resp. remaining branches) are i -z~ v (resp. i -y v ). Thus i
st t st r sr •'r sr Jt

is the set of currents in the nonsource elements of the tearing branches,

and each element of J* (resp. J1) is the sum of all the equivalent current

sources at the corresponding node of v (resp. v ).

Remark 4 The coefficient matrix of eq. (14) is easy to form. Note that

the following four blocks

T
A y A

r r r

A TA y a
r r r

a y A
rr r

T
a y a

r r r

-8-
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are precisely the node admittance matrix of the torn network. It can

be formed by the standard procedure. The other five blocks are

immediately obtained from the reduced incidence matrix and the branch

relations.

Remark 5 If v is empty, the diakoptic node equation reduces to a

simpler form [8]. This special case was considered by Kron [1]. Another

special case is that v « is empty. This was considered by Happ [9].

However they arrived at different set of equations. Our general

derivation may include the case where there are nodes connected by the

tearing branches only, e.g. the network shown in Fig. 3. This enlarges

the applicability of diakoptics.

III. Solution algorithm

We will present a solution algorithm for the diakoptic node

eq. (14). Diakoptics is developed for the solution of large-scale

networks. In practice large-scale networks are usually very sparsely

connected. Our solution algorithm incorporates the sparse matrix

techniques.

Sparse matrix equation is normally solved by the optimally-ordered

Gaussian elimination or, eqivalently, the LU-decomposition [10]. For a

nonsingular matrix A the existence of an LU-decomposition is not guaranteed

unless we allow row and column permutations [10; 11, pp. 31-34]. We will

first show that if a generic condition on the network is satisfied, then

the coefficient matrix of eq. (14), with the present partition of rows

and columns, is block LU-<iecomposable. In other words, the equation may

For networks without coupling, see [7,p.429]. Modification is needed
to take care of the coupling.
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be solved by LU-decomposition or Gaussian elimination with the three

sets of equations (11) (12) (13) in that order and three sets of variables

(V .i,.,V ) in that order.11
ore

Let u\Ia be the network derived from cAI by coalescing all the nodes

of vc with the datum node (i.e., forcing the node voltages at v to be

zero). Let^k be the network derived from<j\| by removing all the
tearing branches.

Assumption 2 All the natural frequencies of the networks <^\|, ^J and

cJVl, have nonzero and negative real parts.

Remark 6 We say that S^ is a natural frequency of the network variable
Sltx, if, for some initial state; K-e (K^O) appears in the expression

for the zero-input response of x. We say that S is a natural frequency

of a network if S a natural frequency of some voltage or a natural

frequency of some current in the network [7, pp. 583-628]. The assumption

that all the natural frequencies have nonzero and negative real parts

implies that the zero-input response of the branch voltages and the

branch currents all goes to zero at steady-state (t-*»). Physically this

means that the network is lossy in the sense that without any input the

stored energy will be dissipated and eventually goes to zero. The

assumption is also sufficient to guarantee the existence of sinusoidal

steady-state solution [7, p. 285].

Theorem 1 Consider a linear time-invariant RLC network o\l with sinusoidal

inputs. If Assumption 2 holds, then the coefficient matrix of the

Note that the LU-decomposition does not exist if we interchange the
second block rows and the third block of rows, and also the second block
of columns and the third block of columns.
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diakoptic node eq. (14) is block LU-decomposable.

The proof of Theorem 1 is in the Appendix. With Theorem 1 as a

guarantee, we may derive a solution algorithm based on the block LU-

decomposition or gaussian elimination. In the derivation of the solution

algorithm we make use of the following Fact, whose proof is also in the

Appendix.

Fact 1 a y aT - a yAT(Av AT)-1A v aT = 0 (18)
r r r rr r r r r r r r

A T A T
To simplify notations, let Y = A y A , Y =Aya, and

r J ' oo r r r oc r r r

A T
Y - a y A . Let us first LU-decompose Y ,
co r r r oo7

Y = LU (19)
oo

Equation (11) becomes

U V = L_1J - L_:LA i - L_1Y V (20)
o o t t oc c

Substituting (19) into (12), we have

(z^A^TV^)it =E+kylL1JQ +[^-A^u"1L"1Toc]Vc (21)

Let us define

. A -1A . A -Ly. ... A AT -1 ... A v -1 r A -1T
h = L V *2 = L \>c' \ = AtU »*2 = YcoU > ^ = L Jo»

and

F^zt +Y1»1 (22)

Substituting (18), (20) and (21) into (13), we have

[(at~Vl)F~1(at~V2)]Vc =Jc " ^2^+(at"¥2$l)F"1(,1'lC+E)] (23)
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Therefore, we may solve Vq, ifc, Vq in the following sequence:

(19)-(22)-(23)-(21)-(20). The procedure can also be derived from block

LU-decomposition [8].

In the application of diakoptics, the case where the torn network

has several "independent" subnetworks is of special interest. To be

more specific, this is when the torn network is separable.12 Let the

torn network have k separable subnetworkso\L ,o\l9, •••»o\L» Let v

(resp. $r) be partitioned into k classes v., v , ..., v, (resp.

31,$2>--«,3k), where v± (resp. 3±) is the intersection of v (resp. 3)

and the nodes (resp. branches) of^\| . With this finer partition, we have

Vo ° <Vi»V2>-"'Vk>' Jo = <Jl»J2'•••»Jk), and

A =
r

h h • • . • \

>_ A.
1 1

KJ
'2 A2

•

•

0
'k \

(24)

Suppose the following assumption holds.

Assumption 3 There is no mutual coupling between branches belonging to

the different separable subnetworks.

Then the matrix Y takes a block diagonal form:
oo

12
A network is separable if it has several separate parts and/or it is

hinged [7, p. 445].

-12-



0

(25)
00

o

T TLet A ,A\ Yqc, and Y qbe partitioned into (A^, (\)±> (Yoc\> and

(Y )., i = l,2,...,k, accordingly. (Fig. 4a) Note that the matrix is
CO 1

in a desired bordered block diagonal form (Fig. 4b) [6, p. 20].

We may modify the previous solution procedure to take advantage of

the decoupled block structure. Note that it is possible to perform

computations of eqs. (19) (22) (20) for each subnetwork independently.

We arrive at the following solution algorithm.

Solution algorithm

I. For each i, i=l,2,...,k, do steps (SI) to (S6).

(51) Input Y., (Yoc)., (Yco)., (At)., J.

(52) Factor Y, = L.U.
i l i

(53) Solve Vli=(Vi for *li' L2$2i = ^o^i for *2i;
^,U_. =(A*), for ¥14, V^U, =(Yco)± for V0.

li

li~i v"t'i ~~~ *li' 2i i

(S4) Solve L.£. = J. for £

(S5) Form F± =1^, G± =f^, H. = T2±»u

li*i

(S6) Output F±, G±, H±, g±, h±
21si*

2i

II. Do steps (CI) to (C8)

(Cl) Input zt, at, Jc, and F±i G±9 U±> gi, hi» i = l,2,...,k

-13-



(C2) Form F= zfc + EF±, G = afc - IG±9 H = afc - ZH±,

g = E + Zg± h = lh±

(C3) Solve KF = H for K,

(G4) Form P = KG, p = J - h - Kg

(C5) Solve PV = p for V
c r c

(C6) Form f = g + GV

(C7) Solve F i = f for i

(C8) Output Vc, i

III. For each i, i = l,2,...,k, do steps (S7) to (S10).

(57) Input V , it

(58) Form C± - €± - *uit - *2±VC

(59) Solve U^ = C± for V±

(S10) Output V..

Remark 7 The solutions of the triangular matrix equations in steps

(S3), (S4), and (S9) are merely substitutions. Also note that since most

of the columns of (AJ. and (Y )., and the rows of (Y ). are all zeros,
t 1 oc i co i

the corresponding computations for these zero rows and columns in Steps (S3)

and (S5) need not be performed. Furthermore, in practical applications,

the dimensions of F and P are usually small.

Remark 8 Part I and part III of the solution algorithm can be carried

out simultaneously for all the subnetworks. Therefore the algorithm can

be implemented in a parallel computation scheme, for example, a computer

network of the star configuration, i.e., several satellite computers

(one for each subnetwork) linked together by a central computer. The

satellite computers do parts I and III, and the central computer does

-14-



part II. (Fig. 5).
13

B^rW Q Obviously part I and part III of the solution algorithm

can also be carried out in a series computation scheme.

Remark 10 Part I of the algorithm corresponds to the "subnetwork

level" of diakoptics mentioned in Sec. I and parts II and III correspond

to the "interconnection level" of diakoptics.

Remark 11 If v is empty the algorithm reduces to a simpler version [8]

IV. Computational Considerations

Applying the conventional node analysis to the network j\l, we

arrive at the following equation:

A A
r t

ar at

y 0
r

0
-1

V

CJ

J*
o

J'
c

(26)

Where J1 and Jf are the equivalent current source vectors at v and \>c
o c

respectively, as defined in Remark 3. The coefficient matrix here is

simply the node admittance matrix Y of (_Af. Both the conventional node

analysis (solution of (26)) and the diakoptic node analysis (solution

of (14)) give us the node voltages, naturally we would like to know

which one requires less total computation to obtain the solution. For

ease of later reference we will denote the matrix of eq. (14) by T.

13
The central computer inputs data of the tearing branches, z and a , as

well as J . In order to make all the components of J related to the tearing
branches, it may be desirable to select the set of nodes v , from those
nodes that are connected by the tearing branches.
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In what follows, we count only multiplications in the comparison.14

For large-scale network, the matrices Y and T are very sparse.

In sparse matrix computation,operations involving zero are not

performed. Consider solving the sparse system Ax = b, where A is nxn

and A = LU, let l± denote the number of nonzero elements in the ^th

column of L, and ui denote the number of nonzero elements in the ith

row of u. It can be shown [8,12], by simple counting, that the total

number of (complex) multiplications required to solve Ax = b is equal
n

to 2^ (£.+l)u - 2n. Clearly the ordering of rows and columns of A
i=l x 1

affects greatly the A^s and u^s. There are several locally-optimal

ordering schemes [5,6].

We are going to present an example of a network having a

parameter p. Depending on the value of p, the number of multiplicatios

required for the diakoptic node analysis may be less than, or greater

than that for the conventional node analysis, both with optimal ordering.

This clearly demonstrate that neither approach is absolutely superior to

the other, as far as the total number of multiplications is concerned.

Example Consider the network shown in Fig. 6. Let all the branches be

two-terminal elements (no mutual coupling). The branches connecting

nodes d.'s are defined as follows:

(i) For all 3 £ i _< p, i < j £ 2i, there is a branch connecting

nodes d. and d..
i 3

14
The formation of the matrices Y and T involves only additions. For node

analysis, voltage sources have usually been transformed into current
sources. Hence the formation of J1 and JT involves only additions. We
assume eq. (14?), instead of eq. (14), is used for diakoptic node analysis.

We compare the computations required for the solution of the node voltages.
Therefore the fact that the diakoptic approach gives, in additional to
the node voltages, also the tearing-branch currents is not taken into account
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(ii) For all p < i ± 2p, i < j <_ 2p, there is a branch connecting

nodes d. and d..

For the conventional node analysis, we first form the matrix Y,

which has the same sparisty structure as the network(Jv), i.e., the ijth

element of Y, U„ ., is nonzero iff there is a branch in o\) connecting
ij

node i and node j. It can be shown that by applying any of the locally-

optimal ordering schemes [5] to Y, the ordering (a,b,c,d3»d^,...,d2 )
16

will result. The nonzero pattern of Y, together with the fill-ins

is shown in Fig. 7a. A little calculation shows that the total number

of multiplications for the solution in this case is equal to
p+2

Y = 2£ k(k+l) - 4p - 66.
P k=l

Now let us consider solving this problem by diakoptics. Suppose

we pick the branches (b,d~), (c,d2 ^)' ^C,d2p-P and ^C,d2p^ aS tne

tearing branches.t-, t„, t„, and t,, respectively. Let us form the matrix

T. Again it can be shown that within their blocks, (a,b,c,do,•••»d« )

17and (t-,t2,t3,t,) are optimally-ordered. The nonzero pattern of T,

together with the fill-ins, is shown in Fig. 7b. The total number of

multiplications to obtain the solution in this case is equal to

& 26 = 2 X) k(k+l) + (p+2)(p+3) - 4p + 88. Hence (y -« ) = P + 5p - 148.
P k=l P P

If p > 10, y > 6 , i.e., the diakoptic node analysis requres less
— P p

multiplications. On the other hand, if 3 _< p _< 9, y < 6 , i.e., the

diakoptic node analysis requires more multiplications.

16^
The

either

17
The same letter, e.g. d., is used to denote the rows and columns

corresponding to the node d. for both Y and T.

ijth position is said to be a fill-in if Y = LU and Y.. = 0 but
' the ijth element of L (if i>j), or of U (if i<j) is nonzero.
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It is rather difficult to find general conditions under which the

diakoptic analysis saves computation. It is not because it rarely

happens. In fact it happens only when the number of fill-ins introduced

in the LU-decomposition of T is less than that of Y. Now the least

number of fill-ins in the LU-decomposition of Y occurs when the rows

and columns of Y are optimally-ordered. This optimal ordering may bear

no relation to the ordering of T, which has a predetermined block ordering.

Therefore the comparison is difficult.

On the other hand, for a very special case we show that the

diakoptic analysis saves no computation.

Faet 2 Suppose that the network c_\) consisting of two-terminal elements.

Suppose a set of tearing branches is so chosen that

(i) there is no node connected only by the tearing branches,

(ii) the torn-network has k separable subnetworks hinged at the

datum node.

i ft
(iii) each of the separable subnetworks is complete.

(iv) there is an ordering of the subnetworks oWjfcJlL* ••'*^M\L*
such that the tearing branches only connect two adjacent

subnetworks(JU. and(,_A)., 1 <. i < k, j = i+1.

Then the diakoptic node analysis (14) requires more multiplications than

the conventional node analysis.

The proof of Fact 2 is in the Appendix.

Remark 12 Assumptions (i) and (ii) are the same ones that were made by

Kron. He used the node impedance matrix, which is full, i.e., it

amounts to the assumption (iii). Assumption (iv) further restricts the

18
A network is complete if for each pair of nodes there is a branch

connecting them.
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tearing to a "cascaded" network configuration (Fig. 8).

V. Other Diakoptic and Codiakoptic Analyses

There are several standard network analysis procedures, namely,

node analysis, mesh analysis, cutset analysis, loop analysis, and mixed

analysis. Each of them provides a systematic way of writing linearly

independent Kirchhoff laws. Once it is understood that diakoptics

involves merely partition of branches and the Kirchhoff laws, similar

derivation as in section II can be applied to other network analysis

procedures. In the following, we will not repeat the obvious similarities

Only the diakoptic mixed analysis is derived in some detail. We call

the dual of a diakoptic analysis codiakoptic analysis [13].

1 Diakoptic cutset analysis

Given a tree of the network o\l, the set of tree branches can be

partitioned into two classes; i.e., those of the remaining branches

and those of the tearing branches. The set of tree-branch voltages,

which are the network variables in this case, is partitioned into Vr

and V , accordingly. Also the set of fundamental cutsets y is

partitioned into y and y . Hence the fundamental cutset matrix Q takes

the form:

Q = Y,

3 3,

Q Qxr xt

q q
^r ^t

(27)

Note that if we choose a tree such that it contains as many remaining

branches as possible then q =0. On the other hand, if we choose a tree
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such that it contains as many tearing branches as possible then Q =0.

2 Codiakoptic mesh analysis

This is the dual of the idakoptic node analysis for a planar

network. Consider the set of meshes y. If the tearing branches form

loops, we pick a mesh from the region enclosed by such a loop. Let

y denote the collection of such meshes. Let y denote the set of other
v- O

meshes. Hence y is partitioned into y and y and the reduced mesh
o c

matrix M takes the form

B_ 3.

M = y M
r Mt

m
r mt

(28)

The dual torn network is defined as the network resulted from Uv

19
by contracting all the tearing branches. In order to have the dual

torn network having several "independent" subnetworks, the set of

tearing branches should be so chosen that the dual torn network has

hinged subnetworks and the subnetworks are not mutually coupled. For

a planar network the set of tearing branches having this property can

be characterized as:

(i) they divide the plane into several regions,

(ii) there is no mutual coupling between branches belonging to

different regions.

19
A branch is contracted if its two end nodes coalesced into one node

and itself being removed.
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3. Codiakoptic loop analysis

This is the dual of the diakoptic cutset analysis. Given a tree

of JU, the set of link currents (the network variables for loop analysis)

is partitioned into I and I . The fundamental loops £. are partitioned

into A and £_. Hence
r t

B = I

3 3
pr t

B
r Bt

b
r bt

(29)

Note that if we choose a tree such that it contains as many

remaining (resp. tearing) branches as possible then Bfc = 0 (resp. br = 0).

4. Diakoptic mixed analysis

The essence of mixed analysis is that a set of independent Kirchhoff

law equations is selected from two network analysis formulations. We

will base our derivation below on the mixed cutset and loop analysis.

We will comment on the generality of the approach later.

Let us first pick a tree of o\l such that it contains as many

remaining branches as possible. Now we write down Kirchhoff laws for

, 20
the cutset analysis and the loop analysis side by side:

Cutset analysis Loop analysis

(KCL)
fVr+Vt"0
I qtit - 0

(30)

(32)

T T
fi = B I + b r
1 r r r r t

(31)

(33)

(KVL)

T
rv = Q VJ r r r
1 T TUt =QtVr + qtVfc

(34)

(36)

r b v =o
1 r r

I brvr +btvt =0
(35)

(37)

Different trees may be chosen for the cutset analysis and the loop analysis
so long as each tree contains maximal number of remaining branches.
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(BR) (lr =sr Vr ' V- {™> f*r =̂ r +Yr "V,
K =vst +Vt - Vst <39> K =vst +\\ ~Vst

Let^\|.r denote anetwork derived from ^M by removing all the tearing

branches and ,JvL denote a network derived from^Af by contracting all

the remaining branches. Note that both eq. (34) and eq. (35) are

complete characterization of KVL constraints for the networkc_AI » similarly

both eq. (32) and eq. (33) are complete characterization of KCL constraints

for the network ^ [14]. Therefore, eqs. (30) and (33) form a complete

set of KCL for ^\) and eqs. (34) and (37) form a complete set of KVL for

Jvl. We thus proceed our analysis for^l with KCL constraints (30)-(33),

KVL contraints (34) (37), and BR (38) (39).

Motivated by the cutset analysis on<^\| and the loop analysis on

lAI£, we combine eqs. (30), (34), (38) and eqs. (33), (37), (39). We then

eliminate i and vr from the expressions by substituting eqs. (33) and

(34). Thus we obtain:

.T

^t t r r

(40)

Q y Q^rJr^r

T
b Q

r r

T

Vtbt

where Jr A^ -^ and Et *bt« l8t -btv .

sr
(38)

(39)

Note that

T TbrQ = - b Q as a consequence of Tellegen's theorem [7, p. 493]. We

may interpret J and E as follows: Suppose we first transform the

voltage (current) source associated with a remaining (tearing) branch

into an equivalent current (voltage) source. Then J (E ) is the sum

of all equivalent current (voltage) source in the fundamental cutsets

(loops) defined by the remaining-branch-tree-branches (tearing-branch

links).
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Remark 13 Note that the cutset analysis eq. (30) just provides a set

of linearly independent KCL for the network<JUfc and eq. (34) provides

acomplete characterization of the KVL constraints foro\lt. We

certainly may replace eq. (30) by a set of linearly independent KCL

for^AI supplied by the node analysis equations and also replace eq. (34)

by the corresponding node voltage characterization of KVL constraints

from node analysis.21 Similarly for planar metworks, the loop analysis

eqs. (33) and (37) may be replaced by the mesh analysis equations. Thus

we may have diakoptic mixed node-and-loop (or node-and-mesh) analysis.

5. Codiakoptic mixed analysis

This is the dual of the diakoptic mixed analysis. Here we start

by picking a tree of c_Al such that it contains as many tearing branches

as possible.

If there are several separate parts in(_AL» node analysis should be
performed for each separate part.
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Footnotes

vfe assume that the sinusoidal steady-state response of ^M exists. In

fact, assumption 2 guarantees, it.

2
Our terminologies and most of the notations agree with ref. 7.

3
Any subset of branches may be chosen as tearing branches in our derivation,

However to achieve the computational advantages it is desired to choose

those branches whose removal will tear the network apart.

4
A maximal connected subnetwork of an unconnected network is called a

separate part [7,p.387].

It a separate part contains more than one node, then the choice of the

node can be arbitrary. However it may be desirable to pick one among

the nodes which are connected by the tearing branches (see footnote 12).

f.

As will be clear later, the node voltages associated with v will be
c

contains all
O

calculated at the interconnection level, and v contains all the £ther

nodes.

7

An isolated node is a separate part.

8

The rows of A correspond to the nodes (deleting the datum) and the

columns of A correspond to the branches [7,p.417],

9_. .
This assumption is only for notational convenience, otherwise J in

eq. (8) would be J n, etc.
cl

10„
For networks without coupling, see [7,p.429]. Modification is needed to

take care of the coupling.

11
Note that the LU-decomposition does not exist if we interchange the

second block rows and the third block of rows, and also the second block

of columns and the third block of columns.
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A network is separable if it has several separate parts and/or it is

hinged [7,p.445].

•I o

The central computer inputs data of the tearing branches, zfc and afc, as

well as J . In order to make all the components of J related to the

tearing branches, it may be desirable to select the set of nodes v ^ from

those nodes that are connected by the tearing branches.

The formation of the matrices Y and T involves only additions. For

node analysis, voltage sources have usually been transformed into current

sources. Hence the formation of J* and J* involves only additions. We
o c

assume eq. (14?), instead of eq. (14), is used for diakoptic node analysis

We compare the computations required for the solution of the node

voltages. Therefore the fact that the diakoptic approach gives, in

additional to the node voltages, also the tearing-branch currents is not

taken into account.

16The ijth positon is said to be afill-in if Y=LU and Y±. =0but
either the ijth element of L (if i>j), or of U (if i<j) is nonzero.

The same letter, e.g. d., is used to denote the rows and columns

corresponding to the node d. for both Y and T.

18
A network is complete if for each pair of nodes there is a branch

connecting them.

19
A branch is contracted if its two end nodes coalesced into one node

and itself being removed.

20
Different trees may be chosen for the cutset analysis and the loop

analysis so long as each tree contains maximal number of remaining

branches.
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21If there are several separate parts ino\ffc, node analysis should be
performed for each separate part.
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Appendix

(A) Proof of Theorem 1.

We claim that the coefficient matrix of the diakoptic equation (14)

is nonsingular, i.e.,

T
A y A
ryr r

'rVr

At
A T^A y a
rJr r

V
o

0

zt
T

at lt = 0

at
T

a y a
r'r r

V
c

0

(Al)

implies V = 0, i. = 0, and V = 0.
r o t c

Comparing (Al) with eq. (15), we notice that (V »V ) and it are

22the zero-input steady-state response of the node voltages and the

tearing branch currents, respectively, of the network(JVJ. Since the

natural frequencies ofcjvl have nonzero and negative real parts, all the

branch voltages and branch currents are zero at steady-state, in

particular, i = 0, v =0, and v = 0. Hence from eq. (3) (4),

0

0
w —

=

V
r

Jt.
= AT

*-+ —<

V
o

V

(A2)

Because oM is connected, A is of full rank. It follows from (A2) that

V = 0, and V =0.
o ' c

Now we know the coefficient matrix of (Al) has a LU-decomposition,

possibly after some row and column permutations.

Next note that the matrix of (Al) has a block LU-decomposition, as

follows:

22
The existence of steady-state response is guaranteed by the Assumption 2,
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T
A„y A
tjt r

a y A
r-^r r

-z,

A TA y a
r r r

a y a
r'r r

&1
T -1

a v AY ±
rJr r

^-1 -1
[at_aryrArY At]Y 1

if Y and F are nonsingular, where

A t
Y = A y A1

r r r

„ A T -1F = z„ + A7Y xA«.
t t t

t

-F

0

A TA y a
r'r r

aT-ATY"1A y a
t t

*=tVVrV AtjF fV^Vr^
T T -1 T

+ »-y a " a^y A Y "'"A y a1
rrr ryrr rJrr

Note that the nonsingularity of Y and F, together with that of the

coefficient matrix, implies that P is nonsingular. To show that Y is

nonsingular, i.e., YVrt = 0 implies V =0, note that YV = 0 implies
o o o

that Vq is the zero-input steady-state response of the node voltages

ofcAJ^. Since^\)b is connected and has all the natural frequencies lying

in the open left half of the complex plane, the same arguments lead to

the conclusion V = 0. To show that F is nonsingular, i.e., [z +ATY-1A ]i
° t t t t

= 0 implies i = 0, let us define

V = -Y_1A,I
o t t

-30-
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Hence I2^^"^^]^
T

A y A
ryr r

-z.
t J

0 becomes

V

"tj

(A8)

Therefore i is the zero-input steady-state response of the tearing

branch currents of lM . The fact that the natural frequencies of(_AI
a

have nonzero, negative real part implies that i = 0. The proof is

thus complete.

(B) Proof of Fact 1

We first prove the fact that each row of ar is a linear combination

of the rows of A , i.e., a = CA .

Consider a row in a ,which corresponds to a node in v^, i.e., this

row is associated with the node which is picked from a separate part^A^

of the torn-network. This row is indeed the negative of the sum of those

rows in A that correspond to the nodes incA^, because all these rows

together form the (unreduced) incidence matrix ofoll^ Next consider a

row in a that corresponds to a node in \>c2. It is a zero row, which is a

trivial linear combination of the rows of Ar» Hence, a^ = CA^.

(18) and obtain

T AT/A .T\-1A T
aya -ayA(AyA) A va
rJr r rJr r rJr r rr r

T T T T —1 T T

• CVrV " CArWVrV VrArC = 0

(C) Proof of Fact 2

Since both Y and T have symmetrical nonzero pattern, it suffices

to consider the nonzero elements in the columns of the lower triangular

matrix. We first claim that to each nonzero element of Y in the j^th

column there is a corresponding one in T. This is so because if Y^. ^ 0
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and T .- 0 then (i,j) must be a tearing branch t, hence T , t 0.
tj

Next we claim that to every fill-in introduced in the decomposition

of Y there is a corresponding one in the same column of T. Let us

write down the formula for the LU-decomposition to establish the

notations. For Y = LU, let

Y = Y .
ij ij

vW^l vm m __m
. Yij =Yim"YimYmj m- 1,2 n-1; 1 >m, j >m.

Uij - Y«/Yii> i <i

Similarly for T. Note that a fill-in is introduced in Y if Y° = 0
_ 11

and Y j 0. This implies that Y? t 0 and Y™ * 0. Note that the
•LJ im mj

fill-ins of Y only occur between two adjacent diagonal blocks. To be

specific, let the row and column indices (a+l,...,£) correspond to <AI
a

and (8+1,..., y) correspond to the adjacent^ .i» th©n the fill-in of
ot+1

Y at ij, such that $ < i < y, occurs only when a < j _< & (Fig. 9).

Now we will show inductively on m that Y is a fill-in of Y implies that

there is a t such that T is a fill-in of T. Certainly it is true

for m = ot+1. Suppose it is true for m < %< 0, and Y.. is a fill-in,
- iJ

hence Y ™ t 0 and Y™. ^ 0. Clearly Tm4 t 0. If T™ = 0, by induction
ito mj mj im

m ... i 1

hypothesis there is a t such that T~ ^ 0, hence T . ? 0. Moreover
tm tj

Ym =0implies t£ =0, hence T™?1 is indeed afill-in of T. The proof
is thus complete.
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Fig. 1. Networks from which the idea of tearing originated



+

vk
6 v8k

©
>sk

Fig. 2. A generalized branch k, which includes a voltage source and

a current source. The voltage and current relation for the

nonsource element in the box is given by the impedance or the

admittance (coupling allowed).



Fig. 3. The diakoptic analysis in this paper also applied to networks

that have nodes connected only by the tearing branches.



Y| (A,), (Y0C)|

\ (At)2 (Y0c^2
•

•

•

•

•
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•

•

•

Yk <At)k (Yoc)k

(a{), (A^)2 ... (AT)k "zt *

<YC0>I 'xo2 ... (Yco)k °t YCc

(a)

(b)

Fig. 4. (a) Partition of the coefficient matrix according to the k

separable subnetworks.

(b) Bordered block diagonal form. The unshaded area consists

of all zeros.
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computer
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if|Vc

Yj.uoc'j
(YC0)i,(A,)i

Central I Ffc'G^k.hk
computer

hi

v't
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computer

T
V:

if.Vc
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computer

k

Fig. 5. A parallel computation scheme for diakoptics with data flow

indicated.
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Fig. 6. Network for the example. Branches in heavy lines are tearing

branches.



a 0 c °3 04
• • • dIS1d20

a X X

b X X X X
c X X F X X X

4» X F X X X X F F F
d4 X X X X X X F F F

X X X X X X X X F F F
X X X X X X X X X X F F F

X X X X X X X X X X X F F F
X X X X X X X X X X X X X F F F

• X X X X X X X X X X X X X X F F
• X X X X X X X X X X X X X X X X
• X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X
X X X X X X X X X X X X X X

X X X X X X X X X X X X X
X X X X X X X X X X X X X

X X X X X X X X X X X X

X F F F F F F X X X X X X X X X X X X
dl9 X F F F F F F F X X X X X X X X X X X
d2C X F F F F F F F X X X X X X X X X X X

Fig. 7. (a) The nonzero pattern of Y (the nonzero elements of Y are

marked X) and the fill-ins (marked F) introduced by the LU-

decomposition.



a b c d3 <u
• •

• dl9 d20»l ♦2 '3 ♦4
a X
b X X X
c X X F X X X

°3 X X X X X

<*4 X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X

F

F

F

F

X X X X X X X X X X X X X F
• X X X X X X X X X X X X X X F
• X X X X X X X X X X X X X X X X F
• X X X X X X X X X X X X X X X F

X X X X X X X X X X X X X X X F

X X X X X X X X X X X X X X F

X X X X X X X X X X X X X X F

X X X X X X X X X X X X X F

X X X X X X X X X X X X X F

X X X X X X X X X X X X F

X X X X X X X X X X X X F X

d,9 X X X X X X X X X X X F F X

d2C X X X X X X X X X X X F X F X

t. X F X F F F F F F F F F F F F F F F F F X F F F

t2
X X F X F X F F

♦3 X X F F F X F

t4 X X F F F X

Fig. 7. (b) The nonzero pattern of T and the fi-l-ins introduced by the

LU-decomposition.



Fig. 8. Networks for which assumption (iv) of Fact 2 is satisfied



(a*l ... /3,j3*l ... y

•

•

•

Ct + I

•

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X

F

F

0*1

y

X F F

X X X X

X X X X

X X X X

X X X X
/

•

•

•

04l

/3
ct+l

t

:♦! ... &£♦! ...y

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X
X X X X

X X X X

X X X X

X X X X

X F F X F F Immm

Fig. 9. (a) If the assumptions of Fact 2 are satisfied, fill-ins are

restricted to the blocks between two adjacent diagonal blocks.

(b) To each fill-in introduced in Y, there is a corresponding

one in the same column of T.


	Copyright notice 1975
	ERL-532

