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Linear prediction is becoming the principal technique for speech

analysis. Unfortunately, for speech which contains significant spectral

zeros, linear predictors mis-estimate the poles and miss the zeros.

Since 25% of speech is nasal, nasalized or lateral, this defect is quite

significant.

In a recent conversation, Alan Oppenheim described to me a technique

for finding both the poles and zeros in a speech wave. His technique is

based on a combination of homomorphic deconvolution and linear predictive

analysis. The following note is the result of my comparing different

versions of his technique. This note is intended to be the first part

of a study of pole and zero locations in nasalized sonorants in natural

speech. However, prompted by several requests for the algorithm, I am

putting out this preliminary version for comments and corrections.

Oppenheim's technique is based on the observation that, if a spectrum

is a rational function with both poles and zeros, differentiating the

logarithm of the spectrum transforms both the poles and zeros into poles.

This transformation, which is an extension of the usual homomorphic

deconvolution, can then be followed by linear predictive analysis. Since
t ~ " ~
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linear prediction fits an optimal all pole model to a given spectrum, it

is an appropriate tool for finding the poles of the transformed spectrum,

The poles which are found with this technique should represent both the

poles and zeros of the original signal. The zeros are the poles of the

transformed signal which were not present in the original signal.

There are three problems with this technique. First, the original

signal may not have been minimum phase and thus may have had some poles

or zeros outside of the unit circle. The resultant transformed spectrum

will then have poles outside the unit circle which cannot be modeled by

linear predictive analysis. Secondly, the periodicity of the glottal

source induces spectral zeros which are then also transformed into poles.

Thirdly, the transformed spectrum has a large number of additional zeros

which again cannot be modeled by linear predictive analysis. The first

problem can be solved by basing the linear predictive model only on the

positive time portion of the cepstrum, since that portion arises from

the minimal phase part of the original signal. The second problem can

be solved by the use of proper windows and by cepstral smoothing. The

third problem, however, remains. This paper presents some empirical

data on the effect of these extraneous zeros on the accuracy of the

analysis.

Several versions of Oppenheim's technique are possible. Either the

complex logarithm or the computationally simpler log magnitude may be

used to compute the cepstrum. Either the full cepstrum or only the

positive time portion may be used when doing the linear predictive analysis.

Different amounts of cepstral smoothing may be used to remove the

effects of voice periodicity and the associated spectral



zeros on the spectrum. The following two sections present an analysis

of one version of the technique and compare the resulting spectrum to an

idealized all pole model. The effects of different versions of the

technique are then presented along with an algorithm for performing the

analysis.

Complex Logarithmic Analysis

Let x(t) represent a steady state voiced speech signal of period

Tq and duration T such as might arise from a nasalized vowel. If

g(t) is the glottal waveform, h(t) is the impulse response of the

vocal tract, r(t) is the impulse response of the radiation from the

mouth, p(t) is a train of pulses TQ seconds apart, and w(t) is an

analysis window of width T, then

x(t) - (g(t)*h(t)*r(t)*p(t))w(t) .

If x(t) is now sampled every T seconds, its z-transform is
s

X(z) = (G(z)H(z)R(z)P(z))*W(z) .

If the window w(t) is smooth enough and wide enough, its effect on G,

H, and R can be ignored. Thus

X(z) * G(z)H(z)R(z)(p(z)*W(z)) .

The derivative of the logarithm of the spectrum is

^log(X(z)) =^(log(Y(z))+log(P(z)*w(z))) ,

where

Y(z) = G(z)H(z)R(z) .



As is well known, the effect of the last term may be removed by low pass

"filtering" in the cepstral domain — so-called cepstral smoothing.

The differentiation may also be done in the cepstral domain by multiply

ing the cepstrum by the "quefrency" n.

In general, G, H, and R are rational functions although G is

not usually minimum phase. Thus Y(z) is the ratio of polynomials P(z)

and Q(z). If X (z) is the cepstrally smoothed and differentiated

logarithmic spectrum, then from the above analysis

Xc(z) =(log !(,))• -Y'(z)/Y(z) =%%'?£${
P'(z) Q'(z) _ Q(z)P'(z)-P(z)Q'(z)
P(z) " Q(z) P(z)Q(z)

/\

where prime represents differentiation with respect to z, X (z) is

thus a rational function which has poles at both the poles p^ and at

the zeros z of Y(z); the zeros of the speech wave have been trans

formed into poles.

Unfortunately, new zeros have been added at the points where

Q(z)Pf(z)-P(z)Q'(z) = 0 .

If there are n poles and m zeros in the original speech wave then

there will be up to n(m-l) or m(n-l) added zeros.

Comparison With an All Pole Spectrum

Since linear prediction finds an all pole, minimum phase filter

which minimizes the energy ratio, it is instructive to compare Xc(z)

1The sampled data cepstrum is defined as the inverse digital Fourier
transform (DFT) of the logarithm of the DFT of a signal. The DFT is the
z-transform evaluated at equal intervals on the unit circle.
log(u) = ln|u|+i(6 + 2iTk) for all k.



to an idealized all pole spectrum X (z)

* 1X_(z) = L

Xp(z)

This function is rather complex but insight may be gained by considering

a simple pair of complex conjugate poles at p.. and p*. In this case,

it can be shown that X (z) has an added zero at e S where

|PXI =e°lTS.
For the case of an all pole, narrow bandwidth spectrum (a vowel-like

sound), there will be an added zero approximately centered between each

pair of poles. On the other hand, poles due to zeros in the original

spectrum, when between the other poles, reduce the number of additional

zeros. Further experimentation is necessary to see how these additional

zeros affect linear predictive analysis in the case of natural speech.

Minimum Phase Signals

In Oppenheim and Schafer (1975) it is shown that, if x(t) is the

convolution of a minimum phase and a maximum phase signal,

x(t) = X^nW*XMvW »min max

then the complex cepstrum x(n) is the sum of two components. The posi

tive time component is due to the minimum phase signal and the negative

time component is due to the maximum phase signal. By ignoring the nega

tive time cepstrum (or, in the case of sampled data signals, the second

V-' P(z)Q(z) •

From the preceding analysis, it is easy to see that

X (z)
C - P(z)Q'(z)-Q(z)P'(z) .



half of the cepstral array), an analysis can be based on the minimum

phase signal alone. Differentiating the logarithm of the spectrum of

a minimum phase signal does not generate negative time components in the

cepstrum although it will increase aliasing in sampled data signals.

Thus x (n) for n > 0 (the positive time component of the smoothed,

differentiated logarithmic spectrum) comes from the minimum phase compo

nent of the original signal. Furthermore, the poles of x (n) for

n > 0 are inside the unit circle as are the zeros. Thus x (n) for
c

n > 0 is, itself, minimum phase.

Log Magnitude Analysis

Because of the computational efficiency, it is tempting to use the

log magnitude rather than the complex logarithm. Unfortunately, the

derivative of the log magnitude spectrum is zero at the inflection points

of the original spectrum. This has the effect of putting a zero in front

of each pole and zero of the original spectrum. However, the complex

logarithm of the spectrum of the autocorrelation function <f> (t) *s

real and so, except for a factor of two, is equal to the log magnitude

spectrum of x(t). Since the autocorrelation is the convolution of a

minimum and maximum phase component, each with the same spectral magni

tude as x(t), the positive time log magnitude cepstrum is equivalent

to the complex cepstrum of a minimum phase signal which has the same

spectrum as the original signal x(t). Thus if x(t) is minimal phase,

the positive time log magnitude cepstrum is equal to the complex cepstrum.

In any case, if an analysis which matches the spectral magnitude of x(t)

is adequate, then the log magnitude may be used. Since all the transforms

are then real and since the phase angle need not be found, the computation



should be from two to four times faster.

Cepstral Domain Processing

The first step in the analysis procedure is to get the cepstrum x(n)

from the original signal x(t). If there are N values in the cepstral

array, then removing the "negative time" component may be done by letting

x(n) = 0 for n > -^ (remember that x(n) is periodic). Cepstral smooth

ing then consists of letting

S(n) =0 for n >*-=•£• .
s

The z-transform of nx(n) is -zX*(z) or

-(n-l)x(n-l) <>Xf(z) for n > 0 .

Thus the differentiation may be done by multiplying the cepstrum by -n

and shifting. Combining these three operations gives x (n) from the
c

normal cepstrum x(n).

Separating the Original Poles and Zeros

It is necessary to distinguish those poles which are due to formants

in the speech signal from those which are due to spectral zeros. One

way to perform this separation is to compute the residue of each pole

of Xc(z). The partial fraction expansion of X (z) is easily seen to

be:

X
c

(Z) =USsi. SISsL _ ? (z"z±)' v (z"pi}' ? i ? -lp(«) Q(.) "^--r- Jj-i^-• ±li=^+ jxi=?r

where z± is one of the m zeros and p is one of the n poles of



Y(z). Thus the residue of X (z) is 1 at the original zeros and -1

at the original poles.

The Algorithm

The following algorithm may be used to find nasal zeros:

I. Find the cepstrum.

A. x(t) is two to three periods of a speech waveform.

B. Window x(t) and add zero samples to prevent aliasing. The
window should be narrow enough to remove some of the harmonic
structure.

C. Compute the log magnitude spectrum log|x(z)| = X(z). The
complex logarithm is better although more difficult.

D. Compute the inverse DFT x(n). Since X(z) and £(n) are
real and since only the first few values of x(n) are needed,
considerable savings can be made.

II. Do cepstral domain processing to get x (n) for n > 0.

A. x (n) = -(n-l)x(n-l) for 0 < n < 40

= 0 otherwise.

III. Do linear predictive analysis.

A. Solve the linear predictive equations. Since there are addi
tional poles due to the nasal zeros, more coefficients will
be needed.

IV. Find the poles.

A. Use a polynomial root solver or find the peaks in the inverse
filter spectrum.

V. Find the nasal zeros.

A. Compute the residue or ignore those poles which were also
found by the usual formant tracking techniques.

Computational Results

The algorithm was tested using synthetic speech sampled at 10 kHz.

It was found that, for a 120 Hz fundamental, a 20 msec window in the

time domain and a 4 msec window in the cepstral domain gave sufficient



smoothing to remove the effects of the excitation function, 31.2 msec of

silence was added to prevent aliasing.

Figure 1 is the cepstrally smoothed, log magnitude spectrum for a

signal with formants at 300, 1000, 1700, 2700, 3500, and 4500 Hz and

with a zero at 600 Hz, Figure 2 compares this spectrum to the squared

magnitude of the derivative of the complex log spectrum |x (z)| for

the signal. Except for the first formant which it missed, most of the

peaks are quite close to the correct location. However, in other speech

samples, some of the peaks were missing. The errors seem to be due to

the added zeros in the transformed signal and to poles and zeros of G(z)

and R(z), Perhaps an analysis of the minimum phase component of the

signal rather than of a minimum phase signal with the equivalent spectrum

would have produced better results. The next section presents a different

technique which was discovered in the process of testing Oppenheim's

analysis.

All-Pass Equivalent Analysis

For a minimum phase signal, poles and zeros near the unit circle may

be identified by their effect on the phase of the spectrum. Figure 3

compares the smoothed derivative of the phase of the minimum phase equi

valent of X(t) with the log magnitude spectrum log|x(z)|. As can be

seen, this phase curve is better for finding poles and zeros than is

Xc(z).

To demonstrate this, let x(t) be a signal with phase <f>(w) and

magnitude y(u)). In the vicinity of a pole at s_ = a +iw



where u =

Now

Thus

ft)-ft).

10

r(o>) y
<W)1/2

♦ (ft)) ^ tan~ u

♦'(w) ^-^
1+u

—, (J- < 0. Thus the peaks in <J> *(ft)) are narrower than
1 X

the peaks in rO*)) and so the poles and zeros are easier to find.

It turns out that a very simple modification of the zero finding

algorithm enables us to make use of the properties of ♦ '((*)). As

mentioned earlier the imaginary component of the complex logarithm is

the phase, ♦ ((!)), of the signal, x(t).

♦ (ft)) = Im(ln(X(z)))
-io)T

s
z=e

£l„(X(z))=^ln'(X(z))

= -iT z ln'(X(z))
s

-ift)T

z=e
s

♦ '(ft)) -^Im(ln(X(z))) =Im^ln(X(z)) =-Tg Re(z In'(X(z)))
-ift)T

z=e

Since n£(n) ° -z In' (X(z)) ,

♦ '(ft)) is the real part of the spectrum of nx(n) .

To be useful for finding poles and zeros, <J>'(ft)) must be derived

from an appropriate minimum phase signal. Fortunately, the positive

time cepstrum, x(n) , 0 < n < -^—, comes from the smoothed minimum
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phase component of x(t). Thus the real part of the transform of

nx(n) for 0 < n < -~
s T

* * v 004
T nx(n) for 0 < n < ^-— is equal to the desired ♦'((!)).

s

It is interesting to consider the case in which r(ft)) is constant.

Under this condition, Im(z ln'(X(z))) =0 and ♦'((*)) <>T nx(n).
s

Thus nx(n) is symmetric and so x(n) is antisymmetric. A signal which

meets this condition will be called all-pass since it is the impulse

response of an all-pass filter.

Given the cepstrum, x(n) of any signal x(t), the all-pass equi

valent cepstrum (APEC), x&(n) may be defined as twice the antisymmetric

component of &(n).

x (n) = x(n) , n > 0
SL

= -x(-n) , n < 0 .

Thus xa(n) is the cepstrum of an all-pass signal whose phase is 2^(w).

The spectrum of nx (n) is 2^'(ft))/T .
a s

Consider now the case where x(n) is derived from a minimum phase

signal xm±n(t), where ♦(<*)) is the phase of that signal. The pole

and zero finding algorithm may be modified so that

X (z) -^M
T
s -ift)T

s
z=e

by replacing step IIA with

IIA' ^c(n) = nx(n) for 0<n<40

= -nx(-n) for -40 £ n < 0

= 0 otherwise

The effect of this change is to perform the analysis on the all-pass
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equivalent x (t), a signal with additional RHP zeros and poles corres-
a

ponding to its LHP poles and zeros. As usual, X (z) has poles at both

the poles and zeros of x (t), Since x (n) now has poles in the LHP,
a c

problems may develop with the LPC. However, the original poles and

zeros can usually be identified quite successfully by peak and valley

picking.

In order to make the preceeding analysis somewhat clearer, let us

consider an example of the s-plane pole and zero locations for various

functions. Assuming that x(t) is mixed phase with 2 pole and 2 zero

pairs, Figure 4 shows the poles and zeros for ^^(t)* xmin^t^ * xa^

and x (n) as found using log magnitude analysis. Figure 5 shows the

effect of using the complex logarithm to analyze the minimum phase

component directly. The zero locations of x (n) have not been verified.

Summary

Two techniques have been presented in an attempt to solve some pro

blems which arise in the detailed analysis of speech signals. The pro

blems are that, first, the presence of zeros distorts the measured loca

tions of spectral poles and, secondly, that the spectral zeros, which

are of interest in their own right, cannot be located. By using homomor

phic deconvolution to obtain an appropriate signal and then using linear

prediction to analyze it, these problems may be partially overcome. A

technique based on an all-pass equivalent signal was also demonstrated,

This technique was shown to be equivalent to an analysis of the slope of

the phase of the cepstrally smoothed, minimum phase component of the signal,
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FIG la LOG MAGNITUDE SPECTRUM X(w)

FIG lb CEPSTRALLY SMOOTHED LOG SPECTRUM
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FIG 2a SMOOTH LOG SPECTRUM vs. |x (01)

FIG 2b SMOOTH LOG SPECTRUM vs. log |X (W)



FIG 3 SMOOTH LOG SPECTRUM vs. X (co) - APEC ANALYSIS
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FIG 5 MINIMUM PHASE ANALYSIS - TYPICAL POLE AND ZERO LOCATIONS
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