

Copyright © 1964, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

Electronics Research Laboratory
University of California
Berkeley, California
Internal Technical Memorandum M-53

TECHNIQUES FOR THE SIMULATION
OF COMPUTER LOGIC*

by

Melvin A. Breuer

Research reported herein was partially supported by National
Science Foundation grarijf G-15965 and Electrodata Division of
Burroughs Corporation, Pasadena, California.

February 5, 19 64

ABSTRACT

The simulation of a digital computer is an integral part of most

computer design automation systems. The evaluation of the Boolean

functions which characterize the computer being simulated constitutes

one major portion of a simulation system. Four general procedural

classes for evaluating these functions are defined. In order to greatly

increase the efficiency of a simulation system, methods are presented

for simultaneously evaluating many functions for one set of values of the

variables, and for evaluating simultaneously one function for many

sets of values for the variables.

-11-

I. INTRODUCTION

A computer logic simulator can be used as an extremely valuable
tool in many problems, such as in the automatic generation of computer

diagnostic tests, and in the check-out (debugging) of the logical design
of a new computer prior to' its actual construction. Since a computer can
be completely characterized by a set of Boolean functions, one of the

essential functions of a simulation system is the evaluation of logical
expressions. The simulation of one bit time of the operation of the

simulated computer requires, in general, a sequential evaluation of

at least a subset of all the functions characterizing the simulated

computer, and hence is a relatively slow process. Usually, many

thousands of test cases (sets of data) are to be run. Hence, it is

desirable that the evaluation of logical expressions be carried out as

efficiently as possible. In a recent paper by Katz, * a few techniques
for increasing the sophistication of Boolean logic evaluation are intro

duced. In this discussion, a few new system organizations will be

outlined.

A Boolean logic evaluation procedure is defined to be data-

independent if the sequence of operations performed is independent of

the operands. Otherwise, the procedure is data-dependent, and

contains conditional branching operations. A procedure is defined to

be symbol-independent if in the expressions being evaluated, when in

unfactored form, a change in the name of any variable used in the

function does not change any operators in the procedure. Otherwise,

the procedure is symbol-dependent. Obviously, all factorization

procedures are symbol dependent.
7

A survey of present operating systems shows that Katz and
3

Wolf employ noninterpretive data and symbol dependent procedures.
4 c

Stockwell and LarsenD employ an interpretive mode of operation, and

resort to data-dependent symbol-independent, and data-independent

symbol-dependent procedures, respectively.

The choice of the "best" procedures to use is a function of the

expressions to be evaluated and a function of the system requirements

and applications. The applications may vary from the simultaneous

-1-

evaluation of may functions for one set of variable values, to the

evaluation simultaneously of one function for many sets of values.

II. SIMULTANEOUS EVALUATION OF MANY FUNCTIONS

FOR ONE SET OF VARIABLE VALUES

A. TREE METHOD—DATA AND SYMBOL DEPENDENT PROCEDURE

In general, a variable may be operated on many times within
the evaluation of a single function, and in the case of a data and

symbol procedure, this sometimes leads to nonoptimal codes. In

fact, as will now be shown, for such procedures, each variable need

be operated on once, at most, for any given set of values for the

variable. Using this fact, the "best" codes for the examples presented
in Refs. 1 and 3 can be improved upon. A bi-product of this method

will be that for a given set of variable values, many functions can be
evaluated simultaneously.

Consider the set of functions

F= \FvF2,...,Ft Fj ,

where all F 's are either a function of the variables x,, x^, . . . , x or
t L 2. n

some subset of these variables. One can now construct an evaluation

tree, analogous to the standard relay-switching tree encountered in

combinatorial logic synthesis. ' Each node (n.) of the tree corresponds

to a conditional branch operator based on the value of a variable x
v

associated with this node. Let node n. have input branch b. and out

put branches b. and b,. Each branch (b.) of the tree corresponds to

a set of evaluations (e.) for some set of the variables. Letting b, be

the root of the tree, then e.f<|>J . If x is associated with n., then
e. = $e.,x =l} , and e, = (e.,x = 0/ . We can also associate with

J •» 1 v JK llVg.

each branch b. a set of functions F , which is the set of original

functions F simplified, under the rules of Boolean logic, according

to the value of the variables specified by e.. Branch b. is a terminal
e. i i

branch or leaf, when all functions in F l simplify to either 0 or 1.
ei ei->

Note that if F 1 = F 2, then b. can be relabeled b. and becomes

-2-

another input to n. , and the sub-tree defined by the root node n.
l2 \

may be discarded. This pruning reduces the total number of commands

in the code associated with the tree.

The variable x associated with node n. is such that x
v e. i v

appears in at least one function in the set F l. In principle, one

would like to chose the variable to be associated with a node such that

the program obtained from the tree would optimize some objective. For

example, one such criterian would be to minimize the average number of

execution cycles (T) when running the program assuming all variables

take on the values 0 and 1 with equal probability. Unfortunately, the

determination of the optimal choice for each x is, in general, a hard

problem. A dynamic programming solution does exist, and though the

procedure is not exhaustive, it does require the construction and

analysis of a great many trees. One can of course base the choice of

x on some "rule of thumb. " One such rule which has been found to
v

be fairly efficient is to associate with n. that variable x which appears

most often in the set of functions F .

As an example of this method, consider the set F and a tree

generated from F as shown in Fig. 1. The code for evaluating the

functions in F can be easily found from this tree, and one such code is

given in Fig. 2.

We assume the simulating computer to be of the IBM 704 family*
that each variable and its complement are stored in unique words in

core memory, and that the value of these variables is stored in some

arbitrary, say the i-th, bit position of these words, all other bit

positions containing zero. Assume also that F., F~, F-, and F^
have been preset to zero, and that the accumulator contains a single

one in the i-th bit position.

See Appendix A for definition of operators.

-3-

I

I

Example

F. • AC + ABC

Fo F

Fj° ABB +ACD -I- ABC
F2 » ABCD+CD+ABCD
F3 » BCD +ABD +XCD
F. " CD +ABC + BCD

Fig. I.

= AB + ABC

= ABC -I- XBC

s BC

|C"> .?l

= B + B o 1

F2 =Vyee no\S"2 »°
n20/ \nZl
"T^Tl I END |1-F

END1 END*

** *

*

*

n.

n.

n.

n

n,

n,

n
14

15
n

n.

n,

n
10

NZT D

TRA n3

NZT C

TRA END

STO F2
NZT A

TRA n9

STO Fl
STO F4
TRA END

STO F3
ZET B

TRA END

STO Fl
STO F4
TRA END

NZT A

TRA n7
NZT B

TRA nll
STO F,

Fig. 2.

STO F4
TRA END

nll ZET C

n16
TRA END

n17 STO F2
STO F3
STO F4
TRA END

**
n7 NZT C

** TRA n13

n12 NZT B

TRA
n19

n18 STO F3
TRA END

n19
STO Fl
TRA END

**
"13

STO F3
** STO F4
** ZET B

**
n20 STO F2

END n-,.
L21

The shortest path through the tree occurs for D = 1, C = 0, in which case

3 instructions (marked by *) are executed, and the cycle time is 5. The

longest path occurs for A = B = D = 0, B = l, in which case 10 instructions

-5-

(marked by **) are executed, and the cycle time is 16. A total of 41

instructions are required. Note that the structure of the tree is deter

mined by F,, F?, and F~, and the evaluation of F, requires no additional

tests or branches, though it does necessitate the use of five store

instructions. Applying this technique to the function given in Ref. 1,

and assuming the conditions as outlined there, we get the following

code,

BEGIN CAL C CAL A

TLQ STORE TLQ LOC

CAL D CAL B"

TLQ STORE TRA STORE

CAL E LOC CAL B

TLQ STORE STORE STO F

which requires 12 instructions and gives a T = 7 15/16, which is to be

compared to the results shown in Table III of Ref. 1, where 13 instructions

are required, and T = 10 21/22.

For the general case, one can construct a tree with 2 final

branches, each one corresponding to a canonical term C, , i. e. , to

a unique valuation for the n variables. If C, = 1 > F = 1, we

would set F = 1 in the last block of the k-th branch. With this tree,

all functions of the variables (x,, xol . . . , x) could be evaluated. The
* 1 2 n'

order in which the value of the n variables are inspected will not

effect T, hence there is no optimization problem.

The code would contain £ ._. 2 value test commands (e. g. ,
NZT or ZEJT). However, during evaluation, only n such commands

would be executed, since each variable is inspected at most just once.

On the average n/2 transfer instructions would be executed. Assume

that on the average, m/2 of the m functions F assume the value

1, and are set to 1 in the last branch of the tree. Assuming all final

Value of variable stored in sign position of each word.

-6-

branches are equally likely outcomes, we have

T=2xn+lx n/2 + 2 x m/2 + 1 = (5n)/2 + m + 1.

TRA END

For n = 4, m = 4, we obtain T = 15.

In general, the efficiency of this tree method increases as the

number of appearances of a variable or its negation in the functions

being evaluated increases. If each variable appears just once, the

method is generally inefficient. This technique is most applicable

in decoding or combinatorial logic circuits. Note also that if the

complement of variables is not stored, then we can replace

"NZT X1 [ZET X
TRA f ^ W famM

X

The saving in computer storage by not storing the value of the comple

ment of each variable can sometimes be quite considerable.

B. CANONICAL FORM METHOD

An extension of an idea suggested by Professor D. C. Evans

yields a second method for simultaneously evaluating many equations

for one set of data. In this approach, however, any one of the four

procedural classes can be employed.

Assume we wish to evaluate the set of functions

F= IF., F , ..., F, Fw } , l^w£W, where W is the
number of bits in a word in the simulating computer. Let

F~ = P,f, + P0f0 +...+Pf +...+ P,nf-,n, where Pe is a
C1122 ss d. c s

vector with w elements, and f is the s-th canonical minterm of n

variables. For example, f. = x.x*-. . . x , f0 = x.x_ . . . x ,x , and
c 1 12 n c. 1 c. n-1 n

f„n = x.x^ . . . x . P is a presence indicator or operator, and
2 1 2 n s r

we have

•7-

where Pgt =1 if fg = l=^Ft = 1, otherwise P . = 0.
st

If P = P
s V

and if fg + fv can be logically simplified to f , then we can replace
p f + p f

S S V V

Ps =i then Ps maY be deleted. The final reduced form of F is
labelled FCR. Pg is a word in memory, the t-th bit position
containing Pgte(0,l). The value of variable x. must now be stored
in all_ W bit positions of word x^ for all i. Expression Fp can be
coded using any of the procedure's defined. In the final result, the
value of Ft will be found in the t-th bit position of word F . The

C-»R

results must therefore be unpacked from FrD and transferred to
their appropriate locations.

Example:

by P f .
sv sv If Ps =-' then Psfs may be deleted If

Let F =

1

Therefore

where

F1 = AB + AC + AB
P*2 =AB + C + AB
F3 = A + BC
F4 =A +"B + C

F = ABC + ABC + ABC + ABC + ABC
ABC + ABC + ABC + ABC + ABC + ABCF2 =

F3 = ABC + ABC + ABC + ABC + ABC
F4 = ABC + ABC + ABC

P = P = P
*6 *8 *68

+ ABC + ABC + ABC + ABC J

Fc =PjABC+P^BC+P^BC+P^BC+J^BCfPABC+PJ^BC+PJVBC

P7 =

Hence FCR = P^BC +ABC + P3ABC + P4ABC + P ABC + P,gAC -f
P^BC.^

-8-

III. SIMULTANEOUS EVALUATION OF ONE FUNCTION FOR SEVERAL

SETS OF VALUES

When checking the logical design of a new computer or when

simulating diagnostic tests, the simulation is usually repeated for

each test case. Usually many thousands of test cases exist. Bashkow

states in his discussion on detecting machine malfunctions:

"Ideally the accumulator should be tested with all

possible bit configurations. The word length of the

SPE is 32 bits, however, and the time required to
32form 2 configurations would be excessive. As a

compromise the accumulator is caused to count by

ones from 1 to 2 ,2 to 2 , "

If W is the number of bits in a computer word of the simulating

computer, then w(l<=w^W) tests can be simulated simultaneously if

the values of the variables for the i-th tests are stored in the i-th bit

position of their respective words. The actual time required to evaluate

w tests simultaneously is equal to the time required to evaluate the

longest test. Note that the maximum increase in efficiency of the

simulation system of almost a factor of w is essentially realized by

efficient usage of memory. In most of the papers reviewed, the authors

used an entire word of memory to store the binary valued output of a

single logical element.

When coding an expression which will be used to simultaneously

evaluate many test cases, the tree procedure outlined in Sec. II. A can

not be employed. This is due to the fact that in general, a variable

will have the value 0 for some tests, and 1 for others. Hence, if

a data dependent procedure is to be employed, it is necessary to

branch on either all l's or all O's, but not both.

IV. SUMMARY

In this paper we have defined the various procedures for

evaluating Boolean functions. Techniques for simultaneously evaluating

many functions for one set of variable values, and for evaluating

-9-

simultaneously one function for many sets of variable values have

been presented. No claim that one procedure is better than another

has been made. The best procedure to use for any given system is

a function of the simulation system requirements, the characteristics

of the simulating computer, and the exact expressions to be

evaluated. The inherent efficiency in the procedures proposed lies

not in their being optimally implemented, but rather in that many

evaluations are carried on simultaneously.

-10-

APPENDIX A

DEFINITION OF INSTRUCTIONS USED IN SIMULATING COMPUTER

Instruction Address Cycles

NZT Y 2

ZET Y 2

TLQ Y 2

TRA Y 1

ORA Y 2

ORS Y 2

ANA Y 3

CAL Y 2

CLA Y 2

STO Y 2

-11-

Definition

If C(Y) f 0, computer skips

next instruction.

If C(Y) = 0, computer skips

next instruction.

If C(MQ)<C(AC), computer

takes its next instruction from

location Y.

Computer takes its next

instruction from location Y.

OR to accumulator

OR to storage

AND to accumulator

Clear and Add Logical Word

Clear and Add

Store contents of accumulator

in C(Y).

REFERENCES

1. J. H. Katz, "Optimizing bit-time computer simulation, "

Communications of the ACM, Vol. 6, No. 11, pp. 679-685;

Nov. 1963.

2. J. Katz, H. Adler, H. Jacobs, "The RrW logic simulation

program, " AIEE Conference Paper CP 60-1063, 9 pages;

August 8, 1960.

3. R. E. Wolfe, "Logical simulation techniques using the IBM 709, "

Dynamic Digital Logic, Conference sponsored by Computer

Control Company.

4. G. N. Stockwell, "Computer logic testing by simulation, " IRE

Trans., PGME, pp. 275-282; July 1962.

5. R. P. Larsen, "Logic simulation program, " presented at the AIEE

Design Automation Workshop 1962, Michigan State University,

6 pages; May 1962.

6. J. R. Bashkow, J. Friets, A. Karson, "A programming system

for detection and diagnosis of machine malfunctions, " IEEE

Trans. , PGEC, pp. 10-17; Feb. 1963.

7. S. H. Caldwell, Switching Circuits and Logical Design, John

Wiley & Sons, New York, pp. 211-226; 1958.

-12-

	Copyright notice 1964
	ERL-53

