

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN APPROACH TO IMPLEMENTING A GEO-DATA SYSTEM

by

A. Go. M. Stonebraker and C. Williams

Memorandum No. ERL-M529

27 June 1975

AN APPROACH TO IMPLEMENTING A GEO-DATA SYSTEM

by

Angela Go> Michael Stonebraker and Carol Williams

Memorandum No. ERL-M529

27 June 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN APPROACH TO IMPLEMENTING
A

GEO-DATA SYSTEM

ANGELA GO, MICHAEL STONEBRAKER and CAROL WILLIAMS
DEPARTMFNT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

AND THE ELECTRONICS RESEARCH LABORATORY
UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

ABSTRACT

This paper sketches the indentation approach being taken in J"!"^;^1specifpurpo^-front end"information retrieval and display system. The basic «chant«. is to «>»£™ |̂.»^1 atPBe^eley. It is
2£«5-£i 5ri=,£iS£.-£,^!.SSrS SS^STiSW oi the Utuit, at this
approach are given.

I INTRODUCTION

The capability for graphical display of data (especially data that has «^mSrrSicll'SlX. «-
recognized as avaluable component of *"fo™tio" "'£«!£ ^fsan'Francisco County, California by zonesdistribution of non-white families earning less than $2,900 for San Francisco l ^ numbers to an
defined by the Metropolitan Transit Commission (MTC zones) is more meaningful than
urban analyst.

Distribution of poor non-white families

Figure 1

Applications which could utilise agraphical facility include **%^?^^l£?Z^£ »°»*
area (e.g. census tracts, school districts, election districts etc.).

Several such geodata systems currently exist including .UKMil. ^[JJj.Sr^^^S,^ an" "
are special purpose information retrieval and display facilities requiring their own q y
internal data structures for data.

in this paper we sketch the implementation of CE0-QUF.I. which «''*»%^»J£Z'££j?£'t£X.
systems. CKO-QUEL differs drastically In its implementation approac »« " " *°^™„".
powerful relational data hasc managem-nt system. This approach has the following

'^Tc^^Iy .ho National fcl.-n.-c Pound.,, ...n (!r.nt SCWS-03M. and the U.S. Army Kes.-nrch Offl«
Durham Grant. l>A11CO/i-7'«-GO(.87.

1) All geographic data (including maps) are treated as relations. Hence, the full power of the
relational data sublanguage is available to manipulate geographic data.

2) Because of 1), most features needed in a geo-data system can be implemented easily. Very little
special code is required as most tasks can be turned into interactions in the data sublanguage.

The suggestion of using relations for graphics data structures appears in (6]. Here, we indicate the
utility of a general purpose relational data base management system for graphics applications.

In order to indicate our implementation, we first discuss the relational data base" system INGRES and its
data sublanguage QUEL on top of which GEO-QUEL is being implemented.

II. QUEL

QUEL {QUEry Language) has points in common with Data Language/ALPHA [7], SQUARE [8] and SEQUEL [9] in that
it is a complete [10] query language which frees the programmer from concern for how data structures are
implemented and what algorithms are operating on stored data. As such it facilitates a considerable degree
of data independence [11]. Since basic entities in QUEL are relations, we define them and indicate the
sample relation which is used in the examples in this section.

Given sets D1.....DN (not necessarily distinct) a RELATION R(D1,...,DN) is a subset of the cartesian product
Dlx...xDN. In other words, R is a collection of N-tuples X = (XI,...,XN) where Xi is an element of Di for
i in (1,...,N). The sets D1,...,DN are called DOMAINS of R and R has degree N. The only restriction put on
relations in QUEL is that they be normalized [12]. Hence, every domain must be SIMPLE, i.e. it cannot have
members which are themselves relations.

Clearly, R can be thought of as a table with elements of R appearing as rows and with columns labeled by
domain names as illustrated by the following example.

NAME DEPT SALARY MANAGER AG]

Smith toy 10000 Jones 25

EMPLOYEE Jones toy 10000 Johnson 32

Adams candy 12000 Baker 36

Johnson coy 14000 Harding 29

Baker admin 20000 Harding 47

Harding admin 40000 none 58

The above indicates an EMPLOYEE relation with domains NAME, DEPT, SALARY, MANAGER and AGE. Each employee
has a manager (except for Harding who is presumably the company president), a salary, an age, and is in a
department.

Each column in a tabular representation for R can be thought of as a function mapping R into Di. J^ese
functions will be called ATl'RIBUTES. An attribute will not be separately designated but will be identified
by the domain defining it.

A QUEL interaction includes at least one RANGE statement of the form:

RANGE of variable-list IS relation-name

The symbols declared in the range statement are variables which will be used as arguments for tuples.
These are called TUPLE VARIABLES. The purpose of this statement is to specify the relation over which each
variable ranges.

Moreover, an interaction includes one or more statements of the form:

Command Result-name (Target-list)
WHERE Qualification

Here, Command is either RETRIEVE, APPEND, REPLACE, or DELETE. For RETRIEVE and APPEND, Result-name is the
name of the relation which qualifying tuples will be retrieved into or appended to. For REPLACE and DELETE,
Result-name is the name of a tuple variable which, through the qualification, identifies tuples to be
modified or deleted. The Target-list is a list of the form:

Result-domain = Function, ...

Here, the Result-domains are domain names in the result relation which are to be assigned the value of the
corresponding function. .As a shorthand, the 'Result-domain =' may be omitted if the function is a simple
attribute (i.e. NAME = E.NAME may be written as E.NAME - see example 2.6).

The following suggest valid QUEL interactions. A complete description of the language is presented in
[13,14].

-9-

Example 2.1. Find the birth date of employee Jones

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W(BDATK = 1975 - E.AGE)
WHERE E.NAME = "Jones"

Here, Eis atuple variable which ranges over the EMPLOYEE relation and all tuples in that relation are
found which satisfy the qualification E.NAME - "Jones'. The result of the query is anew relation, W, which
has a^ng!e attr bu e, bVtE, that has been calculated for each qualifying tuple If the result relation
is omitted, qualifying tuples are printed on the user's terminal or returned to the user's program.

Example 2.2. Insert the tuple (Jackson,candy,13000,Baker,30) into EMPLOYEE.

APPEND TO EMPLOYEE(NAME - "Jackson", DEPT = "candy",
SALARY = 13000, MGR = "Baker", AGE » 30)

Here, the result relation EMPLOYEE is formed by adding the indicated tuple to the EMPLOYEE relation.

Example 2.3. Delete the information about employee Jackson.

RANGE OF E IS EMPLOYEE
DELETE E WHERE E.NAME = "Jackson"

Here, the tuples corresponding to all employees named Jackson are deleted from EMPLOYEE.

Example 2.4. Give a 10 percent raise to Jones

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY BY 1.1 * E.SALARY)
where E.NAME = "Jones"

Here ESALARY is to be replaced by 1.1*E.SALARY for those tuples in EMPLOYEE where ENAME -"Jones". (Note
that'the ke^wlrds IS and BY may be'used interchangeably with '-• in any QUEL statement.)
Also, QUEL contains aggregation operators including COUNT, COUNT' SUM SUM', AVG, AVG', MAX, MIN, and the
set operators, SET and SET'. Two examples of the use of aggregation follow.

Example 2.5. Replace the salary of all toy department employees by the average toy department salary.

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY BY AVG'(E.SALARY WHERE E.DEPT = "toy))

WHERE E.DEPT = "toy"

Hprp AVG' M to be taken of the salary domain for those tuples satisfying the «™l"lcat*™/-D"[Ll "^"*
mI \t . lirul qatary WHERE EDEPT- "toy") is scalar valued and consequently will be called an AGGREGATE.Note that AVG1 (E.SALARY WhERE E.DhFi toy) is s^j. nnnn+10000+14000) which equals 11,333. It isFor the example chosen this aggregate has the value (1/3)*(^00410000+1^000) which q included. Non
sometimes useful to allow aggregates to be taken in such aw hat ^^'"^(E.SALARY WHERE E.DEPT
primed aggregates (SET, AVG, COUNT, and SUM) perform this function. For example, AViAC.a
= "toy") has a value 12,000.

More general aggregations are possible as suggested by the following example.
Example 2.6. Find those departments whose average salary exceeds the company wide average salary, both
averages to be taken only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO HIGHPAY(E.DEPT)
WHERE AVG'(E.SALARY BY E.DEPT WHERE E.SALARY > 10000)

>

AVG'(E.SALARY WHERE E.SALARY > 10000)

Here, AK'O.MUH BY E.DEPT «HERE ^^^V>10000, is an AGGREGATE FUNCTION andJ*"^^^
value of E.DEPT. This value is the aggregate AVG (E.SALARY WHEKh t.fcAbAKi
indicated below.

E.DEPT AVG*(E.SALARY BY E.DEPT WHERE E.SALARY>10000)

toy 14,000
candy 12,000
admin 30,000

-3-

The qualification expression for the statement is then true for departments for which this aggregate
function exceeds the aggregate AVG'(K.SALARY WHERE E.SAIARY>1000). The latter is simply the scalar 21,500.
Hence, admin is the only qualifying department.

As with aggregates, aggregate functions can have duplicates deleted with an unprimed operator.

The implementation of relations and the mechanism of decomposing interactions in QUEL are discussed in
[13,15] and are beyond the scope of this paper.

Ill MAPS

A basic entity in GEO-QUEL is a map. Intuitively, a map is a collection of:

points {(x,y)}

lines {(xl,yl,x2,y2)}

line groups

zones

Points and lines are the obvious spatial construct. A line group is simply a collection of lines. A
special case of a line group that will often be useful is a polygon. A POLYGON is a line group (of say n
lines) such that:

a) each of the 2n points of the polygon belongs to exactly 2 lines

b) no two lines cross

Lastly, a zone is a collection of one or more polygons.

Line groups are required so that structures such as transportation networks can be represented. Polygons
are required for partitions of a geographic area and zones are required so that disjoint collections of
polygons can be considered as one entity. (Such an entity might be New York City which is composed of
several polygons.)

As mentioned in a previous section a map is a relation with a given relation name and containing the
following domains: XI, Yl, X2, Y2, PLZTYPE, GRAPHCHAR, INTENSITY, GROUPID, ZONEID, AOD. AOD is a shorthand
for any other domains that may te present, so a map is simply a relation of the form

RELNAME(X1, Yl, X2, Y2, PLZTYPE, GRAPHCHAR, INTENSITY,
GROUPID, ZONEID, ... other domains ...)

Here:

X1,Y1,X2,Y2 - are coordinates of a point or line.
XI = X2, Yl = Y2 for a point.

PLZTYPE - indicates whether the tuple corresponds to a point, a single line
or a line segment in a line group or zone.

GRAPHCHAR - applies to tuples of type point only. If not null the point
will be represented by the character in GRAPHCHAR.

INTENSITY - indicates the display screen intensity of the tuple.

GROUPID - indicates what line group this tuple belongs to.
Points and lines are degenerate line groups.

ZONEID - indicates what zone the current tuple belongs to.

As far as QUEL is concerned, a map relation is indistinguishable from any other kind of relation. Moreover,
there can be an arbitrary number of such maps.

It is expected that the data base administrator will "set up" in the proper format all maps which arc
available. Users can then form other maps from the base set by using the query language.

An example of a simple map now follows:

-4-

PLZTYPE GRAPHCHAR INTENSITY GROUPID ZONEID
XI Yl X2 Y2 PLZTY1

0 0 0 10 zone

0 0 10 0 zone

0 10 10 10 zone

10 0 10 10 zone

20 0 30 0 zone

20 0 20 10 zone

30 0 30 10 zone

20 10 30 10 zone

5 0 25 10 line

5 5 5 5 poin

ft mloht ho noted that a certain amount of duplication is present in the above relation. This is^tiift:dbhy"t„:dd^reatoehave map relation/that are normalised (ie. whose domains are not hemse ves
relations) and by a desire to store a map as a single relation so that it can oe easixy m f
to be presently discussed.

this.

Besides an arbitrary number of map relations there are three special relations which graphics software
manipulates. These are now discussed.

There exists arelation MAPRELATION which contains one tuple for each map in the data base. This relation
contains the following domains:

MAPRELATION (MRELNAME , MRELOWNER , XCENTER , YCENTER ,
XMAG , YMAG , SHADEK)

Here:

MRELNAME - map relation name

MRELOWNER - owner of this map (different users may have different
maps with the same name).

XCENTER, YCENTER - x, y coordinates of the map which corresponded to
the center of the screen on the graphics
terminal the last time the map was displayed.

XMAG, YMAG - the x and y limits that were used to scale
the map the last time it was displayed.

SHADEK - the default distance k between shading characters

The third fourth, fifth and sixth domains contain the center and magnitude of the map the last time it was
SspJaJed'on the screen. The final domain contains information only relevant to shaded maps and its use
will be presently explained.

The relation DSPTEMP is the- second special relation that is now discussed.

This relation corresponds to the map that is presently on the screen of the graphics terminal (in our case
aDigital Equipment Corporation GT/42). Its owner is the device on which it is displayed ami Its Torn, is.

DSPTEMP (DSPX1 , DSPY1 , DSVX2 , DSVY2 , DSIMM.ZTYPE ,DSPTNTEN ,MUID)

S£X= -X^zs-x: f^ror^e H; rvoi :«££ ssrsi ca„ „
-5-

found in the relation MENU.

Relation MENU is of the form:

MENU (MUID , MURELNAME , MLOWNER , MUSTRING)

MURELNAME is the relation name of the relation that 'owns' this message string.
MUOWNER is the owner of relation MURELNAME.

Basically MENU stores strings, MUSTRING, that are appended to most displayed maps (for example, the
coordinates of the center of the map and the current x and y magnitudes). Text strings of more than one
character in length are segregated in a separate relation so they can be properly displayed.

IV GRAPHICS COMMANDS

The set of graphics commands being implemented is the following.

DISPLAY

The command DISPLAY processes DSPTEMP to a form suitable for low level display software which puts it on
the screen. This routine contains the only interface to device dependent software. Most other commands
alter DSPTEMP then call DISPLAY.

OUTLINE relname

OUTLINE attempts to find and display the physical outline of a map regardless of the values in XCENTER,
YCENTER, XMAG and YMAG. This is accomplished in two steps. First, OUTLINE builds the desired figure in
DSPTEMP then it calls DISPLAY to put the result on the screen. This command is useful in providing
appropriate visual information to center the map as described below.

MAP relname [ON domain]

MAP displays a map with respect to the center and magnitude found in MAPRELATION. If no tuple for this
relation exists in MAPRELATION, then the map is scaled to fit entirely on the screen, and an appropriate
tuple is inserted in MAPRELATION. If the ON option is used, the value of the domain chosen will be
displayed appropriately over the centroid of a zone or on a line group or point. This domain must be in
the relation relname. The ON option is useful both to indicate data of a geographic nature and to indicate
zone id's when necessary (for example, census tract numbers on a census tract map).

SHADE relname WITH domain = <graphchar or LINE> [SHADE DENSITY=k]

SHADE essentially does a MAP first. Considering only zones completely within the portion of the map which
will fit on the screen, characters will be drawn whose density is proportional to the value of the given
domain for a polygon. The shade character is specified by graphchar. If the shade density option is
omitted, the unit spacing of characters will be adjusted until the maximum number of flicker free characters
can be put on the screen. Along with the display appears the value of k used. The user can optionally
choose his own value (perhaps so he can compare this map accurately with a previous map). The option LINE
uses a similar algorithm to draw diagonal lines through zones whose perpendicular distance is inversely
proportional to the value of the domain of interest.

Lines and points are shaded by varying their intensity.

GRAPH relname ON domain WITH {domain = graphchar)
POINTGRAPH relname ON domain WITH (domain = graphchar)

For GRAPH and POINTGRAPH, the first domain specified will serve as the x axis. Each domain thereafter will
be a y axis. Each point is first plotted or drawn according to the graph character specified for that
domain. The GRAPH command draws line segments connecting points belonging to the same domain.

CENTER relname AT x , y WITH MAGNITUDE xmag, ymag

CENTER changes the XCENTER, YCENTER, XMAG and YMAG of relname in MAPRELATION to the given values.

SAVEMAP relname

SAVEMAP makes a permanent relation out of the current display relation (DSPTEMP).

V IMI'I.KMKNTATION CONSIDERATIONS

GE0-QUK1. consist.'! of QUEL augmented by the commands indicated in the previous section. It is implemented
by making use of a macro facility that exists in INGRES and by utilizing a precompiler that embeds QUEL in
the general purpose programming language "C" [16]. The macro facility is straightforward and we will
indicate its utility presently. First, we. show the nature and implementation of the language C-QUEL

t6-

which is supported by the precompiler.

A C-QUEL program runs as a process on the UNIX operating system [17]. UNIX also supports an interprocess
communication facility (pipes) and allows a process to fork subprocesses and execute files in these
subprocesses.

The precompiler first inserts the code necessary to fork INGRES (which runs as three UNIX processes and is
protected from the C-QUEL program). Figure 2 indicates the process structure that is created.

A

C-QUEL

PROGRAM

INGRES

PROCESSES

-*• - B

The Forked Process Structure

Figure 2

Pipe A is the INGRES standard input on which it expects commands; on pipe B error messages and data are
returned to the C-QUEL program.

For all INGRES commands that appear in a C-QUEL program (except those RETRIEVE statements in which no
result relation is specified), the precompiler simply removes the command from the C-QUEL program and
inserts appropriate write commands for pipe A. Then, it inserts a read command for pipe B to obtain
completion information. Lastly, if necessary, an error routine is called (either the default system
routine or a user supplied one).

For RETRIEVE commands for which no result relation is specified the precompiler must do additional work,
:.;imely, it must return tupl?s to the C-QUEL program one by one through pipe B.

More specifically, a target list for such a RETRIEVE command must have components of the form:

C-variable = QUEL function

Moreover, each such C-variable must have been previously declared. In this case after the operations
described in the previous paragraph, the precompiler inserts a read of pipe B to obtain format information
for the tuples which follow. It then inserts the necessary control statements to read a single tuple,
convert any domains to the types of the declared C-variables and assign appropriate values to these
C-variables. Control is then passed to the next block of the C-QUEL program which may operate on these
C-variables (but cannot contain other INGRES commands). Lastly, statements are inserted at the end of the
block to pass control back to the routine which reads a tuple from pipe B. This mechanism provides the
"piped" mode of tuple return mentioned in [7].

The precompiler lastly supports the ability for a programmer to use C-variables in the qualification and
the right hand side of a target list expression in any places where a constant would be allowed. This
feature is often useful for iteration.

One C-QUEL program supported is an interactive query formulation aid which supports extensive interactive
editing of user interactions from a terminal. This interface is described in [18,19]. Other special
purpose interfaces being implemented include CUPID [14], a QUEL subset with no tuple variables and an
inventory control system front end with special purpose prompts and error messages.

GEO-QUEL is an augmentation of the above terminal interface to support the additional commands of the
previous section and is written in C-QUEL. The implementation philosophy is to support the additional
features by macro expansion whenever possible. When not possible, C code is used to perform required
functions (mostly in the SHADE routine). The following macro expansion of CENTER and POTNTGRAPH illustrate
this approach.

The command

CENTER relname AT x,y WITH MAGNITUDE xmag, ymag

can be easily expanded to a single QUEL command as follows:

-7-

RANCE OF M IS MAPRElATION
REPLACE M(XCKNTER = x, MYCENTER - y, XMAG » xraag, YMAG « ymag)

WHERE MRELNAME = relname AND MRELOWNER «= this user

A more complex set of interactions is required for POINTGRAPH. The expansion shown considers only one
YDOMAIN for simplicity. Moreover, the axes are drawn passing through the point (0,0). The reader should
note that the QUEL statements involve the special graphics relations considered earlier.

The graphics command
POINTGRAPH relname ON xdomain WITH ydomain = graphchar, expands to the following QUEL statements :
(Here comments are delimited by /* and */)

RANGE OF T IS DSPTEMP

RANGE OF U IS MENU

RANGE OF M IS MAPRELATION

RANGE OF R IS RELNAME

/*
** clear DSPTEMP of all tuples

*/
DELETE T

/*
** delete all tuples in relation MENU whose MURELNAME is equal to "DSPTEMP"
** and whose MUOWNER is equal to the id of the present user

*/
DELETE U WHERE U.MURELNAME IS "DSPTEMP" AND U.MUOWNER IS this user.

/*
** set up in DSPTEMP tuples of points with x and y values that
** are the values of the XDOMAIN and YDOMAIN attributes of RELNAME
** and whose graph character is equal to graphchar
*/
APPEND TO DSPTEMP(l)SI'Xl = R.XDOMAIN, DSPY1 = R.YDOMAIN,
DSPX2 = R.XDOMAIN, DSPY2 « R.YDOMAIN, DSPINTEN =4,
.DSPMUID = graphchar, DSPPLZTY7E = "point")

/*
** add a tuple to the relation whose x and y values are zero
** so there is a point at the origin

*/
APPEND TO DSPTEMP(DSPX1 « 0.0, DSPY1 = 0.0, DSPX2 = 0.0, DSPY2 = 0.0,
DSPINTEN = 4, DSPMUID = 0, DSPPLZTYPE = "point")

/*
** set up a relation that contains all minimum and maximum values
** of the x's and y's

*/

RETRIEVE INTO MINMAX(PXM1N = MIN(T.DSPXl), PYMIN » MIN(T.DSPYl),
PXMAX = MAX(T.DSPXl), PYMAX = MAX(T.DSPYl))

/*
** set up tuples for the x and y axes

*/
RANGE OF MNX IS MINMAX

APPEND TO DSPTEMP(DSPXl = MNX.PXMIN, DSPY1 =0.0, DSPX2 = MNX.PXMAX,
DSPY2 =0.0, DSPINTEN = 4, DSPMUID = 0, DSPPLZTYPE = "line")
APPEND TO DSPTEMP(DSPX1 = 0-0, DSPY1 = MNX.PYMIN, DSPX2 = 0.0,
DSPY2 = MNX.PYMAX, DSPINTEN = 4, DSPMUID = 0, DSPPLZTYPE » "line")

/*
** assume that a relation MISC1 exists, which contains ten
** tuples of one domain NUM having values from 1 to 10
*/

** set up all necessary tuples that will aid in the marking and
** labelling of the x and y axes, assume for the moment that
** the axes will be marked off a <;ot.al of only 10 times

*/

-8-

RETRIEVE INTO MlSC2(WIDTH = MNX.PXMAX - MNX.PXMIN,
LENCTH » MNX.PYMAX - MNX.PYMIN, XINC = (MNX.PXMAX -
MNX.PXM1N)/10.0, YINC = (MNX.PYMAX - MNX.PYMIN)/10.0)

/*
** set up relations XINCREL and YINCREL each containing tuples
** which are incremental values for the X and Y axes respectively

*/
RANGE OF Ml IS MlSCI

RANGE OF M2 IS MISC2

RETRIEVE INTO XINCREL(XINC » Ml.NUM * M2.XINC) WHERE
Ml.NUM * M2.XINC < MNX.PXMAX

APPEND TO XTNCREL(XINC = Ml.NUM * -M2.XINC) WHERE
Ml.NUM * -M2.XINC > MNX.PXMIN

RETRIEVE INTO YINCREL(YINC = Ml.NUM * M2.YINC) WHERE
Ml.NUM * M2.YINC < MNX.PYMAX

APPEND TO Y1NCREL(YINC = Ml.NUM * -M2.YINC) WHERE
Ml.NUM * -M2.Y1NC > MNX.PYMIN

/*
** set up in DSPTEMP tuples for the marks on the X and Y axes
*/
RANGE OF X IS XINCREL

RANGE OF Y IS YINCREL

APPEND TO DSPTEMP(DSPX1 = X.XINC, DSPY1 = 0.0, DSPX2 = X.XINC,
DSPY2 =0.0, DSPINTEN = 4, DSPMUID = "1", DSPPLZTYPE = "point")
APPEND TO DSPTEMP(DSPX1 = 0.0, DSPY1 = Y.YINC, DSPX2 = 0.0,
DSPY2 = Y.YINC, DSPINTEN = 4, DSPMUID = "-", DYPPLZTYPE = "point")

/*
** set up tuples in MENU and DSPTEMP for the label of each mark
** on the X and Y axes

*/
Ai'PEND TO MENU(MUID = MAX(MUID)+1, MURELNAME = "DSPTEMP", MUOWNER = this user,
MUSTRING = X.XINC)
APPEND TO MENU(MUID = MAX(MUID)+1, MURELNAME = "DSPTEMP", MUOWNER = this user,
MUSTRING = Y.YINC)
APPEND TO DSPTEMP(DSPX1 » X.XINC, DSPY1 = -30.0, DSPX2 = X.XINC,
DSPY2 = -30.0, DSPINTEN = 4, DSPMUID = U.MUID, DSPPLZTYPE = "point")
WHERE U.MURELNAME = "DSPTEMP" AND U.MUOWNER = this user

AND U.MUSTRING = X.XINC

APPEND TO DSPTEMP(DSPX1 = -70.0, DSPY1 = Y.YINC, DSPX2 = -70.0,
DSPY2 = Y.YINC, DSPINTEN = 4, DSPMUID = U.MUID, DSPPLZTYPE = "point")
WHERE U.MURELNAME = "DSPTEMP" AND U.MUOIWNER = this user AND

U.MUSTRING = Y.YINC

/*
** update the tuple for DSPTEMP in MAPRELATION
*/
DELETE M WHERE M.MRELNAME » "DSPTEMP" AND

M.MRELOWNER = this device

APPEND TO MAPRELATION(MRELNAME = "DSPTEMP", MRELOWNER = this device,
XMAG = M2.WIDTH, YMAG = M2.LENGTH, XCENTER = MNX.PXMIN +
M2.WIDTH/2.0, YCENTER = MNX.PYMIN + M2.LENGTH/2.0, SHADEK = default)

The above QUEL statements replace more than 500 lines of code in the general purpose programming language
"C" [16]. Note that a simple macro facility can expand the POINTGRAPH command to this code. Note further
more that the axes, crosshatches and labels have been inserted using QUEL to illustrate its power. In
reality we are using "C" to do the portions of these chores that are not more easily expressed in QUEL. Not
all commands can be completely expanded to QUEL code alone but all can be expanded PRIMARILY to QUEL code.
As a result the effort necessary to implement the facility indicated in the previous section is
substantially reduced.

There are several other operations which can be easily done by a user with the query language. Eventually,
these may also be built into the graphics facility.

- Overlaying of two or more maps(assuming they have all domain names the same):
RANGE OF Ml IS MAPI

APPEND TO MAP2(M1.ALL)

- Obtaining asubset of a map any of whose data domains satisfies certain qualifications:
RANGE OF M IS MAP

-9-

RETRIEVE INTO NEWMAP(M.ALL) WHERE M.datadomain = something

- Simple minded windowing:
RANGE OK M IS MAP '

RETRIEVE INTO NEWMAP(M.ALL) WHERE M.XKuppcrlimlt AND M.X2< upperlimit
and M.Yl<uppe.rlimit AND M.Y2< upperlimit

- Adding data domains to a map:
RANGE OF M IS MAP

RANGE OF D IS DATA

/*
** Here, we assume that there exists a connecting domain (called "connecting
** id" in each relation which identifies which data items are

** associated with which map entries.
*/
RETRIEVE INTO NEWMAP(M.ALL, D.desired-data) WHERE D.connecting-id

= M.connecting-id

It should be clearly noted that the entire power of QUEL is available to form the DATA relation in which
the user is interested. He need not be limited to "precanned" or "pre-extracted" data.

- Reversing an overlay:

/*
** assume that MAP is an overlay of a point map and a line map
*/
RANGE OF M IS MAP

DELETE M WHERE M.plztype = "point"

VI SUMMARY

This paper has indicated a mechanism for implementation of a geo-data system. Basically, it is a very
"thin" layer on top of a general purpose relational data base management system. Everything possible is
turned into commands to this general purpose system (primarily by macro expansion). This has the following
advantages:

1) A geographic facility can be brought up readily and involves little special-purpose code.

2) New capabilities are readily added (or old ones changed).

3) Hie implementation is straightforward.

A possible disadvantage to this approach is that INGRES may not be able to perform certain operations as
fast as they could be done by special purpose code in a lower level language. However, INGRES supports a
variety of storage structures for relations and secondary indices [15] for augmented performance. Moreover,
extensive effort has gone into (and will continue to go into) the optimization of processing interactions.
Hence, the performance penalty (at least for the commands discussed in this paper) should be small. The
issue of performance is further discussed in [20] in a more general context.

VII REFERENCES

[1] Macri, P., "BUDS: The Berkeley Urban Data System," Electronics Research Laboratory, University of
California, Berkeley, Memoranoura M412, November, 1973.

[2] Christian!, E. J., et al., "An Interactive System for Aiding Evaluation of Local Government Policies,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 2, Mar. 1973, pp. 141-146.

[3] Mantey, P. E., et al., "Information for Problem Solving: The Development of an Interactive Geographic
Information System," IEEE Conference on Communication, vol. II, Seattle, Washington, June 1973.

[4] Parker, J. L., "Information Retrieval with Large Scale Geographic Data Bases," Proc. 1971 ACM-SIGFIDET
Workshop on Data Description, Access and Control, San Diego, Ca., Nov. 1971.

[5] Depta, D. J., and Irwin, G. M., "FIRS II - Design Requirements Component," Weyerhauser Company, Woods
Product Information Systems, Tacoma, Wash., March 1974.

[6] Williams, R., "On the Application of Relational Data Structures in Computer Graphics," IBM Research
Laboratory, San Jose, Ca., Jan. 1974.

J71 Codd, E., "A Data Base Sublanguage Founded on the Relational Calculus," Proc. 1971 ACM-SIGFIDET

-10-

Workshop on Data Description, Access and Control, San Diego, Ca,, Nov. 1971.

[8] Boyce, R., et al., ."Specifying Queries as Relational Expressions: SQUARE," Proc. ACM S1GPLAN-SIGIR
Interface Meeting, Gaithersberg, Md., Nov. 1.973.

[9] Chamberlin, D. -and Boyce, R., "SEQUEL: AStructured English Query Language "Proc. 1974 ACM-SIGFIDET
Workshop on Data Description, Access and Control, Ann Arbor, Mich., May iy/4.

[10] Codd, E., "Relational Completeness of Data Base Sublanguages," Courant Computer Sciences Symposium,
New York, N.Y., May, 1971.

[11] Stonebraker, M., "A Functional View of Data Independence," Proc. 1974 ACM-SIGFIDET Workshop on Data
Description, Access and Control, Ann Arbor, Mich., May 1974.

[12] Codd, E., "A Relational Model of Data for Large Shared Data Banks," CACM 16, (June 1970).
[13] Held, G., et al., "INGRES -ARelational Data Base System," Proc. 1975 National Computer Conference,

Anaheim, Ca., May 1975.

[14] McDonald, N. and Stonebraker, M., "CUPID -The Friendly Query Language," Electronics Research
Laboratory, University of California, Berkeley, Memorandum M487, October, 1974.

[15] Held, G. and Stonebraker, M., "Storage Structures and Access Methods in the Relational Data Base
Management System, INGRES," Proc. ACM-PACIFIC-75, San Francisco, Ca., April 1975.

[16] Ritchie, D. M., "C Reference Manual," Bell Telephone Laboratories, Murray Hill, New Jersey, Jan. 1974.
[17] Ritchie, D. M. and Thompson, K., "The UNIX Time Sharing System," CACM, Vol 17, No. 7, pp. 365-375,

July, 1974.

[18] Stonebraker, M., "Getting Started in INGRES- ATutorial," Electronics Research Laboratory, University
of California, Berkeley,Memorandum M518, April, 1975.

119] Zook, W., et al., "INGRES Reference Manual," Electronics Research Laboratory, University of
California, Berkeley, Memorandum M519, April, 1975.

f?0] Stonebraker, M., "Networks, Hierarchies and Relations in Data Base Management Systems," Proc.
ACM-PACIFIC, San Francisco, Ca., April, 1975.

-11-

	Copyright notice 1975
	ERL-529

