
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



B-TREES RE-EXAMINED

by

Gerald Held and Michael Stonebraker

Memorandum No, ERL-M528

2 July 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



B-trees Re-examined

btf

Gerald Held and Michael Stonebraker

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Key Words and Phrases? B-tree, directory, static directory,

dynamic directory, index sequential access nethod

CR Categories? 3.70, 3.73, 3.74, 4.33, 4.34

The B-tree £13 has been receiving considerable attention as a

storage structure for certain files on paged secondary storage

devices. Such files include those consisting of a set of records

each of which has an identifying portion called a KEY. Access to

the file is desired both randonly (by requesting the record

corresponding to a given key) and sequentially (in collating

sequence by key value).

In this note we briefly explain B-trees, several of their vari

ants and an alternate static directory structure. Then «e indi

cate some potential problems which a B-tree implementation must

overcone in a nulti-user data base environment that do not arise

in static directory structures. These problems include a possi

ble performance penalty.

Research sponsored by the National Science Foundation Grant DCR75-03839.



B-TREES

Basically, a B-tree is a balanced tree with between k+1 and 2k+l

sons for any given node. The parameter k is determined by the

page size and data characteristics. An exanple of a B-tree for

k=i is shown in figure 1. Here, space exists on each block (or

page) for two data records and three pointers. (In the figure we

only indicate the key portion of the record.) Note that the

records are in collating sequence if the tree is scanned in pos-

torder. Note also that the nunber of page accesses required to

reference any given record is logarithmic in the nunber of data

records.

The major advantage of this structure is that the tree can be

kept balanced during insertions and deletions with a known (and

snail) worst case update cost. Hence, a snail worst case search

tine is always guaranteed. For a detailed discussion of the

B-tree maintenance algorithms, see CI 3.

For exanple, the record with key of ALL can be added to the tree

with only three page accesses and stored in the enpty space on

the page labeled A. However, the addition of a record with key

of ELF will not fit on the page labeled B and hence, B is split

into two pages and a record noved to a higher level node. This,

in turn, causes the page labelled C to split and the final struc

ture that results is the balanced tree shown in figure 2. Note

clearly that several records have been noved as a result of this

- 2 -



insertion. Such necessary address modifications will be shown to

be potentially troublesome.

The B-tree is one example of a class of storage structures which

we call a "dynamic directory" because it is dynamically reorgan

ized during updates to provide a balanced search tree (or direc

tory ) at alI t ines.

There are other variations of dynamic directories. One variant

is discussed in £23 and offer obvious advantages over B-trees.

The original proposal placed entire records in directory pages.

In fact, placing only keys in the directory increases k and

reduces the height of the tree. Hence, data pages can be ac

cessed with fewer retrievals from secondary storage. Also, the

minimum number of records on a page can be increased above k+l by

a spillover technique to adjacent pages in order to avoid page

splits. This idea underlies B*-trees also discussed in £23. VSAH

£33 is another variant of dynamic directories. In the sequel we

will be solely concerned with those dynamic structures having

only keys in the directory levels.

STATIC DIRECTORY STRUCTURES

Storage structures for which the index levels are not changed

dynamically, such as ISAH £43, will be termed "static direc

tories". Figure 3 indicates one such static directory structure

for the sane data used in figure 1. This directory structure is

- 3 -



implemented as one access method in INGRES £53. Four important

points should be noted:

1) The index levels are formed by recording the high key on each

data page.

2) Once formed, the index levels are NOT dynamically altered (in

contrast to a dynamic directory).

3) As a result of 2), only one pointer per index page is re

quired. In our example, the three data pages pointed to can be

logically (or physically) contiguous. Because of this pointer

suppression we have assumed three keys fit on a direcory page

instead of the two in a dynamic directory.

4) Additions to the structure of figure 3 are handled by chaining

into overflow areas. The addition of a record for ALL would

cause page A to split, in which case an overflow page would be

allocated and chained onto page A as noted in figure 4. Note

clearly that existing records are not moved and that the collat

ing sequence within a primary page and its overflow pages is not

maintained. If records must be kept in collating sequence, a

chain of pointers through the records can easily be supported.

Reusing space of deleted records is also easily allowed but the

mechanism is not considered in this note.

As a storage structure for a single isolated data file, dynamic

directories appear very useful. However, this class of

- 4 -



structures has recently been receiving much attention as a candi

date for the basic storage structure in several data base manage

ment systens. In a data base environment we feel there are three

important points to be considered before adopting such a struc

ture .

POINTS OF COMPARISON BETWEEN DYNAMIC AND STATIC DIRECTORIES

1. Secondary Indices

If it becomes necessary to access the file on some portion of the

record that is not used as a directory key, a sequential scan of

the entire file nay be required. In the example data base, such

a scan is required to access all records with keys ending in Y.

This problem is often alleviated by using secondary indices

(inversions on attributes) £63.

In this case a secondary file is maintained that contains pairs

of attribute values and pointers to records in the primary file

which have that value. Figure 5 gives an example of a secondary

index that night be used in conjunction with the structure of

figure 1. In that figure ->BA0 indicates a pointer to the record

for BAD in the primary file.

Independant of the storage structure chosen for the data file,

there is an overhead in maintaining such indices during updates

to the primary file. Uhen the data file is updated (by adding,

deleting, or changing records) then the indices must be updated

- 5 -



to reflect newly added, deleted, or changed values of the invert

ed attributes. However, if the data file is a dynamic directory,

in additon to these updates, other secondary updates may be gen

erated because of the dynamic reorganization. These additional

updates occur when an update operation causes a data page to

split or merge (as happened during the second insertion into the

B-tree of figure 1). In such cases records must be moved to new

pages and be assigned new logical (or physical) page addresses.

Every record which is assigned a new address will require an

update to be generated for each existing secondary index. Such

additional updates could be avoided if the secondary index used

the primary key of the data record instead of its address as a

pointer. This approach, however, would require primary key

decoding through the directory for each access using a secondary

index.

2. Concurrency

The second problem with dynamic structures occurs when concurrent

processes use the same file. Suppose two processes are simul

taneously accessing a dynamic directory; one inserting a record

and one performing a scan over a portion of the tree. Suppose

further that the scanning process is partway through a page when

the updating process causes that page to be split by the inser

tion. This rearrangement will leave the scanning process point

ing to a wrong (or non existent) record unless the updating

- 6 -



process alters the scan pointer of all other processes in a non-

trivial way .

Other concurrency problems arise when two processes concurrently

update the sane B*-tree. Suppose that the two processes are

adding a record to two adjacent pages in the tree and suppose

both pages are full. Each process must lock the page it is up

dating since it will be altered. Then it must examine the two

adjacent pages to see if records can be spilled over into them to

avoid a split. However, the adjacent page is locked and each

process is requesting access to the page the other has locked.

Clearly, this deadlock situation must be recognized and broken.

3 . D irectory Hei ght

The third problem with dynamic structures involves the height of

the directory tree. Because pages are split on the fly in a

dynamic directory, explicit pointers to data pages must be

present in the higher levels of a dynamic directory. Notice, for

example, that space must be left for three pointers on each page

of figure 1. These pointers consume space and limit the value of

k that can be attained.

These problems can all be avoided in static directory structures.

A static directory structure can have the property that records

are never noved (if chaining between records in the primary and

overflow areas is allowed or if the records on a given page and

- 7 -



its overflow pages are not kept in collating sequence as in fig

ure 4). If this is the case* pointers can be safely used in

secondary indices. Moreover, the directory is static) therefore,

an updating process need only lock the page it is modifying and

no others. Also, since records are not noved, there is no danger

of a scanning process pointing to a non-existent record. In

addition, pointers in the directory can be easily suppressed thus

increasing the fanout possible (often by as much as a factor of
I

two). Often this will save a level of the directory as a subse

quent exanple will illustrate. Lastly, because the directory is

static, elaborate coding and interpolation schemes are often pos

sible which are precluded by dynanic directories. One such scheme

is indicated in £73. Such coding schemes may well save a level

of the directory.

Of course, the primary disadvantage of a static directory struc

ture is the necessity of periodic reorganization when the over

flow area becomes highly utilized.

In order to further compare performance, we present two simple

examples. Suppose pointers and keys are both four bytes in

length and that the page size is 512 bytes (the size used in the

UNIX £83 operating system on top of which INGRES is implemented

). In this case a B-tree (assuming only keys are present in the

index levels) has nodes with between 32 and 63 sons. On the oth

er hand, the number of sons for an index structure of the form of

- 8 -



figure 3 is 127. The following table indicates the height of the

tree for various sizes of the primary data to be indexed. In

both cases we assume the index nodes are completely full.

number of data pages

2-127

128-16,129

16,130-2,048,383

height of a tree with a static directory

2

3

4

nunber of data pages height of a tree with a dynanic directory

2-63

64-3968

3969-250,047

250,048-15,752,961

A Comparison of Tree Heights

Table 1

The important point to note from Table 1 is that a static direc

tory will save a level in the tree for any file between 3969 and

16,129 pages (roughly 2-15 million bytes) and also for files over

125 million bytes. For such files, a static directory requires

one less disk read than a dynamic directory for each retrieval

request. Of course, this example is sensitive to the page size,

- 9 -



key size and pointer size chosen. However, a level is saved in

many s ituat ions.

Our final exanple involves an 8,000 page file with the above

directory characteristics. Suppose further that four records fit

on a page and that 32,000 inserts are perforned. Lastly, suppose

inserts are done such that the effect on the structure of figure

3 is to add an overflow page to each primary page. The effect on

a comparable B-tree is to split each data page.

Each B-tree insert that actually splits a page requires 4

accesses plus allocating and writing the split page. Call this 5

accesses. Each insert that does not split a page requires 4

accesses.

For a static directory, each insert that splits a page reuires 3

accesses plus allocating and writing the overflow page. Call

this 4 accesses. Additional inserts require 4 accesses.

As a result a static structure requires 8,000 less accesses to

perform the 32,000 inserts.

How suppose subsequently 16,000 retrieve requests for the record

matching a given key are perforned. In a B-tree each retrieval

takes 4 accesses; for the static directory a retrieve requires 3

accesses with probability 0.5 and 4 otherwise. In this case

8,000 more accesses are saved by the static directory structure.

- 10 -



The point to be noted clearly is that after these 48,000 opera

tions the static directory has saved enough accesses to allow a

complete reorganization (16,000 accesses). Roughly speaking if

the retrieval frequency is larger than 0.33 a static directory

can satisfy all requests then be reorganized to clear all records

from the overflow areas and still require less 1/0 activity than

a B-tree. Hence, it is advantageous from a performance point of

view to use a static directory in these cases.

Of course, the comparison is dependent on the assumptions made.

However, it should be clear that a wide class of situations ex

ists for which a static directory will outperform a dynanic

d irectory.

C0HCLUSI0NS

In designing a data base systen, one nay be well aware of the

problens of data base reorganization and find the dynanic direc

tory structures very appealing. However, we suggest that the

gains in ease of reorganization are not free and that cost in

secondary index update, concurrency problens and height of the

directory may be great.

REFERENCES

1) Bayer, R. and McCreight, E, "Organization and Maintenance of

Large Ordered Indices," Proc. 1970 ACM-SIGFIDET Workshop on Data

- 11 -



Description, Access and Control, Houston, Texas, Hov. 1970.

2) Knuth, D., The Art of Computer Programming, Vol 3, Addison

Wesley, Reading, Mass., 1973.

3) Keehn, D., and Lacy, J., "VSAM Data Set Design Parameters,"

IBM Systems Journal, Vol 13, Ho. 3, pp 186-213, 1974.

4) IBM Corp, "OS ISAM Logic," IBM, White Plains, N.Y., GY28-6618.

5) Held, G, Stonebraker, M and Wong, E., "INGRES-. A Relational

Data Base Systen," Proc. 1975 National Computer Conference,

Anaheim, Ca., May 1975.

6) Stonebraker, M., "The Choice of Partial Inversions and Com

bined Indices," International Journal of Conputer and Information

Science, June 1974.

7) Held, G. and Stonebraker, M., "Storage Structures and Access

Methods in the Relational Data Base Management System, INGRES,"

Proc. 1975 ACM-PACIFIC, San Francisco, Ca., April 1975.

8) Ritchie, D. and Thompson, K., "The UNIX Time Sharing Systen,"

CACM, Vol 17, No. 7, pp 365-375, July 1974.

- 12 -



M

AODO O OAOOO OGOAO OAOOO O A

LP LO II1 lJi U!; !l! I! °t ; !I! !I!; 1 ° II1 !f

Fig. 1. A B-tree.

-13-



A

O P o o

T

o

A

D

D

<j>
A

L

L

O O

B

A

D

O

B

0

Y

Q O

E

G

G

O O O

F

A

D

Cp cp cp
H

A

Y

Cp
H

0

G

0 cp
M

A

D

O O

Fig. 2. The Updated B-tree,

-14-



A B E

O P 0 G

/

T Y G

\
A A B B

D

D ;;
A

D

0

Y
O

E

G

G

M

A

D

D

0

G

E

G

G
<jp A

D

G

A

P

G H M

O A 0 A

P G D

H H L M

O A 0 Q A A QJJ LlIIJJ liilJJ

Fig. 3. A Static Structure.

-15-



I O
N

r
\

\
J

A
D

D

A
P

T

A
L
L

il
'

Fi
g.

4.
A
Po
rt
io
n

of
th
e
Up
da
te
d

S
t
a
t
i
c

S
t
r
u
c
t
u
r
e
.



B -»• LAB

D -* BAD

D -»- ADD

D -> MAD

D -»• FAD

G -*• HOG

G -* EGG

G -• DOG

P •* GAP

T h> APT

Y -*- BOY

Y •* HAY

Fig. 5. An Inversion on the Last

Letter of a Key.

-17-


	Copyright notice 1975
	ERL-528

