Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

B-TREES RE-EXAMINED

by

Gerald Held and Michael Stonebraker

Memorandum No, ERL-M528

2 July 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

B-trees Re-exaenmined

by
Gerald Held and Michael Stonebraker
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

Key Words and Phrases: B-tree, directory, static directory,
dynenic directory, index sequential access mnethod

CR Categories: 3.70, 3.723, 3.74, 4.33, 4.3¢

The B-tree [1]1 has been receiving considerable attention as a
storage structure for certain files on paged secondary storage
devices. Such files include those consisting of a set of records
each of which has an identifying portion called o KEY. Access to
the file 1is desired both randomly (by requesting the record
corresponding to a given key) aend sequentially Cin collating

sequence by key value).

In this note ve briefly explain B-trees, several of their vari-
ents and an alternate static directory structure. Then we indi-
cate some potential probleas which ¢ B-tree inplenentation nust
overcome in e nulti-user data base environmnent that do not arisge
in static directory structures. These problers include a posSsi-

ble performnance penalty.

Research sponsored by the National Science Foundation Grant DCR75-03839.

B-TREES

Basically, a B-tree is a balanced tree with between k+l and 2k+i
sons for any given node. The parameter k is deternined by the
page size and data cﬁeracteristlcs. An.exanple of a B-tree for
k=1 is shown in figure 1. Here, space exists on each block (or
page) for two data records and three pointers. (In the figure wve
only indicate the key portion of the record.) HNote that the
records are in collating sequence if the tree is scanned in pos-
torder. HNote also that the number of page accesses required ¢o
reference any given record is logarithnic in the nunber of data

records.

The nmnejor advantage of this structure is that the tree can be
kept balanced during insertions and deletions with a known (and
smnall} worst case update cost. Hence, a small worst cese search
time is always guaranteed. For o detailed discussion of the

B-tree maintenance algorithms, see [(1].

For example, the record with key of ALL can be added to the tree
with only three page accesses and stored in the empty space on
the page labeled A. However, the addition of a record with key
of ELF will not fit on the page labeled B and hence, B is split
into two pages and a record moved to a higher level node. This,
in turn, coauses the page labelled € to split and the final struc-
ture that results is the balanced tree shown in figure 2. Note
clearly that severel records have been moved as a result of this

- 2 -

insertion. Such necessery oddress modifications will be shoun to

be potentially troublésone.

The B-tree is one exanple of a cless of storage structures which
we call o “dynemic directory® because it is dynanically reorgan-
ized during updates to provide o balanced search tree (or direc-

tory) at all times.

There are other variations of dynamic directories. One variant
is discussed in {2] and offer obvious edvantages over B-treeas.
The original proposal placed entire records in directory pages.
In fact, placing only keys in ¢the directory increases k and
reduces the height of the tree. Hence, date pages can be ac-
cessed with fewer retriévals from secondary storage. Also, the
mininun nunber of records on a page can be increased above k+1 by
e spillover technique to adjacent pages in order to evoid page
splits. This idea underlies Be-trees also discussed in £2]. VSAM
{31 is another variant of dynamic directories. In the sequel we
will be solely concerned vith those dynamic structures having

only keys in the directory levels.
STATIC DIRECTORY STRUCTURES

Storage structures for which the index levels are not changed
dynamically, such as ISAW [4), will be termed *“static direc-
tories®. Figure 3 indicates one such static directory structure

for the same data used in figure 1. This directory structure s

inplemented as one access method in INGRES [5]. Four iaportant

points should be noted:

1) The index levels are formned by recording the high key on each

date page.

2) Once formed, the index levels are NOT dynanmically altered (in

contrest to a dynaemic directory’.

3 4s a result of 2), only one pointer per index page is re-
quired. In our exanple, the three data pages pointed to can be
logically (or physically)? contiguous. Because of this pointer
suppression we have assumed three keys fit on o direcory page

instead of the tuwo in a dynemnic directory.

4) Additions to the structure of figure 3 are handled by cheining
into overflovw areas. The addition of & record for ALL would
cause page A to split:, in which case an overflow page would be
allocated and chained onto page A as noted in figure 4. Note
clearly that existing records are not mnoved and that the collat-
ing sequence within a primnary page and its overflow pages is not
maintained. If records must be kept in colltating sequence, o
chain of pointers through the records can easily be supported.
Reusing space of deleted records is also easily allowed but the

mechanisn is not considered in this note.

As a storage structure for a single isolated data file, dynanic
directories appear very usetul. However, this class of

- 4 -

structures has recently been receiving nuch attention as a candi-
date for the basic storage structure in several datea base manage-
ment systems. In a data base environment we feel there are three
inportent points to be considered before adopting such a struc-

ture.

POINTS OF COMPARISON BETWEEN DYNAMIC AND STATIC DIRECTORIES

1. Secondery Indices

I# it becomes necessary to access the file on some portion of the
record that is not used as a directory key, a sequential scaen of
the entire file may be required. In the exanple data base, such
¢ sScan is required to access all records with keys ending in Y.
This problem is often alleviated by using secondary indices

(inversions on attributes) [61].

In this case a secondary file is mainteained that contains pairs
of attribute values and pointers to records in the primary file
vhich have that value. Figure 5 gives an exanple of a secondary
index that might be used in conjunction with the structure of
figure 1. In that figure -)>BAD indicates a pointer to the record

for BAD in the primary file.

Independant of the storaege structure chosen for the data file,
there is an overhead in maintaining such indices during updates
to the primary file. When the doete file is updated (by adding.
deleting, or changing records) then the indices nust be wupdated

- 5 -

to reflect newly added, deleted, or changed values of the invert-
ed attributes. However, if the daoto file is a dynamic directory.,
in additon to these updates, other secondary updates may be gen-
erated because of the dynanmic reorganization. These additional
updates occur when an update operation causes a date page to
split or merge (as happened during the second insertion into the
B-tree of figure 1). In such cases records nust be mnoved to new
peges and be assigned new logical C(or physical) page addresses.
Every record which isv assigned o ney address will require an
update to be generated for each existing secondaery index. Such
edditional wupdates could be avoided if the secondary index used
the primary key of the data record instead of its address as o
pointer. This approach, however, would require prisery key
decoding through the directory for each access using a secondary

index.
2. Concurrency

The second problem vwith dynamnic structures occurs wvhen concurrent
processes use the some file. Suppose two processes are sinul-
teneously accessing a dynamnic directory; one ingserting a record
and one performing o scen over a portion of the tree. Suppose
further that the scanning process is partway through a page when
the updating process causes that page to be split by the inser-
tion. This rearrangenent will leave the scanning process point-

ing to a wrong (or non existent) record wunless the wupdating

process alters the scan pointer of all other processes in a non-

trivial weay.

Other concurrency problemns arise when two processes concurrently
updete the same B#-tree. Suppose that the ¢two processes are
edding e record to two edjacent pages in the tree and suppose
both pages are full. Each process anust lock the page it is up-
dating since it will be altered. Then it nust examine the two
edjacent pages to see if records can be spilled over into them ¢o
avoid a split. However, the adjacent page is locked and each
process is requesting access to the page the other hes locked.

Clearly, this deadlock situation nust be recognized and broken.
3. Directory Height

The third problem with dynaric structures involves the height of
the directory tree. Because peges are split on the fly in a
dynemic directory, explicit pointers to data pages nust be
present in the higher levels of a dynanmic directory. Notice, for
exanple, that space must be left for three pointers on each page
of figure 1. These pointers consume space and linit the value of

k that can be attained.

These problems can all be evoided in static directory structures.
i static directory structure can have the property that records
are never moved (if cheining between records in the primary and

overflow areas is allowed or if the records on a given pege and

its overflow pages are not kept in collating sequence as In fig-
ure 4. If this is the cese, pointers can be safely used in
secondary indices. Moreover, the directory is statici therefore,
an updaeting process need only lock the page it is modifying and
no others. Also, since records are not moved:; there is no denger
of a scanning process pointing to a non-existent record. In
addition, pointers in the directory can be easily suppressed thus
increasing the fanout possible (often by as much as a factor of
two)., Often this will save a level of the directorglas 2 Subse-
quent example will illustrate. Lastly, beceuse the directory is
static, elaborate coding and interpolation schemes are often pos-
sible which are precluded by dynamic directories. One such schene

is indicated in £?7]. Such coding schemes may well save a level

of the directory.

0f course, the primary disadvantege of a static directory struc-
ture is the necessity of periodic reorgenization vhen the over-

flow arec becomes highly utilized.

In order to further compare performance, we present two sinple
exanples. Suppose pointers and keys are both four bytes in
length and that the page size is 512 bytes (the size used in the
UNIX [B81 operating system on top of which INGRES is inpieaented
3. In this case a B-tree (assuming only keys are present in the
index levels) has nodes with between 32 and 63 sons. On the oth-

er hand, the nunber of sons for an index structure of the forn of

figure 3 is 127. The following table indicates the height of the
tree for wvaerious sizes of the primary deta to be indexed. In

both cases we assume the index nodes are comnpletely full.

nunber of deta pages height of a tree with o static directory
2-127 2
128-16,129 3
16,130-2,048,383 4
nunber of date pages height of o tree with o dynenic directory
2-63 2
64-3968 3
3969-250, 047 4
250,048-15,752, 961 S

A Comnparison of Tree Heights

Table 1

The inportant point to note from Table 1 is thet o static direc-
tory will save a level in the tree for any file between 3969 and
16,129 peges (roughly 2-15 million bytes) and also for files owver
123 million bytes. For such files, a static directory requires
one less disk read then a dynamic directory for each retrieval
request . 0f course, this exanple is sensitive to the page size,

- 9 -

key size and pointer size chosen. Houvever, a level iIs saved in

meny situations.

Qur finol example involves an 8,000 page file with ¢the above
directory characteristics. Suppose further that four records fit
on a page and that 32,000 inserts are performed. Lastly, suppose
inserts oare done such that the effect on the structure of figure
3 is to add an overflow page to each primery pege. The effect on

a comparable B-tree is to split each date page.

Each B-tree insert that actually splits o page requires 4
accesses plus alloceting and writing the split pege. Call this 5
accesses. Each insert that does not split a page requires 4

aCccesses.

For a static directory, each insert that splits a page reuires 3
accesses plus allocating and writing the overflouw page. Call

this 4 accesses. Additional inserts require 4 accesses.

As a result a stetic structure requires 8,000 less accesses to

perforn the 32,000 inserts.

Now suppose subsequently 16,000 retrieve requests for the record
matching 2 given key are performed. In o B-tree eoch’ retrieval
takes 4 accesses; for the static directory a retrieve requires 3
sccesses with probability 0.5 and 4 otherwise. In this case

8,000 more accesses are saved by the static directory structure.

The point to be noted clearly is that after these 48,000 opera-
tions the static directory has seved enough accesses to allow a
complete reorgenization (16,000 accesses). Roughly speaking if
the retrieval frequency s larger than 0.33 a static directory
can setisfy all requests then be reorgenized to clear all records
from the overflow areas and still require less I/0 activity than
¢ B-tree. Hence, it is advantageous from a perfornance point of

view to use a static directory in these ceses.

0f course., the comparison is dependent on the assumptions nmade.
However, it should be clear that a wide class of situations ex-
ists for which a static directory will outperform a dynamic

directory.

CONCLUSIOMNS

In designing o data base system, one nay be well auware of the

problems of data base reorganization and find the dynamic direc-

tory structures very appealing. However, we suggest that the
geins in ease of reorganizaetion are not free and that cost in
secondary index wupdate, concurrency problems and height of the

directory may be great.

REFERENCES

1) Bayer, R. and McCreight, E. “Organizetion and Haintenance of

Large Ordered Indices.® Proc. 1970 ACH-SIGFIDET Horkshop on Data

- 11 -

Description, ficcess and Control, Houston, Texas, MNov. 1978.

2) Knuth, D., The Art of Computer Programming, Yol 3, Addison

Vesley, Reading, Hass., 1973.

3) Keehn, D., and Lacy, J., °VYSAM Data Set Design Parameters,"®

IBH Systems Journal, Vol 13, No. 3, pp 186-213, 1974.
4) IBH Corp, “0S8 ISAM Logic.,® IBM, White Plains, H.Y., GY28-6618.

5) Held, G, Stonebraker, M and Wong, E., “"INGRES~. A Relational
Data Base System," Proc. 1973 HNational cdnputor Conference,

Anaheimn, Ca., May 1975.

6) Stonebraker, M., °The Choice of Partial Inversions and Con-
bined Indices,® Internationael Journal of Computer and Information

Science, June 197¢.

7) Held, G. and Stonebraker, M., “Storage Structures and Access
Hethods in the Relational Data Base Management Systea, INGRES,"

Proc. 1975 ACHM-PACIFIC, Sen Francisco, Ca., April 1975.

8) Ritchie, D. and Thomnpson, K., "The UNIX Time Sharing System,"

CACH, VYol 17, No. 7, pp 365-375, July 1974,

T

725

N

= <<m

Odm

1

1

< A

T

M

IRIE

0
G

T

A
Y

T

F
A
D

T

E

G
G

1

B

0
Y

B

VAT RN

L7 glslf

A

D
D

1

Fig. 1, A B-tree.

-13-

v

9|4 |7

\l

H

o Il ekl B Blakleh) el

G
G

B

A

A

Bl il

Updated B-tree.

Fig. 2. The

-14-

M
G| A
G| D
A|B| E G|{H|M
Pl]O]| G Al o] A
T{Y]|] @G Pl G|D
. P,
Al A B| B D|E F |G H| H M
D(P Al o 0| @G A| A Al oO A
D| T 1) Dl Y 1) G| G 1) DI P 1) Y| G 1) D 1>
+ = < i =

Fig. 3. A Static Structure.

-15-

*2IN300I3§ OTFIeL1S

paepdp 9yl Jo UOTIIg V ‘Y "B

- TIV

L4V

aav

~—

~16-

B + LAB
D - BAD
D - ADD
D -+ MAD
D -+ FAD
G -+ HOG
G =+ EGG
G -+ DOG
P - GAP
T - APT
Y =+ BOY
Y -+ HAY

Fig. 5. An Inversion on the Last
Letter of a Key.

-17-

	Copyright notice 1975
	ERL-528

