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Abstract

This paper considers the feedback interconnection of two multi-

input multi-output subsystems characterized by rational transfer

functions G, and G„. These transfer functions are not assumed to be

proper nor exponentially stable. The effect of output disturbances on

stability is taken into account. Ten examples are given to show that

instabilities may appear anywhere around the loop. Next under a

sequence of successively more restrictive assumptions, we prove four

sets of necessary and sufficient conditions for the exponential

stability of the system. Using coprime factorizations, we obtain four

equivalent expressions for the system characteristic polynomial. Two

stability tests are derived, the first one is based exclusively on

transfer functions, the second is based on the characteristic polynomial.

The paper ends by providing translation rules for reformulating all

definitions and theorems for the discrete-time case (i.e. instead of

Laplace transforms use Z-transforms, etc...).



I. Introduction

A general input-output theory of arbitrary interconnections of

systems should clearly start with the feedback interconnection. It

would also be very valuable to have a reasonably complete and systematic

treatment of the lumped linear time-invariant case, firstly because of

its importance in practice; secondly, because its study reduces to a

Purely algebraic problem which can be given an easily accessible as

well as thorough treatment. Also because of the algebraic nature of

the techniques, the continuous-time and the discrete-time treatments

are essentially isomorphic as indicated in Sec. VII, below.

We consider the multi-input multi-output feedback system shown in

Fig. I: we think of U;L as the (vector) input and of u as the effect

of output disturbances. Our study starts, in Sec. II, by describing

the system under consideration and imposing only one assumption, Eq. (3)

below, without which the interconnection does not make sense. Section

III presents ten examples whose purpose is to show that, unless special

assumptions are made on the subsystems, instabilities may appear any

where around the loop! As a preparation, we include two fundamental

lemmas which will greatly simplify the analysis to follow. Section IV

is devoted to a detailed study of necessary and sufficient conditions

for the stability of the system under a sequence of successively more

restricting assumptions on the two subsystems. Section V briefly

describes the four forms of the characteristic polynomial of the system

and shows how they are related to the transfer functions. Section VI

describes algorithmically the stability tests: each test uses necessary

and sufficient conditions, therefore failure of any part of the test

implies instability. Section VII specifies the rule required to translate
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all the stability results to the discrete-time case.

Of course the present paper is based on an enormous amount of work

done by many authors in many countries. Our contribution is to be found

along several directions: first in the area of problem formulation:

the ten examples alert the reader to the extent of the problem; for

example it is not enough to restrict oneself to the transfer functions

ul **yl and Ul ^ el aS in [1, p'73l» [21» [31*
Secondly, in previous work irrelevant assumptions are often made:

typically, for certain theorems, G-(s) and G2(s) are required to be

proper when it is not necessary [2]; certain conditions are stated as

sufficient when, in fact, they are necessary and sufficient [2]; special

assumptions are made on the feedback, e.g., it is a polynomial matrix

[3], or a constant [1] or it is exponentially stable.

Thirdly, we discovered interesting conditions where the algebraic

interrelation of the transfer functions involved can lead, in certain

cases, to simplified conditions: see Theorem II, below.

Fourthly, the algebraic techniques developed in [3], [5], [6], [7],

[8] and subsequent observations [4] are now so well polished that it is

easy to obtain simple and elegant proofs. Many of the results of this

paper were presented at the Allerton Conference, October 1974 [9].

Notations. 3R, Q, IR(s), 3R[s] denote respectively the fields of real

numbers, of complex numbers, of rational functions with real coefficients

and the commutative ring of polynomials with real coefficients. The

superscripts "n" and "nxn" (as in ]Rn, lR(s)nXn ) denote the corresponding
— — °ordered n-tuples and nxn arrays. <C, <G+, <C+ and C+ denote respectively

the complex plane including the point at infinity, the closed right-half-

plane, the closed right-half-plane including the point at infinity, and
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the open right-half plane. Laplace transforms are identified by a "A",

e.g. G-. Matrix (scalar) transfer functions are denoted by upper case

letters (e.g. H ), (lower case letters, (e.g. g-), resp.). MIMO, (SISO),

denotes multiple-input multiple-output (single-input single-output,

resp.).

II. System Description

We consider two n-input n-output linear time-invariant lumped sub

systems. We assume that they are completely characterized by their

rational transfer functions: 6.(s) G R(s)nxn, i = 1,2. The feedback

interconnection is shown in Fig. I. The inputs u., errors e. and out

puts y. are functions mapping from R, into]R . From Fig. I the inter

connection equations are

ei = ui - y2 » e2 a u2 + yi (1)

The subsystems equations are, for k = 1,2,

yk(s) =\(s)ek(s) , 6k(s) G IR(s)nXn (2)

We assume once and for all that

det[I + &2(s) ^(s)] t 0 (3)

As we shall see later, this assumption is necessary in order to be

able to define closed-loop transfer functions.

We may consider two closed-loop transfer functions: the first one,

H , takes (u^.ij^) into (y^^)* and the second one, H , takes (u ,u«)

into (e^e^):

t
Footnotes are listed at the end of the report.
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ryi(sy Hy(s) "ai(s)i ; rai(s)i _ rHe(s)irui(sr
_u2(s)J [e2(s)J - L JU2(S)-

Note that H (s) and H (s) G m(s)
e y

2nx2n

(4)

In view of the fact that all transfer functions are rational

functions, we adopt the following definition: a transfer function

G 3R(s)nXn is said to be exponentially stable (abbr. exp. st.) iff it

is proper (i.e. bounded at infinity) and has all its poles in the open

left-half plane (denoted by &_). Note that a) a rational transfer

function is exp. st. if and only if it is analytic and bounded in <C+

(<D denotes the closed right half plane together including the point at

infinity); b) a linear time-invariant system with transfer function

6(s) £ 3R(s)^Xn is zero-state bounded-input bounded-output stable if

and only if G is exp. st. Any transfer function which is not exp. st.

will be called unstable.

The concept of exponential stability is very strict: let ft(s) £ M(sf

be exp. st. and let y(s) = H(s)u(s), then it is well-known that

(a) if uGLn for 1<p<», then yGLn and llyll < llHll^lullp;

(b) if u G Ln and as t + «, u(t) -»- u , a constant vector in 1R , then
V ' 00 00

y(t) •> y = H(0)u as t -»• «;
•* 00 CO

(c) if u is periodic and applied at t = 0, then y(t) approaches

exponentially the periodic response whose K Fourier coefficient

is H(1K27T) x u where T is the period and i^ the K Fourier
T

coefficient of the input.

III. Fundamental Lemmas and Examples

From (1), (2), (3) we see that
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-1[He(s)] [ i e2(s)
l-G^s) I

By assumption (3), the matrix in (5) has an inverse in 3R(s)

By direct computation from (5) we obtain

(I+G2(s)G1(s))-1

He(s) =
LG1(s) (1+62(8)^(8))

-G2(s)(I+G^G^s))

(I+G^s^s))

-1

-1 -1

(5)

2n*2n

(6)

From (2) it follows that H is obtained from H by multiplying the
y e

first row by G. on the left and by multiplying the second row by G. on

the left.

Introducing the 2nx2n matrix

[U I

-I 0-

we easily obtain from (1) and (4), the important relations

ft = J(H -I)
y e

Fundamental Lemma I

H = I - JH
e y

(7)

For the MIMO system described by (1) (2) and (3), H is exp. st. if

§
and only if H is exp. st.

This lemma allows us to restrict our attention to only one of H
A

and H . Since the expressions describing H are simpler, we will work

A A A

with H exclusively. For i,j = 1,2 we use H .. and H .. to denote the
e eij yij

(i,j) nxn submatrix of H and H respectively.

The following well-established identities will be used repeatedly

All proofs are to be found in the Appendix.
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throughout this paper.

detd+G^) =detd+G^) (8)

(I+G^r1^ =Gi(I+Gj6i)"1 Vi,j =1,2 (9)

and I-G±G (I+G±Gj"1 =(I+G^G.)"1 Vi,j =1,2 (10)

The following lemma will be used in extending our simplifying

theorems.

Fundamental Lemma II

Let (i,j) denote any one of the following ordered pairs (1,1), (1,2),

(2,1), (2,2).

If (a) det(I+Q2(s)G1(s)>) ^0, Vs ^ l+
and (b) H .. is analytic at every (C+-pole of G and of G2

then H ,. is exponentially stable.

Consider now H as shown in (6): H has four nxn submatrices where
e e

4
each of them may be exp. st. or unstable. This gives 16 = 2 patterns

of exponential stability and instability; the number is further reduced

to 10 by interchanging subscripts 1 and 2. Table I shows ten examples,

the corresponding submatrices H .. and patterns of instability are given

in Table II and III respectively.

These examples show that when one allows the transfer functions G.^

and G„ to be unstable, then instabilities may appear anywhere around the

loop. For example as in example 6, the transfer function from u^ to y^,

H 21 =H may be exp. st. but ~\12 = ^y22 may be unstable' since
in practical systems there are output disturbances, the "input" u2 of

Fig. I may not be assumed to be identically zero. It is for this reason

that we take as stability requirement for the system of Fig. I the
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condition that H and H be exp. st. By Lemma I above, we need only

consider the stability of H . Thus in principle we should check the

exp. st. of the four nxn submatrices of H . In the theorems that follow
e

we exhibit various assumptions under which the necessary and sufficient

condition for exp. st. simplify.

IV. Simplifying Theorems

We state below four sets of necessary and sufficient conditions for

exponential stability under successively more restrictive assumptions.

Theorem I

Consider the MIMO system described by (1), (2) and (3). H and H
e y

are exp. st. if and only if (a) det(I+G2(s)G (s)) t 0, Vs G <C and (b)

Vi,j = 1,2, H is analytic at every (E -pole of G, and Gn.
eij + 1 2

Corollary I (single-input single-output)

Consider the SISO system described by (1), (2) and (3). H and H

-g g e y
are exp. st. if and only if H ^ ,,a2a and H 01 = _ *a are exp. st.

el2 l+g1g2 e21 l+&2gl
Examples 7 and 9 show that for MIMO case, Corollary I does not

hold. The underlying reason is that it is only for a scalar transfer

function that a zero cannot coincide with a pole. In the MIMO case, a

transfer function may have zeros which coincide with poles: to wit

G(s) = diag[(s-l)/(s+l), (s+l)/(s-l)] has a pole as well as a zero at

+1 and at -1 [12].

The following theorem gives the condition under which the exp.

stability of &el2 and H imply that of H for MIMO case.

Theorem II

Consider the MIMO system described by (1), (2) and (3). If G , G
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have no common <D -pole, then ft and H are exp, st. if and only if

Hel2 =-G2(I+G1G2)~ and H^ £G^I+G^)"1 are exp. st.

Corollary II

Consider the MIMO system described by (1), (2) and (3). If G , G

have no common C -pole, then ft and H are exp. st. if and only if (a)
t" e y

det(I+G2(s)G1(s)) ^0Vs ec+ and (b) Hel2 --^(I+G^r1 and He21 =
^(I-kLg,) are analytic at every (C -pole of G_ and G«.

Theorem III

Consider the MIMO system described by (1), (2) and (3). If (L is
A A A fc A A A _1

exp. st., then H and H are exp. st. if and only if H «i =G (I+G_G-)

is exp. st.

A A A

Since H2, = H ,., this theorem says that if G„ is exp. St., then we

need only test the exp. stability of H : u_ *"•* y to guarantee the
yll

exp. stability of H and H . It justifies the elementary approaches to
e y

discussion of stability of MIMO systems.

We also observe that by symmetry, we have if G- is exp. St., then

H and H are exp. st. if and only if H is exp. st.
6 y e12

Corollary III

Consider the MIMO system described by (1), (2) and (3). If 62 is

exp. st., then H and H are exp. st. if and only if (a) det(I+G«(s)G.(s))

— A ^ A A A —I —
^ 0 Vs G C and (b) He2i= ^-.(I+^G.,) is analytic at every C+-pole of

Gl-

For completeness we state the well-known conditions when both G-

and G« are exp. st. (see e.g. [2, p. 380]).

Theorem IV

Consider the MIMO system described by (1), (2) and (3). If G-, G
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are exp. st., then H and H are exp. st. if and only if

det(I4G2(s) G-^s)) ^0Vs €c+.++

V. Characteristic Polynomial

Since the two subsystems constituting the feedback system of Fig. I

are lumped, it is clear that the necessary and sufficient conditions for

exponential stability for H and H can be obtained by requiring that all
e y

o

the zeros of some characteristic polynomial be in <E , the open left half

plane. In the scalar case where, for i = 1,2, g.(s) = n (s)/d (s), (the

polynomials n, and d. are coprime, i.e. have no common factor which is

a polynomial of positive degree), it is easy to see that the characteristic

polynomial is

n1(s)n2(s) + d1(s)d2(s)

This fact becomes clear by examining the four scalar transfer functions

appearing in H and noting that neither a (possible) common factor of

n.. and d2 nor a (possible) common factor of n_ and d_ may cause a can

cellation in all four transfer functions. Thus for the single-input

single-output case:

pe (C is a pole of He ^n^n^p) + d^d^p) =0 (11)

To tackle the multi-input multi-output case, we need to use the

polynomial factorization of rational matrices [1], [3], [6], [7]. Let

1R [s] denote the non-commutative ring of polynomials with coefficients

in ]R , [10]. For k = 1,2, consider the left-coprime and right-coprime

factorization of G, :
k
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\ =Nkr\r =DkX*. (12)

(where the second subscript is r or 9, according to whether the factoriza

tion is right or left coprime) we have for k = 1,2

"kf \r' \V Dkr S mtsl
nxn

(13)

and the coprime condition,

rDkr(s)
rank

LNkr(s)J
=rank [^(s) Dk£(8>] =n VsGc (14)

In order to simplify later expressions, we shall assume from now on,

that the polynomial matrices in the factorizations (12) are multiplied

by a suitable nonzero constant so that the polynomials det[Dk (s)] and

det[D, (s)] are monic. It is well known that [1], [3], [6], [7]

pG IE is a pole of G. o detD^p) = 0o detDfcr(p) = 0.

Let us now calculate the factorization of H

,-1
r t G~l

A ?,
H =

e

-G. T
L 1

r i N2rD2r ^
-1

-N- D.1 'I
lr lr |

'_l j^2£_
-1

fD
lr

D,j(
itN,

2% 21

U Dlfc-N

lr N2r

lr D2r^

-1

D
11

(15)

(16)

(17)

It is easily shown that the two factorizations of H given in (16) and

(17) are right-coprirae and left-coprime, resp.

'We also have two other possible factorizations
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KA*' J J I© »2rJL-»U Du»2rJ L° »1£J

!D2f̂ej JDlr °][D2£Dlr ^ipf^l °
ZlT

-N, D, I
lr lr

(19)

Using (14) it is easy to show that the right-hand sides of (18) and of

(19) are such that their first two factors are right-coprime and their

last two factors are left coprime.

Theorem V

Given the notations above, for the MIMO system described by (1),

(2) and (3) we have

PGCisa pole of He o detlD^D^ + NuN2r](p) = 0 (20)

(21)

(22)

(23)

-det[D2ilDlr + N2ilNlr](p).= 0

*> det

o det

lr 2r

l-N, D0 j
L lr 2r

(p) = 0

(P) = 0[D2* N2A

Note that Theorem V does not consider the behavior of H at infinity.

Theorem V implies that the four polynomials in (20)-(23) differ at

most by a nonzero constant factor. Let us normalize these expressions

to their common monic polynomial form, say X(s). The polynomial x(s)

will be called the characteristic polynomial of the system described

by (1), (2) and (3).

Example:

Let us calculate x(s) for Example 6 of Table I.

-12-



G^s) -

G2(s) =

By (22)

1

s+1

0

1

s

L 0

s+1

s+1

1

s+1

x(s) = det Di N0
lr 2r

•N- D.
lr 2r

n s+ii rs+i o

0 s JL 0 s(s+lJ L 0 s(s+l)J

(24)

1

L0

(s)

1

1J L 0

0

s+lJ

-1 =N2rxD2^ (25)

= s(s2+s+l)(s2+2s+2)

Remark. Theorems I to IV and the examples of Sec. Ill show that it is

only when both (^ and G2 are exp. st. that det[I +(L(s)G (s)] ^0in

<D+ is a valid stability criterion. Some insight in its failure to be a

valid criterion in more general cases is obtained if we use the factoriza

tions (16), (17) to relate the four expressions of the characteristic

polynomial to det(I+G2<3 ). The result is

lr 2r

(26)

and three other similar expressions obtained by replacing the subscripts

r by ^.

In general cancellations of common factors involving C -zeros in the

right hand side of (26) may occur; in that case there is a p £ (C which

is a zero of x(s) and not a zero of det[I + G (s)G (s)].
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Example:

Consider Example 6 of Table I. By direct calculation, we have

det(I+G0G,) =(s2+s+l)(s2+2s+2)
2 1 i

s(s+l)3

From (24) and (25), we have

det Dlr =s(s+l)2 and

det D2r = s(s+l).

Formula (26), which is obtained strictly on the basis of transfer

function descriptions of the sybsystems 1 and 2, should be compared to

the result of Hsu and Chen [11], [1], namely, that

det(X^2(s)Gl(S)).k^g:A))det(si_A2) (2?)

where k is anonzero constant, A1 and A2 are the A-matrices of minimal

representations of G± and G2, and A is the A-matrix of the state

representation of the feedback system which uses as state space the

product of the state spaces of minimal representations of G and G . The

connection between (26) and (27) is further illuminated if we note that

det(sI-Ai) = det[D±r(s)] = det[Du(s)], for i= 1,2. ([7, p. 22], [5, p. 160])

VI. Stability Tests

Consider the MIMO systems described by (1), (2) and (3). In the

following we use the necessary and sufficient conditions proved above

to test for the exp. stability of H and H under various conditions.
e y

Consequently, if any part of a test fails, the system is unstable.

Test using transfer functions:
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Case 1:

— +++
If &,, 62 are exp. St., test for det(I+G2(s)G1(s)) i 0 Vs G C+.

Case 2:

If G- is unstable and <L is exp. St., test for (1) det(I+G2(s)G (s)) ^0

Vs € C+ and (2) G (I+cLg ) analytic at every I-pole of G.

Case 3:

A A

If G.,G2 are unstable with no common <E -pole, test for (1)

det(I+G2(s)G1(s)) i 0¥s €l+ and (2) G;L(I+G2G1)"1and (I+^G^T1^
analytic at every C -pole of G. and (L.

Case 4:

If G1, G2 are unstable, test for (1) det(I+G (s)G-(s)) j 0Vs € <jj+ and

(2) ^(I+G^)"1, (I+G^jT1^, G^d+G^)"1, G1(I+G2G1)'1G2 analytic
at every d! -pole of G- and G„.

Test using the characteristic polynomial

Step I: Check that all four submatrices of H are proper. (Note: if

/\ yv

G , G are proper and if det[I+G2(~)G («)] f 0, then H is

proper.)

Step II: Factor G- and G« using standard algorithms. (See [1], [3],

[6], [7].)

Calculate one of the polynomials in Theorem V.

Step III: Apply to the characteristic polynomial X(s), either

Lienard-Chipart Test or the graphical test.

VII. The Discrete-Time Case

All the results above are stated for the continuous-time case.

Since all the proofs are purely algebraic and are based on simple
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properties of rational functions, determinants and matrices, all the

results above apply equally well to the discrete-time case with modifica

tions indicated in Table IV where B(0,1) and B(0,1)C denote the open

unit ball centered at 0 in (D and its complement in it, respectively.

Continuous-time

Laplace transform

o

<£

m(s)
n*n

TABLE IV

Discrete-time

->- Z-transform

•+ B(0,1)

-»- B(0,1)C

-»- IR(z)nxn

-»- z -»• °°

CONCLUSION

This paper has given a complete discussion of the stability of the

feedback interconnection of linear, time-invariant, lumped systems.

The results above can be extended to certain classes of linear, time-

invariant, distributed systems [13]. The cost of the extension is that

the required methods are quite different: they demand from the reader

a considerable sophistication in mathematical analysis. In contrast,

the above treatment of lumped systems is transparent and easily accessible

because it is purely algebraic.
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FOOTNOTES

+It should be recalled that equ. (1) and (2) have an n-port interpretation

[1, p. 37]: Gp (G2) is the impedance, (admittance) of an n-port;
A *

e-, (e«) is the input current, (input voltage) to G1, (G2); y^ (y2' ls

the output voltage, (output current) of G1, (G2). The n-ports G1 and

G« are plugged into each other with the input current-sources i^, in

parallel, and the input voltage-sources u2, in series.

A *

^There are many papers where authors fail to require that G1 and G2 be

exp. st. and that det[I+G2(00)G;L(«»)] + 0. They merely assert that

det[I+G2(s)G1(s)] $ 0, Vs G C+, (or in the SISO case 1+g2(s)g1(s) t 0
Vs G C+) is a "sufficient condition" for "system stability." The best

cure for such misconception is a counter example: consider g1(s) = l/(s-l),

g2(s) = (s-l)/(s+l), hence 1+g^s^s) =(s+2)/(s+l). However the

(1,1) element of H , i.e. the transfer function from u1 to y^ is unstable :

Hu =gj/U^SjT1 =(s+l)/[(s-l)(s+2)]. An easy way to perceive why
the "sufficient condition" quoted above is inadequate is to study equ. (26)

or (27) below.

+++There are two ways of applying the test, (I): Verify that det[I+G2(«)G1(»)]

^ 0 and apply the Lienard-Chipart Test to the numerator polynomial

of det[I+G2(s)G1(s)]; or (II): Apply the graphical test to

a) h- det[I+G2(jo))G1(ja))], a> ^ m+.
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APPENDIX: PROOFS

Proof of Fundamental Lemma I

The result follows immediately from (7): indeed J is a constant

nonsingular matrix, therefore p 6 I is a pole of H , (resp. H ) if and
e y

only if p is a pole of JH , (resp. JH ).^

Proof of Fundamental Lemma II

Case 1: i = 1, j = l

# ^ A A A M1

'•Heij = Hell = <I+G2G1}

adj (I+G^)
= detd+G^) by Cram^'s Rule

(a) implies that every <E+-pole of HeU must be aC+-pole of adj(I+G G ),

and hence a C -pole of G. or (L.

Therefore, by (b), Hell does not have any <C -pole.

Case 2: i = 1, j = 2.

• _•; * <* a a — 1

'• Heij =Hel2=-G2(I+GlG2>
adj (I+G^)

="G2 Xdetd+G^) by Cramer,s R«le.

(a) implies that every <C -pole of H1fl must be a $ -pole of
+ elz +

G2 xadjd+G^) and hence a<E+-pole of G or (L.

Therefore, by (b), H does not have any <C -pole.

The proof of the remaining two cases follows in a similar manner.*

Proof of Theorem I

<= By Fundamental Lemma II, all four submatrices of H are exp. st. and

hence so is H .
e

=* Note that
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det Hell=det[(I+G^)""1]

= 1
detd+SISTy

Since H is exp. st., i.e. analytic and bounded in C , (a) follows,

(b) follows immediately from the exp. stability of H . *

Proof of Corollary I

=* Immediate

*= First, we note that for SISO case,

d+g^r1 = d+g2i1)"1
Suppose, for the sake of contradiction, (l+£..g9) has a I -pole,

say, p.

A A /> A A —1 A A A A A —1Since Hel2 —g^l+g^) and He21 =g1(l+g2g1) are scalar and

exp. st., we have g2(p) = 0 = g^p).

.\ [1 +g1(p)g2(p)]~1 =1
which contradicts the assumption that p is a pole of (l+g,g2)~ .

Hence (l+g.,g2) is exp. st.

Since every submatrix of H is exp. st., so is H .»

Proof of Theorem II

=*• Immediate

A ^ /V A*.

1" C2 ' He21= I " G2G1(I+<32<31)"1 =<I+Vl)_1 (A1)

=I-G2(I«1G2)-1G1=I +Hel2.G1 (A2)

In view of (Al) and the exp. stability of H 2-, every <E -pole of

(I+G2G^)" must be a <D+-pole of (L.

Similarly, in view of (A2) and the exp. stability of H , every
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C -pole of (I+G-G.) must be a <E -pole of G-.

But G- and G9 have no common <C -pole.

.*. (I+G9G.) is exp. st.

Repeating the above derivation with subscripts 1 and 2 interchanged,

A* A* —1

we see that (I+G_G9) is exp. st.

A A

Since every submatrix of H is exp. St., so is H .*

Proof of Corollary II

** This implication follows from Theorem I.

*" This implication follows from Fundamental Lemma II and Theorem II.^

Proof of Theorem III

=* Immediate

** I-\21 *G2 =I-Gjtt+Gj.GjT1 •G2

=I-G1G2(I+G^)""1 (using (9))

=(I+G^)"""1 (using (10)) (A3)

A A

In view of (Al), (A3) and the exp. stability of G„ and H

(I+G-G-)"1, (I+G GL)"1 are exp. st.

The exp. stability of (L and (I+G G )~ imply that of 02(1+6-52) .

Since every submatrix of H is exp. St., so is H .*

Proof of Corollary III

This implication follows from Theorem I.=>

<= Since G9 is exp. St., condition (b) of Fundamental Lemma II becomes

H .,is analytic at every (C -pole of G.. Hence, by assumption

U — A A A —1
e21 ~Gi(I+G2Gi) satisfies the conditions of Fundamental Lemma II

and so it is exp. st. Therefore, by Theorem III, H is exp. st.^
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Proof of Theorem IV

=* This implication follows from Theorem I.

<= Since G- and G are exp. St., condition (b) of Fundamental Lemma

II is fulfilled for all H , i,j = 1,2. By assumption condition

(a) of Fundamental Lemma II is satisfied. Hence, every submatrix
A A A

H ^. of H is exp. st. and so does H .*
eij e e '/

Proof of Theorem V

The first two assertions follow from the coprimeness of the factors

in (18), (19) and a theorem of [12]. The last two are consequences of

the coprimeness of the factorizations (16) and (17)./j
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TABLE I

EXAMPLE NO. Si G2

1 l/(e+l) -l/(s+l)

2

fs+2 11
1 c+1 s-1

lo Aj
' 1 1 "

s-1 s

3 1/s s/(s-l)

4

r 1 1 "

s+1 s-2

5 s/(s-l) (s-l)/s

6

" 1 1 1
s+1 s

- o A.

r i i i
6 S+1

7

r 2 l -

s+1 s-1

.0 A.
SAME AS Gx

8 1/s s/(s+l)

9

r s -i
s+1 s

o i

s+1 s I

0 -ML " s+1J

10 2/s (s+1)/(s-1)
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TABLE II

SAMPLE - A - - -1
10. He22 c (I+Gj^Gj)

(s+1)'
s(s+2)

2 2 ~
Let a-s + s + 1, b-s +2s + l

s -1 -(s+l)(s+2)(2s-l)

ab

s(s+l)

b

a

L 0

s-1

s

2 2
Let a « s + 2s + 2, b - s + 5s + 2

"(s+1)2 (s+l)2(s+2)'

(s+2)

-Hel2 AC(I4C C)-»

-(s+1)
s(s+2)

3 2
s+1 s -2s -3s+l

a

LO

(s-l)ab

s(s+2)

's+1 (s+1) (s+2) '
i ab

0 (s+2)(s-2)
L b J

(s-1)
2s

2 2
Let a = s + s + 1, b = s + 2s + 2

's(s+l) -(s+l)(2s+l)
ab

(s+l):

Let a - s + 2s + 5

(s+1)2 -4(s+1)3-

s+1

s+2

(s-l)a'

a

2 ?
Let a « s + 3s + 1, b - s + a + 1

(s+ir (s+1) 3i

ab

s(s+l)
b

Let a - 8 +s + 2

s(s-l?
a

s+1 (s+l)J(s-l)'
a sab

L 0 s+1

b

"2 (s+1) (s+l)2(s+3)1

L 0

8

8+2

2fi+3)
a

s(s+l) s(s+l)(s+2)-i
ab

s(s+D
a

s+1

b

HeU ft (1+G^)"1

(s+1)
s(s+2)

r 2 , 2 2
s -1 -(s+1) (2s -2s+l)

a

L 0

ris+

:

s(s-l)ab

s(s+l)
b

s-1

8

(s+D2 (s+1) (s+2)2
(s-2)ab

(s+2)1

s(s+l) (2s2+2s+l)(s+l)
sab

(s+1)1

same as H
e22

8+1

8+2

(s+D2 -(2s+l)(s+l)2
saba

L 0

s(s-D
a

s(s+1)
b
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fie21 " V^W"'

s(s+2)

(s+2)(s-1) (s+l)(s3-s+2)
sab

s+1

b

s-1

2

's+1 (s+1)2 (s+2)2
a (s-2)ab

0 ^
b

a

.0

2(s-1)

3 2
s +3s +2s+l

ab

s+1

b

same as -H
el2

s+1

s (s+2)

's(s+l) s(s+l)
a ab

s+1

b

s(s+DZ]
ab I

s+1 I

2Cs-l)

a



TABLE III

EXAMPLE NO.

SUBMATRICES^
OF H

123456789 10

He22 = (^Gj) 1 USUSSSUSS S

Hel2 = -G2(I+G1G2) UUSSUUSSS S

Hell = (I+G^)" UUUUSUUSU S

He21 = G1(I+G2G1) UUUUUSSUS S

S, (U), indicates that the corresponding submatrices is exponentially
stable, (unstable, respectively).
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Fig. 1. Multlvariable feedback system under consideration: the inputs

are u, and uu, the outputs are y,, y and e.., e« are the errors
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