Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

A PROGRAM TO COMPUTE THE REAL SCHUR FORM OF A REAL SQUARE MATRIX

by

B. N. Parlett and R. Feldman

Memorandum No. ERL-M526
June 1975

A PROGRAM TO COMPUTE THE REAL SCHUR FORM

OF A REAL SQUARE MATRIX
by
B, N. Parlett and R, Feldman

Memorandum No, ERL-M526
June 1975

ELECTRONICS RESEARCH LABORATORY
College of Engineering

A PROGRAM TO COMPUTE THE REAL SCHUR FORM of a real square matrix ${ }^{\dagger}$
by

B.N. Parlett
Department of Mathematics
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory
University of California
Berkeley, California 94720

and
R. Feldman

Department of Mathematics
University of California Berkeley, California 94720

June 1975

Abstract

A Fortran program is presented which will obtain the real Schur form of a real $n \times n$ matrix in $10 n^{3}+30 n^{2}$ multiplications (approximately).

Key Phrases: Schur Form, real matrix

[^0]The algorithm is described at three different levels.

Level I is for a busy colleague.
Level 2 is for publication.
Level 3 is for the programmer.

Table of ContentsPage1. The Schur Form3
2. The Algorithm (Level 1) 4
3. The Algorithm (Level 2) 5
4. Program and Facing Comments (Level 3) 8
5. Usage and Operation Count 24
6. Numerical Example 25
References 27

1. The Schur Form

A result in matrix theory, often called Schur's lemma, states that any square matrix B, whether real or complex, is unitarily similar to an upper triangular complex matrix S :

$$
B=P S P *, \quad P P *=P * P=1
$$

Here $P *$ denotes the conjugate transpose of P. Using slightly different language the lemma states that there is an orthonormal basis in the vector space on which B acts such that B^{\prime} s representation in this basis is upper triangular. Thus S may be regarded as a canonical form for B acting on Euclidean space.

Because S is triangular its eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ lie revealed on the diagonal. In fact the eigenvalues may be taken in any desired order down the diagonal. Even when this order is fixed the matrix S is still not uniquely determined by B. However, the possible variations in S are rather trivial because $\left|s_{i j}\right|, i<j$, is fixed whenever $\lambda_{i}=s_{i i} \neq \lambda_{j}=s_{j j}$.

Discovery of S solves the eigenvalue problem for B and facilitates the computation of eigenvectors. Another use of S is in the formation of an analytic function ϕ of B since $\phi(B)=P \phi(S) P *$.

From a practical point of view one defect of the Schur Form S is that S may be complex even when B is real. So we ask for the canonical form of B in real Euclidean space. The answer is an easy modification of S, called the real Schur Form \hat{S} which is quasi-triangular. That is, $\hat{\mathrm{S}}$ is block upper triangular and the diagonal blocks are either 1×1 or 2×2. To each complex conjugate pair of eigenvalues λ and $\bar{\lambda}$ in S there corresponds a real 2×2 diagonal block in \hat{S} whose eigenvalues
are λ and $\bar{\lambda}$. Sometimes it is convenient to standardize the real Schur form by requiring that the 2×2 diagonal blocks have the form

$$
\left(\begin{array}{ll}
\rho & \beta \\
\gamma & \rho
\end{array}\right), \quad \gamma>0, \quad \beta<0, \quad-\beta \gamma=\mu^{2}
$$

where $\lambda=\rho+i \mu, \mu>0$, and $i^{2}=-1$. In general it is not possible to arrange that $\gamma=-\beta=\mu$.

An example of a standardized real Schur Form is

$$
\left[\begin{array}{rrrrrr}
3 & 1 & 1 & 0 & -1 & 0 \\
0 & 1 & -3 & 2 & 3 & -1 \\
0 & 2 & 1 & 1 & 0 & 4 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Our purpose here is to compute the real Schur form, not to praise it. Algorithms for the complex case are available in EISPACK Release 2.

2. The Algorithm (described at Level 1)

It is not difficult to compute P and \hat{S} from B, the techniques we use are quite standard. B is reduced to upper Hessenberg form H by means of orthogonal similarity transformations and then H is reduced to $\hat{\mathbf{s}}$ by the double $Q R$ algorithm. The product of all the orthogonal matrices used in the process are accumulated to form P.

We make use of a few devices to keep the number of $Q R$ transformations fairly low.
3. The Algorithm (described at Level 2)

The process has three steps:

Step 1: The routine PERMS, a modification of the EISPACK [1] routine BALANC, performs a sequence of row and column interchanges which detect when B is a permutation of a block triangular matrix and put it in the standard form

$$
\mathrm{B}_{2}=\mathrm{P}_{1}^{*_{\mathrm{BP}}} 1
$$

where P_{1} is a permutation matrix and

$$
\mathrm{B}_{2}=\left(\begin{array}{ccc}
\mathrm{B}_{11} & \mathrm{~B}_{12} & \mathrm{~B}_{13} \\
0 & \mathrm{~B}_{22} & \mathrm{~B}_{23} \\
0 & 0 & \mathrm{~B}_{33}
\end{array}\right)
$$

Figure 1
with B_{11} and B_{33} upper triangular. PERMS also acts on B_{22}. The goal is to bring rows with excessive norms to the top in order to get the $Q R$ algorithm off to a good start.

More precisely rows (and columns) are exchanged if the ratio of their ℓ_{1}-norms exceeds two.

In most cases $B_{2}=B_{22}$, but the normalization which PERMS effects is rapid and is a necessary preparation for the routines which follow.

Step 2: The $(2,2)$ block of B_{2} is reduced to upper Hessenberg form by ORTHAN, a modification of the EISPACK routine ORTHES, and the product of the sequence of reflections is accumulated to yield P_{2} such that

$$
\mathrm{B}_{3}=\mathrm{P}_{2}^{*_{\mathrm{B}}} \mathrm{P}_{2}
$$

is in upper Hessenberg form.

Step 3: The (2,2) block of B_{3} is reduced to quasi-triangular form by HQR3, a modification of the EISPACK routine $H Q R 2$. $\hat{S}=P_{3}^{*} B_{3} P_{3}$ No effort is made to compute the eigenvectors of \hat{S}, but WI, which contains the imaginary parts of the eigenvalues, is retained, to indicate the presence of a 2×2 block on the main diagonal of $\hat{\mathbf{s}}$. The array $\hat{\mathbf{s}}$ is forced explicitly to be block upper triangular in case the user wishes to have it printed out (i.e., $\hat{\mathbf{S}}$ is zero below the block diagonal).

In addition HQR3 performs a supplementary plane rotation after a pair of complex conjugate eigenvalues, $\lambda \pm i \mu$, has been recorded in the course of the $Q R$ algorithm. The transformation of the diagonal block is

$$
\left(\begin{array}{rr}
c & s \\
-s & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)=\left(\begin{array}{ll}
\lambda & \theta \\
\xi & \lambda
\end{array}\right)
$$

where $\xi \theta=-\mu^{2}$. (This device is not used in HQR2.)
Note that it is not in general possible to transform

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \rightarrow\left(\begin{array}{rr}
\lambda & -\mu \\
\mu & \lambda
\end{array}\right)
$$

using orthogonal similarity transformations.
The purpose of the transformation is to yield a simple solution to certain systems of linear equations which sometimes must be solved. The supplementary plane rotation is done at the stage when the imaginary parts of the eigenvalues are being recorded in WI. We want to choose $c=\cos \theta$ and $s=\sin \theta$ so that

$$
\alpha c^{2}+(\beta+\gamma) c s+\delta s^{2}=\delta c^{2}-(\beta+\gamma) c s+\alpha s^{2} .
$$

Hence

$$
\begin{gathered}
\tan 2 \theta=\frac{2 s c}{c^{2}-s^{2}}=-\frac{2 p}{\sigma}=\frac{2|p|}{|\sigma|} \operatorname{sign}(-p \sigma) \\
\sigma=\beta+\gamma, \quad p=(\alpha-\delta) / 2
\end{gathered}
$$

Let

$$
\tau=\sqrt{\sigma^{2}+4 p^{2}}
$$

Then

$$
\begin{aligned}
& \cos \theta=q=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}=\sqrt{(1+|\sigma| / \tau) / 2} \\
& \sin \theta=\sin 2 \theta / 2 \cos \theta=|p| \operatorname{sign}(-p \sigma) / \tau q
\end{aligned}
$$

Our program does not force the subdiagonal element of a 2×2 diagonal block to be positive.

4. Programs and Facing Comments

PERMS is an adaptation of the EISPACK routine BALANC. See BALANC where no comments are given.

A contains the matrix to be reduced to Schur form. The transformations (elementary permutations) are gathered in P. SCALE is an integer vector used as working space to record the transformations. For RABS (also working space) WI can be used (see Section 5).

Statement

$10+1$ K will become LOW and so starts at 1 . L will become IGH and so starts at N.

40-4 The indices of the DO loops take into account that the matrix already has the block upper triangular structure shown in Figure 1 (Section 3).

80 If L reaches 1 , the matrix is upper triangular and we need not search the columns.
$100+2$ We only need search the submatrix in columns 1 through L. 140 We only need to search the submatrix in rows K through L.


```
C
```



```
            DO 210 I=K,L
                RABS(I) = 0.0
                    DO 200 J=K,L
    200
                        PARS(I) = RABS(I) + ABS(A(I,J))
    200 CONTINUE
C
C IEXC = 3
C
```



```
    DO 230 IQ = LOWPI,L
                        IP =K + L - IO
                        KCOUNT =0
                DO 220 J = K,IP
                    M=J+1
                    IF (RABS(M).LE.2.O*RABS(J)) GOTO 220
                    F= RABS(M)
                    RABS(M) = RABS(J)
                    RABS(J)=F
                    KCDUNT = KCOUNT + 1
                    GOTO 20
    220 CONTINUE
                        IF (KCOUNT.EQ.U.O) GOTO 300
    230 CONTINUE
```



```
    300 DO 320 J = 1,N
            DO 310I=1.N
                P(1,J) = 0.0
    310 CONTINUE
            MM= SCALE(J)
        P(M,J) = 1.0
    320 CONTINUE
        LOw = K
        IGH=L
        RETURN
        END
```

The 1 norm is computed only for the vector in columns LOW through IGH of the given row.

In regular "bubble" sorting, at the end of the IPth step, the smallest element among elements LOW,LOW $+1, \ldots, I P+1$, ends up in position $I P+1$. Here an exchange is made only when RABS (J+1) .GT. 2*RAB(J), 1.e. a factor 2 is inserted. This factor can be changed if the user desires. KCOUNT indicates the number of exchanges made in the IPth step. If KCOUNT $=0$, no exchanges have been made and we stop the sort. If lines J and M are exchanged, the corresponding interchange must be made in RABS. Since $I E X C=3$, the inline procedure returns to 220 after an exchange. The indices K and L are already correctly set for the in-line procedure. The $(\operatorname{SCALE}(J), J)$ element of the permutation matrix P is set to 1.

Note that $L>K$, unless A has been permuted into an upper triangular matrix, in which case $L=K=1$.

```
            SUBROUTINE ORTHAN(NM,N,LOW,IGH,A,P,ORT)
                            REAL A(NM,N),P(NM,N),ORT(IGH)
C
    LA = IGH-1
    KP1 = LOW + 1
    C
    DO 200 M = KP1,LA
        H=0.0
        ORT(M) = 0.0
        SCALF=0.0
C*********SCALE COLUMN ( ALGOL TOL THEN NOT NEEDED)*************
            DO 90 I = M,IGH
    90 SCALE = SCALE + AFS(A(I,M-1))
        IF (SCALE.EQ.O.O) GOTO 200
            MP = M + IGH
```



```
    DI 100 II = M,IGH
        I=MP - II
                        ORT(I)=A(I,M-1)/SCALE
                        H=H+ORT(I)*ORT(I)
    1 0 0
        CONTINUE
        G = -SIGN(SORT(H),ORT(M))
    H=H-ORT(M)&G
    ORT(M) = ORT(M) - G
```



```
    DO }\underset{F}{F}=0.J=0.0 M,
```



```
        DO 110 II = M,IGH
                                I}=MPP-I
    CONTINUE
C
C
    120
    DO,120 I = M,IGH 
C
    130 CONTINUE
C ***が
    FORM (I-(U*UT)/H)*A*(I-{U*UT)/H)**************
    DO 160 I = 1,IGH
        FO= 0.0
            DO 140 JJ=M,IGH
                J =MP - JJ
                        CONTINUE
C
C
    1 5 0
        DO,150 J = M,IGGH
    160 CONTINUE
```



```
            on 190 I = 1,N
                        FO}=0.
    170 DD 170 J=M,IGH
C
C
        P(I,J)=P(I,J)-F*ORT(J)
        CONTINUE
        A(M,M-1)=SCALE*G
    200 CONTINUE
    300 RE TURN
        END
```

In this adaptation of the EISPACK routine ORTHES the transformations are post multiplied into P, which on input contains the output of PERMS. The array WI can be used for ORT. See Section 5. Since the matrix A is block triangular, the index I at $130+1$ need only run to IGH, whereas at $160+1$ the index I runs to N since P is not of this structure.

```
        SUBROUTINE HOR3(NM,N,LOW,IGH,H,V,WI, IERR)
        DIMENSION H(NM,N),V(NM,N),WI(N)
        RFAL NORM, MACHEP
        INTEGER FN,FNM2
        LOGICAL NOTLAS
        DATA MACHEP /D164240000000000000000/
    POSTMULIIPLY TRANSFORMATIONS,I.FF. SCHUR FORM = VT A V
C SET WI TO ZERO AND CHECK FOR TRIANGULARITY
C
    50 WI(I)=0.0
        IF (LOW.EQ.IGH) GOTO 400
        IERR = 0
C
        EN = IGH
        T=0.0
CC SEARCH FOR NEXT EIGENVALUES
    $ IF (ENST FOR END CONDIT
        ITS=0
        NA=FN-1
        ENM2 = NA - }
C LOOK FOR SINGLE SMALL SUA-DIAGONAL ELEMENT
            FOR L=EN STEP -1 UNTIL LOW DN
        70 IF (EN.EQ.LOW) GOTM OO
            DO 80 LL=LOW,NA
                L=FN+LOW-LL
                IF(ARS(H(L,L-1)).LE.MACHEP*(ABS(H(L-1,L-1))
            X + ABS(H(L,L))))GO TO 100
        80 CONTINUF
        90 L= LOW
C FORM SHIFT
    100 x = H(EN,EN)
        IF (L.EQ.FN) GOTO 27C
        Y=H(NA,NA)
        IF (L.EQ.NA) GOTO 300
        IF (ITS.EQ.30) GOTO 1000
        IF (ITS.NE.10.AND. ITS.NE.20) GOTO 130
C FORM EXCEPTIONAL SHIFT
        Y = X (HSS(EN,NA)) + ABS{H(NA,ENM2)}
        T}=\boldsymbol{T}+\boldsymbol{x
C
```



```
        x = 0.75*S
        w = -0.4275*S*S
    130 ITS = ITS + 1
```

This is an adaptation of the EISPACK routine $H Q R 2$. It is the matrix to be reduced to Schur form. The transformations are post multiplied into V, which on input contains the output P of ORTHAN. WI contains the imaginary parts of the eigenvalues. For a complex eigenvalue, the positive imaginary part appears first. The use of WI is to indicate when there is a non-zero subdiagonal element (in which case WI (J) > 0) of the Schur form.

Statement

50
WI must be initialized to zero for the case when LOW $=\mathrm{IGH}=1$, i.e., when the matrix is already upper triangular. In this case, no $Q R$ steps need be performed and we go directly to 400 .

No comments for this section. See EISPACK.

The indices J and I at $200-5$ and $210+2$ take into account the fact that H is upper Hessenberg, whereas at $230+1$ the index I runs from 1 to N, since V has no special structure.

```
C TWO ROOTS FOUND
    300PP=(Y-x)/Z.0
        Q = p*P + w
            ZZ=SQRT(ARS(O))
            H(EN,EN) = x + T
            X = H(EN,EN)
            H(NA,NA)}=Y+
            IF (Q.LT.O.O) GOTO 310
            ZZ=P + SIGN(ZZ,P)
C REAL PAIR
            WI(NA) = 0.0
            WI(EN) = 0.0
            X = H(EN,NA)
            R = SQRT(X*X + ZZ*ZZ)
            P}=\textrm{X}/\textrm{R
            Q = ZZ/R
            GOTO 320
C COMPLEX PAIR
    310 WI(NA) = ZZ
            WI(EN) = -ZZ
C MAKE DIAGONAL ELEMENTS EQUAL
        IF (P.EQ.O.O) GOTO 380
        BPC = H(EN,NA) + H(NA,EN)
        TX = SORT (BPC*BPC + 4.0* P*P)
            O=SORT(.5* (1.0 + ABS(BPC)/TX))
            P=SIGN(P/(O*TX),-BPC*P)
C R ROW MODIFICATION
    320 DO 330 J=NA,N
                H(NA,J)=Q*ZZ + P*H(EN,J)
                H(EN,J) = O*H(EN,J) - P*ZZ
    330 CONTINUE
C
        OO 340 I = I,INN
                H(I,NA)=O*ZZ + P*H(I,EN)
                H(I,EN) = Q*H(I,EN) - P*ZZ
    340 CONTINUE
C
    ACCUMULATE TRANSFORMATIONS
    DO 350 I = = I,N N (INA)
        V(I,NA) = Q*ZZ + P*V(I,EN)
        V(I,EN) = Q*V(I,EN) - P*ZZ
```

 350 CONT INUE

Statement

310+2 See Section 3, step 3, where the rotation for making the diagonal elements of the 2 by 2 block equal is explained.

The section of program from 320 to 350 performs the plane rotation for either of two cases: when a real pair is found and $H(E N, N A)$ is to be zeroed, or when the diagonal elements of a complex block are being made equal. In the former case P and Q are set at $310-3$, in the latter at 320-2.

The limits of the J index at 320 and the I indices at $330+1$ and $340+1$ take into account the fact that H is upper Hessenberg whereas V is not.

```
    380 EN = ENM2
        GOTO 6O
C
    400 IF (NOLT-3) RETURN
    IF (WI(N-1),EQ.0.0) H(N,N-1)=0.0
    nO 420 J = 3.N
        JM2 = J J - \M2) LEF.0.0) H(J-1.JM2) = 0.0
        DO 410I=J,N
    410 H(I,JM2) = 0.0
    420 CONTINUE
    RETURN
1000 IERR = FN
    RETURN
    END
```

The section of program from 400 to 420 which zeroes H below the block diagonal takes into account the block structure of the matrix.

Statement

400 If $\mathrm{N}<3$ there is nothing to be done and an out of range index for WI must be avoided.

1000 If IERR > 0, after 30 iterations, the IERRth eigenvalue is not isolated and the Schur form is not found, but WI (J) is correct for $J=\operatorname{IERR}+1, \ldots, N$.
5. Usage

DIMENSION H(24,24),P(24,24),WI(24)
INTEGER SCALE(24)
$N M=24$
$\mathrm{N}=6$

Enter H

CALL PERMS (NM,N,H,P,LOW, IGH,WI,SCALE)
CALL ORTHAN (NM,N,LOW, IGH,H,P,WI)
CALL HQR3(NM,N,LOW, IGH,H,P,WI, IERR)

Operation Count

One operation means a multiplication or division followed by an addition or subtraction. Counts are taken from the program

PERMS: no arithmetic operations, only comparisons
ORTHAN: At the $\mathrm{m}^{\text {th }}$ major step column $\mathrm{m}-1$ is reduced to Hessenberg form.

Formation of the vector u in $1-\gamma u u^{T}: n-m+1$
Row operations: $\sum_{j=m}^{n}\{2(n-m+1)+1\}=(n-m+1)[2(n-m+1)+1]$
Column operations: $\sum_{j=1}^{n}\{2(n-m+1)+1\}=n[2(n-m+1)+1]$
Accumulate transforms: $\sum_{j=1}^{n}\{2(n-m+1)+1\}=n[2(n-m+1)+1]$
Set element (m,m-1): 1

Suming these quantities for $m=2, \ldots, n-1$ yields

$$
\sum_{\ell=2}^{n-1}[\ell+(\ell+2 n)(2 \ell+1)+1]=\frac{8}{3} n^{3}-3 n^{2}+0(n) .
$$

HQR3: A typical $Q R$ transformation acts on the leading $j \times j$ submatrix of a Hessenberg matrix. To restore column k to Hessenberg form requires the following calculations:

Computation	Key values	Rows	Columns	Accumulate
Count	9	$\sum_{\ell=k}^{n} 5$	$\sum_{\ell=k}^{\min (k+3, j)} 5$	$\sum_{\ell=1}^{n} 5$

Subtotal for the $j \times j$ submatrix:

$$
\sum[9+5(n-k+1)+5(k+3)+5 n]=10 n j+29 j
$$

Assuming b iterations per eigenvalue the total is

$$
\left[5 n^{3}+20 n^{2}+0(n)\right] b
$$

Realistic value for b is about 1.5.

GRAND TOTAL (for the real Schur form): $10 n^{3}+30 n^{2}+0(n)$

Input H
-9.0000
-10.0000
-8.0000
-6.0000
-4.0000
-2.0000
21.0000
21.0000
16.0000
12.0000
8.0000
4.0000
-15.0000
-14.0000
-11.0000
-9.0000
-6.0000
-3.0000
4.0000
4.0000
4.0000
3.0000
0.
0.
2.0000
2.0000
2.0000
3.0000
5.0000
1.0000
0 .
0.
0.
0.
0.
3.0000

Output H of PERMS
3.0000
$0:$
$0:$
0.
$0:$
0.
4.0000
21.0000
16.0000
12.0000
21.0000
8.0000

$$
\begin{array}{r}
-3.0000 \\
-14.0000 \\
-11.0000 \\
-9.0000 \\
-15.0000 \\
-6.0000
\end{array}
$$

$$
\begin{array}{r}
-2.0000 \\
-10.0000 \\
-8.0000 \\
-6.0000 \\
-9.0000 \\
-4.0000
\end{array}
$$

1.0000
2.0000 ?. 0000
3.0000 3.0000
2.0000
5.0000

Output P of PERMS

0.	0.	0.
0.	1.0000	0.
0.	0.	$i .0000$
0.	0.	0.
0.	0.	0.
1.0000	0.	0.

Schur Form \hat{S}
3.0000
0.
0.
0.
0.
0.

$$
\begin{aligned}
& .1124 \\
& 2.0000 \\
& -.0436 \\
& 0 . \\
& 0 . \\
& 0 .
\end{aligned}
$$

-2.4164
22.9544
2.0000
0.
0.
0.

$$
\begin{array}{r}
8165 \\
\hline
\end{array}
$$

$$
14.2995
$$

$$
.0143
$$

$$
\begin{array}{r}
5158 \\
2 \cdot 5997
\end{array}
$$

$$
\begin{aligned}
& 2.5997 \\
& 1.000 n
\end{aligned}
$$

Final Transformation Matrix P
0.
0.
$0:$
0.
0.
1.0000
-.6003
$=.5442$
$=.4353$
$=.3265$
-.2177
0.

$$
\begin{array}{r}
.7997 \\
=-4085 \\
=.3269 \\
=.2451 \\
-.1634 \\
0 .
\end{array}
$$

$$
\begin{aligned}
& \text { PSSP }^{T}=H \\
&-9.0000 \\
&-10.0000 \\
&-8.0000 \\
&-6.0000 \\
&-4.0000 \\
&-2.0000
\end{aligned}
$$

$$
\begin{array}{r}
21.0000 \\
21.0000 \\
16.0000 \\
12.0000 \\
8.0000 \\
4.0000
\end{array}
$$

$$
\begin{array}{r}
-15.0000 \\
-14.0000 \\
-11.0000 \\
-9.0000 \\
-6.0000 \\
-3.0000
\end{array}
$$

$$
\begin{aligned}
& P P^{T}=I \\
& 1.0000 \\
& .0000 \\
& .0000 \\
& .0000 \\
& 0.0000
\end{aligned}
$$

$$
\begin{array}{r}
.0000 \\
1.0000 \\
1.0000 \\
-.0000 \\
-.0000
\end{array}
$$

$$
\begin{array}{r}
.0000 \\
-.0000 \\
1.0000 \\
-.0000 \\
-.0000
\end{array}
$$

$$
\begin{array}{r}
.0000 \\
-.7328 \\
\cdot 5054 \\
\cdot 3790 \\
\cdot .2527 \\
C .
\end{array}
$$

-.0000
0.
-.5307
.1516
0.8339
0.

$$
\begin{array}{r}
.0000 \\
0.4082 \\
-.8165 \\
.4082 \\
0 .
\end{array}
$$

$$
\begin{aligned}
& 0 . \\
& 0 . \\
& 0 . \\
& 0 . \\
& 0 . \\
& 3.0000
\end{aligned}
$$

$$
\begin{array}{rr}
.0000 & -0000 \\
-.0000 & -0000 \\
-.0000 & -.0000 \\
1.0000 & -.0000 \\
-.0000 & 1.0000
\end{array}
$$

[^1]
6. Numerical Example

This example [2] demonstrates the use of PERMS and HQR3. First the isolated eigenvalue of the last column is detected, and the first and sixth columns are exchanged. Hence $L O W=2$ and $I G H=6$. Since the last row's norm is now twice the fifth rows, these are exchanged.

The eigenvalues are $3,2+i, 2-i, 1,3,1$, in order given along the block diagonal of \hat{S}. The standardized two by two block appears in second position along the diagonal. As a check we have also computed $P S P^{T}=H$ and $P P^{T}=I$.

References

[1] EISPACK Guide, Lecture Notes in Computer Science No, 6, Springer-Verlag (1974).
[2] Gregory, T. and Karney, L. A Collection of Matrices for Testing Computational Algorithms, Example 5.26, p. 108.

DOCUMENT CONTROL DATA - R \& D

(Security classilleation of elffe, body of absfract and indexing annotation must be enterod when the overoll report is clasalled)

1. ORIGINATING ACTIVITY (Comporale author)

Computer Science Division
University of California
Berkeley. Californja 94720
3. REPORT TITLE
a PROGRAM TO COMPUTE THE REAL SCHUR FORM OF A REAL SQUUARE MATRIX
4. DESCRIPTIVE NOTES (TYpe of ropart and Incluạive detee)

Scientific Final
8. AUTHOR(S) (Firsi name, middle inllial, lest name)
B.N. Parlett
R. Feldman

6. REPORT OATE June 1975	7a. TOTAL NO. OFPAGES 7b. NO. OF REFS 28 2
8. CONTAACT OR GRANT NO. ONR-N00014-69-A-0200-1017 b. PROJECT NO.	Da. ORIGINATOR'S REPORT NUMEER(S) Electronics Research Laboratory Memorandum M-526
c. d.	DB. OTMER REPONT NOIS) (Any other numbere that may be asalgned thls ropost)

10. DISTMIDUTION STATEMENT

Approved for public release; distribution unlimited.
11. SUPPLEMENTARY NOTES
2. SPONSORING MILITARY ACTIVITY

Mathematics Branch
Office of Naval Research
Washington, D.C. 20360
13. ADSTAACT

A Fortran program is presented which will obtain the real Schur form of a real $n \times n$ matrix in $10 n^{3}+30 n^{2}$ multiplications (approximately).

[^0]: $\dagger_{\text {Research }}$ sponsored by Office of Naval Research Contract N00014-69-A-0200-1017.

[^1]: 0.
 1.
 2.
 3.
 4. 1.0000
