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The algorithm is described at three different levels.

Level 1 is for a busy colleague.

Level 2 is for publication.

Level 3 is for the programmer.

The Schur Form
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1. The Schur Form

A result in matrix theory, often called Schur's lemma, states that
any square matrix B, whether real or complex, is unitarily similar to

an upper triangular complex matrix S:
B = PSP¥* , PP* = P*P =1 .

Here P* denotes the conjugate transpose of P. Using slightly different
language the lemma states that there is an orthonormal basis in the vector
space on which B acts such that B's representation in this basis is

upper triangular. Thus S may be regarded as a canonical form for B

acting on Euclidean space.

Because S 1is triangular its eigenvalues {Al,kz,...,kn} lie
revealed on the diagonal. In fact the eigenvalues may be taken in any
desired order down the diagonal. Even when this order is fixed the métrix
S 41s still not uniquely determined by’ B. However, the possible varia-
tions in § -are rather trivial because Isijl’ i < j, 1is fixed whenever
Ai =854 # Aj =S54

Discovery of S solves the eigenvalue problem for B and facilitates
the computation of eigenvectors. Another use of S is in the formation
of an analytic function ¢ of B since ¢(B) = PP(S)P*,

From a practical point of view one defect of the Schur Form S is
that S may be complex even when B is real. So we ask for the canonical
form of B in real Euclidean space. The answef is an easy modification
of S, called the real Schur Form S which is quasi-triangular. That
is, S is block upper triangular and the diagonal blocks are either 1Xx1

or 2x2, To each complex conjugate pair of eigenvalues A and X in

S there corresponds a real 2Xx2 diagonal block in S whose eigenvalues



are A and . Sometimes it is convenient to standardize the real Schur

form by requiring that the 2x2 diagonal blocks have the form

|

to arrange that vy

where A = p+iy,
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In general it is not possible

standardized real Schur Form is
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Our purpose here is to compute the real Schur form, not to praise it.

Algorithms for the complex case are available in EISPACK Release 2.

2. The Algorithm (described at Level 1)

It is not difficult to compute P and S from B,

we use are quite standard.

the techniques

B 1is reduced to upper Hessenberg form H by

means of orthogonﬁl similarity transformations and then H is reduced

to § by the double QR algorithm. The product of all the orthogonal

matrices used in the process are accumulated to form P.

We make use of a few devices to keep the number of QR transformations

fairly low.



3. The Algorithm (described at Level 2)

The process has three steps:

Step 1: The routine PERMS, a modification of the EISPACK [1] routine BALANC,
performs a sequence of row and column interchanges which detect
when B is a permutétion of a block triangular matrix and put

it in the standard form

= pk
B2 ,PlBPl
where Pl is a permutation matrix and
Bi1 B2 B3
By=| O Byy By3 |
0 0 B33~
Figure 1

with Bll and B33 upper triangular. PERMS also acts on 322.
The goal is to bring rows with excessive norms to the top in
order to get the QR algorithm off to a good start.

More precisely rows (and columns) are exchanged if the ratio
of their ﬁl-norms exceeds two.

In most cases B2 = 322, but the normalization which PERMS
effects is rapid and is a necessary preparation for the routines
which follow.

Step 2: The (2,2) block of B, is reduced to upper Hessenberg form

2
by ORTHAN, a modification of the EISPACK routine ORTHES, and the
product of the sequence of reflections is accumulated to yield

P2 such that

= p*
B3 = PZBZPZ

is in upper Hessenberg form.

5



Step 3: The (2,2) block of B, is reduced to quasi-triangular form

3
by HQR3, a modification of the EISPACK routine HQR2, § = P}B,P,

No effort is made to compute the eigenvectors of §, but WI, which
contains the imaginary parts of the eigenvalues, is retained, to indicate
the presence of a V2><2 block on the main diagonal of S. The array §
is forced explicitly to be block uﬁper triangular in case the user wishes

to have it printed out (i.e., S is zero below the block diagonal).

In addition HQR3 performs a supplementary plane rotation after a
pair of complex conjugate eigenvalues, A* iju, has been recorded in the

course of the QR algorithm., The transformation of the diagonal block is

c s a B c -8 A 0
-8 c Yy § 8 ¢ E A
where £6 = -uz. (This device is not used in HQR2.)

Note that it is not in general possible to transform

BRI

using orthogonal similarity transformations.

The purpose of the transformation is to yleld a simple solution to
certain systems of linear equations which sometimes must be solved. The
supplementary plane rotation is done at the stage when the imaginary
parts of the eigenvalues are being recorded in WI. AWe want to choose

c=cos ® and s = sin 6 so that

acz + (B+y)cs + 632 = 6c2 - (B+Y)cs + asg .



"Hence

2 2 2lp|
tan 20 = czzz = - —02 = ‘IJ&E)'L sign(-po) ,

o=B8+y, p=(8)/2 -.
Let ' .
T =/o>+4p? .
Then |

‘cos 8 =q= 4%(14-cos 20) = Y1+ |o|/T)/2 ,

sin 6 = sin 20/2 cos 6 = |p|sign(-po)/Tq .

Our program does not force the subdiagonal element of a 2x2 diagonal

block to be positive.



SUBROUTINE PERMS(NMy N AP L0OW,y [GH,RANS ¢ SCALE )
DIMENSION A(NM,N), P(NM,N), RABS(N)
INTEGER SCALF (N)
CREkkke bk ek bk etk INITIALLI ZF SCALE®®ktikddk kkkddkdokhkdd ol fihk i
DO 10 K = 14N
10 SCALE(K) = K

K = 1
L =N ..
GOTD 100

CHEERRERXEEXFEEXEN-L INE PROCECURF FOR ROW AND

c COLUMN TNTERCHANGE # sk o de e ook £o s ook o e ik oo ok oo ook e o o ot o o

20 IF.(J.EQ.M) GOTO 60 -
ChEkkkkkkkrx &k X XRECOIRD TRANSFORMATION [N SCAL F % g fesode e s ook e oo e gk ke o
1 = SCALE(J)
SCALE(J) = SCALE(M)
SCALE(M) = I

C
(e 222 33 EXCHANGE COLUMN J AND M
DO 40 [ = 1,L
F = )Annkv
A{L,,J) = A(I,M)
)nhQZu = F

40 CONTINUE
CE¥kx¥xEEEXCHANGE RQOW J AND M
DO S0 I = Kg¢N.
F = DaLva
A(Jel) = A(M,I)
A(M,1) = F
50 CONTINUE

60 GOTO (80,130,220), [EXC
C *&%k&kk SEARCH FOR RNWS ISOLATING AN EIGENVAIUF

C

c AND PUSH THEM DOWNX R ¥k Sk dddidokkkokk ke kkkkris
80 IF (L.EQ.1) GOTO 300
L =1L -1

Cxkxk¥ikk¥ FOR ) L STEP -1 UNTIL 1 NO
100 DO 120 JJ 1 o+ L
J= L + 1 - JJ
DN 110 I = 1,4
IF {([.EQeJ) GNTO 110
IF (A{JyI) eNELO,0) GOTO 120
110 CONTINUE
Chkrkxka&ikTHE JTH ROW ISOLATES AN ETGENVALUF JEXCHANGE IT WITH ROW L
C

M = L

[EXC = 1

GOTO 20
120 CONTINUE

GOTO 140
SakkkRkrxiks SEARCH FOR COMUMNS [SOLATING AN EIGENVALUE
AND PUSH THEM LEFT #®¥Xxkdkfiekkkgkkikkdk

0o

130 K = K + 1

'

‘e

140 DO 170 J = K 4 L
DO 150 I = K,L
IF (1.EQ.J) GOTO 150 E
IF (A(I,J)«NE.0.0) GOTO 170

150 CONTINUE

Tk&kx CNOLMUMN J ISOLATES AN EIGENVALUEEXCHANGE IT WITH COMUMN K
M = K i
IEXC = 2 .
GOTO 20

170 CONTINUE



4. Programs and Facing Comments

PERMS is an adaptation of the EISPACK routine BALANC. See BALANC

where no comments are given.

A contains the matrix to be reduced to Schur form. The transfor-
mations (elementary permutations) are gathered in P. SCALE is an
integer vector used as working space to record the transformations.

For RABS (also working space) WI can be used (see Section 5).

Statement

10+1 K will become LOW and so starts at 1. L will become IGH
and so starts at N,

40-4 The indices of the DO 1loops take into account that the matrix

20-4 already has the block upper triangular structure shown in
Figure 1 (Section 3).

80 If L reaches 1, the matrix is upper triangular and we need
not search the columns.

100+2 We only need search the submatrix in columns 1 through L.

140 We only need to search the submatrix in rows K through L.



CRERXXEXXCKEXXBRING ROWS OF LARGE 1 NORM T0O THE TPk doddesotod o b ok dedo ek ok

c
CHIXEFXEEEXXEXXEXXCOMPUTE 1 NORM OF ROWS FROM LNW [0 [ GH¥ &kokiokkk sk gk
DO 210 I = K,L

RAS(I) = 0,0
DD 200 J = K,L
200 RARS(I) = RABS(I) + ABS(A(1,4))
210 CONTINUE
C
IEXC = 3
C
CXxkkEsakxxXBUBBLE SORTING,EXCHANGING ROWS J+1 AND J (F
C RAHS(J*!).GT.?*RABS(J)*******#*#*******#********#**#********
LOWPL = K 4+ 1
C FOR P = IGH — 1 STEP -1 UNTIL LOwW DN
DO 230 1Q = LOWPL,L
IP = K + L - IQ
KCOUNT = 0
DO 220 J = KyIP
M= J + 1
IF (RABS (M) LE+2.,0%RABS{J)) GOTO 220
F = RARS(M)
RABS (M) = RABS(J)
RARBS(J)Y) = F
KCNUNT = KCOUNT + 1
GOTO 20
220 CONTINUE
IF (KCOUNT «EQe0+0) GOTO 300
230 CONTINUE
CakkabkdkikekiEFORM PERMUTAT JON MATRIX P 3 % d X e deok deofe e ok ok
300 DO 320 J = 1,N
NO 310 I = 14N
P(I,J) = DO
310 CONTINUF

M = SCALE(J)
P(M,J) = 1.0
320 CONTINUE

LOw = K
IGH = L
RE TURN
END

10



Statement

200 The 1 norm is computed only for the vector in columns LOW
through IGH of the given row.

21042 In regular 'bubble" sorting, at the end of the IPth step,
the smaliest element among elements LOW,LOW+l,...,IP+l, ends
up in position IP+1. Here an exchange is made only when
RABS(J+l) .GT. 2*xRAB(J), 1i.e. a factor 2 is inserted., This
factor can be changed if the user desires. KCOUNT indicates
the number of exchanges made in the IPth step. 1f KCOUNT = 0,
no exchanges have been made and we stop the sort. If lines
J énd M are exchanged, the corresponding interchange must be
made in RABS. Since IEXC = 3, the inliﬁe procedure returns
to 220 after an exchange. The indices K and L are already

correctly set for the in-line procedure.

300 The (SCALE(J),J) element of the permutation matrix P is set
to 1.
320 Note that L > K, unless A has been permuted into an upper

triangular matrix, in which case L = K = 1.

11



SUBRNUTINE ORTHAN({NMyN,LOW IGH,AyP,0ORT)
REAL A(NM,N),P(NMy,N),ORT(IGH)
C
LA = IGH - 1
KP1 = LOW + 1
IF (LASLT.KP1) GOTOD 300
C
DO 200 M = KP1,LA
H = 0.0
ORT(M) = 0.0
SCALF = 0.0
CHxExE%kk&RSCALE COLUMN ( ALGOL TOL THEN NOT NEEDED )k ki
DO 90 I = M, IGH
90 SCALE = SCALE + ABS(A{I M~-1))
IF (SCALE.EQ.0.,0) GOTN 200
MP = M + IGH
CuxXEXEEEEEFIR I = IGH STEP =1 UNTIL M DO oo %kRiekkkktdhrdotodkxdkdkdkrkkdd
DD 100 11l = M,IGH
I = MP - 11
ORT(I) = A(I,M-1)/SCALE
H = H + ORT(I)*0ORT(1)
100 CONTINUE
G = —SIGN(SQRT(H) ,ORT(M))
H = H - ORT(M)*G
ORT (M) = ORT(M) - G
Clkk ki FORM (I- U*UT)/H) g A e deodk e ol el e ke e ook ok ok ek e ok
DN 130 J = M,N
F = 0.0
CHEXFXFRFHEREXEEXFOR | = IGH STEP -1 UNTIL M DO oo #kiokkkskgirakrss
DO 110 II = M, IGH
I = MP - 11
F = F 4+ ORT(1)*A(1,V)
110 CONTINUF
F = F/H
C
00 120 I = e IGH
120 A{lIJ) = A( J) - FXCRY(1)
130 CONTINUE
C  eEmmk FORM (T—(URUT)/ZH)EAR([-(UEUT ) /H) Ho bk hf hbh &
DO 160 I = 1,IGH
F = 0.0
CheEgxkikkdkdkFOR J = [GH STEP ~1 UNTIL M DO % xfkfk¥xfkkkkgkygrk
DO 140 JJ = M, IGH
J = MP - U
F = F '+ A(1,J)%0RT(J)
140 CONT INUE
C
F = F/H
C
DO 150 J = Mu,IGH
150 A(T,4) = A(L,J) — FXORT(Y)
160 CONTINUE
ChEdkpkxkkkikxkACCUMULATE TRANSFNORMATION 3 e Ak et = 3% o A e o e e e e o ok e ok ek sk e ok
DN 190 [ = 14N
F = 0e0
DO 170 J = Mu,IGH
c 170 F = F 4+ P(L1,J)%0RT(J)
F = F/H
C
DO 180 J = M,IGH
180 P(Iy,J) = P(I,J) - FRORT(J)
190 CONTINUE
. A(MyM=-1) = SCALE*G
200 CONTINUE
300 RETURN
END

12



In this adaptation of the EISPACK routine ORTHES the transforma-
tions are post multiplied into P, which on input contains the output
of PERMS. The array WI can be used for ORT. See Section 5. Since
the matrix A is block triangular, the index I at 13041 need only run
to IGH, whereas at 160+1 the index I rums to N gince P is not of this

4

structure.

13
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SUBRNUTINE HQR3(NM N,LOW,
DIMENSION H(NMyN), V(NNMyN)
REAL NORM,MACHEP ‘
INTEGER FN,FNM2

LOGICAL NOTLAS

DATA MACHEP /D016424000000000000000/

IG VoWl , IERR)
o W

-1I

POSTMULTIPLY TRANSFORMATIONS, [«.Fe SCHUR FORM = vT

SET WI TO ZERO AND CHECK FOR TRIANGULARTTY

DO S0 I = 1N
50 WI(I) = 0.0
IF (LOWSEQ.IGH) GOTO 400

1ERR = O
EN = IGH
T = 0.0

SEARCH FOR NEXT EIGENVALUES

TEST FOR END CONDITION
60 IF (EN.LT.LOW) GOTO 400
ITS = 0
NA = EN - 1
ENM2 = NA - 1

LOOK FUR SINGLE SMALL SUR-DIAGONAL ELEMENT
FOR L=EN STEP -1 UNTIL LOW DO

70 IF (ENJEQ.LOW) GOTO Q0
DO 80 LL=LOW,NA
L=FN+LOW-LL
!F(AHS(H(L,L—I))oLF.MACHEP*(ABS(H(L-lpL—l))
X + AB3S(H(L,L))))GD TO 100
80 CONTINUF
90 L = LOW

FORM SHIFT

100 X = H(EN,EN) .
. IF (L.EQ.EN) GOYO 27C

Y = H(NA,NA)

W = H(EN,NA) % H{NA,EN)

IF (LeEQ.NA) GOTO 300

{F (ITS.EQ.30) GOTO 1000

IF ([TSeNEo«lO «AND. ITSeNE.20) GOTO 130
FORM EXCEPTIONAL SHIFT

Y = X

S = ABS(H(EN,NA)) + ABS (H(NA,ENM2))

T

T ¢ X

DO 120 1 = LOW HEN
120 H(I41) = H{I,I) - X
X = 075 * S
W = =0e4275%5*S
130 ITS = ITS + 1

14



This is an adaptation of the EISPACK routine HQR2. It is the matrix
to be reduced to Schur form. The transformations are post multiplied
~into V, which on input contains the output P of ORTHAN. WI contains
the imaginary parts of the eigenvalues. For a complex eigenvalue, the
positive imaginary part appears first. The use of WI is to indicate
when there is a non-zero subdiagonal element (in which case WI(J) > 0)

of the Schur form.

Statement
50 WI must be initialized to zero for the case when LOW = IGH = 1,
i.e., when the matrix is already upper triangular. In this

case, no QR steps need be performed and we go directly to 400,

15



(a¥aXelg)

LOUK FOR TWO CONSFCUTIVE SMALL SUB—DIAGONAL
ELEMENTS. FIIR M=EN-?2 STEP -1 UNTIL L NO

DO 140 MM = L ,ENM2
ENM2 + L - MM
= H{M,M)
X - 227
Yy - 22 :
(RAS ~W)/H{M&1, M) + H{M,M+ 1)
H(M+l g M#1) - 2Z - R = S
H{M+2,M+1)
ABS{P) + ABS(Q) + ABS(R)
P/S
Q/S
R/S
IF (MJEQeL) GOT
IF (ABS(H(M M-
X *¥(ABS(H(M~1,4M=1
140 CONTINUE

N

VOVWVIVOUVMDNEZ

W dbn

LEMACHEP*ABS(P)
M+ly,M+1)))) GOTO 150

vva
D~
nao
~
T -
~ e

150 MP2 = M + 2

D0 160 I = MP2,FN
H{1yI-2) = 0.0
IF ([ JEQeMP2) GOTO 160
H(‘QI‘J) = 060
160 CONTINUE

DOUBLE QR STEP INVOLVING ROWS L TO EN
AND COLUMNS M TO ENo.

DO 260 K = M,NA
NOTLAS = KeNEsNA
IF (K,EQeM) GOTO 170

P = H(K'K_l)
Q = H(K#1,K-1)
R = 0.0

IF (NOTLAS) R = H(K+2,K-1)

X = ABS(P) + ABS(Q) + ABS(R)
IF (XeEQeDe0) GOTN 260
P = P/X
Q = Q/X
R = R/X
170 S = SIGN(SQRT(PXP + Q%Q + R¥P),P)

IF (K<.EQ.M) GOTO 180

H{Ky4K—-1) = —=S&X

GOTO 190
180 IF (LeNEeM) H(KyK=1) = —H{Ky,K-1)
190 P =P 4+ 5

X = P/S

Y = Q/S

Z2Z = R/S

Q = Q/P

R = R/P

16
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e

No comments for this section. See EISPACK.
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(aXe)

NOOo N

aan

noon

RCOw MODIFICATION
DD 210 J = KN
P = H{KyJ) + QkH{(K+1,J)
IF («NOTNOTLAS) GQTO 200
= P 4+ REH(K+2,J)
HIK#2,43J) = H(K$2,4,J) ~ P%XxZZ
200 H(K+1,J) = H(K#1,J) - PxY
H{Kgd) = H(KyJd) - P%X
210 CONTINUF
J = MINO(EN,K+3)
COLUMN MODIFICATION
DO 230 I = 1,J
P = XXH(I,K) + Y&®H(I,K+1)
IF ( «NOT.NOTLAS) GOYO 220
P = P ¢+ 2Z%H{1,K+2)
H(L,K4+2) = H{f,K+2) — P%R
220 H{LyK+1) = H(TyK+1) = PEQ
HETOK) = H(T,K) - P
230 CONTINUE
ACCUMULATE TRANSFORMATIONS
DO 250 I = 14N
P = XEV(I,K) + YRV(I K+1)
IF ( «NOTNOTLAS) GOTO 240
P =P ¢ ZZEV(1,K+2)
VI, K+2) = VI (I[,K+2) - P%R
240 V(I K+1) = V(I,K¢1) - P¥*Q
V(IyK) = V(IK) - P
259 CONT INUE
260 CONTINUE
GO TN 70
ONE ROOT FOUND

270 HIEN,EN)=X+T
WI(EN)=0.0

290 EN = NA
GOT0O 60

18



Statement
200 - The indices J and I at 200-5 and 210+2 take into account the
fact that H is upper Hessenberg, whereas at 230+1 the index

I runs from 1 to N, since V has no special structure.

19



on

0NN

anod

aono

Nnoo

TwO RONTS FOUND

300

(Y=X)/2.0

PEP + W

ZZ = SQRT(ABS(Q))
H(EN,EN) = X + T

X = H(EN,EN)

HI(NA,NA) = Y + T

[F (QesLT<0.0) GOTO 310
ZZ = P + SIGN(ZZ,P)

p
Q

REAL PAIR

WI{NA) = 0.0
WICEN) = 0.0

X = HCEN,NA)

R = SQRT{X%X + Z2Z%ZZ7)
P = X/R

Q = ZZ/R

GOTO 320

COMPLEX PAIR

310

Wi (NA)
wi(EN)

y 4
-2Z

MAKE ODIAGONAL ELEMENTS EQUAL

320

330

340

IF {(P.,EQ.0.0) GDTO 389
BPC = H{EN,NA) + HINA,EN)
TX = SQRT(BPC%BPC + 4.0% P*¥P)

P SIGN(P/(Q%*TX), -BPC*P)

ROW MDDIFICATION

D0 330 J = NA,N
2Z = H(NA,J)
H(NA,J) = Q%ZZ + PXH(EN,J)
H{EN,J) = Q%H(EN,J) - P*ZZ
CONT INUE :

COLUMN MODIF ICATION

NO 340 I = 14EN
ZZ = H(I,NA)
H(I,NA) = Q%ZZ + P¥H(I,EN)
HUI,EN) = Q%H(I,EN) — P*ZZ
CONTINUE

ACCUMULATE TRANSFORMATIONS

DO 350 I = 1,N
ZZ = V(I[4NA)
VII,NA) = Q¥%ZZ + PEV(I,EN)
VII,EN) = Q%V(I,EN) - P%2Z
CONT INUE

20
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Statement
310+2 See Section 3, step 3, where the rotation for making the

diagonal elements of the 2 by 2 block equal is explained.

The section of program from 320 to 350 performs the plane rotation
for either‘of two cases: when a real pair is found and H(EN,NA) is to
be zeroed, or when the diagonal elements of a complex block are beiﬁé
made equal. In the farmer case P and Q are set at 310-3, in the latter
at 320-2.

The limits of the J index at 320 and the I indices at 33041 and
34041 take into account the fact that H is upper Hessenberg whereas V

is not.

21



380 EN = ENM2
GOT0 60

C
C ZERD H BELOW BLOCK DIAGONAL
c . g

400 IF (No.LT.3) RETURN

IF (WI(N—1)eEQeD040) H(N'N“l) = 040
NO 420 J = 34N

LEL0.0) H (J-1,JM2) = 2,0
] .
»

ocZ

410 H(I,

420 CONTINUE
RETURN

1000 IERR = EN
. RETURN
END -

22
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The section of program from 400 to 420 which zeroes H below the

block diagonal takes into account the block structure of the matrix.

Statement

400 "If N < 3 there is nothing to be done and an out of range
index for WI must be avoided.

1000 If IERR > 0, after 30 iterations, the IERkth eigenvalue

is not isolated and the Schur form is not found, but WI(J)

is correct for J = IERR+L,...,N.

23



5. Usage
DIMENSION H(24,24),P(24,24),WI(24)

INTEGER SCALE(24)
NM = 24

N=6b

Enter H
CALL PERMS(NM,N,H,P,LOW,IGH,WI,SCALE)
CALL ORTHAN(NM,N,LOW,IGH,H,P,WI)

CALL HQR3(NM,N,LOW,IGH,H,P,WI,IERR)

Operation Count

One operation means a multiplication or division followed by an addi-
tion or subtraction. Counts are taken from the program
PERMS: no arithmetic operations, only comparisons

ORTHAN: At the mth major step column m~1 i1s reduced to Hessenberg form.

Formation of the vector u in l—YuuT: n-mtl

n
Row operations: E {2(n-m+1) +1} = (n-m+l) [2(n-m+l) +1]

j=m a
Column operations: X {2(n-m+1) +1} = n[2(n-m+l) +1]
=1
Accumulate transforms: E {2(n-m+1) +1} = n[2(n-m+l) + 1]
i=1

Set element (m,m-1): 1
Summing these quantities for m = 2,...,n-1 yields

-l 83 .2
Y [2+4 (4+2n) (2041) +1] = P «3n“4+0(n) .
L=2

24



HQR3: A typical QR transformation acts on the leading jXJj submatrix

of a Hessenberg matrix.

To restore column k to Hessenberg

form requires the following calculations:

Computation | Key values | Rows Columns Accumulate
n min(k+3, ) n
Count 9 Y5 5 15
2=k 2=k =1
Subtotal for the jXj submatrix:

Y19+ 5(n-k+1) + 5(k+3) +5n] = 10nj + 293

Assuming b iterations per eigenvalue the total is

(505 + 2002 +0(n) Ib .

" Realistic value for b is about 1.5.

GRAND TOTAL (for the real Schur form): 10n3+30n2+0(n)
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Input H

-9.0000
-10.0000
-8.,0000
~-6.0000
-4.,0000
=2.0000

Output H of PERMS

3.0000
O.
O
O.
O.
Oe

Output P of PERMS

Schur Form §

3.0000
0.
0.
0.
0.

4,0000
210000
160000
12,0000
2t .0000

80000

Oe
1.0000
Oe
Qe

Final Transformation Matrix

0.

O.

O.

0.

O.

1.0000
T

PSP = H

-9.0000
-10.,0000
~80000
-6.0000
=4.0000
~-2.0000

PPT==I

1.0000
«0000
«0000
« 0000
«0000

Oe

~-+6003
-¢ 5442
-e4353
-¢3265
—e2177
0.

21,0000
21.0000
160000
120000
88,0000
40000

« 0000
1.0000
-+0000
-« 0000
~-+0000
0.

-15.0000
-14,0000
-11.0000
-9,0000
~6.0000
~3.0000

-3.0000
‘1400000
-11.0000

-9,0000
-15.,0000

-64.0000

27997
-e 4085
- 32614
—e2451
—e 1634
0.

-15.0000
-14,0000
-11.,0000
-9,0000
-640000
-3.0000

« 0000
-.OOOO
10000
—¢ 0000
_00000
Oe
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4.0000
4.0000
4.,0000
3.0000
Oe
O.

O
4,0000
4.0000
30000
4,0000
Oe

0.
Oe

1.0000
0
Oe.

—4.1948
- 35.7438
«H6376
10000
Oe
Oe.

«0000
-e7328

« 5054

«3790

02527
('

40000
4,0000
4,0000
3.0000
-«0000
—e«0000

.

<0000
-.0000
-.0000
1.0000
-.0000

2.0000
20009
20009
3.0000
5.0000
1.0000

~24.0000
—10.0000
-8.0000
°600000
-9,0000
-4.0000

1.0000
Oe
Oe
Oe
Oe
O

24259

— 15265
1.7778
3.0000
0.

~-«0000

—-e5307
e1516
8339

Oe

2.0000
2.0000
2.0000
3.,0000
5+0000
1.0000

<0000
-+ 0000
-.0000
-.0000
1.0000
e.

1.0000
20000
20000
3.0000
20000
$.0000

Ne
O
O.
Oe.
1.0000
O.

—¢8165
14,2995
« 0143
«5158
25997
1.0000

« 0000

+ 4082
~—e8165

«4082
0.

Oe
Ce
0.
O
Oe
3.0009

O.
Oe
Oe
Oe
Qe
1.0000



6. Numerical Example

This example [2] demonstrates the use of PERﬁS and HQR3. First
the isolated eigenvalue of the last column is detected, and the first
and sixth colummns are exchangéd. Hence LOW =2 and IGH = 6. Since
the last rowfs norm is now twice the fifth rows, these are exchanged.
The eigenvalues are 3, 2+i, 2-1, 1, 3, 1, in order given along -
the block diagonal of g. The standardized two by two block appears |
in second position along the diagonal. As a check we have also computed

PSPT =H and PPT = I.
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