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Abstract

A Fortran program is presented which will obtain the real Schur form

3 2
of a real n x n matrix in lOn + 30n multiplications (approximately).
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The algorithm is described at three different levels.

Level 1 is for a busy colleague.

Level 2 is for publication.

Level 3 is for the programmer.
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1. The Schur Form

A result in matrix theory, often called Schur1s lemma, states that

any square matrix B, whether real or complex, is unitarily similar to

an upper triangular complex matrix S:

B = PSP* , PP* = P*P = 1

Here P* denotes the conjugate transpose of P. Using slightly different

language the lemma states that there is an orthonormal basis in the vector

space on which B acts such that B*s representation in this basis is

upper triangular. Thus S may be regarded as a canonical form for B

acting on Euclidean space.

Because S is triangular its eigenvalues {X ,X_,...,X } lie

revealed on the diagonal. In fact the eigenvalues may be taken in any

desired order down the diagonal. Even when this order is fixed the matrix

S is still not uniquely determined by B. However, the possible varia

tions in S are rather trivial because ls...tl» *• < J» is fixed whenever

x±"i±* xj =sjj-
Discovery of S solves the eigenvalue problem for B and facilitates

the computation of eigenvectors. Another use of S is in the formation

of an analytic function (f) of B since (|>(B) = P<(>(S)P*.

From a practical point of view one defect of the Schur Form S is
c

that S may be complex even when B is real. So we ask for the canonical

form of B in real Euclidean space. The answer is an easy modification

of S, called the real Schur Form S which is quasi-triangular. That

is, S is block upper triangular and the diagonal blocks are either lxi

or 2x2. To each complex conjugate pair of eigenvalues X and X in

S there corresponds a real 2x2 diagonal block in S whose eigenvalues



are X and X. Sometimes it is convenient to standardize the real Schur

form by requiring that the 2x2 diagonal blocks have the form

P 3

I Y P J
Y > 0, 3 < 0, -3y » v'

where X - p+iu, y > 0, and i - -1. In general it is not possible

to arrange that y = -$ * u.

An example of a standardized real Schur Form is

3 110-10

0 1-323-1

0 2 110 4

0 0 0 2-11

0 0 0 0 0-2

0 0 0 0 10

Our purpose here is to compute the real Schur form, not to praise it,

Algorithms for the complex case are available in EISPACK Release 2.

2. The Algorithm (described at Level 1)

It is not difficult to compute P and S from B, the techniques

we use are quite standard. B is reduced to upper Hessenberg form H by

means of orthogonal similarity transformations and then H is reduced

to S by the double QR algorithm. The product of all the orthogonal

matrices used in the process are accumulated to form P.

We make use of a few devices to keep the number of QR transformations

fairly low.



3. The Algorithm (described at Level 2)

The process has three steps:

Step 1: The routine PERMS, a modification of the EISPACK [1] routine BALANC,

performs a sequence of row and column interchanges which detect

when B is a permutation of a block triangular matrix and put

it in the standard form

B2 =P*BP1

where P. is a permutation matrix and

B2 =

Bll B12 B13
0 B22 B23
0 0 B33
Figure 1

with B-, and B__ upper triangular. PERMS also acts on B9?.
11 33 *•*•

The goal is to bring rows with excessive norms to the top in

order to get the QR algorithm off to a good start.

More precisely rows (and columns) are exchanged if the ratio

of their &_-norms exceeds two.

In most cases B? = B9?, but the normalization which PERMS

effects is rapid and is a necessary preparation for the routines

which follow.

Step 2; The (2,2) block of B2 is reduced to upper Hessenberg form

by ORTHAN, a modification of the EISPACK routine ORTHES, and the

product of the sequence of reflections is accumulated to yield

P« such that

B3 = P2B2P2

is in upper Hessenberg form.



Step 3: The (2,2) block of B3 is reduced to quasi-triangular form

by HQR3, a modification of the EISPACK routine HQR2. S = PoB^

A,

No effort is made to compute the eigenvectors of S, but WI9 which

contains the imaginary parts of the eigenvalues, is retained, to indicate

the presence of a 2x2 block on the main diagonal of S. The array S

is forced explicitly to be block upper triangular in case the user wishes

to have it printed out (i.e., S is zero below the block diagonal).

In addition HQR3 performs a supplementary plane rotation after a

pair of complex conjugate eigenvalues, X±iy, has been recorded in the

course of the QR algorithm. The transformation of the diagonal block is

f \

c s

-s c

a 8

.Y 6 .

c -s

.s c,

a

x e "

.5 x.

where £6 » -y . (This device is not used in HQR2.)

Note that it is not in general possible to transform

fo 3 1 fX -y 1

lY 6 J .u x ,

using orthogonal similarity transformations.

The purpose of the transformation is to yield a simple solution to

certain systems of linear equations which sometimes must be solved. The

supplementary plane rotation is done at the stage when the Imaginary

parts of the eigenvalues are being recorded in WI. We want to choose

c = cos 6 and s ° sin 6 so that

2 2 2 2
ac + (3+Y)cs + 6s * 6c - (3+Y)cs + as



Hence

Let

Then

tan 26 --§^ =-&=%J- sign(-pa) ,
c -s ' '

a = 3+ Y» P = (a-6)/2 .

t = /az + 4p*

cos 6=q=y|(1+cos 20) =/(1+ |a|/x)/2 ,

sin 0 = sin 20/2 cos 0 - |p|sign(-pa)/rq

Our program does not force the subdiagonal element of a 2 x 2 diagonal

block to be positive.
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4. Programs and Facing Comments

PERMS is an adaptation of the EISPACK routine BALANC. See BALANC

where no comments are given.

A contains the matrix to be reduced to Schur form. The transfor

mations (elementary permutations) are gathered in P. SCALE is an

integer vector used as working space to record the transformations.

For RABS (also working space) WI can be used (see Section 5).

Statement

10+1 K will become LOW and so starts at 1. L will become IGH

and so starts at N.

40-4 The indices of the DO loops take into account that the matrix
50-4

already has the block upper triangular structure shown in

Figure 1 (Section 3).

80 If L reaches 1, the matrix is upper triangular and we need

not search the columns.

100+2 We only need search the submatrix in columns 1 through L.

140 We only need to search the submatrix in rows K through L.



C*************BRING ROWS OF LARGE I NORM TO THT TOP********************

C*****************COMPUTE j N0RM 0F Rnws from LOW TO IGH***************
DO 210 I = K,L

RABS(I ) = 0.0
DO 200 J = K,L

200 PARS(I) = RAOS(I) ♦ A8S(A(I,J))
210 CONTINUE

C

IEXC =• 3
C

C**********BUB3LE SORTING,EXCHANGING ROWS If-1 AND J !F
C RARS(J*l ).GT.2*RABS(J )*************************************a

LOWPl = K + 1

C FOR IP = IGH - I STEP -1 UNTIL LOW DO
DO 230 IQ = LOWPltL

IP = K + L - 10
KCOUNT = 0
DO 220 J = K,IP

M = J + I

IF (PABS(M).LE.2.0*RA0S(J)) GOTO 220
F - RABS(M)
RA3S(M) = RABS(J)
RABS(J) = F
KCOUNT = KCOUNT + 1
GOTO 20

220 CONTINUE

IF (KCOUNT.EQ.0.0) GOTO 300
230 CONTINUE

C***************F0PM PERMUTATION MATRIX P **************
300 DO 320 J = I,N

DO 310 I = 1,N
P(I,J) = 0.0

310 CONTINUF
M = SCALE(J)

P(M,J) = 1.0
320 CONTINUE

C

LOW = K

IGH = L
RETURN
END

10



Statement

200 The 1 norm is computed only for the vector in columns LOW

through IGH of the given row.

210+2 In regular "bubble" sorting, at the end of the IPth step,

the smallest element among elements L0W,L0W+1,... ,IP+1, ends

up in position IP+ 1. Here an exchange is made only when

RABS(J+1) .GT. 2*RAB(J), i.e. a factor 2 is inserted. This

factor can be changed if the user desires. KCOUNT indicates

the number of exchanges made in the IPth step. If KCOUNT = 0,

no exchanges have been made and we stop the sort. If lines

J and M are exchanged, the corresponding interchange must be

made in RABS. Since IEXC • 3, the inline procedure returns

to 220 after an exchange. The indices K and L are already

correctly set for the in-line procedure.

300 The (SCALE(J),J) element of the permutation matrix P is set

to 1.

320 Note that L > K, unless A has been permuted into an upper

triangular matrix, in which case L = K = 1.

11



SUBROUTINE ORTHAN(NM,N,LOW ,IGH,A,P,ORT)
REAL A(NM,N),P(NM,N),ORT(IGH)

C

LA = IGH - I
KPl = LOW + 1
IF (LA.LT.KP1) GOTO 300

C

DO 200 M = KPl,LA
H = 0.0
ORT(M) = 0.0
SCALF = 0.0

C*********SCALE COLUMN ( ALGOL TOL THEN NOT NEEDED)*************
DO 90 I = M,IGH

90 SCALE = SCALE 4- ARS( A ( I ,M-1 ) )
IF (SCALE.EQ.0.0) GOTO 200

MP = M + IGH
C*********FOR I = IGH STEP -1 UNTIL M DO •.****************************

DO 100 II = M,IGH
I = MP - II
ORT(I) = A( I,M-1 )/SCALE
H = H + OPT( I )*ORT(I )

100 CONTINUE
G = -SIGN(SQRT(H),ORT(M))
H = H - OPT(M)*G
ORT(M) = OPT<M) - G

C********* FORM (I-U*UT)/H) * A **************************
DO 1 30 J = M, N

F = 0.0
C***************FOR I = IGH STEP -1 UNTIL M DO .. *****************

DO 1 10 I I = M, IGH
I = MP - II

F = F ♦ ORT( I)*A( I,J)
110 CONTINUE

C

F = F/H

C

DO 120 I = M,IGH
120 A(I,J) = A(IfJ) - F*CRT(l)

C

130 CONTINUE
C ***** FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ************

DO 160 I = 1, IGH
F = 0.0

C***********FOR J = IGH STEP -1 UNTIL M DO *****************
DO 140 JJ = M,IGH

J = MP - JJ

F = F •+ A( I , J)*ORT( J)
140 CONTINUE

C

F = F/H

C

DO 150 J = M,IGH
ISO A(I,J) = A(IfJ) - F*ORT(J)

160 CONTINUE
C***************ACCUMULATE TRANSFORMATION ****************************

DO 190 I = 1,N
F = 0.0
DO 170 J = MfIGH

170 F = F .♦ P( I, J)*ORT( J )
C

F = F/H

C

DO 180 J = M,IGH
180 P(I,J) = P(I,J) - F*ORT(J)
190 CONTINUE

A(MfM-l) = SCALE*G
200 CONTINUE

300 RETURN
END

12



In this adaptation of the EISPACK routine ORTHES the transforma

tions are post multiplied into P, which on input contains the output

of PERMS. The array WI can be used for ORT. See Section 5. Since

the matrix A is block triangular, the index I at 130+1 need only run

to IGH, whereas at 160+1 the index I runs to N since P is not of this

structure.

13



SUBROUTINE H0R3( NM ,N ,LO W, I GH,H , V , Wl,IERR)
DIMENSION H(NM,N),V(NM,N),WI<N)
REAL NORM,MACHEP
INTEGER FN,FNM2
LOGICAL NOTLAS
DATA MACHEP /OI 6424000000000000000/

C POSTMULTIPLY TRANSFORMAT IONS, I.F. SCHUR FORM = VT A V

C SET WI TO ZERO AND CHECK FOR TRIANGULARITY
C

DO 50 I = ItN
50 WI (I I = 0.0

IF (LOW.EO.IGH) GOTO 400
IERR = 0

C
EN = IGH
T = 0.0

C
C SEARCH FOR NEXT EIGENVALUES
C
C TEST FOR END CONDITION

60 IF (EN.LT.LOW) GOTO 400
ITS = 0
MA = EN - 1
ENM2 = NA - I

C LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=EN STEP -I UNTIL LOW DO
C

70 IF (EN.EQ.LOW) GOTH 90
DO 80 LL=L0W,NA

]fF^ABS?H(L,L-l )).LE.MACHEP*(ABS(H(L-l,L-l ))
X ♦ ABS(H(L,L))))G1 TO 100

80 CONTINUF
90 L - LOW

C
C FORM SHIFT
C

100 X = H(EN,EN)
IF (L.EQ.EN) GOTO 27C
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L.EQ.NA) GOTO 300
IF (ITS.EQ.30) GOTO 1000
IF (ITS.NE.10 .AND. ITS.NE.20) GOTO 130

C FORM EXCEPTIONAL SHIFT

S = ABS(H(EN,NA) ) + ABS(H( NA,ENM2 ))

T = T 4- X

DO 120 I = LOW ,EN
120 H(1,1) = HCI,I) - X

X = 0.75 * S
W = -0.4?75*S*S

150 ITS - ITS ♦ 1

14



This is an adaptation of the EISPACK routine HQR2. It is the matrix

to be reduced to Schur form. The transformations are post multiplied

into V, which on input contains the output P of ORTHAN. WI contains

the imaginary parts of the eigenvalues. For a complex eigenvalue, the

positive imaginary part appears first. The use of WI is to indicate

when there is a non-zero subdiagonal element (in which case WT(J) > 0)

of the Schur form.

Statement

50 WI must be initialized to zero for the case when LOW = IGH = 1,

i.e., when the matrix is already upper triangular. In this

case, no QR steps need be performed and we go directly to 400.

15



C LOOK FOR TWO CONSFCUTIVF SMALL SUB-DIAGONAL
C ELEMENTS. FOR M^EN-? STEP -1 UNTIL L DO
C

DO 140 MM = L,bNM2
M = ENM2 + L - MM
ZZ = H(M,M)
R = X - ZZ

S = Y - ZZ
P = (R*S -W)/H(M+l,M) 4- H(M,M*1)
Q s H(M+1,M+1) - 7.2 - R - S
R = H(M+2,M+1)
S = ABS(P) + A3S(Q) ♦ ABS(R)
P = P/S

0 = Q/S

R = R/S
IF (M.EO.L) GOTO 150
IF (ABS(H(M,M-1) )*(A9S(Q) ♦ ABS(R) ) .LE.MACHEP*ABS(P)

X *(ABS(H(M-1,M-1 ) ) -«- APS(ZZ) + ABS(MM+l,M+l ) ) )) GOTO 150
140 CONTINUE

150 MP2 = M ♦ 2

OO 160 I = MP2,FN
H( I , 1-2) = 0.0
IF (I.EQ.MP2) GOTO 160
H(I,I-3) = 0.0

160 CONTINUE
C
C DOUBLE QR STEP INVOLVING ROWS L TO EN
C AND COLUMNS M TO EN.
C

DO 260 K = M,NA
NOTLAS = K.NE.NA
IF (K.EQ.M) GOTO 170
p = H(K,K-1)
Q = H( KM ,K-1 )
R = 0.0
IF (NOTLAS) R = H(K+2,K-1)
X = ABS(P) ♦ ABS(Q) ♦ ABS(R)
IF (X.EQ.0.0) GOTO 260
P = P/X

Q = Q/X

R — R /X
170 S = SIGN( SQRT(P*P + Q*0 + R*P),P)

IF (K.EQ.M) GOTO 180
H(K,K-1) = -S*X
GOTO 190

180 IF (L.NE.M) H(K,K-1) = -H(K,K-1)

190 P = P -f S
X = P/S
Y = Q/S
ZZ = R/S
Q « Q/P
R = R/P

16



No comments for this section. See EISPACK.
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C ROW MODIFICATION

C
DO 210 J = K,N

P = H(K,J) ♦ Q*H(K+1,J)
IF ( .NOT.NOTLAS) GOTO 200
P s P + R*H(K+2,J)
H(K*-2,J) = H(K*2,J) - P*ZZ

200 H(K+1,J) = H(K+1,J) - P*Y
H(KtJ) = H(K,J) - P*X

210 CONTINUE

C

J = MTN0(FN,K4-3)
C

C COLUMN MODIFICATION
C

DO 230 I •- 1,J
P = X*H(I,K) + Y*H(I,K+l)
IF (.NOT.NOTLAS) GOTO 220
P = P + ZZ*H(I,K+2)
H(I,K*2) = H(I,K+2) - P*R

5
230 CONTINUE

C

C ACCUMULATE TRANSFORMATIONS
C

DO 250 I = 1,N
P = X*V(I,K> + Y*V(I,K+l)
IF ( .NOT.NOTLAS> GOTO 240
P = P + ZZ*VCIvK+2)
V(I9K+2) = V(I,K+2) - P*R

240 V(I,K+1) = V<IVK + 1) - P*Q
V( I ,K) = V(I ,K) - P

250 CONTINUE
260 CONTINUE

GO TO 70
C
C ONE ROOT FOUND
C

220 H(IyK+l) = HU.K+1) - P*Q
H(I,K) = H(I,K) - P

270 H(EN,EN)=X+T
WI(FN)=0.0

290 EN = NA

GOTO 60

18



Statement

200 The indices J and I at 200-5 and 210+2 take into account the

fact that H is upper Hessenberg, whereas at 230+1 the index

I runs from 1 to N, since V has no special structure.

19



C TWO ROOTS FOUND
C

300 P = (Y-X)/2.0
Q s P*p 4 W

ZZ = SQRT(ABS(Q))
H(fcN,EN) = X 4 T
X = H(EN,EN)
H(NA,NA) = Y 4 T
IF (Q.LT.0.0) GOTO 310
ZZ = P 4 SIGN(ZZfP)

C
C REAL PAIR
C

WI(NA) = 0.0
WKEN) = 0.0
X = H(EN,NA)
R = SQ«T(X*X 4 ZZ*ZZ)
P = X/P
Q = ZZ/R
GOTO 3 20

c
c COMPLEX PAIR

c
310 WI(NA) = ZZ

WKEN) = -ZZ
c
c MAKE DIAGONAL ELEMENTS EQUAL
c

IF (P.EQ.0.0) GOTO 380
BPC = H(EN,NA) 4 H(NA,EN)
TX = SQRT(BPC*BPC 4 4.0* P^P)
Q = SQRT(.5 * (1.0 4 ABS(BPC)/TX))
P = SIGN(P/(Q*TX),-BPC*P)

C
C ROW MODIFICATION

C
320 DO 330 J = NA,N

ZZ ~ H(NAfJ)
H(NA,J) = Q*ZZ 4 P*H(EN,J)
H(EN,J) = Q*H(EN,J) - P*ZZ

330 CONTINUE

C
C COLUMN MODIFICATION
C

DO 340 I =s 1,EN
ZZ = H(I,NA)
H(I,NA) = Q*ZZ 4 P*H(I,EN)
H(I,EN> = Q*H(I,EN) - P*ZZ

340 CONTINUE
C
C ACCUMULATE TRANSFORMATIONS
C

DO 350 I = 1 ,N
ZZ = V(I,NA)
V(I,NA) = Q*ZZ 4 P*V(I,EN)
V(I,EN) = Q*V(I,EN) - P*ZZ

350 CONTINUE

20



Statement

310+2 See Section 3, step 3, where the rotation for making the

diagonal elements of the 2 by 2 block equal is explained.

The section of program from 320 to 350 performs the plane rotation

for either of two cases: when a real pair is found and H(EN,NA) is to

be zeroed, or when the diagonal elements of a complex block are being

made equal. In the former case P and Q are set at 310-3, in the latter

at 320-2.

The limits of the J index at 320 and the I indices at 330+1 and

340+1 take into account the fact that H is upper Hessenberg whereas V

is not.
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380 EN = ENM2
GOTO ftO

C
C ZERO H BELOW BLOCK DIAGONAL
C

400 IF (N.LT.3) RETURN
IF (WI(N-1).EQ.0.0) H(N,N-1) = 0.0
DO 420 J = 3,N

JM2 = J - 2
IF (WI(JM2).LE.0.0) H (J-1,JM2) =3.0
DO 410 I = J,N

41 0 H(I ,JM2) = 0.0
420 CONTINUE

RETURN

1000 IERR = EN
RETURN
END

22



The section of program from 400 to 420 which zeroes H below the

block diagonal takes into account the block structure of the matrix.

Statement

400 If N < 3 there is nothing to be done and an out of range

index for WI must be avoided.

1000 If IERR > 0, after 30 iterations, the IERRth eigenvalue

is not isolated and the Schur form is not found, but WI(J)

is correct for J = IERR+1,...,N.
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5. Usage

DIMENSION H(24,24),P(24,24),WI(24)

INTEGER SCALE(24)

NM = 24

N * 6

Enter H

CALL PERMS(NM,N,H,P,LOW,IGH,WI,SCALE)

CALL ORTHAN(NM,N,LOW,IGH,H,P,WI)

CALL HQR3(NM,N,L0W,IGH,H,P,WI,IERR)

Operation Count

One operation means a multiplication or division followed by an addi

tion or subtraction. Counts are taken from theprogram

PERMS: no arithmetic operations, only comparisons

ORTHAN: At the m major step column m-1 is reduced to Hessenberg form.

T
Formation of the vector u in 1-yuu : n-m+1

n

Row operations: I {2(n-m+l)+l} « (n-m+1) [2(n-m+1) + 1]
j=m
J n

Column operations: J {2(n-m+1)+1} = n[2(n-m+1)+1]

J n

Accumulate transforms: £ {2(n-m+l)+l} • n[2(n-m+1) +1]
j-l

Set element (m,m-l): 1

Summing these quantities for m = 2,...,n-1 yields

I [£+(A+2n)(2£+l)+l] o|n3-3n2+0(n) .
Jl-2 J

24



HQR3: A typical QR transformation acts on the leading j x j submatrix

of a Hessenberg matrix. To restore column k to Hessenberg

form requires the following calculations:

Computation Key values Rows Columns Accumulate

Count 9

n

£=k

min(k+3,j)
I 5

£=k

n

Is

Subtotal for the jxj submatrix:

£[9 +5(n-k+l)+5(k+3)+5n] = lOnj + 29j

Assuming b iterations per eigenvalue the total is

[5n3+20n2 +0(n)]b .

Realistic value for b is about 1.5.

3 2
GRAND TOTAL (for the real Schur form): lOn +30n +0(n)

25



Input H

-9.0000 21.0000 - 15.0000

-I 0.0000 21.0000 -14.0000

-8.0000 16.0000 -11.0000
-6.0000 12.0000 -9.0000

-4.0000 8.0000 -6.0000

-2.0000 4.0000 -3. 0000

Output H of PERMS

3.0000 4.0000 -3.0000

0. 21.0000 -14.0000

0. 16.0000 -11.0000
0. 12.0000 -9.0000

0. 21,0000 -15.0000

0. 8.0000 -6.0000

Output P of PERMS

0. 0. 0.
0. 1.0000 0.

0. 0. 1.0000

0. 0. 0.
0. 0. 0.

1.0000 0. 0.

Schur Form S

3.0000 • 1124 -2.4164

0. 2.0000 22.9544
0. -.0436 2.0000
0. 0. 0.

0. 0. 0.
0. 0. 0.

Final Transformation Matrix P

0. -.6003 .7997
0. -.5442 -.4085
0. -.4353 -.3268

0. -.3265 -.2451

0. -.2177 -. 1634

1.0000 0. 0.

~ T
PSP = H

-9.0000 21.0000 -15.0000
-10.0000 21.0000 -14.0000
-8.0000 16.0000 -11.0000
-6.0000 12.0000 -9.0000

-4.0000 8.0000 -6.0000

-2.0000 4.0000 -3.0000

T
PP « I

1.0000 • 0000 • 0000
• 0000 1.0000 -.0000

.0000 -.0000 1.0000

• 0000 -.0000 -.0000

.0000 -.0000 -.0000

0. 0. 0.

26

4.0000
4.0000
4.0000
3.0000
0.

0.

0.

4.0000
4.0000
3.0000
4.0000
0.

0.
0,

0.
1.0000
0.
0.

-4.1948
35.7438

.6376
1.0000
0.
0.

.0000
-.7328
• 5054

.3790

.2527

0.

4.0000
4.0000
4.0000

3.0000
-.0000

-.0000

• 0000
-.0000
-.0000

1.0000
-.0000

0.

2.0000 0.

2.00 00 0.

2.0000 0.

3.0000 0.

5.0000 0.

1.0000 3.0000

-2.0000 1.0000
10.0300 2.0000
-8.0000 2.0000
-6.0000 3.0000
-9.0000 2.0000
-4.0000 5.0000

1 .0000 0.

0. 0.

0. 0.

0. 0.
0. 1.0000

0. 0.

2.4259 - . 81 65

19.0803 14.2995
-1.5265 .0143

1.7778 .5158
3.0000 2.5997
0. 1.0000

-.0000 .0000
0. 0.
-.5307 .40 82

• 1516 -.8165
.8339 .40 82

0. 0.

2.0000 0.

2.0000 0.
2.0000 • 0.
3.0000 0.

5.0000 0.

1.0000 3.0000

• 0000 0.

-.0000 0.
-.0000 0.

-.0000 0.

1.0000 0.

0. 1.0000



6. Numerical Example

This example [2] demonstrates the use of PERMS and HQR3. First

the isolated eigenvalue of the last column is detected, and the first

and sixth columns are exchanged. Hence LOW = 2 and IGH = 6. Since

the last row's norm is now twice the fifth rows, these are exchanged.

The eigenvalues are 3, 2+i, 2-i, 1, 3, 1, in order given along

the block diagonal of S. The standardized two by two block appears

in second position along the diagonal. As a check we have also computed

PSPT = H and PPT = I.
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