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.Abstract
The semantics of programming languages is studied through the

notion of infinite expansions of programs. By the infinite

expansion of a program one means, for example, the thorough unwind-
ing of the loops which are constituted by such control structures
as go to's, while's and recursions. One can also view this
infinite expansion as the executions for all possible inputs. One
way to describe the meaning (or the semantics) of a program 1s'to
give its infinite expansion.

This idea is formalized on the domain of the A-calculus.
We define a mapping, from‘the A-expressions to an algebraic dbmain,
called C-function. The map of a A-expression (program) by the
C-function is the infinite expansion of the A-expression which can
be said to be a generalization of the normal forms for the
A-calculus. Bﬁhm'§ Theorem on the normal A?expreséion is extended
to general A-expressioné via the C-function.

The main result of this thesis is that the semantics of the

| A-expressions given by Scott's model D_ of A-calculus is equi-

valent to the semantics of the A-expressions given by their maps

*This work was partially supported by National Science Foundation
grant GJ-34342X. '
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of the C-function. More precisely, the partial order among the
A-expressions in D_ is characterized by the partial ordér among
their maps by the C-function in the algebraic domain that includes
the image of the C-function. Extending the syntactical structure

of the C-function, the A-expressions are generalized to the infinite

A-expressions and the C-function is also extended to be defined on
all the infinite A-expressions. It is.shown that the image of the
infinite r-expressions by the C-function forms a smooth structure
of the partial order and its lattice topology is equivaient to the
lattice topology of the A-expressions induced by D_.

Utilizing this lattice topology, an attempt is_made to give an
axiomatization of the extensional model theory of the A-calculus.
A]so, the formal idea described above is interpreted to realistic
programmiﬁg languages such as Algol-like programs and recursively

defined programs.
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CHAPTER 1
INTRODUCTION

The aim of this dissertation is to study some properties of
the A-calculus as a computation model and contribute to a better
dnderstanding of the semantics of programming languages. The
A-calculus was originally introduced by Church as a logical
system. A variety of formal theories on the X-calculus were
discussed by several mathematical logicians, e.g. [5].

The A-calculus has atracted some theoretical computer
scientists since it can be regarded as a model of programming
languages [ 6, 7,19]. Many concepts of programming languages
were analyzed through the corresponding concepts in the A-calculus.

However, the sound understanding of the A-calculus as a
model of computation became possible only after Scott developed
the theory of computation on lattice domain [14,15,18],.in which
he gave the construction of D_, the first semantic model for
the A-calculus [15,16]. On this domain, the hode] theory of
the A-calculus was developed by Wadsworth [21,22] and many
interesting properties of the behavior of the A-expressions
in D_ were shown as we see in Chapter 2. In this thesis, we

make efforts to develop further the theory on A-expressions

vs. D_. In [16], Scott gives an interesting lecture on the

A-calculus. There, he asserts that the interpretation of the
A-calculus via D_ gives a more essential meaning to the
A-calculus than the conversion rules. For example, Wadsworth

proved that there exists a normal A-expression which is equivalent

1
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toa non-normal expression in Scott's D_ although they cannot

be converted to each othef by the applicat{ons of conversion rules.
In Chapter 3, we shall define the "infinite normal forms" for the
A-expressions, normal or non-normal. Then we shall show that |

two x-éxpressions are equivalent under Scott's interpretation
(i.e. Dm) if they have the same infinite normal forms. The

infinite normal form can be said to be the infinite expansion of

a A-expression.
We illustrate this idea of infinite expansion in the follow-
ing discussion on flowchart programs.

We are given a flow chart program:

Yes

AOQ: No

where o is a Boolean function and S is a statement (or a

list of statements)



g}

Al: ) Yes

No

Since Al  is the result of unwinding the.loop in A0 oné tfme,-

- Al s equivalent to AO. From another point of view, the

transformation Al » A2 can be regarded as'the-exeCution of A0

for one time under an unspecified input.



1 'Q'

Applying this operation n times, we have

An:
No

No

Yes'

Yes




Letting n » «, we have an infinitely sequential flowchart:

Aco: o Yes

No

Yes

No

Yes

No

A= can be regarded as the infinite expansion of AO or the

result of execution of AO under all possible inputs.

It is possible to apply this idea to more complex program
consfructs. The infinite expansion of programs can be formalized
in the following way: Let P be the domain of (some category of)
programs and I be the domain of the infinite expansion of the
_ programs which belong to P. The expansion is a mapping E: P> 1.
(in the example, for A0 e P, 'E(AO) = A».) We raise the follow-
ing questions:

1) How can we formalize I and E?



2) Can we say that the meqning (semantics) of a program P
is given by E(P)? So, for instance, is P, equivalent to P2
if and only if E(P]) = E(PZ)?

3) What kind of structure does I have? Does it have,
for instance, a lattice-like structure? |

We shall answer these questions regarding A-expressions as

programs. Namely, we have the following correspondence:

P+—A (the A-expressions)
I*——*Einf (a partially ordered set defined in Chapter 6)
E«~—C (C-function in Chapter 3 or infinite normal

form)

Here, the transformation An ~» A(n+1) corresponds to a
B-reduction. C gives the map AO = A=. On the other hand, the
equivalence between two programs (i.e. A-expressions) P] and P,
is given by the equality as members of D_.

In Chapter 5 we shall try to bridge the gap between the
A-expressions and the real programming lénguages andvshow that,v
under some translation of programming languages, the infinite
normal forms, in fact, correspond to the infinite expansion or

execution of programs.



CHAPTER 2
PREPARATIONS

We make a review on the " A-calculus, Scott's 1attice,theoretic

- appfoach to computation and Wadsworth's model theory of the

. A-calculus in D_, which constitute the prerequisite for this

thesis.



§1. The A-Calculus

We shall denote the set of the integers by Z and the set of

the positive integers by N throughout this thesis.

2.1.1 Definition (A-expression). A is the set of all of the
expressions that are formed by the following rules:

Let U be the denumerable set of the variables. Assume that
there is a numbering on the members of U, i.e. U= {VI’VZ""}'

1) A variable v e U standing alone is in A.

2) (Application). If x, y € A, so is x(y).

3) (Abstraction). If veU and vx é A then Av.x € A.

2.1.2 Example. We list some A-expressions:

I =Av.y
K= AX.AY.X
H= AX.\y.y
spl = (Ax.x{x))(xx.x(x))
Y = Af. (Ax.F(x(x)))(Ax.f(x(x))) (Curry's Paradoxical
‘ Combinator)
J = Y(Af.ax.Ay.x(f(y))) (Wadsworth)

2.1.3 Definition (Bound Variables). Given x € A, we define
B(x) CU, the set of the bound variables in x.

1) B(v) =9 for velu.

2)  B(x(y)) = B(x)UB(y) for x, y € A.

3)  B(iu.x) = B(x)u{u}. |
In 3), x is said to be the scope of the bound variable v. If
a variable v occurring in x is not bound in x, we say that

v 1is free in x. If x e A has no free variables, x is said



to be closed. We denote the set of all closed A-expressions by AC.

2.1.4 Definition (Subexpression). Given x, y € A, we say that

x is a subexpression of x and write it as x<y 1if one of the

following conditions holds:

1) x=y.

2) x<z and y = w(z) or z(w) for some weAh

3) x<z and y = Av.z for v e U.

2.1.5 Definition (Simultaneous Substitution). The simultaneous

substitution of x],xz,...,x

y e, J

€ A for u],uz,...,u elU in

n n

UpsUgs. . sl
y, is defined inductively as:

x],xz,...,xn

Let u = ("]’“2’°"’"n) and x = (x],xz,...,xn).

u
1) If yelU and y # u; for all i then I y=y.
u X
2) If y-= u; for 1<i<n, then J y = X5
X
u U u
3) If y-=a(b) for a, beA, then J y = ([ a)(I b).
_ X X X
4) If y=2Av.z for v # u, (i =1,2,...,n), then if v
u u :
is not free in any of the xi's then [ y = AV.J z otherwise
u u v X X
J y = Av'.[ (I z) where v' is the first variable, other than
X x ‘v'

any ui's or v in the enumeration of the variables in U such
that v' does not occur free in y or z.

5) If y-= Aus.z for 1< <n, then

y = Aui. y

Ju u'lsuz,...,ui_]’u.i+'|,voo,u.n
X XpsXgse e sXi_1oXi4qesXp



2.1.6 Definition. Given x, y, z € A, we say that x matches y

except at occurrences of z in x if there exists we A having

‘free occurrences of v € U and zo € A such that

In this case, we say that z in x 1is homologous to Z, in y.

Notational Convention. We will use the following notational

abbreviation:
1) xy stands for x(y).
).
3) AS S5 "5, X stands for As].xsz.---.xsn.x .
So note that a A-expression can generally be written as:

2)  XqXoe--x stands for  ((:--(xyx5)%3)- -+ )x

At]tz'--tm.x]xz---xn for t]’t2""’tm e U and XysXoserasX € A.

2.1.7 Definition (Conversion Rules). Let £ = a, 8, n-red or
n-ab. We will define Re CAxA for each case of &. (x,y) € Re
is denoted by x-ii>y.
(x,y) € Ry if .

1) a) (o-conversion) £ =o: X =2Au.z and y = XV.I z under
the following restrictions: )

i) v does not occur free in z.

ii) If v e B(z), any free occurrence of u in z

must not be in the scope of v.

b) (B-reduction) & =8: x = (Av.zZ)w and y

n
——
= <

N

.

c¢) (n-abstraction) £ = n-ab: y = Av.xv where v ‘does

not occur free in x.



d) (n-reduction) & = n-red: x = Av.yv where v does not

occur free in y.
or

II) y is derived from x by applying &-conversion (reduction)

to a subexpression of x.

We define ML c nxn to be the reflective, transitive closure

: . CN . . _
of RaURBURn-redURn-ab’ i.e. x $y if and onlgy if );7- y
or there exist X1Xgs...sX, € A such that x = x, -—la'xz 22 ...

€
-lL;L-xn =y where Ei = o, B, n-ab or n-red.

2.1.8 Definition. a) A B-redex 1is a A-expression in the
form of (Av.x)y. A X-expression is said to have a B-redex if
one of its subexpressions is a B-redex.

b) A B-redex y in x e A is said to be the outermost- -

leftmost B-redex if there is no R-redex w such that

i) y<w< X
or ii) w<a, y<b and ab <x.
c) Let xeA have (Av.y)z as its outermost-leftmost
B-redex. The outermost-leftmost B-reduction to x 1is the |
v

replacement of (Av.y)z in x by J y-
2

2.1.9 Definition. a) y e A is said to be in a head normal form

if y 1is in the form of AS1So" S VY Yyt oty for

S13S9s---sSysV € U and y],yz,...,ym € A.



b) y e A is said to be head normal if there exists a

sequence: y = X, —B—>x2 B ... —B—>xn_1 -§>_xn and x  is ina

head normal form. Here X is said to be a head normal form of y.
2.1.10 Corollary. Let x e A be head normal. If

CN
x—v>>\s]s2 sm.ux]x2 xn

and
CN *® e 0 o o o
X —‘-er]rz |r~p.vy]y2 Yo
then 1) If u occurs free in x, then u = v.

2) If u=s, for i<m, then i<p and 'v=r1..

3) m-n=p-q.
Proof. See [21]. O
In Corollary 2.1.10 let

uel if u is free in x

]

head(x)
i € N otherwise

and

index(x) = m-n .

By the corollary, head(x) and index(x) are uniquely defined
for x e A if x has a head normal form. We define the rela-

tionship ~C AxA by:

x vy if
either neither x nor y has a head normal form

or index(x) = index(y) and head(x) = head(y).

12



2.1.11 Definition. x € A is said to be in a B-normal form if x

has no B-redex as its subexpression. We say that x e A is

B-normal if x can be reduced to a normal form by B-reductions.
Note that if a X-expression is normal, it is also head-normal.

2.1.12 Theorem. If x € A is head-normal (normal), then there

exists the following sequence:

= - -+ > e >
X XO X-I X2 Xn

where xi+] is the result of the outermost-leftmost B-reduction
applied to X; for n=1,2,...,n-1 and Xn is in a head-normal

form (normal form).

~ Proof. For the normal form case, see [ 5]. The proof is

similar for the head normal case. 0O

To have a certain uniqueness for the head normal form, we
define x-EF>y as follows: x-§E>y if there is a sequence
i+ is- the result
of outermost-leftmost B-reduction to Xi- Xq is in a head

X = Xg > Xp > Xg Pt > X f y such that x

normal form and X; is not in a head normal fomfor i ; n.
It is easy to see that if x B Y then y is uniquely

determined by «x.

2.1.13 Theorem (Scott). It is not decidable whether a A-expres-

sion is normal or whether a XA-expression is head-normal.

Proof. See [7]. O



The following theorem is fundamental in the theory’ of the

A-calculus.

2.1.14 Theorem (Church-Rosser). Given x, Y1s ¥p € Ay if" :
X iyl and x —Vayz, then there exists z e A such that

both ¥ —V>z and yz—‘Lz

Proof. See [2]. O

14 .
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§2. Theory of Computation on Lattice Domains, D Model

Scott [14] proposed the following axioms that a mathematical

model of computation ought to have:

Axiom 1: A domain D 1is a complete lattice. We denote ub by

T (top) and UP by | (bottom).

2.2.1 Definition. a) Let D be a partially ordered set. A
subset S CD 1is said to be directed if, for any finite subset

F of S, there exists z in S such that

xg*z for all x e F .

b) A partially ordered set D is said to be directed-complete
if all directed subsets of - D have the 1east upper bound. |
c) A function from a partially ordered set D] to another

partially ordered set D2 is said to be continuous if, for all

directed sets E C Dys
f(UE) = U{f(x)| xeE} . -
f is said to be additive if

f(US) = U{f(x)| xeS}

for all subsets S C Dy-

As we see in Chapter 7, the completeness is not necessarily

needed for the development of the theory in this thesis. At most,

we would need a directed-complete partially ordered set with the

least element _|_ Given two partially ordered sets D], DZ’ we

*
We use U and C instead of |1 and C for typographical
convenience.
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denote the set of all continuous functions from D] to 02 by

[D] + D,] (we denote all maps D, ~ D, by (D.l > D,).)

2.2.2 Corollary (Scott). If D], D, are directed-complete (com-
plete), then [D]—*DZ] is also a directed complete (complete)

latrice, where we define C in [D]-rDz] by: fCg if and only
if f(x) € g(x) for all xe D, -
Proof. See, for example, [12]. O

Axiom 2: A map from domain D] to domain D2 is continuous,

2.2.3 Theorem (Scott). Let f be a continuous function over a
directed-complete partially ordered set D. Then f has the
least fixed point U f"(]).

n=0

Proof. See [12]. 0O

2.2.4 Definition. a) A subset: 'G of a directed-complete subset
D 1is said to be open if
1) For any x e G, if xCy, then yeG.
2) For any directed set D CD, if UD e G then
DNG #£-P.
b) For x,yeD, wesay x<y (x is strictly less

than y) 1if there is an open set G such that y e G and
G C {z| x Cz}.
c) A directed complete partially ordered set D is saidv

to be continuous if, for all x € D, x =U{y| y < x}.

Note that a domain has a To-topology induced by the open
sets defined above. Continuous mappings are continuous in this

topological sense.
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Axiom 3: A domain is a continuous lattice.
The last axiom is on the computability:

Axiom 4: A domain D has a subset E of the following properties:
1) The cardinality of E is at most denumerable and the
elements of E are recursively enumerable. .
2) Forany xeD, x=U{yeE| y~< x}.

3) For all ers e, € E, ejue, and e S e, are computable.

'Next, we state the construction of D_-lattice. We shall
confine ourselves to the description of the properties of D,
that are needed in our discussion in the subsequent chapters. For

the complete presentation of D_, see [12].

Construction of D

We want to have a lattice domain D with the property
D=[D~+D]. Let D, be any complete lattice. (In fact, a
directed-complete partially ordered set is good enough for our
purpose, but for simplicity, we assume the completeness.)

Let D] = [D0 > Do], D2 = [D] -> D]],...,Dn = [Dn-l - Dn_]],... .
Note that each Dn is a complete lattice. We define (in,jn)
for each n .such that
n+1’ jn: Dn+1 M Dn

J, are additive and Jpei, = an and 1n°Jﬁ g;yDn+]

1) i Dn +D
2) L
(so in is one-to-one and jn is onto).



Definition of (inlj-n-)-

i (a)

o ABeDO:a for each a € D0

x(‘l_D ) for each x e D,
0 ;

3o (x)

Suppose that we have defined (in,jn) for n<k-1 (k>1). We’

define (ik,jk)

i i
k-1_ k .
,Dk/ 'D

-1

D

k-1 k+1

i (x) = 1 _qoxej, ; forall x e D,

i ly) = 3 _qoyeiyy for all y e D,

It is easy to see that (ik,jk) satisfies the properties 1)
and 2) by induction on k.

We define D_ = {(xo,x],...,xn,...‘)l X, €D, xn=jn(xn+])}’
where, for x, y € D_, X Cy if and only if X; _C_yi for all 1.

Embedding of Df inD_

We define ¢nm: D -D_as follows:

m n

Th-1°Tp-2° 11 'm if m<n

. =<1 if m=n
nm Dm

<m.

Jnan-]o...oJmoJm_'_.l .1f n

Now we embed Dn into D_ by

Eq: D, > D, X b <¢0n(x),¢]n(x),...,q).(n_])n(x),x,¢(n+])n(x),...>

By defining D, = En(Dn) coD_,

1) En: D -~ Drl is one-to-one and continuous

n
2) B, cb cb,c--

18
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~ Conversely, the projection m: D> ﬁn is defined by:

wn: <x°,x],x2,...,xn,...> € Do°

b <xo’xl""’xn’¢(n+1)n(xn)’¢(n+2)n(xn)’°"> €D,
Also we define Pn: D~ Dn by

T < .o ce > B
Pn xo,x], X Xn

o]

It is easy to see that x = U "n(x) for all x e D_.
n=0

Isomorphism D~ [D - D ]

We define

¢: D~ [D_~D_]
¥ [D°° +D_]~+D

by: For all x e D

o(x)(y) = nE;OEn(Pnﬂ(x)(Pn(y))) for all ye D,

For all f e [D_~ D_]

¥(f) = <f0,f],f2,...,fn,...>

where

fo = Po(f(D)

T

Ag €D, _y: P _1(f(E,_1(x))) for n3 1.

In a straightforward way, we can verify that &, ¥ are

additive, VYoo = ]D and @oY = ][Q»*'Qn]°

[



We can now define the application of x 4to y for x, yeD,

by &(x)y. We denote this by x(y). By the definition of o,

[+ o}

o(x)(y) = nt;nn(X)(nn_l(y)) :

Lastly we 1ist the important properties of D_ projections:

2.2.5 Theorem (Scott). 1) T, Em, Sy for m<n

2) ngo“" ]D

oo

3) "™°™m = "min(n,m)

4)  m (x)y) = m () (w1 (¥)) = 7 4 (x(my_1(¥)))
5)  wo(x)(y) = my(x) = my(x(]))

20
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§3. Wadworth's Model Theory of A-Calculus in D_

In this section, we state the results due to Wadsworth [21,22].
As we have seen in the last section: D_ z% [D‘,o > Dm] for
continuous &, ¥ satisfying Yoo = ]D and ®oY = ][D NORE

This property of D_ can be characterized in the following way:

1) Extensionality: x(z) Cy(z) forall zeD_  iff xCy

so, particularly, x(z) = y(z) for all ze D  iff x=y

2) Combrehension: If -...x--- is an expression taking

values on D which is continuous in the variable x as x

ranges over D_, then there is f e D_ such that
f(a) = ---a--- for all a e D,

2.3.1 Definition (Wadsworth). Let EN be the set of all
mappings from the set of the variables U to D_. The semantic
function W: A~ (EN+D_) ~is defined as follows:
1) For veU and pe EN, VWIvIp = p(v).
2) For x(y)eA and peEN, WIx(y)Ip =WDIxTpWIylp).
3) For Av.x e A and p € EN,

WIAv.xIlp =28 € D_ : W[IxT p[v/8]

where p[v/B] 1is defined by

p(u) if u#v
plv/B](u) =
B if u=v.

Since W [[xI p[v/8] is continuous in the variable 8,

A8 € D: WIExD p[v/B] is a member of D_ due to the comprehen-

sion of D .
00



2.3.2 Proposition (Wadsworth). If x QN—v>y for x, y € A, then
VIxIp =W[Iyllo for all p e EN.

Proof. The result is obvious for the a-‘conversio_n and
B-reduction. The n-conversions preserve the D_ value due to

the extensionality of D_. O

2.3.3 Definition. Wesay x Cy for x,ye A if
Doo
VIxDp CVIyllp for all p e EN. Similarly x = y if
Doo
VIxDp =¥[Iyllp for all p e EN.

2.3.4 Corollary. C is reflective and transitive.

[

Proof. Obvious. 0O

However Dg is, obviously, not antisymmetric, so DC' is not
a partial order?ng. ”

We first show that A 1is not trivial in D_,, namely, A
is not mapped into one element in D_.

2.3.5 Proposition. K # H and I # | .
Do Do

Proof. See [21]. O

2.3.6 Theorem (Wadsworth). Let I = Ax.x and J = Y(Afxy.x(fy)).

Then I = J.
Do

Proof. See [22] for the proof based on the type construction.

Also see Example 4.3.4. O
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Since I 1is normal and J is non-normal, I and J are
not convertible to each other. So this shows that D= is strictly
larger than CNY, s i.e. Q&? '—Iiw . ”

The next theorem shows that Curry's Y gives the least fixed
point operator in D_. .

2.3.7 Theorem (Park). Y = M e, ntzf"(l) .

Proof. See [12], also Corollary 4.2.3. O

We can introduce U, N ogperations in A as follows: Given .
S CA, US is a syntactic object with the semantic value in D_

of:

VIUST p = U{WIxT p| x€ S}

for o e EN.

We define NS 1in the similar manner.

A-Q-Calculus

It is convenient to have a syntactical symbol in A that
represents _j_ The A-Q-expressions, AQ, are formed according |
to the foliowing rules:

0) @ is in Ag-

1)-3) Same as Definition 2.1.1.

-Semantic function ¥ is | on @, i.e.
VIellp=] forall pekEN.

We include two conversion rules for !\Q in addition to those

for A.



1) w.Q@-+Q for vel
2) a(x)»q for xe A,
These rules are semantically sound since A8eD: | = | = [(a)

for a e Dm.

Type Assignments of A-Expressions

This part of the section is needed to prove
Lemma 4.2.1. For the details of the discussion, we refer to [23].
As a member of D_, each A-expression has a component in

each Dn. The typed X-expressions defined below are introduced

to, in a sense, approximate the components of A-expressions in D..

2.3.8 Definition (Typed A-expressions).
Syntax of At

The typed A-expression, At, is the set of all expressions

that are formed by the rules below:

t

1) For vel, v(")e/\. for each n e N.

2) If x,ye At, (x(y))(") e A* for neN. (x(y))(")

is abbreviated as (xy)(").

3) For velU, xe At, (w.x)" e At for neN.

4) Q(") € At for nelN.

Semantics of_At

The semantic function, WU: At

N uEv™e = "(e(v))
2) UL(xy) ™o = a"WIxT o Iyl o))
3) ULOv.x)™Tp = ""(agen,: uIxT plv/el)

+ (EN+D_) is defined as:

24



We define several auxiliary functions:
type: At +N 1is a mapping.

1) type(vi™) = n

2)  type((xy)™) = n

3)  type((av.y) (™) = n

W: At -+ AQ is a mapping defined as:

1) u™y =y

2)  W((xy) ™) = Wix)u(y)

3 W(w.2) ™) = avuz)

) we™) =0

i.e. W(x) is the A-Q-expression obtained from x e At

by deleting
all type superfixes of x.

T: A, > P(At) (power set of At) is defined by:

T(x) = {y| x=W(y)} cat

i.e. T(x) 1is the set of all typed A-expressions generated from
X by putting a type superfix to each subexpression of x.
2.3.9 Lemma. x = U(x) .
Deo
Proof. See [23]. O

Notation

For x e At and neN, Tlet -[x]n be the typed A-expression

determined by the following rule:

[x]n = X if type(x) ¢ n
[x]n (n)

y if type(x) > n,

where x = y(m) for m = type(x) .

25



Typed Conversions

In the similar manner to the conversion rules in the ordinary

A-calculus, we define typed conversion rules for At.

2.3.10 Definition (Typed Substitution). For v € V and

v
X, Yy € At, we define J x to be:

1) If x = u(") ¥or ueV, u#v, then va = u("). 
2) If x = v(n), then va = [y]n. Y

v
3)° If x = 2™ then ~J x = oM

y .
4) If x = (ts)("), then va = [(Jvt)(Ivs)}(n).

Yy y yu v (n)
5) If x = (Au.w)(n) for u # v, then J X =.[Au.(J w]]
y y :

if u does not occur free in w. If u occurs free in w,
Jux = [Au'.(va')](n where w' is w with each u replaced by u'
and u' is the first variable other than u or v in U such
that u' does noi occur free in w or y.
6) If x = (kv.w)("), then jvx = (Av.w)(").
y
2.3.11 - Lemma (Wadsworth). For veV, x,yEe€ At and p € EN,

v

U [[j xT o = U IxT o[v/U LyT p]
y

Proof. See [23]. O

Typed B-Reduction

(v Py @) 885 [T g
[‘y]‘i-]

min(i-1,5) f 120
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(0) \i _t8. [
((Av.x)*y) = x]
V.X y JQ(O) 0

We extend tB in the same manner as the non-typed case, i.e.,
t8

x —>y if y is the result of applying several typed B-reductions

to some subexpressions of x.

Typed a-conversion

(n;) (n,) (n,)
Given (Av.x)(n) e At and Tet v ! K 2 Y k be all

the occurrences of v in x. Then
v (n)
(Av.x)(") N [Au. I x]
(max[n.])
u ! !

For x,ye!\t, x-t—aay if y 1is derived from x by applying

several typed a-conversions to some subexpressions of x.

Typed n-abstraction

Let type(x) =n for x e AL.

x Emab o p (ke (=1 (-1 (n) g sy
x —tn-ab_ (At.(xQ(o))(O))(o) if n=0
t tn

v

For x, ye A, x——>y if y is derived from x by applying

several typed n-abstraction to.some subexpressions of x.

2.3.12 Theorem (Wadsworth). For x,yeAt, if x and y are

type-convertible to each other, then x = y.
Doo

Proof. See [23]. O
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2.3.13 Lemma (Wadsworth). Given any x € At, then there is a

typed B-reduction sequence: x = Xy * Xg > cee > x'n such that

X, has no typed g-redex.
Proof. See [23]. O

2.3.14 Lemma (Wadsworth). Let Xp > Xg > e > X be a sequence

of typed B-reductions for X1sXgseeosX € At. Then there exists
an ordinary B-reduction sequence Y Yy > ey, where ;.

matches U(Xi) except at occurrences of £ in \j(xi).

Proof. See [23]. O

Notion of Reduced Approximant

Given x e A, €€ 1\Q is said to be a direct approximant
‘of x if € has no B-redex and € matches x except at
occurrences of © in e. For example, a A-Q-expression, &,
that is obtained from x by replacing each B-redex in x by &
is a direct approximant of x.

€ € AQ is said to be a reduced approximant of x if € -is

a direct approximant of x itself or of some y e A that is B-reducible
from x (i.e. there is a B-reduction sequence from x to y).
For x € A, we denote the set of all reduced approximants of x

by A(x).

2.3.15 Theorem (Wadsworth). For any x € A, xD= UA(x).

(-]

Proof. See [23]. 0O
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From this theorem, the following theorem is directly deduced.

2.3.16 Theorem (Wadsworth). If x € A 1is not head normal, .

Proof. Since any y € A that is B-reducible from x is in -

a form Aslsz---sm.(}\v.w)x]xz-ux its direct approximant is:

n’

)\s_lsz. . .sm'sz. . .xn -> Q

So A(x) ={Q}. Thus x = |. O
D

0

Conversely
2.3.17 .Theorem (Wadsworth). If x e A 1is head normal, x # | .
Do

Proof. Let Xx = AS1Sptt Sp VX Xt o Xp be a head normal form '

of x. Let y-= Ar]r2-~-rm.l. Then

XS1Sh*c*s —> I #
y 1°2 m D,

So under some environment p, W[IxIp=]. O

2.3.18 Corollary (Wadsworth). For x € A, x = | if and only if
D

[+ ]

X has no head normal form. O

This corollary implies that we can replace any non-head normal
subexpression of x e A by spl without affecting the D_-value
of x since spl = Q. Hereafter we take the following convention.

If Q is regarded as a member of A, it stands for spl.




&

We introduce the following non-effective conversion rule to A.

Q-conversion

(x,y) e Ry or x-£l>y if y derives from x by replacing

some subexpressions of x that have no head normal form by .

We define =~ as the reflective, transitive and symmetric

closure of RaLJRBtJRElJRQ. We conclude that

9N¥»$ =~ since, for example, (Ax.xx)(Ax.xx) = (Ax.xxx)(Ax.xxx)
though it is not that (Ax.xx)(Ax.xx) Ny, (Ax.xxx) (Ax.xxx).

On the other hand = g = since I = J although it is
: Deo Do
not the case that I = J. = will be characterized in Chapter 4.
Do
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CHAPTER 3
INFINITE NORMAL FORMS FOR A-CALCULUS

We formalize the <Infinite Expansions> of programs in the
domain of the A-expression -- called C-function. We show that
the C-function can be regarded as an extension of the conven-
tional normal forms. Bohms Theorem on the normal expressions is

extended to the general expressions via the C-function.
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§1. Pedigree

First, we introduce an infinite set which will be used to

characterize the behavior of X-expressions..

3.1.1 Definition. "Pedigree, A, is the set {0}U{(ny,ny,...,n )]

k, nj ¢ N}. There is a natural partial order, <, in A defined

by:
for 6], 62 € A, 6] < 62 if and only if

either 1. 6] =0

or 2. 81 (ml,mz,...,mi) and 8y = (n],nz,....nj).
where 1 < j and My =NyseeesMy= ..

We say 6, <8, if 8, =6, or & <6,, i.,e. < means
"ijs a prefix oF ™ 2 ! 2 ! 2 -

3.1.2 Definition. Given "6 ¢ A, |§|, length of &, is defined
by: ’

15| =0 if 6=0

|6] =k if &= (nonps...nny)

3.1.3 Definition. Map Pr: A+ A is defined by:

undefined if 6=20
Pr(s) = 0 if 8] =1

("]’"2""’"k-1) if 6= ("]’"2""’"k) .

3.1.4 Definition. Given &§ € A and a positive integer m,

0

Som = (m) if &

Som (n],nz,...,nk,m) if ¢ (n]’"Z""’"k)
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§2. Idea of Infinite Expansion

Before going to the formal definition of C-functions, we try

here to illustrate informally the idea of infinite normal form.

3.2.1 Example. R is defined by YO faxay. x(Fy) (Fy ((Ax.xx) (Ax.xxx))))
where Y is the fixed point operator. Since we know that

(Ax.xx)(Ax.xxx) does not have a head normal form, we replace it

by Q. The recursive definition of R is:
R-—ée»xxky.x(Ry)(RyQ)
Arrange it in the form:

AXAY. X

/\

with operands below the leading operator. Renaming the bound

variables according to their position:

Atlktz.t]

/\

Rt2 Rt 8

2

th —§¥>Ay.t2(Ry)(RyQ) and, so, the left sub-tree is depicted as:

/\

Rt,Q —£i>'t2(RQ)(RQQ), so the right sub-tree is depicted as:



/t 2\
R ROQ
g

However, since RQ —> Q, this sub-tree becomes:

t
Q Q
Applying B-reductions further, we have

MAty- Y

RN A\
ASAY

Rty

Now, several applications of n-abstraction lead us to:

Atlxt2§ti\t]_\\\\\\\\\‘\~\
A9yt 121 tyy 't12 2 Q .ty Ayt -3 -t3)

/N AN\ |

Rty Rty 2 0 .ty Lo
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In this way, we can expand any expression infinitely by applying
n-abstractions and B-reductions. In the illustrations, the

" arrangement of the head normal forms should be noted. Each head
variable is situated higher than its operands since it is dominant
over them. This situation is similar to the program of the form

begin A;B end. A can be said to be dominant over B since

execution may never reach B depending on the control structure
in A. This point will be further discussed in Chapter 5,

Here note that there are four operations involved in the pro-
cess of expansion:

a) B-reduéfion

b) Q-conversion

c) Renaming the bound variables according to their position

d) n-abstraction
Also note that there are two important bases to consider this
process.

1) We consider the A-calculus with n-convertibility.

Operation d) depends upon this assumption.
2) The head normality is an undecidable property. Thus
operation b) is not effective and the functions and L, € and C

to be defined in this chapter are non-computable.



§3. L-function

To make the argument easier in the rest of this chapter,.we
make the following cdnventions:

Let U be the enumerably infinite set of the variables.
We take two mutually disjoint subsets F and TA of U and set

V= FLJTA, where

F={f]i=1,2,...}
Ty = {tal 5 e A-{0}}

and

We assume, in the rest of this chapter, that if any given expres-

fi's in F. Our intention is to convert any given expression
into one whose bound variables are in TA by applying a-conver-
sions. We will be using z to represent a variable which is
either in F or T,.

Let % = {(z,m,n)| zeU, m, neiNU{0}} and Q be a symbol
not in . |

An auxiliary function h: A > zU{Q} is defined by:

Y/ if x has no head normal form

. B
(z,myn) if x ———>Ax]---xm.zX]---Xn

h(x) =

It is easy to see that h is well-defined. Note that h is not a

computable function since the existence of a head normal form is

not recursively decidable.
.3.3.1 Definition (L-function). We define L: A+ (A~>A) induc-
tively as follows:

Given x é A, assume that any t6 in TA does not appear

in x (by applying o-conversions if necessary).
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Step 0.

) if h(x) = Q@ (Operation b)
L(x,0) =
Ayt zkye X if h(x) # @ (Operation a, c)

and x 7ﬁf»ks S sm.inXé---Xé

S13Sps+ -+ a5y
and zX.X,-+--X = wXaXae X!
127" *n [ 12" "

t]’tZ""’tm

Step 8. Suppose that we have defined L(x,8') for all
8' € A such that &' < §. We are to define L(x,8°1)

for each i € IN.

Case I. If L(x,8) =Q then L(x,80i) = for all i elN.

Case II. If L(x,8) = zX]X2 «+X_ then

Go] 602 n

(i) If i<n then
(a) L(x,60i) =9 if h(Xi) = Q (Operation b)

(b) L(x,80i) = At -t (Operation

soioltseio2” " Tsoiop q (Operat]
if X &h Ar] 0 rp.uY]Yz---Yq

oVY]Y2" 'Y

], 2,...,rp
and zY.Y,---Y = uY]Y2~--Yq

12 q
Lsoiol*tgeioz?  **ta0iop

(ii) If i >n then L(x,80i) =t (Operation d)

So(m-n+i)°

We should note that in (ii) of Case II above that we are
applying n-abstractions. Also each head variable of L(x,8)

is in F if it is free in x or in T, if it is bound in «x.



3.3.2 Example. We look at L(R,8) for R defined in §2.

L(R,0) = AtyAt,.t; (Rty) (Rt,Q)
L(R,1) = Atqq.ty(Rty;) (REqqR)
L(R,2) = t,(RQ)(ROR)

L(R,3) = t3

L(R,1) = t .
L(R,12) = t]]QQ

L(R,13) = tyo
L(R,14) = ti3

L(R,21)

=Q
L(R,22) = Q
L(R,23) = to

L(R,21) = ty(;_p)

3.3.3 Corollary. If x =y, then L(x,8) = L(y,8) for all
§ € A.



§4. C-functions
Now we are ready to present the definition of C-functions,
€ and C. € is not essentially necessary to state our result,

but, € gives a way to simplify our discussion.

3.4.1 Definition (E-function). Let S = {(z,k)| keZ, zeFuTA}‘U{Am}

We define €: A+ (A+S) by:

w if L(x,8) =

C(x,8) =
(z,k) if h(L(x,8)) = (z,m,n) and k = m-n .
We note that if 6(x,6) = (z,k) for xe A and 8 € A,

then there exists a positive integer M such that

C(x,80N) = (ty,,,0) for all Nz M.

N+k?

Although € is defined as above, is the second component, k,
of C(x,8) is not necessary to uniquely specify a A-expression.

Thus we define C, simplified version of C.

3.4.2 Definition (C-function). C is a function A+ (A»>VU{w})
defined by:

z if €(x,8) = (z,k)

w

C(x,8) =

w if C(x,8)
3.4.3 Corollary. If x =y, then €(x) = €(y) and C(x) = C(y).

We will now state the theorem which plays the central role in
this thesis. Proof of this theorem was essentially given in Bhm [ 4]

(also in Wadsworth [21]), however since the arguments used in the
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proof are fundamental in this thesis and that it is not yet widely
publicized, we present a complete proof for the theorem, hope-
fully, with notational improvements.

Firstly, the theorem is stated using ¢ and thereafter, it

will be modified for C.

3.4.5 Lemma. Given x and y in A, suppose that, for 60 €A,

C(x,8) = C(y,8) for all § such that & < 849 and that

(u,i)
Cly.6,) = (v.3)

C(x,éo)

where (u,i) # (v,j). Then for arbitrary a, b in D_ we can

choose €58p5...5€ € A and an environment p for which

W[[xe]ez---en]] p=a
] [[ye1e2---en]] p=b

Moreover, if a, b e Ac’ we can choose p so that p(V) cAc;

3.4.6 Lemma. Given x and y in A, suppose that, for
60 e A, C(x,8) = C(y,8) for all & such that § < 8, and that
6(x,60) = u» and C(y,GO) # w. Then, for arbitrary a in D,

we can choose €15€95...,€ € A and an environment p for which

Vxee,---eMp=|
] [Iye]ez---en]] p=a

Moreover, 1if a e A, we can choose p so that p(V) C A



We prove only Lemma 3.4.5.

The proof for Lemma 3.4.6 is

straightforward from the proof given for Lemma 3.4.5.

Proof of Lemma 3.4.5.

Case I. & = 0: Since (u,i) # (v,j), u#v or

0

Case a. u # v: By the definition of 6, we conclude that

L(x,0) = At]t2~~-tm.uX]'°'X
L(y,O) = )\t]tz‘ . ’t

n

-VY]"'Y

p q

Take a positive integer K such that K > max(m,p) +1.

CNV

L(X,O)t]tz' * 'tK —_— ux,lxzo . .Xntm-{-] .
L(ygo)t]tz' * .tK % VY'IY2' . 'thp+.l e

Note that u, v e V = FUT.

Now take an environment, p, so that

p(u) = X885 Sy _minSk-mn

p(v) = AS1S2" Sy ptq* SK-ptq-1

Then

W[[xt-ltz"'tk]] p=a
‘V[[yt.ltzn-tK]] p=b

Caseb. u=v and i # j: We can assume, without loss of'

generality, that i < j. As in Case a,

4



‘s

L(x,0) = )‘tltZ'”tm'uxl"'xn and i =m-n
L(y,0) = Mty cty.u¥yeeYo and = p-q
Let K be a positive number such that
K > max(m,p,Jj+n)
..t _CNV e ..
L(y,0)t,t,---t _ﬂ\/_}uyy...yt T
R s K 1'2  'qptl K

By substituting )\s]sz... for u we have

SK'j.SK"j

CNV

L(x,O)t]tz---tK-————>t t .-t

K-j+i “K-j+i+1 " K

CNV

—>t

L(y,O)t]tz-- -t

K K

since K-Jj > n.

Now we choose p such that

p(u) = Asysyeesy -5k 5
p(ty) = b

p(tK-j'ﬂ') =

I
>
7]

—
w
N
.
w
=%

and we have

\I[[xt-lt2°~°tK]]p = a
VIytyt,--t,Jp = b

Case II. 60 > 0: Let 6,0 = (dl’dZ’”"dL) and set

L

o_ ]= 2’: = . =
s _—0,6 (d]),...,cs (d],...,dl),...,d 8, (set d0 0 for

convenience). By the assumption of the theorem, for 0 < £ < L-1,

Cx,8%) = Ely.8") = (zj.k))
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for some (zl,kﬁ) €S and

Ex,8,) = (u,i)

Cly.s,) = (v,d)

The proof technique for Case II is the following:
Due to the fact that C(x,8) = C(y,8) for & < §,» we can choose
a context under which L(x,So) and L(y,éo) can be 'dug out' of
x and y, respectively. Thereafter the problem is reduced to
the difference between L(x,Go) and L(y,do) which, applying
the technique used in Case I, leads us to the conclusion of the

Lemma.

Case II-1. Suppose that all zl's are distinct, i.e. for 217422,

Zz] # 222: Let, for 2 = 0,...,L-1,
2
L(x,87) = At t eeot Z XX,y X
69‘01 5202 Gzomz L8172 nl
and
2
L{y,8") = At t ..ot [e29 B PRRE |
%1 s%02 6z°p2 212 g,

where mg =Ny = Py-Gy by the assumption of the lemma. Let

k, =m,-n

1} P and take a positive integer K such that

K > max (m,sp,.Ko+d, 1)
20,...,L-1 + TR

for 2z

If we substitute AS]SZ"'SK-kQ'Sd 2

2+1

LMt t, ot AW k68T
§ 0l 6§02 §7 oK i

4] )

L(y,8%)t , ‘t, LW (y,8

§¥1 §%2  sYok



Thus by induction on %, 1if we substitute Q = As]sz---sK_kg-sd2+]
for z, for 2 =0,1,...,L-1, we have '
z z
L . _CNV J 8

Xtt "'t t t "'t t oo-t . — L(X,(S)
JQ 2 Kol slez slok 6201 stlok | 0
z 2

2 CNV L

yt.t,e -t t t coot t oot ____>J L(y,cS)
J 172 K 6101 6102 1 2 Q 0

Q §lok 6201  s-7ToK

Combining this result with Case I, we conclude that the lemma

holds for Case II-1.

Case IIf2. z),

We should note that the proof technique used in Case II-1 is no

L =0,1,2,...,L-1, are not necessarily distinct:

longer valid here since it is not possible to substitute different

combinators for zz's. To get around this difficulty, we introduce

- a combinator RK = As]sz°~-sK.sKs]sz~-.sK_]. Roughly speaking,

we will substitute RK for each z, in X and Y so that x

L
and y will have distinct head variables after the substitutions,

Before we start working on x and Yy, we give two observa-

tions for RK’

Claim 1. LlLet S, TeA. If S ~T, then, for a sufficient]yl

z z
large K, J S ~ J T where z 1is a free variable appearing in
R R
K K
S and T.

Proof. Suppose that neither S nor T has a head normal
z z :
S nor J T has a head normal

form. Then obviously neither I
R

R
form.
Suppose S and T have a head normal form and (after

several a-conversions)
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S = APqTye - -Y‘m.wS]SZ- S

T = Ar Ty T T Ty T

where m-n =p-q.

Case i. z # w:

rZ
= * o o ' I... '
Jo® T M TenSiSe Sy

K

rZ
= et WTIT e T
JRKT ATy T, rp wT1 2 q

Zz Z z z
where 53=J5j and T'.=JT.. Thus J S~J T.

Case ii. z = w: We take K so that K > max(n,q). Then

¥4
= LIS e o0 ) ' ! e e !

CNV vl et .
ANy S Sne2 Sk SK3152 Sl SKA1

In the same manner
T —9Ar]rz"'rpsq_'_]"'SK.SKT-iTé""Tésq.*]"'SK--I

From m-n = p-q, we conclude that

(m+K-n) - (K-1) = (p+K-q) - (K-1)

z Z z
T have the same index. Also the heads in J S

Thus J
R

S and‘J
R R

z
and J T are K-m+n = K-p’rq'Ch bound variable in both.
R



@

Claim 2. If S 4 T, then for a sufficiently large K,

z z
J S ¢ J T. for a free variable z in S and T.
Re "Ry

Proof. Suppose that S has a head normal form and T does

z
not. Then as we have seen in the proof of Claim 1, J S has a
R
. z K
head normal form for a sufficiently large K, but J T does not
R
K

have a head normal form. Thus

[l

On the other hand, suppose

w
I

= Ar]rz'-'rm.w]S]SZ--'S
T = Ar]rz"'rp.sz]Tz---T

where (m-n,w]) # (p-q,wz). If w 7z and w, # z, obviously

z z
J S 1 J T since the substitution does not alter the heads nor
R

R
K K
the indices. If W # W, and W, = z, then we take K so that

K > max(n,p+n-m). As above,

Z
CNV ceeQH cee

R -rmsn+]- -sK.sKS]S2
K

while |
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z
The head s, in J S is the K-n#m"  bound variable but
R
K Y4
since K-ntm > p, W, cannot be K-n+mth bound variable in J T.
R
Thus K
z Z
et
RK RK

On the other hand, if Wy =W, =z and m-n # p-q, then we
z
take K such that K > max(n,q). It is easy to see that J S

z R
and J T are different in their indices. O K
R
K

Now we are ready to prove our' lemma for Case II-2. We

determine K of RK in the following way: Let

R’ = . LN
L(x,87) =at , t ty o uX Xy X

§%1 %2 s o, )

.ty

Liy.6%) = At , t
) °Py

: WYYy
§%1 §%2 2

21 q

for 2 =0,1,...,L. We take K such that K > max (n,,q,,d,)+1.
2=0,1,...,L * % %

Step 0. We want a context to select L(x,G]) and L(y,cS]) out

of x and y, respectively. Let

L(x,0) = At]tz.f. 'tmo‘ZoX1X2' . .X"o

L(y,O) = At]tz"'t .ZOY]YZ...Y

Po %

where my =Ny = Po~ %" Substituting RK for z, in
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L(x,O)t]tz-“tH and L(y,O)t]tz---tH where max(mo,po,d]+mo-no)

< < + -
H<K m0 "o’ we have

X* = as s ceeS L S XX X b et

() H-m0+n0-1 H-mo+no+2 K*2K™"172 Ny m0+1 H
SH-mo+n0+1"'SK-] from L(x,O)t]tz---tH

' s Y'Y

= AS S Y -3 '...Y' t ceot
0 H-p0+q°+1 H—po+qo+2 K*”K'1°2 9 p0+1 H

SH_p0+qo+]".sK-] fY‘OII] L(y,o)t]tz”°tH
ZO ZO
where X: = J X; and Y = J Y..
37 g, 3 3T R

Now substituting Ar]rz---rk_].rd] for Sy in both

X*s *++s, and Y*s S teeg
) +no+1 K 0 H-po+qo+1 H-po+qo+2 K

S
-m_+n_+1°H-
H mO no 1°H-m

we have

(o]

Y4

e[ ° 1
X*s cees, = | L(X,6)
H-mo+no+1 K JRK

A
* e[ © 1
Y SH-po+q°+]°"SK__—_>J L(y,8)

Ry

Step 2. Suppose that, under some context, we have selected
204177 201 20217 "2

L(x,dl) and I L(y,Gz) out of x and Yy
RKRK...RK RKRK...RK
respectively. Let

L68%) =at , t, -t ER BTN

8701 §702 § omz L
L

L(y,8") =at , t, ---t Z,Y YooY

§%e1 s%o2 Gzopz 212 a,
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We take a positive integer, H, such that

max(mz’pz’dz+]+mg'"g) <H<Kem-n,

in

and, substituting RK for z,

2 L
L(x,8)t t ceet and L(y,8")t t SR 4
§%1 s%2  gten %1 %2 &%eH
(if z, # 2, for any k = 0,1,...,2-1, z, is already substi-

tuted by RK)’ we have

= AS ceegL SUXIXL X! ¢t ceet.S ceeg,
L H-m,+n,+1 KZKM172 g "my+1 H H-m+n +1 K-1

Y¥ = as T 20 20000 LUK TR vees
2 7 AShop rq h1 TS SKNT2 T g, Bt O Hp b 1T oK
where

21292y

X5 ) X
RKRK...RK
21227 "%,

y! = Y;
IR Ry« Ry

Now, following exactly the same procedure as in Step 0, we

zoz.'nvnzl ZOZ_IOOan’

can select J L(x,6£+]) and J L(y,62+]) out of
ReR - Ry ReRg Ry
Xz and Yz respectively.

By the discussion above we conclude that under some appro-

priate context, we can select

ZsZysen a2 ZosZyseee 2|y

L(x,8_ ) and L(y,S5_ )
Ru,Rys...5R 0 0

K2Rz - oR¢ RyR

K’ K,...,RK

49



out of X and Y respectively,
Applying Claim 2 repeatedly, we conclude that

ZosZyseeeaZ) g ZosZyseeesZ)

L(x:5,) 4 | L(y,8,)
RK’RK""’RK RK’RK""’RK

where neither of them is without a head normal form. By the

result of Case I, we have proved the lemma for Case II-2. 0O

3.4.7 Theorem. Given x, y in A:
1. If there exists 6 € A such that, for different u, v

in V,
C(x,8) =u and C(y,8) = v

then, for arbitrarily given a, b in D_, we can choose e;,e,,....e

in A and an environment p for which

'} [[xe]ez- . -en]] p=a

v [[ye]e?_- . °en]] p=b

Moreover, if a, be A.» we can choose p such that p(V) c A
2. If there exists & € A such that, for all 8, satis-
fying |8 | < |8], C(x,8,) = Cly.8)

and that | C(x,8) =ueV, C(y,8) = w

then, for arbitrarily given a in D_, we can choose e;.e,,...,e

in A and an environment p for which

\V[[xe]ez---en]] p=a
W [[ye]ez--oen]] p=1



@

Moreover, if a € A., we can choose p so that p(A) E:Ac.

Proof. Straightforwardly deduced from Lemma 3.4.5 and Lemma

3.4.6, using a technique similar to the proof of Corollary 3.4.9.
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3.4.8 Definition. Let

(]
1]

{c] cer > Vuiw}}
and

(54
0

{c| cer~ S}
We define relation < over € and C as follows:

For ¢q» c, € ¢ (€), ¢ 26 if and only if, for all
8§ € A, c](G) = or c](a) = c2(5).

3.4.9 Corollary. For x, y in A, C(x) < C(y) if and only
if C(x) < Cly).

Proof. If E(x) 5_E(y), c(x) < c(y) 1is immediate from the
definition of C. ‘
On the other hand, assume that C(x) < C(y) does not hold.

This means that there is & € A such that

E(x,a) = (u,i) and E(y,a) = (v,j) where
(u,i) # (v,J3)

C(x,8) #w and C(y,8) = w.

either Case 1.

or Case 2.

c(x) f C(y) is immediate from Case 2 by the definition of C.
" For Case 1, let & be such that, for any &' satisfying
§' <8,

C(x,8') = Cly»s')

and
C(x,8) = (u,i)

Cly,8) = (v,d)



)

If u#v, C(x){C(y) is immediate.

Suppose u =v and i # j. Let

L(X,G) = Xtaoltaoz...taom.uxlxz...xn

L(y,8) = Aty qtsont” .tGOp'UY'IYZ. . .yq

where m-n=1 and p-q = j. If we take K larger than n

and q,

C(x,80K) = L(x,80K) = t 50 (K-n+m)

C(Ya6°K) = L(X9G°K) = t5o(|(_q+p) :

Since i # j, K-n+m# K-q+p. Thus C(x,8) £ C(y,8). 0O

3.4.10 Corollary. For x, y in A, C(x) =C(y) if and only
if C(x) = C(y). O

3.4.11 Corollary. For x, y e A, if x €y, then C(x) < C(y).

D

==}

Proof. Let us negate that C(x) < C(y). Then there must

exist 6 € A such that, for some u, veV,

C(x,8) = u
either where u # v
Cly,8) = v
C(x,8) = u
or
C(y,8) = w

In either case, there must be at least one 8 ¢ A for which the

condition of part 1 or part 2 of Theorem 3.4.7 holds. Thus by
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the conclusion of the theorem, there exist e],ez,...,en € A and

an environment p such that,

either ' IIxe]ez—nen]] p =K
and
'} [[ye]ez...en]] p=H
or W [[xe.e,---e Jlp = K
and 12 n
Viyee,---eMp=1

which contradicts x C y by Proposition 2.3.5 and Corollary 2.3.18.
D
® 0

3.4.12 Corollary. For x, y € A, if x =y, then C(x) = C(y).
D

[+0]

Proof. Similar to the proof of Corollary 3.4.11. O

In fact, the converses of Corollary 3.4.11 and Corollary 3.4.12
are also true and will be proved in Chapter 4.

We should note here that we can further formalize C-functions.
Since each variable z in V is in F or T,, we encode z

as follows:

If z=f1. in F, En(z) = i eN.

If z=1t, in Ty, En(z) = § € A.

é

Now the new version of C, C: A > (A+AUNU{w}) is defined

by:

n

For x € A, C(x,8) = En(z) if C(x,6)

i
N
m
<

C(x,8) = w if C(x,8) =

|
€



Thus we can discard the notion of variables. We do not take this
convention since this does not provide us with any substantial

improvement other than formalism.
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§5. C-function as Infinite Normal Form -- Extension of Bohm's Theorem

Theorem 3.4.7 can be regarded as an extension of Bohm's

Theorem [ 4] which is stated as follows:

3.5.1 Bohm's Theorem. Let x, y in A. If x and y have

different normal forms, then, for any two variables u, v e V, we
can choose A-expressions €15€95...5€ € A, variables
ZysZpse--sZ € V and closed A-expressions h],hz,...,hm € Ac
such that

Z],Zz,...,Z

m

x]ee ...e —CNLU
hyshose..,h 1 2 M

1°72° >"m

and

ZasZhyeoesl
17 CNY 0

m
U y]e]ezn-en —>V

h'l ,hz,o- .,hm
If we translate Theorem 3.4.7 into one stated in pure

A-calculus language:

3.5.2 Theorem. Let x, y in A. If C(x) # c(y), then, for

any u, v € V, we can choose X-expressions, €1:€55...5€ € A,
variables Zys2Zp5-005Z, € V and closed Afexpreésions

hyshys...oh. € A, so that one of the following 1), 2) and 3) holds:

Let
ZysZgs.nsZy

X = x]e e, e
172 n
h'l,hz,ono,hm

and



. Z152Zpse s 2y
y = y]e]ezo.oen
h]’h2""’hm
1) * CNV LW ., and y CNV
2) x& LW ——>u and y has no head normal form,

*
3) x has no head normal form and y* Wv.,. o

The main point of the extension of Bohm's Theorem is that
we are no longer concerned with conventional normal forms,
Theorem 3.5.2 is a statement about general A-expressions no
matter whether or not they are normal. In this respect, we might
as well call C-functions <infinite normal form> or generalized
normal form. Refer to [21] for an alternative extension of Bthm's

Theorem.
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CHAPTER 4
CHARACTERIZATION OF THE D_-VALUES OF THE A-EXPRESSIONS

The main result in this chapter is to characterize, using
the C-function, the partial ordering among the X-expressions
that is induced by D_. Namely, it is shown that, given two
A-expressions X, y, the relation xCy in D_ is equivalent
to C(x) < C(y) 1in the algebraic domain which includes the

range of C.
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§1. Structural Approximation

In Chapter 2, we defined the notion of approximant of
A-expressions. Roughly speaking, the approximant of x e A is
obtained from x by replacing the B-redexes in x by |.

In this section, we define another notion of approximation
~ which is more closely related to the C-function. For this purpose,

we need a class of subsets of A, called A-trees.

4.1.1 Definition (A-trees). A A-tree, T, is an infinite
subset of A such that

1) O0eT.

2) If 6eT, then Pr(s) eT.

3) For all 8§ € T, there exists a positive integer N
such that 601,802,...,6oN e T and 6°K ¢ T for all K > N.

For a A-tree, T, we call N in 3) above y_T_(_Q, i.e.

v7(8) = #{8'| 8" €T, Pr(s') =6},

4.1.2 Example. ]/ \2
1 / \ 21/ \22
N

12
/111\/ 112 171 lTZ 21|1 221
111 11]2\ HIZ]/ 1'l|22 12|1'l 12|2] 21|]1 2211

N

1111 11112 11121 11122 11211 11221 12111 12211 21111 221N
|

NN | | | | | |

Let T be {ae{1,2Y*| a=8, B2y or B22y for B, ye {1}*}U{0}
(= 0 U 1* U 1*21% U 1#%221%),
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Obviously, T is a A-tree. Here, for example, YT(11)==2, yT(]Zl) =1.

In Chapter '3, we formulated the expansion of A-expressions.
A-trees give in a way the opposite operation. Suppose, given the
C-function of a certain Xx-expression, we want to synthesize the
original )-expression from the C-function. Since the C-functidn con-
tains arbitrary numbers of n-abstractions, we should restrict our
attention to finite and méaningful parts of the C-function, which

are represented by a A-tree.

4.1.3 Definition. Given a A-tree, 7T, neN and x in A,

we define T'(x) tobe T = where To = is defined for §eT
by:
1) If |8] <n, then
a) if C(x,8) =w, then T° = aq.

X,N
b) if C(x,8) = (z,k), then

5 8017602, 8oy (8)

Txon = Atsoltaoz"°t6°[yT(6)+k]‘ZTx,n X,n L

2) If |8] =n, then T2 = L(x,8),

where [ ] is the Gauss notation.

4.1.4 Definition. A A-tree, T, 1is said to be admissible tb

Xx in A if and only if, for all n e N,

n
X -Er>T'(x)

B
n-ab
Q
Intuitively, a A-tree, T, is admissible to x in A if

it is wide enough to cover the whole significant portion of x, i.e.
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the significant parts which were derived by B-reductions rather |

than by n-abstractions.

4.1.5 Definition. Let x be in A. We define N(x) to be a -
subset of A such that ” |
1) 0e N(x) . .
2) Let &€ N(x). Then &oi e N(x) if and only if

L(x,6) 1N As]sz- “Sm'ZX]X2° . .X'.'A

for i <n.
We should note that N(x) may be infinite or finite. For

example, if x is normal, or x is riot head normal, #(N(x))

is finite. We give L(x,8) a special name LT(x,8) if Ge'N(x).

4.1.6 Corollary. Llet x be in A and T be a ‘A-tree. Then
T s admissible to x if and only if N(x) cT. So, x has at

least one admissible A-tree. 0O

4.1.7 Corollary. Let T,, T, be A-trees. If T, CT, and T,

is admissible to x, ‘s.o is T2. O
4.1.8 Corollary. If T isa A-tree admissible to X, then

™(x) = x for any n. 0O
D

[« 2}

4.1.9 Coro]]ar}g. If T 1dis an admissible A-tree to x € A,

then‘ ’LT(x,a)‘<1Tn(x) for a1l LT(x,8) such that |§] =n. O



L

62

4.1.10 Example. Let us look at T in Example 4.1.2. It is easy

to see that T is admissible to R in Example 3.3.2.

T(R) = Atyty.ty (At ty (At 1 ot (R ) (Rey 1120 V(499 (£,00)
{s| seN(R), |8] =3} = {111,112,121,122} ,
SO
LT(R,111) = Rty
LT(R,112) = Rt;p4Q
LT(R,121) = @
LT(R,122) = @

Let us see how T'(x) is generated from x. First apply to
X aTl.the- B-reductions that were necessary to generate all
LT(x,8)'s for [&] < n (x-iiazl). So, for each LT(x,8) such
that |§| = n, LT(x,8) < Zy. Now, apply to Z, a-qonversions~§p
that each bound variable, which occurs outside of all LT(x,s)
with - |6] = n, will be renamed and belong to TA'(z] —>17,).
Now apply Q-conversidns and replace each subexpression, which is
not head normal, by @ (z, —99»23). Finally apply n-abstractions

for each node in {§| seT-N(x), [§]<n} (Z JtﬁSTWxH..J

3
Note that no n-abstraction is made inside of LT(x,8) with .

|6] = n. We state the process above as a corollary: .

4.1.11 Corollary. Let x be in A and T be a A-tree admis-

‘sible to x. For n e N, there exist Z], 22, 23 e A such that

T]‘ab Tn(x)

x B>z 257 8.5

1 2 3



where Z2 matches Z3 except at occurrences of Q in Z3 and.

Nn=ab _ 1Ny is of the

if any of the ﬁ-abstractions applied in Z3
form A > As.As, A cannot be a proper subexpression of one of
LT(x,8)'s, [&] =n. Moreover, if Z, has any B-redex, it must
be contained in either LT(x,8) with |8 =n, or in one of the

subeXpressions which were converted to 2 in Z2 YR 23. O

4.1.12 Definition (Structural Approximation). Given x in ~A,
nelN and a A-tree, T, which is admissible to x, Angx,T),

structural approximation of x, of order n, with respect to T,

is defined by: Ag(x,T) = Ag n where Ai n is recursively defined

for & e T. by: '
1) If [8] <n, then
a) if C(x,8) = w then AX n =9
b) if C(x,s8) = (z,k), then

S . _ GO]ASOZ.' »GOYT(G)

Aeon = Msortser " Go(k+yT(6)) x n x,n"°Ax,n

2) CIf |§] = n, then AS =
4.1.13 Corqllarx. For x e A, neN and A-tree, T,
admissible to X

1) Ag(x,T) is obtained from T"(x) by rep]aciﬁg; by Q,
each L(x,8) in Th(x) such that |§] =

2) Ag(x,T) g; X

(<]

3) If m<n, then AIT(X’T) c axT). O

o
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4.1.14 Example. For T in Exampié 4.1.2 and R in Example 3.3.2
B ) B

" The following corollary characterizes the relation between

the C-function and the structural approximation.

4.1.15. Corollary. Let x be in A and T be a A-tree admis-

sible to x. Then, for each n e N,

» C(x,8) if |8] <n or 8§4&T
C(AY(x,T) )=

M if |6 >n and e T

nv

The assertibnAremains valid when we replace C by C.

Proof. Since x = T"(x), L(x,8) = L(T"(x),8) for all 5
“and .C(x) = C(T"(x))._ The conclusion of the corollary is immediate

since,by Corollary 4{].13-1, Ag(x,T) matches T"(x); except at

occurrences of ‘Q in Ag(x,T). (]
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§2. Convergence Lemma

Our objective here is to prove Lemma 4.2.2 which is funda-
mental throughdut the rest of this thesis. We use the proof

technique of typed A-calculus in Chapter 2.

4.2.1 Lemma. Let x e A and T be a A-tree admissible to «x.
For any xt in T(x), there is a sufficiently large n such -

that, xt C A"(x,T).
o. P

00

Since the proof for Lemma 4.2.1 is very long with a high -
complexity, we first give the out]ine.of the proof in order to

ease the unreadability of the full proof.

1: There exists a typed B-reduction sequence ‘xt -+ xt so that

P

x; has no typed B-redex (by Lemma 2.3.13).

y(x;) is a reduced approximant of X, (by Lemma 2.3.14).

3: For k e N, there are Q%, Q; and wk

_B_> Q'II( o le( n-ab ; wk k

e A, so that

and W matches. Tk(x) except at

X
P . ,
occurrences of © and LT(x,8) with |§] = k in T"(x) (by

to match Q@ in Tk(x) are non-head normal.

4: Correspondingly, there is a typed conversion sequence

x; tB:yE ta,yt 25yt uhere y:eI(QI](), yteI(le() and -
Y' e T(W*) (+ is 'modified’ tn-ab) and x; c vt
Deo '
5: By the definition of Tk(x),- Tk(x) contains each variable

2% such that C(x,8) = 2% for each & ¢ T ‘with [8] = k-1.

2: There exists a (usual) B-reduction sequence x ~+ xp so that

Coko]]ary 4.1.11 and the Church-Rosser Theorem). The parts in wk-4
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occurrences of € in Tk(x), and Ap

8 t

in 5 and, by 4, Y° contains a

$

6: By 3, wk contains each z

in 5.
k

typed variable t[2°] e I(ZS) for each z

8

7: We consider the process in which z° in W is derived:

2 already occurs in X

[2] 26 is derived in xp B, Q%‘

[3] 2% is derived in Qg —Itfﬂlé'wkr
8: If we take k Tlarge enough, we can reassign type 0 to each

t[z%1 in Y' so that |6] = k-1 and still have x; c Yt valid,

Dtb

for,

$

a. [1] cannot occur for z° if k 1is large enough.

b. In [2], 2 is from a B-redex in X5 but x; has no
typed B-redex. (The B-redexes have degenerated to € in x;.)'

c. In [3], note thét typed n-abstraction reduces the type
of the variable by 1 (i.e. A(") - As.(A(h)s("']))("'])).

So, if k 1is large enough, t[zd] is of type 0.

9: Since we have reassigned 0 to each t[26] ih Yt' with

|6] = n- 1, we can replace the subexpressidns applied to t[Zs]'

t

by Q(O) and still have Xy C vt (by Theorem 2;2.5). Further-

(22

more, we replace, by 9(0), each subexpression in Yt that

~corresponds to a non-head normal subexpression in Nk (pointed

out in 3)..

k

10: Since W matches Tk(x) except at LT(x,8) (|8] = n) and

k(x,T) is derived from
Tk(x) by replacing L(x,8) (]|s] = k) by 2, we conclude that

Yt obtained in 9 is in I(A;(x,T)). so, x* = xt cytc

‘ Dw PO, Do
Ap(x,T).
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The following is the reason why the proof is so‘difficult:
The transformation x + T"(x) involves both B-reductions and
n-abstractions. The structure, T, is arbitrarily given fegard-
less of the structure of x. In addition, the transformation

™(x) + Ag(x,T) is rather an artificial deformation and the .parts

~

in T'(x) that are replaced by £ include variables added by
n-abstractions as well as subexpressions generated by B-reduc-

tions.

Proof. By Lemma 2.3.13, there exists the following typed

B-reduction sequence:

RO B

t t

where X; € A" and x? 1 derives from ‘x?l by one application

1+ 1

of typed B-reduction and x; has no typed B-redex. Corresbond—.

ingly, by Lemma 2.3.14, there is a B-reduction sequence:

CX Xy Xy >t ip

where Xi4] derives from xi By one application of B-reduction

and X; matches y(xg) except at occurrences of Q in y(xg), :
t
P _
X, and so, every B-redex in xp is contained in a part of x

Since x_ has no B-redex, @(x;) is a reduced apprdximant of

v P
which has no corresponding part in H(x;) except Q.

L0 E N I N 2

N N 7777 W 7777

a B-redex can exist only
in these areas.
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Given any k in N, by Corollary 4.1.11 there exist

_z'{, z'z‘, z'§ e A such that

x 57k @57k 8,7k n-ab, 7k,
where Z; matches Zg except at occurrences of Q in Zg

and every B-redex in Zg

is contained in a part which corres-
ponds to @ in Zy or in LT(x,8) for |§] = k. Also, if

A > As.As is made in 23 > Tk(x), A is not a proper subexpres--
sion of LT(x,8). By the Church-Rosser Theorem, there exist

Qs G € A such that

' x—6—>x -£->Q!I<
p
@\ o
Zk Qk
TN 2
a\'\k/BfA
L
So ‘

-ii>x -J2>Q§
o

Since every B-redex in Zg is either in a part which corresponds

to no part except 2 in Z; or in LT(x,8) for |&] = k, it

follows that Zg

LT(x,8) in z';.

matches Q; except at occurrences of Q and

On the other hand, since all the n-abstractions in



Zg _Nn-ab_ rK(y)  are made externally to LT(x,8) with |§] =k, we
conclude that there are n-abstractions which, applied to Qgg

k

yield W' € A which matches Tk(x) except at occurrences of Q

and LT(x,8) in Tk(x) such that |8| = n. Thus we have:
Radiad )

It follows that the structure of Nk is described as follows:
wk = wg where wg (6 € T) 1is of the form: »
1) if |§] = k, then Ng = w(8) for some w(3) e A such
" ‘that w(8) = L(x,8)
2) if |§] <k, then

a) if E(x,d) = w, then Ng

is a certain expression °
which has no head normal form

b) if C(x,8) = (25,r%), then

k _ Sk K k .

We = At te 500t W GWE W
§ 8ol 7802 . 6°(YT(6)+Y‘6) §o1" 602 GOYT(G)
8 k $ k

We examine each 2z~ which appears in W'. 2z~ in W~ must

satisfy one of the following conditions:

s

[1] This occurrence of z° 1is homologous to one in x

. _ P
(i.e. it occurs already in xp).
[2] It was derived in the process of xp-Ji>Q¥.

[3] It was derived in the process of Q§ _n-ab .k

(In any case (1), (2) and (3) above, z6 may have been renamed
. k a_nk '
in Qz ——>Q3)
Let j=1,2 or 3. MWe define ng(i) to be the subset of

T determined by:



70

n?(i) = {§| §¢T, |8] =1, C(x,8) #w and z‘S in Nk is derived
as in [§1} . _
Since xp is a finite expression, there is my in N for which

[1] above cannot occur for 2z° if |6] 2 m. Let m, be the
maximum type among the types that were assigned to the components

of xt. We set n = my +m,. (To simplify the description

of the proof, we set n=m+1 if m2=0.) We set k=n and

develop x i>xp 1N Q? into

F> e > X = Q?

X = Xg> Xy > Xp ¥t oy Xy > Xpg q

0

where X is the result of an application of B-reduction to

i+l
X Correspondingly, we define a sequence typed A-expressions:
t ot ottt .t
yof¥]+y2+ '*)'p'*yp+1"’ '*Yq
in the following way:
Step 1: - Set yt = xt e T(x ).

Ste'g i: Suppose yt] is in T( ]) and that the redex

3
which.is reduced in X521 > X is (AS.M)N -> J M and that the
N. A
correspo?dl?g o%cu;rence of (As.M)N in y?_] is of the form
h o
((As.M ) L Nt ) 2 where M e T(M) and Nt e T(N). We define
y? as follows: ( ) (h.)
| Case 1. If h] > 0, replace ((xs Mt ) N ) 2" n
Vi by
s A
(| My
[Nt] m]n(h]']ahz)
h]-l
, ¢ (b)) 4 (h,)
Case 2. If h] = 0, replace ((As.M") N ) by



[[S M
i, °

Obviously y? defined above is in T(x,).

Moreover,

for, if Case 1 occurs, then it is exactly typed B-reduction. So

by Theorem 2.3.12,

t
Yi 1 = Y;
i-1 p 1

o <]

On the other hand, in Case 2, we could have replaced

(OO ") 1y 8y

(" W
Q(O) 0

without changing D_-value of y?_T. Since

S | S
[ w1 cr Mt
o

Wt t
Yiar £ Y5
i-1 o i
By induction, we conclude that, for any i such that 1¢ i <q,

y:-‘ € T(x;) and y$_1 Sy};
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Thus we have proved that there exists a typed X-expression y:.

in I(Q?) such that x° - y:. Also it is easy to see that, for
D
i such that 1 <1 <p, y? matches xg except at occurrences

of @ in x?.

Now we apply typed a-conversions to yg which cofrespond B
to Q? -3L>Qg. Let this-resu]t be yt € I(Qg). (So, yg Lo, y )

n n-ab w

Next, let us develop Q into the sequence:

>y, = W"

Q?:Y]_).Y > see a2 Y d

2 d-1

where Yi: is derived from Yi-l by an application qf
n-abstraction.

Correspondingly, we define a sequence of typed A-expression

as follows:

Step 1: Y% = yt

Step i: Suppose that Yi;l _n-ab, Y,

is the replacement of A in
by As.As and that Y, ‘isin T(Y; ;). Let A* e T(A)

Yi-1
be the corresponding occurrence of A in Y?_]. We replace it

with (As.(Ats([j']]))([j']]))(j) to have Yt Now it is easy

" to see that Yg is in T(Y ) and Y1 1 = Y? 1 We set Y' = YE;
D
We have proved here that there exists a typed expression Yt
in I(w“)' so that x° - Yt. since Y' is in T(W"), we name
5 -

each component of Yt via the corresponding component of w",

that is,
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- t[z%1 in vt corresponds to z° in "
and t[w"] in vt corresponds to W' in W"
LL¥sd P 5

Our next stage is to transform Yt into another typed

t

expression in [(Ag(x,T)) without violating x~ C Yt. Consider

[+

t

all t[zc] in Y such that |§] = m. As we have observed'

as for w",
either 6§ e n?(m]), ng(m]) or ng(m]) R

but it is impossible that 6 € n?(m]) because of the definition
of my . Let & e ng(m]). Then 26 has been derived in xp —§e~Q?.
. t t
Since xp b

is in a part which

matches y; except at occurrences of £ in x

and x; has no B-redex, every B-redex of y;

has no corresponding part in x; except Q. Thus, by replacing

each B-redex in 'y; by Q(O), x; c y; still holds. Since
D

. 00

t

t[za] in Y" was derived from some R-redexes in y;, we can

reassign to t[zs] the minimum type 0 and still have xt = x; E_Yt; o

For each & in ng(m]), t[Ng] is as

)(*)

(f-‘((t[zﬁlt[wgo]])(*)t[wgoz])(*)'")(*)t[wgoYT(G)]

in vt where (*)'s are types.

Since t[zs] is now of type 0, we can replace each t[Ngoi]
(i = 1,2,...,YT(6)) by Qﬂ” without affecting the D_-value of Yt.
(If a e my(D,), (--'((ab])bz)--~)bn = (---((aD])--+)L by

Theorem 2.2.5.) " So, at least, we can reassign the minimum type 0

n t

to each component of t[wdoi] in Y' and still have x - '

Do



Especially, for ¢' e T with [6'] = n-1 for which there exists

1
S € ng(m]) such that 6§ < §', t[z6 ] is of type O.

Next, we consider & such that 6 e ng(m]). Then z<S was

nnabW

derived in Q Since the highest type among those that

are attached to the components of xt

is m, and the conversion
xt yt é,I(Qg) does not increase any type, the highest type

in ~yt is not more than m,. This means that t[za] is of fype,
¢ X ; _

at most mz-1 by the way the sequence'Y% ¥y > > Y4 is defined.

On the other hand, if t[wg] is as

(e ey 1) el 1) 4. )‘*)t[w&,Y D™

. oot .
in Y7, since 26 comes from n-abstraction, so does each NG 0i

(i = 1,2,...,6oyT(§)) and, so, W' . ijs, in fact, the variable

Soi
251, since t[zﬁ] is of type at most [mz-l],

t[26°1] is of type at most [m,-2]

t[zs 1] is of type at most [m - (i+1)] .,
again by the way the sequence Y% + YS cee > Yd is defined.

This indicates that if we take &' e T with [&'] = 1+s for
- which there is § e ng(m]) such that & < &', then t[z ] is
of type at most [mz- (s+1)]. Especially, if s = m, -1,
G.e. |8'| =n-1) then t[2%'] is of type at most O.

What we have proved is that we have transformed Yt SO
that, for any 6 € f such that |§| = n-1, the type of t[zG]
in Y is 0. So we can replace each 't[wg] with |8] = n by

s{b) without affecting the D _-value of Yt.
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Finally, we replace t[wg] in vt by Q(o) if C(x,8) = w.
Since wg in W' has no head normal form, this transformation

t, either,

does hot affect the D_-value of Y
We remember that W' matches T"(x) except at occurrences
of 2 and LT(x,8) (|8] =n) in 7T"(x). So W" matches
Ag(x,T) except at occurrences of £ in Ag(x,T) ‘since each
L(x,8) (]|8] =n) in ™(x) is rep]éced-by Q in Ag(x,T).
It follows that Y e T(AY(x,T)). |

We conclude that

Ag(x,T) . O

4.2.2 Lemma (Convergence Lemma). Let x be in A and T be a

A—tre‘e admissible to x. Then x UAg(x,T).

Do.onO

"~ Proof.. Since Ag(x,T) C ™(x) = x, for any n,
- D

[+ 4] [e2]

u A (x,T) C x
n=0 P

=]

On the other hand, by Lemma 4.2.1, for all x' e T(x), there

exists n such that xt - Ag(x,T). By Lemma 2.3.9, x = U T(x).
Thus x C UAg(x,T). O

D, n=0

. 4.2.3 Corollary (Park). Let Y be the fixed point operator.

Then Yf = U f'(]) for f e A.
D, n=0



Proof. Let T = {8] 6=(111---1) for some neN}u{0}. fhen
) n V - L * o ¢ 3 | 3 . 3 1 . | A
Ap(Yf,T) = £(f(f(---(F(R)--+)))). The result is 1mmgd1ate‘ from
. n ' " .
Lemma 4.2.2. O
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§3. Characterization of D -Value of A-Expressions

In this section, we prove the converse of Corollary 3.4.11

and 3.4.12 using the Convergence Lemma 4.2.2.

4.3.1 Theorem. Llet x, y be in A. If C(x) < C(y), then
x C y}. |
Doo
M.'.Suppose C(x) < C(y). By Corollary 3.4.9,
C(x) < Cly). We take a sufficiently large A-tree, T, which is
admissible to both x and y. We compare Ag(x,T) and A:(y,T).

Since C(x) < Cly), A;(X,T) matches Ag(y,T) except at occurrences

of © in Ag(x,r) by Definition 4.1.12. So

n n,.
T) C I

[+

By Lemma 4.2.2, x Cy. 0O

[+

' *
4.3.2 Theorem. For x,y in A, x Cy -if and only if

, 0 _ .
C(x) < C(y), and'so, x =y if and only if C(x) = C(y).
=T D

[+

Proof. By Corollary 3.4.1.1 and Theorem 4.3.1. O

4.3.3 Example. Let Y0 =Y, the fixed point operator, and . .
define inductively Y, =Y. |G where & = AAf.f(xf). We can
= Yj for‘any pair (i,j). For _exainple, we prove
b .

C(Yo) = C(Y]).

show that Yi

Y=Y B Af.£((Ah.F(hh)) (Ah. £(hh)))
B Af. £ ((Ah. £(hh)) (Ah. f(hh)))

*Refer to [24] for an alternative characterization of D(;
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Let G* denote (Ah.G(hh))(Ah.G(hh)). Note that
6* —B5 G((Ah.G(hh)) (Ah.G(hh))).

Y, = Y6 £ 6% B ge* B ar.(6*F) B Af. F(GG*F)
B af.F(£(6%F)) B> af. F1(67F) o

Now it is obvious that C(Yo) = C(Y]). We can see the proof
for Y, 4 Y, (i #3) in[3]. .

4.3.4 Example (Wadsworth). Let F = Afaxiy.x(fy) and J = YF.
So

J £ AxAy.x(Jy)

Let I = Ax.x. Then it is easy to show that C(I) = C(J). Thus

I = J. Obviously I 4 J. It was a surprising fact that a normal
D .

expression I is equal to a non-normal expression J. J might

be considered to be an infinite éomputation process.

Given an input, it returns the computation result TittTe by little
taking an infinite amount of time. The limit of this infinite -f.'
computation turns out to be equal to the computation of I. The
conversion rules alone cannot describe the outcome of this infinite
computatioh. It is possible only after A is mapped into a
vlattice sﬁace such as D_ where the‘]imit bf‘such infinite
computation can exist. As Scott claims in [16], = is a more
essential relation than the convertibilities. Further discussion

on computational interpretations of normality, non-normality,

head-normality of A-expressions will be given in Chapter 5.
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§4. Further Properties of A Mapped in D,
In this section, we state further properties of A mapped in
D_ lattice. These properties Will'be the basis of the theory on

lattice A~ which will be introduced in Chapter 6.

4.4.1 Theorem. Let x be in A. Suppose C(x,8) # w for any
§ e A, then x is maximal in A, that is, there isno y in A

such that «x é§~y.

Proof. If x Cy for some y in A, it must be that

(<]

C(x) < C(y) by Theorem 4.3.2. Since there is no &§ € A such
that C(x,8) =w, x = y. 0O
D

-]

4.4.2 Corollary. Let x be in A. If x has a normal form, '

then fx is maximal in A.
Proof. If x 1is normal, C(x,8) # w for any §ea. O

4.4.3 Definitfon.

1. Let D be a subset of A. D 1is said to be directed
(with respect to D_ partial oraer) if D satisfies the follow-
- ing property: For F any finite subset of D, there exists an

element z of D such that, for each x ¢ F,
VIxp Wzl o

for all environments p.
2. lLet DCA be directed. D is said to be interesting

if there is no x in D for which
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VIxIe =V (Vlyle| yeD?
for all environments op.
The following theorem is a generalization of Lemma 4.2.2.

4.4.4 Theorem (General Convergence Lemma). Let D be a directed

- subset of A. We define Cp € C by:

w if C(y,8) =w for all ye?
cp(s) =
zeV if C(y,8) =z for some y e D.

Then cp = C(x) for x e A if and only if x = UD,
D,

Proof. To prove'that < is well defined,
assume that, for some Yy Yo € D and 6 € A, A
C(* §) # w, C(y2,6) #w and C(y],a) # C(y2,6) Since D is

directed, there must be z in D for which both 2 Cz and

4 Y é; z, but this is impossible by Theorem 4.3.2. So given any

§eA, either C(y,8) =w for all yeD or thereis veV
such that C(y,8) =v for all y e D such that C(y,s8) # w.

Llet T be a A-tree which is édmissib]e to x. Now supbbse
¢p = c(x). Forany 6 e T, there is at least one y in D such
that C(x,6) = C(y, ). Given n in N, since #{§| |6/ <n, 66T}
is finite, there is a finite subset, ?, of D such that, for
any 6 €T with |8 <n, there is at least one y in F for
which C(x,8) = C(y,8). By directedness of D, there is  z in
D such that, for any y e F, y C z. It follows that
C(Ag(x,T))gC(z). 'So, by Theorész.B.l, Ag(x,T) Cz. By

0
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Lemma 4.2.2, x = UAMx,T). Thus x CUD. On the other hand,

: Deo n=0 P o
since C(y) < C(x) forany ye D, UD C x.
Do .
Conversely, suppose that x = LJCD. By Theorem 4.3.1,

Dm. .
C(y) < C(x) for all ye Cp- Assume, for some & € A,

C(x,8) # w and C(y,8) =w for all y e D. Using the fact that
¢y fis directed, a discussion similar to the proof of Lemmas 3.4.5
and 3.4.6 leads us to prove that there exists an environment p

and e],ez,...,e € Ac_ such that

n
L=w [[ye]ez- . -en]]p C;.W |Ixe1e2- . -en]]p
for all y e cD.' So, under p,
(Ucv)e]ez---en = j_gixe]ez---en .

This means that lJcD ? X contradicting the assumption. 0O

However, it is not-always the case that a directed sub-
set of A has a least upper bound in A. But as we see .in the
next theorem, every element of A that is hot the.bottom is the
least upper bound of a directed subset of A which does not include

the original element. In Chapter 6, this situation will be discussed

more uniformly.



4.4.5 Definition. Let D be a directed-complete lattice and F
be a directed subset of D. Then F 1is said to be interesting

if F does not contain its own least upper bound, i.e. UF ¢ F.

Note that any finite directed subset is not interesting and
that any infinite non-interesting directed subset can become

interesting by removing its least upper bound.

4.4.6 Theorem. Let x be in A. If x has a head normal form,
then there is a subset D of A which is an interesting directed
set such that

x =U?pD
D

[+ <}

Proof. We take a sufficiently large AQtree- T “so that
1) T is admissible to «x.

2) - For any n > 0, there exists at least one § e T -
with |8] = n, for which C(x,8) # w. |

For example, T as defined below satisfies 1) and 2) above:
Take any A-tree T' admissible to x. ALet T be a A-tree
which includes T'lJ{GO(YT.(6)4'])l §eT}. In the first place,
it is obvious that such a A-tree exists. In the second place T
is admissible to x. Thirdly, since T' 1is admissible, each
L(x,6) with 8§ € T-T' 1is obtained by n-abstraction, and so,

in fact, L(x,d) is t6°k for some k > 0.
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Since {8]| |¢| =|1,'Ge‘T-}T'} # P for each n by the defi-
nition of T, it follows that T satisfies 2), too. Since
there is at least one & € T with |§] = n for each n such
that C(x,8) # w and C(Ag(x,a),T) = w, we conclude that
Ag(x,T) é; x for all n by Theorem 4.3.2.

On the other hand, x U Ag(x,T) by Lemma 4.2.2. Thus,
n=0

- (a0 1 2
D {Ap(x,T),Ap(x,T),Ap(x,T),...}
is an interesting directed set whose least upper limit is x. O

4.4.7 Theorem. Given x, y € A such that x é; y. Then there

is zeA with x € z G y.

| A

_ Proof. Let T be a A-tree which is admissible to both . x
and y. Let neN be such that there exists & with |6] = n
for which C(x,6) = w and C(y,8) # w. By Definition 4.1.3,.

T"(y) contains L(y,8) as a subexpression. Since C(y,8) # w,

'L(y,a)-7;>ks]sz-ﬁ-s 2Y. Y, 00 0¥

prm12 q

Let z be derived from T'(y) by replacing L(y,8) in ™(y)

by As]szo-- ].zY]YZ‘--Y Q2 where s

q p+1
Now it is easy to see

spsp+ does not appear free
in zY]YZ--'Yq.

X é? z-é; T"(y) 5= y - O

[+ oo oo



84

The following fact is interesting in relation to m-complete-

ness discussions in Barendregt [ 2] and Plotkin [11].

4.4.8 Theorem. Let x, y e A. If, for any Z in Ac’

Xz = yz, then x = y.
D D

-] [+

Proof. Suppose X # y. By Theorem 4,3.2, C(x) # C(y).
’ , D

=<}

By Theorem 3.4.7, there exist €1:€5,...,€, € A and an environment
p such that |

v I]:xe]ez---en:[lp D# '} [[ye]ez'--en]]p . (*)

0

Since, by Proposition 2.3.5 and Corollary 2.3.18, the If can be realized

[

with both sides being in Ac, so we can choose p such that

p(V) C A
Let
) u],uz,...,up
X = X
D(U]),D(Uz),.-.,p(up)'
. V],Vz,..},vq .
y .
p(vy)s0(vp)s..naplyy)
and

W}sW;,...,W;(i)
& = A A —_—
p(wy) 20 (Wp) .- 0wy 5y)

where u],uz,...,u are the free variables occurring in x,

p



. . i i i
v],vz,...,vq are the free variables in y and w}’w2""’wm(i) are

the free variables in ei for i=1,2,...,n.

Now the inequality (*) is written as:

Xeie,y° e 55 yejey- -

where X, y, e; € A_. By extensionality of D_, we conclude that

xe] s .en—] Df ye] .e .en-_'

and so

Xe] .o .en_z Df ‘ye] .o .en-z

xe, # yé
15 ¥

This indicates that if x # y, there exists e, e A, for which
D

[«

xe];ye] . O

o]

We translate this theorem into one which is stated by

C-functions:

4.4.9 Corollary. Let x, y be in_ A. If; for any z € Ac,
C(xz) = c(yz), then c(x) =c(y). O

Theorem 4.3.5 is obvious if we replace z e Ac by zeD_
since D_ is extensional. The theorem says that

the extensionality holds in A, modulo =.
D

[+
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CHAPTER 5
INFINITE EXPANSIONS IN REAL PROGRAMMING LANGUAGES

We discuss informally how the concepts and formulations
introduced for the A-calculus in the previous chapters are
applied to more realistic programming languages such as recursively
defined programs and Algol-like programs. We present algorithms
to translate a program written in these languages into a |
A-expression. Using this translation, we show that the C-func-
tion for the X-expressions, in fact, corresponds to the infinite
expansion or the executions on all possible inputs for the pro-
grams in realistic languages. Most of the results here are not

essentially new.
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§1. Recursively Defined Programs

We consider the'programs which are defined by recursive
equations. (Discussions on this type of program are found, for
example, in [20]). The following is the syntax of the language
R.

Syntax of R

Elements .
1. A]’AZ"": Symbols for constants

x],xz,...,x : Symbols for variables

2. g |
3. G,6y,...,6.: Symbols for known functions
4, F]’F2’°"’Fn: Symbols for unknown functions

<term> ::= A1|A2|o--
Xy 1%y - 1%,

|6 (<term 1>, ..., <term k,>)

'|é$(<term 1>,...,<term‘km>)

IF](<term 1>,...,<term'p]>)
|f;(<term 1>,...,<term pn>)

F](X~]’X2";"Xp]) « <term 1>

<program> ::=:

Fn(xl’XZ""’Xpn) «~ <term n>

where we assume that <term k> does not contain any variable

symbol other than X1,X2,...;X'

for k =1,2,.,.,n.
Pk .
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For example

11 F(X) < F(F(X))
. {H‘erz) IERATS)
Fo1y) « Gy(F, (X)) ,F, (X))

=]
1]

are brograms of R.

Computation of Terms

Given a program & where £ is:

F(X'|9 2’ x )+\P(X‘l’ 2"",Xk])

F(X X)+‘l’(X

] 3 ’ S !’X )
1 2 1°72 kn
. where wi(x], . ,xk ) . is a term with occurrences of
X],Xz,...,xki for i=1,2,...,n. For a term T a computation
of T according to £ is defined to be a sequence of terms:

T]’TZ"°"Tn

"~ where T] =T and Ti is obtained from Ti-l by replacing an

occurrence of Fj(5]’52""’5k.) by Wj(s],sz,...,skj) where'

si's are terms. HWe write T-7?>Tn.

Translation of R to A

Given a term T and a program £, we want to synthesize
a A-expfession zg(T) such. that each computation of T accord-

ing to £ corresponds to a B-reduction sequence from zg(T)°



Let 8158p5eces XpsXgseonsXgs 9159055y ¢],¢2,...,¢n be

distinct variables in A.

Algorithm
(a) If T is A.,

Zé(T) =a; .

(b) If T is Xi’ then Zé(T) = X5
. ) ' C e
(c) If T s Gi(s],sz,...,spi) where zg(sj) SJ for
s _ ' = oo ;
Jj= 1,2,...,pi, then ZE(T) 91(31)(32) (Spi). The parentheses
are omitted if S; is a variable. '
(d) If T s Fi(sl’SZ”"’ski) then

Zé(T) = ¢i(s])(32)"‘(ski)-

By applying the transformations (a), (b), (c), we obtain a
A-expression Zé(T) € {ai’gj’¢k}* for a term T. Next we sub-

stitute a A-expression for 1509520 in Z'(T). For example

n
we see what to substitute for ¢].

Let
¥ = Y0, zp(v)
¢n
Ypa1 © Y(A¢n-l.Jy zg(wn-l)]
. n .
( ¢-i+'l 9¢i+2""’¢n )
yi =Y A¢1_ - Ti(Y.)
IRPOPRNEA S
0ps035-+ 50
¥ = Y(M’],J o zg(yy)

yzS.V3a---3yn
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Then Y] =¥ is the X-expression we want to substitute for ¢].
In the similar manner, we synthesize a A-expression Yi to sub-

stitute for ¢ (i =1,2,...,n). Now

It is easy to see that:

5.1.1 Theorem. For terms T], T2 and a.program 5,‘~T] —ET>Té

. ; B
if and only if ZE(TI) _—>ZE(T2)' O
To translate the result of Chapter 4 to R, we introduce the
notion of semantics to R.

Theorem 4.3.2 can te read as:

"Given A-expressions (programs) x, y, if x and y
have the same C-function (infinite expansion), then x
is equivalent to 'y under the interpretation of the D.-

semantics."

Here, instead of D> we use general domains to specify the

semantics of R (as in [20]).

Semantics of R

We define an interpretation, I, of R to be thewpair

(DI,VI) where 0; is a directed complete partially ordered set
with 1.=fWDI and v; 1is the semantic function which maps:
the constant symbols Ai to elements ai, the variable symbols

Xi to variables X; which range over DI’ the known function symbols
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‘Gi to g; € [DI + DI]' vy is extended in the obvious manner to

the terms generated from Gi’ Aj and Xk. Now a program £ of
R can be translated via vy into an equation £* with the |

unknown functions F.'s over DI By Scott's fixed point theorem

(Theorem 2.2.3) we can conclude that there exist continuous

functions

f],fz,...,fn € [DI +_DI]

which satisfy £, By way of the correspondence Fi g fi we

extend the definition of vI onto all terms of R. We denoté

£
i

Now we have the following fact which corresponds to

Theorem 4.3.2:

this extension by v

"G1ven programs El, gz and terms T], T then .

2’
&,
IIT 1 = v [[T2]] for all interpretation 1

if and only if

C(ZE](T])) = C(EEZ(TZ)) "

which says the semantic equivalence can be described by the equi-
valence of the infinite expansion (C-functipn)‘ It is easy to
see that "given a program £ and a term T, ET]] 10
all interpretations I if and only if E (T) e A has no head
normal form."

‘0n the other hand, ih a straightforward application of the

formal language theory, we see that the property:
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P(g,T) = “v%[[T] = lp for all interpretations 1"
1

is decidable. So the head normality is a decidable property on R.

HoWever, we do not know the answer to the fol]owing* question:

"Given programs E], 52 and terms T], T2’ is it

decidable whether or not
= 2
ez (1)) = €3 (1)) 7
which is equivalent to:

"Given programs £, £, and terms T T,, is it

decidable whether or not for all interpretations I

&1 &2
Vi ET]B = Vg ETZB 2"

This property is, of course, undecidable on A, for,the head

normality is already undecidable on A.

This problem is equivalent to the equivalence problem of the
deterministic pushdown automata. Refer to B. Courcelle, "Recur-

sive schemes, algebraic trees, deterministic languages," Proceed-
ings of the 15th SWAT Symposium (1974).
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§2. Algol-like Language

We take the translation algorithm based on the continuation
technique in [ 1]. The continuation is explained as fo]]ows;

Given a program:
S = S];Sz;...;sn

where S.'s are a (block of) statement(s).
We can regard S as‘a function over the program domain D .
and ';' is understood in the following two ways: |
‘(I) Each block Si is a function over D.  Thus ';' is the
composition of two functions. Let fS. be the X-expression

i
that corresponds to Si' Then the translation of S is:

Ax.fsn(fsn-](---(fs]x)))

(II) Consider S;S'. Let f' be the function over D which
is defined.by S'. We regard S as a functional o whiéh, |
applied ~f', yie]ds'a new function. So the translation of S;S'

is o
Ax.(¢s(f‘))(x)

If S' is null, f' dis I =2Ax.x. So, for example, the trans-
lation of S];S2 is

)\X. 0} (‘D ("' L0} I R (X)

(I) is not accurate when the program contains such statements as
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goto or halt since, in that case, execution of the program is

not necessarily sequential. - |
Here we show how some of the program constructs of Algol can

be translated into XA-expressions based on (II).

Given a program

S =858

13 2;--.;5n ’

each Si is translated into a A-expression of the form:
s; = A¢x]x2---xm.si(x],xz,...,xm,¢)

where Si is a A-expression that contains the variables

x],xz,...,xm,¢. The xi's are the program variables and ¢ is

called the continuation variable and stands for the remaining

~part of the program execution that follows the execution of 51.
Now S is translated into:

51(52(...(Sn1))...)

Algorithm. -We state the translation algorithm in [ 1] for .
some of the important program constructs. For the complete and
detailed description, we refer to [ 1]. For simplicity, we do
not consider the block structures and the program is assumed to
- have the global variables x],xz,Q..,x .

n

i)  Assignment: X5« f(x],xz,...,x ) “is translated as:

n
Mx]xz---xn.q)x]xz-'-xi-_]f(x],x2,...,xn)xi+]---xn

ii). Conditional Statement: if o then S, else S,

where a = a(x],xz,...,xn) is a Boolean expression. Let 51



and Sy be the translation of S] and 52’ respectively. Let

<> = <a(x],x2,...,xn)> be the translation of a such that

<a>AB B> A if a(XysXps.rusX ) = true

- <a>AB-Ji>B if a(x],xz,...,xn)'= false

Then if a then S] else Sy is translated as
A¢x]xé---xn.<a>((s]¢)x]x2---xn)((sz¢)x]x2'--xn)'

iii) goto 2: MWe associate a certain part of the program P
to each'labe] 2. Let m be the label which is defined in P

next to 2 and 2 and m occur in P as

2:5.:S

13 3S m:S

2;...,q oq+-'

Theh we associate 51;52;"';Sq to 2. So the translation of 2

is:

DEENCAORERIDIRD

where [m] is the translation of m and S; is the translation

of S, for 1<1i<q. Ifnolabel appears after 2,
[2] = 57(s5(-+*(s4(1)) )

Now goto £ 1is translated as:
A¢x]x2-w-xn.[£]x]x2---xn

Since goto 2 forgets the statements following itself, ¢ does

not occur in [k]x]xz---xn.

95



iv) while o do S: This statement can be regarded as W

which is recursively defined as:
W= if o then begin S; W end else no action
Since if o then begin S; W end is translated into
AdXy Xy X . <0>((s(w) )x %2 xn)(¢x1x2-°-xn) >

the translation of W, w satisfies the equation:

B

W —=> AKXy <a>((s(w¢))x]x2 xn)(¢x]---x )

So
W= Y(Af¢x]~--xn.<a>((s(f¢))x]---xn)(¢x]---x )

Example. Consider the following program:

begin
input(x,y); (1)
i=x; (2)
while >0 do B (3)
 beginy :=y5 (4)
jj_y>x2 then goto ¢ (5)
ioi= -1 | (6)
end; '
2: end (7)
Translation:

(1): We regard the input as an assignment and have

A = Apxyi.dabi
(2): B = rpxyi.pxyx
(4): C = A¢xyi.¢xy21
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(5): D= A¢xyi.<y>x2>([2]xyi)(¢xyi)

(6): E = A¢xyi:xyi:l

(7): [2] =1

(3): F= Y(Af¢xyi.<i>0>((G(f¢))Xyi)(¢xyi)) where
G = 20.C(D(ES)).

Now the whole program P = A(B(FI))T It is easy to see that

P 5 axyi.<a>05 (<b%>a?> (ab%a) (<a-1505 (<b>a2> (aba-1) (. .
~-)ab?g:l)aba

which shows all possible executions for arbitrary inputs or the

infinite expansion of the program.

In the example, one might see the correspondence between
B-reductions and program execution. _

Next we ask to what programming concept the heéd—normality
and the normality correspond under this translation. If we
assume that the computation of each Boolean function terminates,
the following is fhe‘answer:

“A integral part of a program is translated to a non-head
normal A-expréssion if and only if under any'assignment of the

‘Boolean values (i.e. true and false) to the Boolean functions

occurring in the part, execution can never leave the part once it

enters it." (Note that th1s property is, obviously, decidable. )

For example,

2: goto 2

This goto statement is translated into



n and [2] = X¢.G(---). Obviously, G

has nb head normal form. On the other hand, a normal expression

G = A¢x]x2-f-xn.[2]x]x2---x

corresponds to a program that has no loop in it, i.e. no while,

no goto that makes a loop. Thus, a normal expression is a program
which terminates upon all inputs. On the other hand, a non-normal,
head-normal expression corresponds to a program that may or may
not terminate depending on the input condition.

Now we have the following observations. Although the discus-
sion to support these conclusions is informal and rather sha]lbw,
they might give some intuitive insight and understanding to the
formal argumeni in the rest of the chapters.

(1) The process to generate C(x) from x € A corresponds
to program expansion or execution upon arbitrary inputs.

(ii) The Q-conversion corresponds to removal of meaningless
parts in the program (such as 2: goto 2).
(i11) Theorem 4.3.2 is understood as "two programs have the
same meaning if (and only if) they have the same infinite expan-

sion."

98
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CHAPTER 6

GENERALIZED A-EXPRESSIONS,
A NATURAL LATTICE STRUCTURE OF THE A-CALCULUS

We generalize A-expressions to the infinite A-expressions.
The results on the A-expressions in D_ are extended to the
infinite A-expressigns. It is shown that the lattice structure
of the infinite A-expressions (including the conventional .A-expres-
sions) induced by the D_-partial order is equivalent to a directed
complete partially ordered set minf, which can be regarded as
the domain of all the infinite expansion of the A-expressions,
Since minf is defined independent of D , ¢inf can be said to

©0

give a natural lattice structure of the XA-calculus.
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§1. Infinite Programs

How can a program be infinite? Prbbab]y in three ways.

1)  non-termination, i.e. run time is infinite.

2) infinite work area, e.g. a Turing Machine is an
<infinite-program> in the sense that it has an infinite storage.

3) infinitely many commands, e.g. an Algol program which
is textually infinite. i

Here, by an infinite program, we mean one fn the category 3)
above. |

However, one may ask how such a program can be realized.
In [12], Reynolds presents the following programming environment.

Let us imagine an interactive situation in which é person is
programming in front of a termina].' He builds up hfs program in
such a way that some of the integral parts (e.g., inside of a
begin-end block, a procedure body, or simply a statement) are left
unspecified. He can let the system execute this program. When
'it turns out that the system needs the specification of an unde-
fined part 6f the program to continue execution, the programmer
is requested to fill it with a code which could have several
unspecified parts, too. The programmer meets this request
probably considering the outcome of execution he ha; obtained so
far. This process of programming can-continue infinitely. Since
a person with free will takes part in this process, it can become
a non-recursively enumerable object. '

If we are to formalize this idea of <infinite programs>,
we shall probably have <infinite A-expressions>. Then, what do

infinite X-expressions 1ook like?
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A "X-like-expression" can be infinite in two ways:
1) Infinitely wide expressions

a) number of applications: We define x by
X := (...((A]AZ)A3)...)An)An+])... s
that is, x is the outcome of infinite applications

A

x
—
1]

1
Xy := x]A2

X_ 1= xn-lAn-l

b) number of abstractions: Let x be an expression

of the form

X ’:= )\V]V2V3"‘Vn"'.w b}

that is, x dis a computation process which, given an infinite .

sequence of inputs, {AjsAgs.sA .o Y, returns

V1
xA] > Av2v3---vn-~‘. Ja w
1
rv],v2
xA]A2 -+ Ay3v4--:vn---. JA],AZW

Y] ,V2,.. .,Vk

XA AL A, > AV, VL nc . w
2z Tk DTk Apshyserrshy
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c) combination of a) and b): For example,
X = AV]Vz"'vn"'oX]XZX3v’°° Py
that is,
X := )\v]vzooovn....w

)eor-

In a sense, the C-function has this structure. To apply

where w := (---(x]xz)x3)x4)--~)xn

infinitely many n-abstraction is to have an infinite expression:
At]t2t3---.Xt]t2t3---

from X € A.

2) Infihite]y deep expressions: Consider such an expres-

sion as
'.x .= Xi(xz(x3(‘..(xn(...))...)
x would be the outcome of the application
X1Y2
where Yy would be the outcome of the application
Xo¥3

where Y3

where Yn would be the outcome of the application

XY
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where Yn+1

We will mainly study this <infintely deep A-expression> in this
chapter. -

It is more likely that <infinitely deep A-expressions>
reflect the infinity of Reynold's infinite program. Let us take

the following sequence of Algol-like commands:
S E‘begin 51;52;"';Sn end

As we saw in Chapter 5, there are two methods to translate S
into a \-expression. |

1) Regard S; (i =1,2,...,n) as a function; D +D. Let
S; be the A-expression translated from Si' Since S s the:
map: D +D which is the composftion of all Si‘s, the translation

of S is:
AV'Sn(Sn-l("f(sl(V))'") .

2) Regard S; (i =1,2,...,n) as a functional: |
D ~+D) > (D~+D). Let 5 be the A-expression translated from
‘ Si' Using the technique of continuation in Chapter 5, the trans-
lation of S is: |

V.5 (550 (s (1)) -+ ) (v)

where I is Ax.x.
In both 1) and 2), we would have an infinitely deep expres-
sion letting n + . (However, here, note that 2) is more appro-

priate as we see in the following discussion.)
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Given an infinite program:
S.I;SZ;,...;S :

n’o.. »

this program will probably be the 1imit of the sequencef
S];_I_
SHM
SHOTRE

Using 2), we have

AV (51 (1))v
AV (54 (s, (1))

Av.(s](sz(---(Sn(l))°")V

So, probably, the infinite program above will be translated as:

U sy (0 (L))

We will formalize this idea in §3.



105

§2. Characterization of C-functions

As in Chapter 3, let € = {c| ceA » VU{w}}. The C-func-
tion is a map: A ~ €. It is easy to see that the range of C
is only a proper subset of €, i.e., C(A) g €, but what sort of
~subset is C(A)?

In fact, € 1is of too arbitrary structure tb attract any
interest. The following conditions characterize the hierarchy of
some interegting subclasses of C. |

Given c ¢ €.

Condition 1: If c(6) =z eV, then either z is free'pr '
z=1s, for &' €A where §' <& or &' =édom for some meN
(i.e. if a variable is bound, it must be so in an outer context).

Condition 2: If c(8) =w for some 8§ € A, c(6') = w
for any &' e A with § < 8' (i.e. once a subexpression turns-
out to be bottom, any of its decendants must be bottom, too).

Condition 3: If c(§) # w, there exists an integér kg
and a positive integer Ng such that, for all n > Ng, c(&en)

= tao(n+kC) and c(8ones') =t for all 8'eA (i.e. ¢ is

'finitely wide'). _
Condition 4: Let Fr(c) = {z| zeF, c(8) =z for some SeA}.

Sonod’!

Then #(Fr(c)) < = (i.e. the number of the distinct variables
which occur in {c(8)| 6eA} is finite).

Condition 5: There are partially computable functions

. . = NG ar
¢ A+N and Yot A+ V such that ¢c(6) = N6 and wc(a) z

if c(6)=z¢€V, ¢c(6) and wc(a) are undefined if ¢(8) = w
(i.e. {c(8)| c(8)#w, 6€A} is a recursively enumerable object

and the width in Condition 3 is also partially computable).



6.2.1 Theorem. Each element of C(A) satisfies Conditions 1-5.

Proof. Conditions 1 and 2 are obviously satisfied by the
definition of C. Let x be one of the A-expression such that
C(x) = c. v

Condition 3: Since C(x,8) # w, L(x,8) # Q. Let

aB
Now set Ng =g and kg =p-q.

Condition 4: Since x 1is finite, x can contain at most
finite number of distinct free variables.

Condition 5: OQbvious from the definition of C. O

The converse of Theorem 6.2.1 is true as demonstrated in

Theorem 6.2.2.

mfin and minf are subclesses of € defined as follows:

Cesn = {c| ceC, c satisfies Conditions 1-5}

¢ {c| ceC, c satisfies Conditions 1-3}

inf
We have the sequence: mfin ? minf g: C. The smallest class

Cein is, in fact, the same as C(A) as proved in the following

theorem.

6.2.2 Theorem. Let ¢ be in €. If c¢ satisfies Conditions 1-5,

then there exists a A-expression x such that C(x) = c.

Proof. We give effective codings of Z, A and V into A

as:

106
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31

neZZ+w»neA
A

(=2

SelAr Se

En:

t(s € TA - t6 € A

fieFw ?1 =f. el

We assume that En(Z), En(a), En(TA) and En(F) =F are mutually

disjoint. | |
Given c e mfin’ let Ac be the subset of A consistihg of

all & such that ¢C(6) is defined. Obviously, A is recur-

sively enumerable.

In the rest of the proof, we depend on the following fact due

" to Kleene:

"For each partial recursive function &: N +N, there exists

a A-expression & e A such that

3 B> if o(n) = m.

@0 has no head normal form if ®(n) is undefined.

where m, n are the encodings of m, neN in A."

(For the proof of the proposition above, see, for example, [2].)

We define m. € A Dby:

~ CNV a A-expression without a head normal form
T8 —— if 8¢ A

Ax.x if S e AC
A partially computable function MC: A >N is defined by:

undefined if c¢(6) = w

M.(8) = ‘
¢ k§-+¢c(a) if c(8) fuw.
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P e A is defined by:
P16ﬂ!—>6°1 for ieN and S € A
Finally we define ec € A by the following recursive equation:

0 5e-13ﬂL>u-5(f50ﬂ‘(37$'T37c( 8)e)

where f e A 1is defined by:

e g80nze C i di=m
f3Tmnze — NV e . (*)
As.f8T+Imnz(NST+Te) otherwise
where g e A is given by
ez | if j=
g8jnze LW, I - '
9631Tnze(ec(Pﬁ:36)e) otherwise
and Ne A is given by:
s if z=1¢t, . '
N&Tes NV, §o1 (%x)

ez otherwisev.

Note that s at (**) is the same as the bound variable at (%).
Now we assert that C(Ocﬁl) = c. To prove this, we show

that there exists e(S € A for each § é At such that:

(1) 6 =0:

(a) If ¢c(0) = w, then 0c513 is non-head normal.

(b) If c(0) =velV, ¢C(0) = q and Q*'kg = p,

CNV J o cee a
9, 01 —————>As]sz .v(ecleo)(eCZeo) (ecqeo) .



(2) 6 =26'=d#0
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(a) If c(8) = w, then OCSeS. is non-head normal.

(b) If c(68) =
0 de., MNoirr

c ¢

veV, ¢ (8) =q and q+kS = p, then
C )

2---rp.v(ecﬁolea)(ecdoZeG)-~-(0C6oqe6) o

We only prove (1)-(a) and (b). (2)-(a) and (b) are proven

similarly.
(1)-(a):

head normal. Thus,

Since c(0) =w, 0 ¢ A, and so, ncﬁ is non-

. @cal _—"—_>“b6("'): non-head normal

CNV

(1)-(b): Since c(0) # w, wcﬁ =51

CNV, (...

9061 —_—

NV, edopger
_CNV )\s.l .foT

CNV
——-——>)\s]s2

(Set eq

CNV

———>)\S-'52"

CNV

—_— )\5152..

-SaﬂL>As S

) 1°2°

CNV

cnm— )\S]SZ. .

CNV

s, - FOppaV(NOp(NOp=T (- - - (NOTI))- - )

= NOB(NGR=T(- - -

15778 .eOG(eC031eO)(ec032e0)---(ecolqe

—_— AS]SZ. .

-- A

pqvI(NOTI)

b ,

(NOTI))---).)

-sp.gOqueO
-sp.gOTaveO(Gc(PaO)eo)
-osp.goTéveo(ecooqeo)

‘s .gﬁaaceo(ecozleo)(OCOoZeO)---(ecozqeo)

P

q o)

-sq.v(ecleo)(OCZeo)---(Ocqeo)

This completes the proof for (1)-(b). 0O



110

| Probably o: mfin +A (8: co Oc) corresponds to the

universal Turing machine.

6.2.3 Corollary. mfin = C(A) . ' O
Now Theorem 4.3.2 can be stated as:

¢

fin ° A/D=

oy

In the rest of this chapter, we sha]llmainly,study‘ minf;



§3. Infinite A-expressions

In this section, we formalize the idea of infinitely-deep
A-expressions. We utilize the process of generating infinite

programs given in §1 to define the infinite A-expressions A,

6.3.1 Definition.
| a. I is the set of the expressions to be defined by:
.1) A variable v e‘U alone is in A~
2) De My
3) If &, ¢ are in Ay so is & ().
4) If n is in Ay and" v e U is a variable, then
Av.n is in Ay

b. Let &, ze qD. We say that ¢ is a specification of

g if either £=17¢ or ¢ derives_from & by replacing somé ’
occurrences of [0 in & with elements in AEY (We write
as ¢ spec £.) |

c.. Given r e ﬁj’ Awg define c* in A to be the

A-expression which is derived from ¢ by replacing each O in

z by Q.-
d.  A”, infinite A-expressions, is the set of a]]

sequences

(Zys8pseeeslsees)

whefe Fi € qj and Ci+l spec Ci for each i = 1,2,...,
that is, '

K" = {n] n=(g;s8p-..), 15 €A and

Tj+1 Spec ¢, for each i=1,2,...}

11
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Since A can be regarded as a s'ubseta of lb by the ‘oll)yious
injection: A ~ Ay, we can embed A into A’ as fé]]ows: Let
X €A, 1: X+ (x,x,x,x,;..) e’ by 1: A~ A°, we regard as
A CA”. We define A to be the set of the infinite X-expressions

which do not contain any free variables, i.e.

A, = {z] ¢= (tzl,;z,...,z;“)eAc where z. has no

free variables for each i}

The restriction of 1 to A, 1| .gives the inclusion: A_C A”.
- c Ac . c (o

' Given n = (c],z;z,;..,z;n,...) in A, each z; can be

looked upon as a program which has some unspecified parts. O's

occurring in g; are the unspecified parts. ¢ is obtained by

i+l
filling O in (& with another £ of AEI This process even-
tually leads us to the infinite X-expression n.

As we mapped A into D_ through W, we are to define a

semantic function W_ of A" into D_.

6.3.2 Definition (Semantics v, of A°°)._ U is the set of all
variables of discourse and Env is the set of aﬁ functions:
u~D,.

| Now, \Vm:. EN » (A" » D) is the following map: Given

n = (c],cz,...) e A~ and p € EN.

W _[Inllp = .U]\V Cz5D e
1:

We should note that, in Definition 6.3.2,

W [[z;;f']] p CW [[(,;‘H]] p for each i.
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So, W_[[nllp is the Teast upper bound of a directed sequence -

in D_.

(-]

6.3.3 Corollary. Let x be in A. Then

\V[[x]]p=\V°°[[1(x)I|p . O

6.3.4 Definition. Given £ and ¢ in Aw, we define the

application of & to z, £(z) e A, as follows: Let

(i
i

= (£1EpsE3s--2)
z = (gy55p:C35.-.)
Then
E(z) = (£;(z1),85(z5) 1E5(z5) 5. . )

It is easy to verify that

V,LE(x)Tp =W Ml pv_ TzIp)

for £, ¢z in A"

| Now, we are ready to consider ‘
the correspondence between A~ and 'minf.
re]atfon holds between A~ and Ginf to that between A and

In fact, the similar

afin‘
The following Temma is necessary to prove part 3 of

Theorem 6.3.6.

6.3.5 Lemma.
1. Let‘ X and y be X-expressions which satisfy the
condition of Theorem 3.4.7-1. Then, by the theorem, given ahy

a, be D, we can choose e],ez,...,en € A and an environment
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p for which

To

n
Q

W [[xe]ez- e,

and

|
o

] l]:ye]ez- . -en]] p =

Here if, for Xy and yeh, x C Xy and y C Yq» then
' D

©o «©

i
[+}}

v [[x]e]ez' . 'en]] p =
and
\} [[y]e]ez---en]] p=b

2. Let x and y be in A. Assume that, for 6 € A, X
and y satisfy the condition of Theorem 3.4.7-2. Then, by fhe
theorem, given any a, b € D, we can choose €1:€55...58 € A
~and an environment p for which

Io

n
1]

] [[xe]ez- e,
and :

I
=

v ﬂ:ye]ez-' -ehI] p =

Here, if, for X1 ¥q € A, x C Xps Y C N and

[} [+

C(y],a) = w, then

I
-}

WIIX]e-Iez"'en]]p =
and
ViLyierep e Do = |

Proof. We prove only part 1 of the lemma. By the assump-
tion of the lemma, there exists & € A which satisfies the

following:
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(*) For any &' with &' <&, €(x,8') = C(y,8') and
C(x,8) = (u,i)
and
6(y:6) = (ij)

where (u,i) # (v,J).

Since C(x) g_E(x]) and C(y) 5_6(y]),

]

C(x,8") 6(x],6') Fuw

and

6(y,5') 6(y196|) )

for each &' with &' <.

So, (%) still holds if we replace x by X; and y by ¥y

As is seen in the proof of Lemma 3.4.5, the choice of

€15€5,...,e and p depends upon'on1y C(x,8') and C(y,s')

n
for &' 5_6; from which our assertion follows immediately. O

6.3.6 Definition. C_: A" + ¢ is the following map: Given -
L= (5)8ps-..) € A7,

© if C(c?,a) =w for all § =1,2,...
C,(z,8) = N
zeV if C(gi,d) = z for some 1.

*

C, is well defined since ;: c c:;] and so C(c?) < C(zi,)-

D

-

6.3.7 Theorem.
1. leA =C
2.. Cw(Am) = minf
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3. Forall E, ze A",

£ Dg ¢ iff C_(g) <C_(z)

<]

(where & C ¢ means W_[[€]lp CW_[[cllp for all pe EN and
) A
< is the partial order over C as in Chapter 3).

ono/__..
D

oo

So, Ginf

Proof. It is obvious that C_|, =C, and C(A) CC; .

To prove that C_ is surjective, we need a similar concept
to admissible A-trees in Chapter 4.

Let c € cinf‘ We say that a A-tree, T, 1is admissible to c

if T satisfies the following:

If 8 e€T, then 6o1,692,...,6°N§ are

also in T where Ng is as in Condition 3

of Ginf‘

Now we define o"(c,T) € Aq for ce minf, a A-tree, T, .-

admissible to c, and neN (similar to Ag(x,T) in Chapter 4).

$

an(c,T) = ag- where o, (6 € T) is defined by:

1 If |8] =n, o8 =0

c
2) If |8 <n and c(8) = w, ag = Q.
3) If |8 <n and c(8) = z,
ol 8o Soy1(8)
ag = Ataoltaoz-'-t c .Zag ]ag 2---ac T
§o(y(8)+ky)

c . . -
where k6 is as in Condition 3.df minf'



Now it is easy to see that

a"(c,T) e M and anﬂ(c,T) spec a"(c,T)

for n=10,1,2,..., and, letting o = (ao(c,T),a](.c,T),az(c,T),...),

ae A’ and C_(a) = c.

To prove the last part of the theorem, let us assume that
C.(E) £ C(z) for given € = (£,,6,,...) and Z = (g,25...)
in A”. By the definition of C_, there exist i, jeN and

S§eA for which

either c(g:.‘,a) =u and C(;},G) =v with u#v
or C(£}.6) # w and C(«::,G) =w for all keN.

Since g’k‘ DS E:_ﬂ and c; Dg Z;EH for each k, by Lemma 6.3.5,

© . -]

there exist €15€ys...,€ € A and an environment p for which

n
there exists K > 0 such that for all m > K, ‘

Vg e, e T p = K

v IIc;e]ez---en]] o=H
or

\V‘II.g;e]ez---en]] p = K

\V [[C;e]ez" 'en]] p = _l_

since W, Lelp = UV Cgelle and W Dzllo = uu [z Do . by
= k: ) :

the definition of W_, we conclude that & € z.
D

On the other hand, let us assume that C_(£) < C_(z). We
‘take a A-tree, T, which is admissible to both C_(£) and

C.(z).
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We define B(n,i) for n=%. or ¢ and i >0 as follows:

B(n,i) = Bo(n,i) where B (nyi) (6 € T) is defined by:

1) If 8] =4, then 8%(n,i) = o
2) If |8] <1 and C(n?,d) = w, then BG(n,i) =
3) If |§] <i and ﬁ(n:,a) = (z,k), then

3 (“") " Mso1%602"" " Eao (v (8)4K)"

“8oy(8)
zBG°](n,1')BG°2(n,1')--~B T (n,i)

In the first place,

B(g,i) € E:f and B(z,i) C r,;‘
D D

(-]

In the second place, since

* -
and o
= ouaet
gy = n=oAP(€" )
and
*
A(E:,T) C B(E,])
P D < |
and ® for j > max(i,n)

AN(ZE.T) < B(z,])
p T 0

[ <]

we conclude that

B(€,i) and & = ‘U]B(c,i)
'l"—"

(*) z

_"_.C8

i

85 n

oo



Since C_(£) < C_(z), by the definition of C_, it follows.

that, for any p > 0, there exists a sufficiently large Q > 0

such that
C(B(£.p)) < C(B(z,Q))
that is,
(#%) B(E,p) Dg 8(z,Q)

From (%) and (#+), & C ¢ is immediate. 0O

©o

6.3.8 Definition. Given a complete lattice D, let E be a
subset of D.
The directed completion of E in D' 1is the set

{a| there is a directed set F C E such that a =UF}

6.3.9 Theorem. {v_[&1 | E,:eA:} €D, is the directed completion
of WOIxT|xendCD,. Thus (v [eT| &e A’} isa directed

complete subset of D_-

(Note that the elements of Az and Ac do not have any free

variables. So, their values in D_ do not depend on the environ-

ment p € EN.)

Proof. The argument for the proof is similar to Theorem 6.3.7.

O

Theorem 6.3.9 shows that the relation between A: and Ac '

is similar to that between the real numbers and the rational numbers.
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Each real number is defined as the 1imit of a non-decreasing
sequence of rational numbers. In this way, we may well regard A°

as the generalization of A.

6.3.10 Corollary. The cardinality of D, 1is strictly larger
than denumerable- if D_ # {[}.

Proof. Obviously, CW(A:) (g_ﬁinf) has a cardinality
strictly larger than denumerable. Since & and ¢ in A: are
mapped to different elements in b, if C_(g) #C_(z), D, must

have a cardinality stridt]y larger than denumerable., 0O
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§4. Lattice Structure of mfin and Ginf

In the previous section, we generalized A to A”. Here we

shall show that the lattice structure'in A and A" induced by the
D_ partial order is equivalent to the lattice structure of Einf
which is a directed-complete partially ordered set. In addition,

we shall examine the structure of cinf and ¢fin'

6.4.1 Proposition. mfin and minf are partially ordered sets
with the order C defined by: For a, b e Cinpr 2aCSDb if and o

only if, for all & e A,

either a(é) = v

or a(s) = b(s) . 0

_ 6.4.2 Proposition. mfin and .minf lower semi-lattices. More

precisely, we define anb e C, . (afiﬁ)’ a,bed, . (mfin)

as follows: Let mg = max(Ng,Ng)4-1 where..Ng and Ng are as
in Condition 3 of C..¢- Define- c =anb e minf (mfin) by:

1) c(0) = a(0) if.a(0)=b(0) #w and a(my) = b(my)

w  otherwise.
2) Let & = 8'en and suppose that c(§') 1is already
defined.
a) If ¢(8') =w then c(8) = w.
b) If c(8')# w then
a(s) if a(6) =b(6) #w and a(semg) = b(sem,)

c(8) =
w otherwise.
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Proof. If a, be minf’ Ce€ minf since, obviously, c¢ as
defined above satisfies Conditions 1 to 3 of minf. In case
a, be mfin’ we only have to show that c¢ satisfies Conditions 4

and 5 of C to prove that c ¢ mﬁ.n. Since ¢ cannot contain

fin
any free variable that does not appear in a or b, c satisfies
Condition 4. On the other hand, c(8) for each & e A is com-
puted in the following way: If wa(s) and wb(d) are both
defined and wa(d) = wb(a) and if wa(SO(max(¢a(6),¢b(6))-Pl))
= Y (80 (max(6,(8),0,(8)) +1)) then c(8) = y (8). Otherwise
c(s) = w.

This statement guarantees that there exists a partially
computable function wC: A +V that satisfies Condition 5. A]so
¢c: A ~+N is defined by;
undefined if ¢_. 1is undefined
0.(8) = { e

max(¢a(6),¢b(6)) otherwise.
On the other hand it is easy to see that there is no

de €, (Cc. ) such that c ;;d and both dCa and dCb. DO

6.4.3 Corollary. Given x, y € A, there exists a \-expression
z e A such that

C(z) = c(x)nC(y)

Proof. Immediate from Proposition 6.4.2 and Theorems 6.2.1

and 6;2..2. O

Given x, y, ze A, if C(z) = C(x)nC(y), z C xny by

0

Theorem 4.3.2.
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However it is not generally the case that z 5= XNy.

[++]

6.4.4 Counterexample. Let

X = Axyz.xQz
Y = Axyz.xyQ
Z = AXyz.xO0

*
Obviously, C(Z) = C(X)NC(Y), but when D, is continuous, .

(unv)(w) = u(w) Nv(w) for u, v, we D, and so,
Z(xab.auUXab.b)II Bsg
X(Aab.aUxab.b)IT £ 1
Y(xab.aUrab.b)II £ 1

So |

JA é; X(\Y

(=]

6.4.5 'Progos1t1on.. Any directed subset qf minf has its least

upper bound in minf’ So C. is directed-complete.

inf

deC,

Proof. Let Q be any directed set of min inf

f as

defined below gives the least upper'bound of D:

w if c(8)=w for all ceD
d(s) =
z if c(8)=2z for some ceD .

d is well defined by Theorem 6.3.7-3 since D is directed. It

is easy to see that d satisfies Conditions 1-3 of min 0

£
The following proposition shows that the lattice topology of
A and A" induced by D_ partial order is, in fact, equivalent

to the lattice topology of minf’

*Refer to [15] or [12] for the details.




6.4.6 Theorem. For £ e A~ (A) and a directed set D c A" (A),

£ : UD if and only if C(g) = UlC(z)] ced} in €, . (C.. ).
Proof. For the case of D C A, we proved in Theorem 4.4.4.
Since the D_-value of each element of A" is defined as

the limit of a directed sequence of members of A , this result

is extended to the case of D C A~ in a straightforward manner. 0O

It would be interesting to ask if we could remove the convdi-_
tion of directedness from Theorems 4.4.4 and 6.4.6. The answer is

‘no' by the following argument.

6.4.7 Definition. 1) For a, beminf, we say a and b are

comg'atible if there is no & e A such that

a(s) # w
b(8) # w
and a(s) # b(s) .

2) For SC minf,' S 1is said to be compatible if any two:

elements of S are compatible.

6.4.8 Corollary. For Dcminf’ if D is directed then D is
compatiblie. 0O

By Theorem 4.3.2 and Theorem 6.3.7-3, if C(£) =uU{C(z)| zeS}
for £ €A and S CA” such that {C(z)| zes}? ct, ¢ is compa-

tible, then US DC_ €. However it is not always the case that

0

Us Z.

D,,
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6.4.9 Counterexample. Let

X = Azxy.zQy
Y = Azxy.zxQ
Z = \zxy.zxy

'Obviously, X and Y are compatible and C(Z) = C(X)ucC(Y), but

Z(xab.ba)1I B> 1
X(Aab.ba)1I B> @
Y(xab.ba)IT B> @

so
Xuy é; Z

We note that ¢fin and minf have the least element & which

satisfies
Q) =w for all 6e A

6.4.10 Proposition. For all elements a e minf (Gfin) gxcept

R, there exists an interesting directed set D C minf (inn)
whose least upper bound is a, i.e. x g a for all xe?D

and a = UD.

Proof. Similar to Theorem 4.4.6. 0O

6.4.11 Proposition. Given a, b e m.nf (mfin) such that a g b,

i
then there exists c e minf (mfin) such that

a g c g b
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Proof. Similar to Theorem 4.4.7. O

Here Wg state the negative result that minf is not

*
continuous. The following example shows that cihf is not

continuous.
Let
a = Caxyz.z(FM(Q)y)x
b = C(Axyz.zyR)
¢ = C{Axyz.zyx)

where. F = Afxy.x(fy). Since I =4 5 v Q),
) ‘o0 o N=0

Also, b C c, but it is not the case that b~9-an for any n é.l.
(The topological order, < , on minf is trivial in a sense that

a<b for a,bed, o ifandonlyif a-= 1.)

6.4.12 Proposition. Given a, b e €, o (Cc. ), we define a(b),

fin
application of a to b, as follows:

a(b) = C_(&(z))

-1 -1 .
where £ e C_'(a) and ¢ e.coo (b). Then L minf -> cinf

(: Cosn mfin) for each aeC, . (cfin), defined by Qa(b)'= a(b),

* .
This fact was suggested with the example to the author by
Christopher Wadsworth.
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is continuous and minf (Co..) 1is extensional with respect to '

fin
the application, i.e. given any a, b e Cinf (cfin) if

a(c) = b(c) for all c e minf (C...) then a =b,

fin
Proof. The continuity of Qa is immediate from the defini;
tion and the fact that the application of ‘A-exprgssions is

continuous in D_. The extensionality can be shown in a similar

way to Theorem 4.4.8. 0O

We now note that minf can become a complete lattice by
addling T (top) to Cine Namely, we define aUb € {T}Uﬂlinf
for a, b e {TIul, . as follows:

1) If a=T, b=T or a and b are not compatible
then aub =T.

2) If a and b are compatible, determine c = aUb by:

|a(8) if b(s) = w
c(8) = <b(s) if a(s)

w if a(s) =b(s) =uw

w

6.4.13 Corollary. {T}Uﬂiinf is a complete lattice. 0O

However, Counterexample 6.4.9 shows that US reflects the
‘reality only if S C Q¢ s directed. Alsb, the definition of
U above is artificially too sfrong. For example, take Ax.x
and Ax.xx. Since they are not compatible, by the definition

above Ax.xuUMx.xx = T, but since

(W Iax.xxJuw Iax.xD(v [ax.xxI) = W Iax.xxJUW [[(Ax.x;c)(xx.xx)]]
=W[Iax.xxJ# T



'So WIAx.xxJUW [Ax.x]}# T. However, can -any interesting
theory be built if we allow U of mutual eTements such as ‘Ax;xx

and Ax.x not be T? I leave this. question open here,

128



CHAPTER 7
SUMMARY, CONCLUSIONS, PROSPECTS

Summarizing the results obtained.in the previous chapters,
we show that only some abstract properties of D, are needed to
deduce these results. This fact makes it possible to give an
axiomatization of the extensional model theory of A-cglcu]us.

Some prospects for future research are given.
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§1. Summary

We start this chapter with the summary of the results in

Chapters 3, 4 and 6. The following diagram is illustrative:

7.1.1 Diagram.

Vv \Vw
C [EN-+ Dw] C.
d d,
q:1’ in c ¢1 nf

where d_ and d are defined as follows:

For c e cinf’ p € EN,

d Dclp =V _Mellp for £e A" such that ¢ = C.(E).
For c € mfin’ p € EN,
dIclp=V[IzIlp for z € A .such that C(z) = c.

These definitions of d and d_ are valid, since, by Theorems

»4.3.2 and 6.3.7-3,

3 D= n iff C_(g) = C_(n)

We 1ist the results we have reached:

1) C and C, are surjective.

2) d and d_ are injective.

3) Cc= C°°IA and d = d”lmﬁn'
| 4) The diagram is commutative, i.e. W = doC and
W_ =d_oC_.

5) d_: Cinf ™ [EN+D_] is a continuous map.

(So d_ 1is monotonic, too.)



Let us prove 5). We regard [EN+D_] as a lattice by the
partial order induced by D_, i.e. given a, B e [EN+D_], o C8B
if and only if afp) CB(p) for all p e EN. Given any directed

set DCC; ., let D={ceh| C,(E) eD}. Then

f’
D is directed in D_. Llet n=UDeA”. By Theorem 6.4.6,

Co(n) =wiC (g)| £eD}. Now, given any o e EN,

d Muollp = d_[C (n)Tp
=W_[InDoe . by the definition of d_
=V, IuWle
=UWV_ [elp| £eD}
=U{d_[Idll p| deD} by the definition of d, .

This proves that d_ 1is continuous. O

Since d_ is 1 to 1, continuous, we can say that minfv
give the lattice structure of A and A" induced by D_. Since

C can be defined naturally from A, independent of D, the

inf .
lattice structure of ainf can be said to be the inherent

structure of A.
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§2. Universality of minf over A

We'may ask what proberties of D_ are essential to have the
theory summarized in the previous section. Namely, for what kind
of model of the A-calculus, could we draw Diagram 7.1.1 such
that the properties 1) to 5) may hold? This speculation will
probably lead us to a more general theory of A-calculus mode]s}..
To make the description of this section as self-contained as
possible, we start with fhe definitions of the A-trees and their

admissibility in Chapter 4.

7.2.1 Definition. An infinite subset T of the pedigree A is
said to be a A-tree if

1) Oea

2) If S8 e T, then there exists N e N such that
801,802,...,6oN € T and Gok ¢ T for all k > N. '

For a A-tree T and § € T, define YT(G) to be N in (2),fife.

v7(8) = #{8' € T| &'= dom for some meN}

We redefine the notion of admissibility as follows:

7.2.2 Definition. Given a A-tree T and c e Ciner T s said,

1

to be admissible to ¢ if, for all 8§ e T, 77(6) > Ng where Ng

is as in Condition 3 of minf.

7.2.3 Definition (Structural Approximation). Given c € Conf
and a A-tree T which is admissible to c, we define
Ag(c,T) € Ay in the following way: AB(C,T) = Ao(c,T,n) where

Aa(c,T,n) is defined for each & € T inductively as:
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1) If |8] <n, .

(i) if c(8) = w then AG(C,T,n) =Q
(ii) if c(8) = z, then

() =
A°(c,T,n) = Ataolt

so(yp(6)4KS) g (4)
AT (e, Ton)

C N . ey s
where k6 is as in Condjt1on 3 of minf.
2) If |§] =n, then AG(c,T,n) = 0.
Lemma 4.2.2 is rewritten as follows:

7.2.4 Lemma. Given x e A and a A-tree T, if T is admissible
to C(x), then

o

X

= U (AS(C(x),T)*
. Do n=1

where *: qj + A is as in Definition 6.3.1. 0O

Obviously Ag+](c,T) spec Ag(c,T) for c € minf and a

A-tree T admissible to c. So E. = (A;(C,T),Ag(c,T),...) is

in A”. This &C gives a decoding of ¢ in A", i.e
c=C.E.).

7.2.5 Definition. We say that a domain D 1is a reasonable

extensional model for the )A-calculus if D satisfies the follow-
ing conditions:

Axiom 1. D is a directed-complete partially ordered set

with the least element | =nD and D # {]}.

8ol §02 e
sop” t zA” (c,T,n)A” “(c,T,n)
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Axiom 2. There is the following pair of maps (¢,4) that -

are bijective and continuous
Déé%f'[D + D]

Axiom 3. We map A into D by the semantic function W
as follows: Let EN = (U -+ D) for the set of variables U.
W: A~ [EN>D] is defined as:
1) For veU and pe EN, WIvIp = o(v).
2) For x,yeh, pekN, WIx(y)Dp =oWIxDo)WIylo).
3) For velU, xeA and p e EN,

WVIAv.xTp = y(ABeD: W[IxT p[v/R])
where
p(u) if u#v

B if u=v.

plv/8)(u) = {

Then the following two properties hold:
a) For each x e‘l'&, VIxIp =] forall pe EN
if x has no head normal form. _
b) Foreach x e A and a A-tree T which is admissible

to C(x),
VIxT o = VW TAYC(x),T) T p| neN)
for each p e EN.

7.2.6 Theorem (Universality of Cips OVEr A). If D is any
reasonable extensional model for A, -then Diagram 7.1.1 is valid

even if we replace D_ by D.



Proof. This theorem asserts that all the theory developed
in Chapters 4, 5 and 6 depend on only the properties of D in
Definition 7.2.5. The proof is done‘by a careful inspection on
what properties of D, are used to prove the validity of the:

diagram. 0O

Here we note that Wadsworth's theorem on reduced approxlmants

also holds on D as def1ned in 7.2. 5.

7.2.7 Proposition. Let A(x) be the set of all reduced app?oii—
mants of x € A. Then in a reasonable extensional model D, -
X =UA(x)
D
Proof. Let T be a A-tree admissible to C(x). We show
that given AE(C(x),T) for any nelN there is € e A(x) such
that

A"(c(x),T) Ce
P D

4) If x has no head normal form, then x = | and
D
A(x) = {Q}, so x B UA(x).
ii) If x has a head normal form, let us consider

Ag(C(x);T). By Corollary 4.1.13, there is T"(x) such that

and AB(C(x,T)) is obtained from T"(x) by replacing each

L(x,8) in T"(x) by @ for each & € T such that |8 =

By x! CNV>:Tn(x) be the sequence of reductions so that

Let x

135



x' + T"(x) ~does not contain any B-reductions. Since a, n, Q-con-
versions do not increase B-redexes, this resolution is possible.

Then let € be the direct approximant of x'. Then .

AM(c(x),T) C e
P D

because all the B-redexes in x' are in T"(x) and they are
in the parts of Tn(x) which have no corresponding part in
An(c(x),T) except Q. Since x= LJA (C(x) ,T), x =UA(x). O
p ' Dp=g P D

However Axiom 3b cannot be deduced from Axiom 3a or
- x =UA(x) or the combination of both. One may ask if we cou]d'
reguce Axiom 3b to a simpler condition. This does not seem to be
possible if we consider Park's patho]ogicai model [10]. Park
showed that 1f a d1fferent (¢ ,w ) s adopted to construct D,
then Y # Af. U a (1) for the Curry's pathological combinator V.

As 63rol?a2y 4.2.3, Axiom 3b implies Y B Af.n:;f"(l). This
implies that Axiom 3b is not true in Park's model. This indicates
that this axiom cannot be deduced from such a simpler condition
as the continuity of D_. (We note that the proof of Axiom 3b
in D_ depends on the type construction of Dm.) Probably,
Axiom 3b must be proved for each model D directly from its
construction.

By Proposition 7.2.7, we can conclude that, if D satisfies

Axioms 1-3, all the results on D_vs. A due to Wadsworth [21,22]

are valid on D vs. A. (So, I =4, Y = Af. U £1( (]), etc.)
D D n:O
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§3. Prospects

‘We have completely ignored the other models of the
A-calculus. E_ in [21] and Pw in [17] are examples of non-
extensional models, on which the formulation of fhe infinite normal
form developed in this thesis is no longer valid.

It would be possible to formulate the infinite normal forms
on these non-extensional models. However, it does not seem
pbssible to give such a clean theory as is possible on D_. Many
interesting algebraic properiies of minf are possible due to_
the extensionality of D.

Another point to note is the problems of the compatibility
and inconsistency among the A-expressions. We say that two

A-expressions x, y are inconsistent if there exists & € A

such that C(x,8) # w, C(y,8) #w and C(x,8) # C(y,8). Some |
of the problems caused by the introduction of U into the
A-calculus were discussed in §4, Chapter 6.

I am not sure at this point whether or not we could develop
an interesting theory by introducing the U operation into fhe

A-calculus.
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Lastly in this section, we focus our attention Qn A”. One
may ask what A" s in actuality. We can say that A" is
arbitrary.if we confine ourselves to the function over the

integers. For example, if we consider the flat space of:

0, 1, 2, 3,

%
A" gives all continuous functions from N to N. Let us consider

the following Sequenée of mappings over N. Let

' a if n=0

fo:‘ N+ N be f(n) =
: ]l if n>0
ao if n=0
f]: N+ N be f(n) = a if n=1
1 if n>0

a; if n=1¢p
fp:~N+N be f(n)

1l if n>p
Then fo C f] g vee C fn € .-+ . Since the choice of a; is
arbitrary, f = u 1"1 can be the arbitrary continuous function
‘ i=0

N -+ N.

Th1s shows that to give the smooth property to A, we must

- ——— e e 4 e e e e - mee e e

Th1s fact was suggested to the author by Manuel Blum.
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inevitably include a rather non-computab]e structure. This is
similar to extending the rational number to the real number. Thé
real numbers contain all the arbitrary transcendental numbers, but
we cannot discuss any problem in the elementary calculus excluding
these objects. Another more hopeful view is that A~ may give

a éertain significant proper subset of the continuous functions

if the domain's lattice structure is more complex and has the
continuous cardinality. For example, R = {[a,b]| a < b are real}
U {p} with the partial order o < 8 if B Ca and | =P eR.
(If LAMDA® s generated from LAMDA [17] in the same manner as
A" is generated from A, it will probably be the case that

Pw = LAMDA™, for-any recursively enumerable set is in LAMDA .

‘and any set of integers is the limit of an increasing sequence of

recursively enumerable sets.)
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