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Abstract

The semantics of programming languages is studied through the

notion of infinite expansions of programs. By the infinite

expansion of a program one means, for example, the thorough unwind

ing of the loops which are constituted by such control structures

as (jo to's, while's and recursions. One can also view this

infinite expansion as the executions for all possible inputs. One

way to describe the meaning (or the semantics) of a program is to

give its infinite expansion.

This idea is formalized on the domain of the X-calculus.

We define a mapping, from the X-expressions to an algebraic domain,

called C-function. The map of a X-expression (program) by the

C-function is the infinite expansion of the X-expression which can

be said to be a generalization of the normal forms for the

X-calculus. Bbhm's Theorem on the normal X-expression is extended

to general X-expressions via the C-function.

The main result of this thesis is that the semantics of the

X-expressions given by Scott's model D^ of X-calculus is equi

valent to the semantics of the X-expressions given by their maps
_
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of the C-function. More precisely, the partial order among the

X-expressions in D^ is characterized by the partial order among

their maps by the C-function in the algebraic domain that includes

the image of the C-function. Extending the syntactical structure

of the C-function, the X-expressions are generalized to the infinite

X-expressions and the C-function is also extended to be defined on

all the infinite X-expressions. It is shown that the image of the

infinite X-expressions by the C-function forms a smooth structure

of the partial order and its lattice topology is equivalent to the

lattice topology of the X-expressions induced by D^.

Utilizing this lattice topology, an attempt is made to give an

axiomatization of the extensional model theory of the X-calculus.

Also, the formal idea described above is interpreted to realistic

programming languages such as Algol-like programs and recursively

defined programs.
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CHAPTER 1

INTRODUCTION

* The aim of this dissertation is to study some properties of

the X-calculus as a computation model and contribute to a better

understanding of the semantics of programming languages. The

X-calculus was originally introduced by Church as a logical

system. A variety of formal theories on the X-calculus were

discussed by several mathematical logicians, e.g. [5].

The X-calculus has atracted some theoretical computer

scientists since it can be regarded as a model of programming

languages [6,7,19]. Many concepts of programming languages

were analyzed through the corresponding concepts in the X-calculus.

However, the sound understanding of the X-calculus as a

model of computation became possible only after Scott developed

the theory of computation on lattice domain [14,15,18], in which

he gave the construction of D^, the first semantic model for

the X-calculus [15,16]. On this domain, the model theory of

the X-calculus was developed by Wadsworth [21,22] and many

interesting properties of the behavior of the X-expressions

in D^ were shown as we see in Chapter 2. In this thesis, we

«r make efforts to develop further the theory on X-expressions

vs. D^. In [16], Scott gives an interesting lecture on the

^ X-calculus. There, he asserts that the interpretation of the

X-calculus via D^ gives a more essential meaning to the

X-calculus than the conversion rules. For example, Wadsworth

proved that there exists a normal X-expression which is equivalent

1
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to a non-normal expression in Scott's D^ although they cannot

be converted to each other by the applications of conversion rules.

In Chapter 3, we shall define the "infinite normal forms" for the

X-expressions, normal or non-normal. Then we shall show that

two X-expressions are equivalent under Scott's interpretation

(i.e. D^) if they have the same infinite normal forms. The

infinite normal form can be said to be the infinite expansion of

a X-expression.

We illustrate this idea of infinite expansion in the follow

ing discussion on flowchart programs.

We are given a flow chart program:

AO:

,y\ Yes .
rx/—

No

where a is a Boolean function and S is a statement (or a

list of statements)



&

<s>-

Al:

No

No

, Yes
a > »•

a>-^

Since Al is the result of unwinding the.loop in AO one time,

Al is equivalent to AO. From another point of view, the

transformation Al **• A2 can be regarded as the- execution of AO

for one time under an unspecified input.
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Applying this operation n times, we have

An:

Sr'
>Yes,/ *

No

S

•> •

a
s Yes. v

No

0

^ai-XSi*

No

-\

>»



Letting n -*• «>, we have an infinitely sequential flowchart:

A°°:
Yes

Yes

Yes

A~ can be regarded as the infinite expansion of AO or the

result of execution of AO under all possible inputs.

It is possible to apply this idea to more complex program

constructs. The infinite expansion of programs can be formalized

in the following way: Let P be the domain of (some category of)

programs and I be the domain of the infinite expansion of the

programs which belong to P. The expansion is a mapping E: ?-*•!.

(in the example, for AO e P, E(A0) = A».) We raise the follow

ing questions:

1) How can we formalize I and E?



2) Can we say that the meaning (semantics) of a program P

is given by E(P)? So, for instance, is P-j equivalent to P2

if and only if E(P.j) = E(P2)?

3) What kind of structure does I have? Does it have,

for instance, a lattice-like structure?

We shall answer these questions regarding X-expressions as

programs. Namely, we have the following correspondence:

P«—>-A (the X-expressions)

I-<—*"^.jnf (a partially ordered set defined in Chapter 6)

E-<—>»C (C-function in Chapter 3 or infinite normal
form)

Here, the transformation An»-A(n+1) corresponds to a

3-reduction. C gives the map AO «• A°°. On the other hand, the

equivalence between two programs (i.e. X-expressions) P, and P«

is given by the equality as members of D^.

In Chapter 5 we shall try to bridge the gap between the

X-expressions and the real programming languages and show that,

under some translation of programming languages, the infinite

normal forms, in fact, correspond to the infinite expansion or

execution of programs.



CHAPTER 2

PREPARATIONS

* We make a review on the X-calculus, Scott's lattice theoretic

approach to computation and Wadsworth's model theory of the

X-calculus in D^, which constitute the prerequisite for this'

thesis.

«?

*



§1. The X-Calculus

We shall denote the set of the integers by I and the set of

the positive integers by IN throughout this thesis.

2.1.1 Definition (X-expression). A is the set of all of the

expressions that are formed by the following rules:

Let U be the denumerable set of the variables. Assume that

there is a numbering on the members of U, i.e. U = {v,jV^,...}.

1) A variable v e U standing alone is in A.

2) (Application). If x, y e A, so is x(y).

3) (Abstraction). If v e U and x e A then Xv.x e A.

2.1.2 Example. We list some X-expressions:

I = Xv.v

K = Xx.Xy.x

H = Xx.Xy.y

spl = (Xx.x(x)MXx.x(x))

Y = Xf.(Xx.f(x(x)))(Xx.f(x(x))) (Curry's Paradoxical
Combinator)

J = Y(Xf.Xx.Xy.x(f(y))) (Wadsworth)

2.1.3 Definition (Bound Variables). Given x e A, we define

B(x) c u, the set of the bound variables in x.

1) 8(v) = 0 for v e U.

2) 8(x(y)) = B(x)uB(y) for x, y e A.

3) B(Xu.x) = 8(x)u{u}.

In 3), x is said to be the scope of the bound variable v. If

a variable v occurring in x is not bound in x, we say that

v is free in x. If x e A has no free variables, x is said



to be closed. We denote the set of all closed X-expressions by A(

2.1.4 Definition (Subexpression). Given x, y e A, we say that

x is a subexpression of x and write it as x < y if one of the

following conditions holds:

1) x = y.

2) x< z and y = w(z) or z(w) for some w e A.

3) x< z and y = Xv.z for v e U.

2.1.5 Definition (Simultaneous Substitution). The simultaneous

substitution of x,,x?,...,x e A for u,,u9,...,u e U in
fun,u9,...;u/

y e A, • c y, is defined inductively as:
1* 9,•••,X

Let u= (ulsu2,...,un) and x= (x-j ,x2,... ,xR).
fU

1) If y e U and y f u. for all i then y - y.
rU >x

2) If y = u. for 1 <_ i <_ n, then y = x..

3) If y = a(b) for a, b e A, then
U rU rU

y • ( a)( b).
X jX JX

4) If y= Xv.z for v f ui (i = l,2,...,n), then if v
fU

is not free in any of the x.'s then
ru
y = Xv. z otherwise

fU

y = Av'.
rU rV

( z) where v' is the first variable, other than
x •'v'

any u.'s or v in the enumeration of the variables in U such

that v' does not occur free in y or z.

5) If y = Xu..z for 1 < i < n, then

U-j jUrt,. ..,u•__-i »U._ji ,... ,u.

y = Xur

xrx2' ***,xi-rxi+r•••,xn



2.1.6 Definition. Given x, y, z e A, we say that x matches y

except at occurrences of z in x if there exists w e A having

free occurrences of v e U and z e A such that
o

x =

fV

w and y =
z

rV

W

Z.

In this case, we say that z in x is homologous to z in y.

Notational Convention. We will use the following notational

abbreviation:

1) xy stands for x(y).

2) xix?'**xn stands f°r ((" •(x1x2)x3)••*)x ).

3) XStSo'-'S .x stands for Xs,.Xs0.*'-.Xs .x .
I c n \ c n

So note that a X-expression can generally be written as:

Xt,t2---t .x,x2"-x for ti»t2,,,,,tm 6 U and xl ,X2S*' *,xn 6 A*

2.1.7 Definition (Conversion Rules). Let E, - a, $, n-red or

n-ab. We will define R~ caxa for each case of £. (x,y) e R^
r

is denoted by x -*->y.

(x,y) e Rp if

I) a) (a-conversion) £ = a: x = Xu.z and y = Xv. z under
^v

the following restrictions:

i) v does not occur free in z.

ii) If v e 8(z), any free occurrence of u in z

must not be in the scope of v.

b) (3-reduction) £ = $: x = (Xv.z)w and y - z
w

c) (n-abstraction) £ = n-ab: y = Xv.xv where v does

not occur free in x.

10



d) (n-reduction) £ = n-red: x = Xv.yv where v does not

occur free in y.

or

II) y is derived from x by applying ^-conversion (reduction)

to a subexpression of x.

We define —^CAxA to be the reflective, transitive closure

of *auR3iJRn_reduRn_ab, i.e. x^iy if and only if x=y
^i £9or there exist x1>x2>...,xr| eA such that x=x1 —U x2 —^> •••

^n-l»xn =y where ^ = a, 3, n-ab or n-red.

2.1.8 Definition, a) A 3-redex is a X-expression in the

form of (Xv.x)y. A X-expression is said to have a 3-redex if

one of its subexpressions is a 3-redex.

b) A 3-redex y in x e A is said to be the outermost-

leftmost 3-redex if there is no 3-redex w such that

i) y < w < x

or ii) w< a, y < b and ab < x.

c) Let x e A have (Xv.y)z as its outermost-leftmost

3-redex. The outermost-!eftmost 3-reduction to x is the
fV

replacement of (Xv.y)z in x by y<
z

2.1.9 Definition, a) y e A is said to be in a head normal form

if y is in the form of Xs^,,-- *s ♦vy-.y2- •-y for

srs2,...,sm,v e U and y] ,y2>... ,ym e A.

11



Tl

b) y e A is said to be head normal if there exists a

3 3 3 3 j • •sequence: y = x, -^ x0 -^ ••• -^ x -i-^x and x„ is in a
\ c n-l n n

head normal form. Here x is said to be a head normal form of y,

2.1.10 Corollary. Let x e A be head normal. If

X —^ XSnSo" •s„.ux1Xo--*x.
and

x^Ar,r,

T2 am,UAr2 "n

then 1) If u occurs free in x, then u = v.

2) If u = s. for i < m, then i <_ p and v = r.

3) m-n = p-q.

Proof. See [21]. D

In Corollary 2.1.10 let

:x) = <
e U if u is free in x

head(x)
i e IN otherwi se

and

index(x) = m- n .

By the corollary, head(x) and index(x) are uniquely defined

for x e A if x has a head normal form. We define the rela

tionship ^C Ax A by:

x ^y if

either neither x nor y has a head normal form

or index(x) = index(y) and head(x) = head(y).

12



2.1.11 Definition, x e A is said to be in a 3-normal form if x

has no 3-redex as its subexpression. We say that x e A is

3-normal if x can be reduced to a normal form by 3-reductions.

Note that if a X-expression is normal, it is also head-normal.

2.1.12 Theorem. If x e A is head-normal (normal), then there

exists the following sequence:

x = xQ-Xl -x2+ ••• -xn

where x.+, is the result of the outermost-leftmost 3-reduction

applied to x. for n = l,2,...,n-l and x^ is in a head-normal
i n

form (normal form).

Proof. For the normal form case, see [5]. The proof is

similar for the head normal case. D

To have a certain uniqueness for the head normal form, we

define x -gu*y as follows: x-gc>y if there is a sequence

x = Xq -»- x, •> x2 ->-•••->- x = y such that x.+, is the result

of outermost-leftmost 3-reduction to x.. x is in a head

normal form and x. is not in a head normal form for i $ n.

It is easy to see that if x -gu^y then y is uniquely

determined by x.

2.1.13 Theorem (Scott). It is not decidable whether a X-expres

sion is normal or whether a X-expression is head-normal.

Proof. See [ 7]. •

13



The following theorem is fundamental in the theory of the

X-calculus.

2.1.14 Theorem (Church-Rosser). Given x, y,, y« e A, if

x—^y, and x-^y2» then there exists zeA such that
both y^z and y2^z. .

Proof. See [ 2]. • •

14



§2. Theory of Computation on Lattice Domains, D^ Model

Scott [14] proposed the following axioms that a mathematical

model of computation ought to have:

Axiom 1: A domain D is a complete lattice. We denote ud by

J (top) and U0 by J_ (bottom).

2.2.1 Definition, a) Let D be a partially ordered set. A

subset SCO is said to be directed if, for any finite subset

F of S, there exists z in S such that

*

x c z for al1 x 6 F .

b) A partially ordered set D is said to be directed-complete

if all directed subsets of D have the least upper bound.

c) A function from a partially ordered set D, to another

partially ordered set D2 is said to be continuous if, for all

directed sets E c D,,

f(UE) =u{f(x)| xeE} .

f is said to be additive if

f(us) = U{f(x)| xeS}

for all subsets S£D,.

As we see in Chapter 7, the completeness is not necessarily

needed for the development of the theory in this thesis. At most,

we would need a directed-complete partially ordered set with the

least element J_. Given two partially ordered sets D,, Dp, we
*

We use u and c instead of u and C for typographical
convenience.

15



denote the set of all continuous functions from D, to D« by

[D, •*• D2] (we denote all maps D, •> D2 by (D, -»• D2).)

2.2.2 Corollary (Scott). If D,, D2 are directed-complete (com

plete), then [D,+D2] is also a directed complete (complete)

latrice, where we define c in [D,-^Dp] by: f Cg if and only
if f(x) c g(x) for all xeD,.

Proof. See, for example, [12]. D

Axiom 2: A map_ from domain D, to domain D« is continuous.

2.2.3 Theorem (Scott). Let f be a continuous function over a

directed-complete partially ordered set D. Then f has the
00

least fixed point u fn(l).
n=0

Proof. See [12]. •

2.2.4 Definition, a) A subset G of a directed-complete subset

D is said to be open if

1) For any x e G, if x Cy, then y e G.

2) For any directed set V c D, if up e G then

V nG f 0.

b) For x, y e D, we say x ^ y (x is strictly less

than y) if there is an open set G such that y e G and

G c {Z| X cz}.

c) A directed complete partially ordered set D is said

to be continuous if, for all x e D, x = u{y| y -< x}.

Note that a domain has a T -topology induced by the open

sets defined above. Continuous mappings are continuous in this

topological sense.

16



Axiom 3: A domain is a continuous lattice.

The last axiom is on the computability:

Axiom 4: A domain D has a subset E of the following properties:

1) The cardinality of E is at most denumerable and the

elements of E are recursively enumerable.

2) For any x e D, x =u{yeE| y-c x}.

3) For all e,, e2 e E, e, ue2 and e, Ce„ are computable,

Next, we state the construction of D -lattice. We shall
00

confine ourselves to the description of the properties of D^

that are needed in our discussion in the subsequent chapters. For

the complete presentation of D , see [12].

Construction of D
00

We want to have a lattice domain D with the property

D - [D -*• D]. Let D be any complete lattice. (In fact, a

directed-complete partially ordered set is good enough for our

purpose, but for simplicity, we assume the completeness.)

Let D, = [DQ - D0], D2 = [D, * D,] Dp =[D^ * D^],...

Note that each Dn is a complete lattice. We define (*L>Jn)

for each n such that

1) V Dn + Dn+r V Vl+Dn
2) in, Jn are additive and Jnoi*n = 1Q and inoj_ c 1Q

n n+1

(so i' is one-to-one and j is onto),
n n

17



Definition of &<AX

i' (a) = X3eD -a for each aeOn
n = 0 ° ° °

J0(x) =x(J^ ) for each xe D-j

Suppose that we have defined (i* ,jj for n < k-1 (k > 1). We
n n — —

define (i'k,Jk)

Vl ''k
Dk.1=±Dk=>Dfc+1

Jk-1 Jk

Vx' = ik-l°XoJk-l for a11 x6 Dk
jk(y) =Vi0*0^! ^r all ye Dk+]

It is easy to see that (ik>Jk) satisfies the properties 1)

and 2) by induction on k.

We define D^ ={(xQ,x1 ,...,xn,. ..)| xneDn, xn =Jn(xn+])},

where, for x, y e D , x Cy if and only if x. Cy for all i.
oo ii

Embedding of D_ in D^a II oo

We define <j>nm: Dm •> Dn as follows:

f1n-l°V20"-o1m+lo1in if m<n

*nm =\ \ if m=n
m

i o i o... o i o i
Jn Jn-1 Jm Jm+1

if n < m .

Now we embed D into D by
n °°

E'. D_ -»• Dn- -n -« x - <*0n(x)^ln(x)"-"(,>(n-l)n(x)*x^(n+l)n(x)"-->

By defining Dn = En(Dn> c D^,

1) E : D •> Dj is one-to-one and continuous

2) DQ CD1 CD2 c ...

18



Conversely, the projection it : D^ -* D is defined by

Trn: <x0,Xl,x2,...,xn,...> e D^

» <x0,x1,...,xn,(J,(n+1)n(xn),c})(n+2)n(xn),...> e Dn

Also we define P : D + D by
n °° n J

Pn: <x0,xr...,xn,...> b- xn

It is easy to see that x = u ^ (x) for all x e D
n=0 n

Isomorphism D * [D + D ]
r 00 a—CO 00°-

We define

*: D + [D + D ]
oo '-oo O0J

Y: [D -*- D ] -*• D

by: For all x e D

00 00J 00

*(x)(y) » u En(Pn+1(x)(Pn(y))) for all y e D
n=0

For all f e [D + D ]
00 00"

y(f) =<f0,f1,f2,...,fn,...>

where

f0 = P0(f(D)

fn = Ax 6 Dn-1: Pn-l(*f(En-l(x))) for n= ]'•

In a straightforward way, we can verify that $, ¥ are

additive, Yo$ = lQ and $oy = i- ^ -
00 oo-

19



We can now define the application of x to y for x, y e Do

by $(x)y. We denote this by x(y). By the definition of $,

*(x)(y) = u*n(x)(TT Ay)) .
n=l n "^

Lastly we list the important properties of D^ projections

2.2.5 Theorem (Scott). 1) i Ci cin for m < n
o7~~ m ~ " ~ Doo

2) n-f> =1Dn=0 «>

3) \°\ =\i1n(nji)
4) wn(x)(y) =7rn(x)(Vl(y)) =Vl(x{7rn-l(y)))

5) irQ(x)(y) = w0(x) - ir0(x(D)

20



§3. Wadworth's Model Theory of X-Calcuius in D^

In this section, we state the results due to Wadsworth [21,22].

As we have seen in the last section: D^ *=± [Doo -> Dj for

continuous $, ¥ satisfying ¥°<S> = 1Q and $<>y = 1^ ^D -..
00 *- 00 oo-'

This property of D^ can be characterized in the following way:

1) Extensionality: x(z) Cy(z) for all zeD^ iff x Cy

so, particularly, x(z) = y(z) for all z 6 DM iff x = y

2) Comprehension: If •••x--« is an expression taking

values on D which is continuous in the variable x as x
00

ranges over D , then there is f e D such that
~* 00' 00

f(a) = ••-a-«. for all a e D
00

2.3.1 Definition (Wadsworth). Let EN be the set of all

mappings from the set of the variables U to D . The semantic
00

function W: A -*• (EN + D ) is defined as follows:
00

1) For v e U and p e EN, V IvI p = p(v).

2) For x(y) e A and p e EN, V 0>(y)I p =WQYD p(\V lyj p)

3) For Xv.x e A and p e EN,

V [[Xv.xJ p = X3 e Dro : V IxJ p[v/3]

where p[v/3] is defined by

fp(u) if u f v
p[v/3](u) = {

[3 if u = v .

Since V Q>jQ p[v/3] is continuous in the variable 3,

X3 e D^: Wffx]] p[v/3] is a member of D^ due to the comprehen

sion of D .
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2.3.2 Proposition (Wadsworth). If x—^y for x, y e A, then

V DXD p = V lyl p for all p e EN.

Proof. The result is obvious for the a-conversion and

3-reduction. The n-conversions preserve the D^ value due to

the extensionality of D . •

2.3.3 Definition. We say x c y for x, y e A if
Doo

V Ex]] p c v [[yj p for all p e EN. Similarly x = y if
Doo

V QYD p = V QxD p for all p e EN.

2.3.4 Corollary, c is reflective and transitive,
D„

Proof. Obvious. •

However c is,obviously, not antisymmetric, so c is not
Doo Dt

a partial ordering.

We first show that A is not trivial in D^, namely, A

is not mapped into one element in D .

2.3.5 Proposition. K f H and I f _|_ .
Doo Doo

Proof. See [21]. •

2.3.6 Theorem (Wadsworth). Let I = Xx.x and J = Y(Xfxy.x(fy))

Then I = J.

Doo

Proof. See [22] for the proof based on the type construction,

Also see Example 4.3.4. •
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Since I is normal and J is non-normal, I and J are

not convertible to each other. So this shows that = is strictly

larger than ^i, i.e. ^SD^.
The next theorem shows that Curry's Y gives the least fixed

point operator in D^.

oo

2.3.7 Theorem (Park). Y = Xf e Dot: u fn(J_) .
Doo °° n=0

Proof. See [12], also Corollary 4.2.3. D

We can introduce u, n operations in A as follows: Given

S c a, us is a syntactic object with the semantic value in D
oo

of:

VITUS]] p =u{VlxIlp| xeS}

for p e EN.

We define OS in the similar manner.

X-fl-Calcuius

It is convenient to have a syntactical symbol in A that

represents J_. The X-ft-expressions, Afi, are formed according

to the following rules:

0) to is in JU.

l)-3) Same as Definition 2.1.1.

Semantic function y is J_ on n, i.e.

VQMIp = _[ for all p e EN .

We include two conversion rules for AQ in addition to those

for A.
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1) Xv.fi •* Q for v e U

2) ft(x) + ft for x e L

These rules are semantically sound since X3 e D^: J_ = \_ - 1(a)

for a e D .
00

Type Assignments of X-Expressions

This part of the section is needed to prove

Lemma 4.2.1. For the details of the discussion, we refer to [23].

As a member of D^, each X-expression has a component in

each D . The typed X-expressions defined below are introduced

to, in a sense, approximate the components of X-expressions in D^

2.3.8 Definition (Typed X-expressions).

Syntax of A

The typed X-expression, A , is the set of all expressions

that are formed by the rules below:

1) For v e U, v^n' e A for each n e f\r

2) If x, yeA1, (xtyJ^eA* for neH. (x(y))(n)
is abbreviated as (xyrn'.

3) For v e U, xeAti (Xv.x)n e At for neIN.

4) Q^ eA* for neH.
+

Semantics of A

The semantic function, lU: A -* (EN +D^) is defined as:

1) iU[Ev(n)]]p =irn(p(v))

2) UI(xy)(n)]] p=irn(iU QXD p(IU lyl p))

3) Ul(Xv.x)(n)]]p =TTn(X3eD :(U IxJ p[v/3])
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We define several auxiliary functions:

type: A •* IN is a mapping.

1) type(v(n)) =n

2) type((xy)(n)) =n
3) type((Xv.y)(n)) =n

W: A -*• A„ is a mapping defined as:

1) W(v(n)) =v

2) W((xy)(n)) -W(x)W(y)

3) W((Xv.z)(n)) =Xv.W(z)

4) W(ft(n)) =ft
i.e. W(x) is the X-ft-expression obtained from x e A by deleting

all type superfixes of x.

T: AQ -> P(A ) (power set of A ) is defined by:

T(x) = {y\ x=W(y)} c A1 ,

i.e. T(x) is the set of all typed X-expressions generated from

x by putting a type superfix to each subexpression of x.

2.3.9 Lemma. x = uT(x) .
Doo

Proof. See [23]. D

Notation

For x e A and n e IN, let •[x] be the typed X-expression

determined by the following rule:

[x]n =x if type(x) <n

[x]n =y(n) if typejx) >n,
where x = y^m' for m = type(x) .
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Typed Conversions

In the similar manner to the conversion rules in the ordinary

X-calculus, we define typed conversion rules for A .

2.3.10 Definition (Typed Substitution). For v e V and
fV

x to be:x, y e A , we define

,(n)
fV

x =u(n)1) If x = uv"' for u e V, u i v, then
(n\ rv

2) If x = vw, then x = [y]_.
Jy

3) If x =ft^n', then

4) If x =(ts)^, then

f\. . n(n)X = ft

X =

r rV fV ^

( t)( s)
v rv An)

y Jy

5) If x = (Xu.wrn; for ujfv, then x = Xu.( w)

if u does not occur free in w. If u occurs free in w,

v Ax\)

y

x = Xu'.( w')
(n)

where w' is w with each u replaced by u'

and u' is the first variable other than u or v in U such

that u' does not occur free in w or y.

6) If x =(Xv.w)^, then x = {Xv.w) (n)

2.3.11 Lemma (Wadsworth). For v e V, x, y e A and p e EN,

oj IE xl p = lU Ixl p[v/iU lyl p] .

Proof. See [23]. D

Typed 3-Reduction

((Xv.x)(i)y)(j) -^->[
Mi.

xl. 7. , .x if i > 0
minO-l >J/
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27

((Xv.x)(0)y)J'-^[f x]n

We extend t3 in the same manner as the non-typed case, i.e.,

t8
x —^y if y is the result of applying several typed 3-reductions

to some subexpressions of x.

Typed a-conversion

Given (\v.x)uu e AL and let v ' ,v ,...,v K be all

the occurrences of v in x. Then

(Av.x)(n) S±>
rV

Xu. x

^ * (max[n.]) '
i 1

(n)

t ta
For x, y e A , x ——>y if y is derived from x by applying

several typed a-conversions to some subexpressions of x.

Typed n-abstraction

Let type(x) = n for xe A*.

x_tnzab^(xt(xt(n-l))(n-l))(n) 1f n>,

x-trcab_(xtB(xO(0))(0))(0) 1f n:Q
For x, y e A , x —^->y if y is derived from x by applying

several typed n-abstraction to some subexpressions of x.

2.3.12 Theorem (Wadsworth). For x, ye A*, if x and y are

type-convertible to each other, then x = y.
Doo

Proof. See [23]. •



2.3.13 Lemma (Wadsworth). Given any x e A , then there is a

typed 3-reduction sequence: x = xn -»• x0 -*• ••• •> x such that
I c n

x has no typed 3-redex.

Proof. See [23]. •

2.3.14 Lemma (Wadsworth). Let x, •*• x« -»-•••-*- x be a sequence

of typed 3-reductions for xltx2>...,x eAt. Then there exists
an ordinary 3-reduction sequence y, -»- y? -»• ••• -»• y where y.

matches W(x.) except at occurrences of ft in W(x.).

Proof. See [23]. •

Notion of Reduced Approximant

Given x e A, e e A~ is said to be a direct approximant

of x if e has no 3-redex and e matches x except at

occurrences of ft in e. For example, a X-ft-expression, e,

that is obtained from x by replacing each 3-redex in x by ft

is a direct approximant of x.

EfiAfl is said to be a reduced approximant of x if e is

a direct approximant of x itself or of some ye A that is 3-reducible

from x (i.e. there is a 3-reduction sequence from x to y).

For x e A, we denote the set of all reduced approximants of x

by A(x).

2.3.15 Theorem (Wadsworth). For any x e A, x =UA(x).
D
oo

Proof. See [23]. •
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From this theorem, the following theorem is directly deduced.

2.3.16 Theorem (Wadsworth). If x e A is not head normal,

Doo

Proof. Since any y e A that is 3-reducible from x is in

a form Xs,s2---s .(Xv.w)x,x2-««xn, its direct approximant is:

XSls2-.-sm.ftx2---xn-ft

So A(x) = {ft}. Thus x = ]_. •
Doo

Conversely

2.3.17 Theorem (Wadsworth). If x e A is head normal, x f I .
Doo

Proof. Let x = XStSo*--s^.vxnXo'-'X^ be a head normal form
I Z m I l n

of x. Let y = Xr^cy *-rm.I. Then

XS-.SO** -sm -^ 1^112 m Dm ±

So under some environment p, W [[x]] p = ]_. D

2.3.18 Corollary (Wadsworth). For x e A, x = I if and only if
Doo

x has no head normal form. D

This corollary implies that we can replace any non-head normal

subexpression of x e A by spl without affecting the D^-value

of x since spl = ft. Hereafter we take the following convention
Doo

If ft is regarded as a member of A, it stands for spl.
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We introduce the following non-effective conversion rule to A.

ft-conversion

(x,y) e RQ or x—>y if y derives from x by replacing

some subexpressions of x that have no head normal form by ft.

We define * as the reflective, transitive and symmetric

closure of R UR0URrURft. We conclude that
01 p C, 44

CNV,

Uc

^4c« since, for example, (Xx.xx)(Xx.xx) * (Xx.xxx)(Xx.xxx)

though it is not that (Xx.xx)(Xx.xx) ^MXx.xxx)(Xx.xxx).

On the other hand * £ = since I. = J although it is
f Doo D«,

not the case that I ~ J. = will be characterized in Chapter 4.
Doo
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CHAPTER 3

INFINITE NORMAL FORMS FOR X-CALCULUS

VJe formalize the <Infinite Expansions> of programs in the

domain of the X-expression — called C-function. We show that

the C-function can be regarded as an extension of the conven

tional normal forms. Bohms Theorem on the normal expressions is

extended to the general expressions via the C-function.
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§1. Pedigree

First, we introduce an infinite set which will be used to

characterize the behavior of X-expressions..

3.1.1 Definition. Pedigree, A, is the set {0}u{(n1 ,n2,... ,nk)|

k, n. elN}. There is a natural partial order, <, in A defined
j

by:

for 6,, <$2 e A, 61 < 62 if and only if

either 1. 6-j = 0

or 2. 6-. = (m-|,m2,...,m..) and 62 = (n-j ,n2>... ,rij)

where i< j and m1 =n^... ,m..= n...

We say <$, < 62 if 51 = 62 or 61 < 62' i,e* - means
"is a prefix of."

3.1.2 Definition. Given *6 e A, |6|, length of 6, is defined

by:

|6| = 0 if 6 = 0

|6| = k if 6= (n1,n2,...,n|()

3.1.3 Definition. Map Pr: A + A is defined by:

"undefined if 6=0

Pr(6) = <0 if |6| = 1

t(n1,n2,...,nk -,) if 6 =(n1 ,n2,*.. ,nk) .

3.1.4 Definition. Given 6 e A and a positive integer m,

6om = (m) if 6 = 0

<$°m = (n, ,n2»... ,nk,m) if <S = (n^ ,n2>... ,nk)
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§2. Idea of Infinite Expansion

Before going to the formal definition of C-functions, we try

here to illustrate informally the idea of infinite normal form.

3.2.1 Example. R is defined by Y(XfXxXy.x(fy)(fy((Xx.xx)(Xx.xxx))))

where Y is the fixed point operator. Since we know that

(Xx.xx)(Xx.xxx) does not have a head normal form, we replace it

by ft. The recursive definition of R is:

R-£->XxXy.x(Ry)(Ryft)

Arrange it in the form:

XxXy.x

A
Ry Ryft

with operands below the leading operator. Renaming the bound

variables according to their position:

Ati AXrt • Ut

Rt2 Rt£ft

Rt2 _§^Xy.t2(Ry)(Ryft) and, so, the left sub-tree is depicted as

Rtj-j Rt^ft

Rt2ft-l>t2(Rft)(Rftft), so the right sub-tree is depicted as
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Rft Rftft

However, since Rft -^» ft, this sub-tree becomes

ft ft

Applying 3-reductions further, we have

Ati Atn • L^

At^ -i . L«

Kt-i -I -I Ktii iJ4 46 «"

Now, several applications of n-abstraction lead us to:

At-i AtrtXto •in

xtllxt12#t2 xt21Xt22,t2 Xt31Xt32't3

\ /l\
Xtlirtn At]21.t11 .t]2 ft ft .t21 At241.t2 .t

31

/ \ \V\
ill Rt-i-i-ift ft ft 121 .t

241

34
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In this way, we can expand any expression infinitely by applying

n-abstractions and 3-reductions. In the illustrations, the

arrangement of the head normal forms should be noted. Each head

variable is situated higher than its operands since it is dominant

over them. This situation is similar to the program of the form

begin A;B end. A can be said to be dominant over B since

execution may never reach B depending on the control structure

in A. This point will be further discussed in Chapter 5.

Here note that there are four operations involved in the pro

cess of expansion:

a) 3-reduction

b) ft-conversion

c) Renaming the bound variables according to their position

d) n-abstraction

Also note that there are two important bases to consider this

process.

1) We consider the X-calculus with n-convertibility.

Operation d) depends upon this assumption.

2) The head normality is an undecidable property. Thus

operation b) is not effective and the functions and L, C and C

to be defined in this chapter are non-computable.
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§3. L-function

To make the argument easier in the rest of this chapter, we

make the following conventions:

Let U be the enumerably infinite set of the variables.

We take two mutually disjoint subsets F and T^ of U and set

V = FuTA, where

F = {f.| 1=1,2,...}
and

TA = {tfi| 6eA-{0}} .

We assume, in the rest of this chapter, that if any given expres

sion has some occurrences of a^ free variable, it is one of the

f.'s in^ F. Our intention is to convert any given expression

into one whose bound variables are in TA by applying a-conver-

sions. We will be using z to represent a variable which is

either in F or TA.

Let E = {(z,m,n)| zeU, m, nelNu{0}} and ft be a symbol

not in E.

An auxiliary function h: A•-*• EU{ft} is defined by:

ft if x has no head normal form

h(x) =" < B
(z,m,n) if x-^ Xx-. •••xm.zX, '"'X

It is easy to see that h is well-defined. Note that h is not a

computable function since the existence of a head normal form is

not recursively decidable.

3.3.1 Definition (L-function). We define L: A -»• (A + A) induc

tively as follows:

Given x e A, assume that any tg in T does not appear

in x (by applying a-conversions if necessary).
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Step 0.
ft if h(x) = ft (Operation b)

L(x,0) = '
Xt1---tm.zX1-.Xn if h(x) f ft (Operation a, c)

and x -5r»As1s0"-sm.wX-IXi'«'X'
3n 1 d m I c n

and zX,X0---XM =
I c n

srs2,...,sm

wX'XA---X'
t t t ' 2 n

Step 6. Suppose that we have defined L(x,6*) for all

6' e A such that 6* <6. We are to define L(x,6°i)

for each i e IN.

Case I. If L(x,6) = ft then L(x,6<>i) = ft for all i e IN.

Case II. If L(x,6) = Xt. ,t, o---Xt.om.zX1X9"-Xw then
o°\ o°Z o°m 12 n

(i) If i < n then

(a) L(x,6oi) = ft if h(Xn.) = ft (Operation b)

(b) L(x,6oi) =At6oiolt6o.o2...t6o1op.vY1Y2...Yq (Operation

if Xilh>Xrlr2--VUYiY2-'-Yq

and zYJo-'-Y =
1 2 q

rrr2",*,rp
uY'Y*..-Y*

t t t i 2 q6oiorL6oio2',,,,L6oiop

(ii) If i > n then L(x,6<>i) = tx , ..v. (Operation d)
6o(m-n+i;

We should note that in (ii) of Case II above that we are

applying n-abstractions. Also each head variable of L(x,6)

is in F if it is free in x or in TA if it is bound in x.
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3.3.2 Example. We look at L(R,6) for R defined in §2

L(R,0) =Xt^tg.t^RtgJfRtgfl)

L(R,1) = Xt1-,.t2(Rt11)(Rt11ft)

L(R,2) = t2(Rft)(Rftft)

L(R,3) =t3

L(R,i) = t.

L(R,11) =Xt^.t^Rt^MRt^ft)

L(R,12) = t^ftft

L(R,13) =t12

L(R,14) = t13

L(RJi) - t'(1+1)

L(R,21) = ft

L(R,22) = ft

L(R,23) = t21

L(R,2i) =t2(._2)

3.3.3 Corollary. If x * y, then L(x,6) * L(y,6) for all

6 e A.
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§4. C-functions

Now we are ready to present the definition of C-functions,

6 and C. t is not essentially necessary to state our result,

but, C gives a way to simplify our discussion.

3.4.1 Definition (C-function). Let S= {(z,k)| keZ, zeFuTA}u{u)}

We define t: A -»• (A + S) by:

u> if L(x,6) = ft
C(x,6) = .

(z,k) if h(L(x,6)) = (z,m,n) and k = m-n

We note that if C(x,6) = (z,k) for x e A and 6 e A,

then there exists a positive integer M such that

C(x,6oN) = (tN+k,0) for all N> M.

Although t is defined as above, is the second component, k,

of C(x,6) is not necessary to uniquely specify a X-expression.

Thus we define C, simplified version of C.

3.4.2 Definition (C-function). C is a function A-*• (A-* Vu{w})

defined by:

(z if C(x,6) =(z,k)
C(x,6) = {

la) if C(x,6) = a)

3.4.3 Corollary. If x z y, then £(x) = t{y) and C(x) = C(y).

We will now state the theorem which plays the central role in

this thesis. Proof of this theorem was essentially given in Bb'hm [4]

(also in Wadsworth [21]), however since the arguments used in the
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proof are fundamental in this thesis and that it is not yet widely

publicized, we present a complete proof for the theorem, hope

fully, with notational improvements.

Firstly, the theorem is stated using C and thereafter, it

will be modified for C.

3.4.5 Lemma. Given x and y in A, suppose that, for 6 e A,

C(x,6) = C(y,6) for all 6 such that 6 < 6Q, and that

C(x,6Q) = (u,i)

C(y,6Q) = (v,j)

where (u,i) ^ (v,j). Then for arbitrary a, b in D^ we can

choose e,,e2,...»e e A and an environment p for which

\V[Ixe1e2-.-en]] p =a

Wlye^ —e^p =b .

Moreover, if a, b e A , we can choose p so that p(V) cA .

3.4.6 Lemma. Given x and y in A, suppose that, for

6 e A, C(x,6) =C(y,6) for all 6 such that 6 < 6Q and that

C(x,6j = a) and ^(y^^) f w. Then, for arbitrary a in D ,
oo °°

we can choose e^epj-.-.e e A and an environment p for which

WIxe-je^-.en]p =|

W[[ye1e2---en]l p =a .

Moreover, if a e A , we can choose p so that p(V) c A .
c c
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We prove only Lemma 3.4.5. The proof for Lemma 3.4.6 is

straightforward from the proof given for Lemma 3.4.5.

Proof of Lemma 3.4.5.

Case I. 6Q =0: Since (u,i) f (v,j), u f v or ii j.

Case a. u i v: By the definition of C, we conclude that

L(x,0) = ^t1t2-..th|.uX1---Xn

L(y,0) = Xt^g.-.tp-vYT-.-Yq

Take a positive integer K such that K > max(m,p) + l. Then

L(x,0)t1t2...tK-^UuX1X2...Xntm+1-"tK

L(y.O)t1t2..-tK-^UvY1Y2...Yqtp+1-..tK

Note that u, v e V = FuT.

Now take an environment, p, so that

Then

p(u) = Xs1s2...sK_m+n.sK_m+n

p(v) = Xs1s2...sK_p+q.s|(_p+q_1

p(tK) =a

p(tK_-j) =b

Vlx^tg-'-t^p =a

Vlyt^g-'-t^p = b

Case b. u = v and i f j: We can assume, without loss of

generality, that i < j. As in Case a,
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L(x,0) = xtit2'"tnruXr*'Xn and i=m"n
L(y,0) =A^tg.-.t .uY^.-Yq and j=p-q

Let K be a positive number such that

K > max(m,p,j+n)

L(x,0)t1t2---tK-^UuX1X2---Xntm+1---tK

L(y,0)tlt2.•-tK -^U uYlY2-•-Yqtp+1••-tK

By substituting Xsis2* *"sK-i"sK-i for u we have

L(x,0)t1t2...tK-^L>tK..+itK,j+i+1...tK

since K- j > n.

Now we choose p such that

P(u) = XSls2...sK_..sK_.

p(tK) = b

P(tK ,+i) = XSls2...s. ..a

and we have

Vlxt^ — t^p =a

Vlyt^-'-t^p = b

Case II. 6Q > 0: Let 6Q = (d],d2,...,dL) and set

6° =0,61=(d1),...,6il=(d1 d^),...,6L =60 (set dQ =0 for
convenience). By the assumption of the theorem, for 0 <_ a < L-l,

C(x,6£) =e(y,6£) =(z£,k£)

42



for some Un'M e s and

C(x,6Q) = (u,i)

C(y,6Q) = (v,j) .

The proof technique for Case II is the following:

Due to the fact that C(x,6) = C(y,6) for 6 < 6Q, we can choose

acontext under which L(x,6Q) and L(y,6Q) can be 'dug out' of

x and y, respectively. Thereafter the problem is reduced to

the difference between L(x,6Q) and L(y,6Q) which, applying

the technique used in Case I, leads us to the conclusion of the

Lemma.

Case II-l. Suppose that all z£'s are distinct, i.e. for 1^4 &2,

z0 f z • Let, for I = 0,...,L-1,

L(x,6 ) = Xt . t. .--t f •zoxiX2,,"Xn
6°1 6°2 6*om£ *'c nl

and

L(y,6*) =At . t— t.t .-W2--V
0 °1 0 o2 6 °p. ^%

where ^n-^n ~ Po~°.o by tne assumption of the lemma. Let

k« =m«-n£ and take a positive integer K such that

K> max (m£>Prkjt+dji+l)

If we substitute Xsis2"*sK-k *sd for zl

L(x.«*)t£ t. ...t£ -^L(x/+1) '
6 ol 6 °2 5*°K

L(y,6 )t - t 9 "-t g >L(y,6 )
6 ol 6 o2 6 oK
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Thus by induction on A. if we substitute Q = Xs-|s2* **sK-k *sd

for z- for I = 0,1,...,L-l, we have

Xt,t9***twt , t, ••*t1 t« '**'' i i >
Q ' * * 6'ol 6'o2 6'oK 6 ol 6L"'oK

yt-, t« • • •t„t •, tn •••t1 t « ***t i i >
Q ' c K fi'ol 6!o2 6'°K 6 °1 6L"'oK

Kx,6o)

*L(y.60)

Combining this result with Case I, we conclude that the lemma

holds for Case II-l.

Case II-2. z^, I = 0,1,2,...,L-l, are not necessarily distinct:

We should note that the proof technique used in Case II-l is no

longer valid here since it is not possible to substitute different

combinators for z 's. To get around this difficulty, we introduce

a combinator RK = Xs,s2-*-s„.s.,s,s2-"S., •,. Roughly speaking,

we will substitute R» for each z. in x and y so that x

and y will have distinct head variables after the substitutions.

Before we start working on x and y, we give two observa

tions for R„.

Claim 1. Let S, T e A. If S ~ T, then, for a sufficiently
rZ rZ

large K, S -

R. R,

T where z is a free variable appearing in

S and T.

Proof. Suppose that neither S nor T has a head normal

form. Then obviously neither

form.

Suppose S and T have a head normal form and (after

several a-conversions)

S nor

R

T has a head normal

R
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S = Xr-.r-.-.r wS,S0---SM
I / m 1 c n

T = Xr r -..r wTtTo-'-T
12 p 1 2 q

where m - n = p - q.

Case i. z f w:

rZ

R,

S = Xr r ...r ws'Si--.S'
\ c m 1 l n

T =Ar1r2...rp.wT'T»...T'

rZ rZ

where S'. =
j

S, and J\ =
R.

T,. Thus S ~

RtK ,XK "K "K

Case ii. z = w: We take K so that K > max(n,q).

R.

T.

S=^^•••rm-(Xsls2-"sK-sKs1s2'--sK-l)SiS2-"S;
R

CNV

*Xrlr2---rmsn+lsn+2---sK-sKS1S2-"S;sn+T--sK-l

In the same manner

fZ

Then

CNV

RT >Xrlr2,-,rpVl",SK-sKTlT2-**TqVl'*,SK-l '

From m-n = p-q, we conclude that

(m+K-n) - (K-1) = (p+K-q) - (K-1)

rZ

Thus

and

S and

rZ
R

T have the same index. Also the heads in
R

T are K-m+n = K-p + q bound variable in both.
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Thus T. •

Claim 2. If S \ T, then for a sufficiently large K,

S +
JR

T for a free variable z in S and T.

K

Proof. Suppose that S has a head normal form and T does

not. Then as we have seen in the proof of Claim 1, S has a
JR..zRKfZ

head normal form for a sufficiently large K, but T does not

have a head normal form. Thus

S +
JR.

On the other hand, suppose

S= Xr1r2...rm.w1S1S2..-Sn

T= Xr1r2---rp.w2T1T2...Tq

where (m-n.w^ t (p-q,w2). If w^z and w2 4 z, obviously

while

T since the substitution does not alter the heads nor

X lX
the indices. If w, f w2 and w-j = z, then we take K so that

K > max(n,p+n-m). As above,

CNV
> XrTro* **rms s„.s„s's;---s's.lr2,"rmsn+l**'sK-seii2 Vn+r*'sK-l

rZ

T=Xr1r2---rp.w2T]T2---T' .
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The head Sw in
•f"h

S is the K-n+m bound variable but

kK rZ
thsince K-n+m > p, w0 cannot be K-n+m bound variable in T.

' JR

Thus

eZ rZ

RK S
T .

On the other hand, if w, = w? = z and m-n^p-q, then we
fz

take K such that K > max(n,q). It is easy to see that I

fz RK
and T are different in their indices. D

JiR
K

Now we are ready to prove our lemma for Case II-2.

determine K of RK in the following way: Let

L(x.«*)-At t—t , •u,X1X2...X
6 ol 6 o2 6 oitl Jl

L(y,6 )=Xt^t^ o'"t^ _^ .v^,r2 -.q.v«Y,Yo---Y.
6 ol 5 o2 6 op ~ • - ^

We
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for £ = 0,1,...,L. We take K such that K> max (n0,q0,d0) +1
£=0,1,...,L * * *

Step 0. We want a context to select L(x,6 ) and L(y,6 ) out

of x and y, respectively. Let

L(x,0) = XtTV.-t .znX,X9---Xn
12 nr o l £ n^

o o

L(y.0)-tt1t2...tp.zoY1Y2...YqB

where m -n = p -q . Substituting R„ for z in
o o ro no K



L(x,0)t,t2**-tn and L(y,0)t,t2-••tj, where max(m ,p ,d,+m -n )

< H < K+ m - n , we have
o o

Xo = XsH-m +n -lsH-m +n +2" *SK,SKX1X2'"Xn lm +l'"t
o o o o o o

sH-m+n+r-,sK-l from Ux.O)^-.-^
0 0

Y*=Xq q ...c c Y*Y'••»Y' t •••+Yo H-p0+q0+lSH-p0+q0+2 VSKY1Y2 W+l XH

SH-p+q +r**SK-l fr0m LCy.O^^.-.tH
o no

z

where X'. =
J J

X. and Y'. =
n J J

RK

o

RK
Now substituting Xr, r2-"rK_,. r. for sK in both

* *

XosH-m+n +lsH-m+n +l"'sK and YosH-p +q +lsH-p +q +2*"SK'
0 0 0 0 r0 ^0 r0 0

we have

Y*c c CNV,
A sH-m +n +1" K

0 0

Y*c c CNV,
H-p0+Vr K

L(x,61)
X

Ky,^) .
kK

Step I. Suppose that, under some context, we have selected

:ozl"'z£-lzozl""z£-lf L(x,S*) and
jrkV"rk
respectively. Let

RKRK"'RK
L(y,6 ) out of x and y

L(x,6x) =Xt £ t , ---t .z,X1X2---X
6 ol 63Co2 6 om£ * ' L n£

L(y,6*) =Xt t ...t . -ZoY-iYg-'-Y
6 ol 6*°2 6 op *- x c %
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We take a positive integer, H, such that

»«(VVVl*Vnt)<H<K+Vni

and,substituting R„ for z^ in

L(x,6£)t p t, -t, and L(y,6£)t . t, .--t.
oH

(if z% f zk for any k=0,1,...,£-1, z£ is already substi

tuted by RK), we have

X£ =^H-iy-ryl' "SK'SKX1X2" *Xn£\+l *' 'Vl-l-ry-n^+l' "SK-1

y: = Xs, s„.s„Y^YA---Y' t tMs,%=ASH-p,+q,+r--SK-VlY2---\V,''LHSH-P£+qil+l'''^-l

where

xj

yj

zlz2

RKRK'

zlz2'

R1R2

X..

R
K

Now, following exactly the same procedure as in Step 0, we

can select
zozr"z*

L(x,6£+1) and
RKRK*"RK

z z, ••«zn
0 1 I

RKRK..-RK
L(y,6*+1) out of

X* and Y* respectively.

By the discussion above we conclude that under some appro

priate context, we can select

-zo,zV",zL-lj ^ L(x,6Q) and
RK,RK"",RK

,vzr.. •>ZL- 1

L(y, V
RK' K' * ' "RK
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out of X and Y respectively.

Applying Claim 2 repeatedly, we conclude that

Z ,Z-i,...,Z| •• Z ,Z-i,...,Z
vr--,,fcL-i o'T'-'^L-l( O I L-l f 0 I L-l

L(x,6 ) \ L(y,« )
J R R R UJRR R u

K ' K ' * * * ' K K ' K ' * * * ' K

where neither of them is without a head normal form. By the

result of Case I, we have proved the lemma for Case I1-2. •

3.4.7 Theorem. Given x, y in A:

1. If there exists 6 e A such that, for different u, v

in V,

C(x,6) = u and C(y,6) = v

then, for arbitrarily given a, b in D^, we can choose e-j ,e2,... ,en

in A and an environment p for which

V[[xe1e2-.-en]lp =a

^llye1e2---en]] p =b .

Moreover, if a, b e A , we can choose p such that p(V) cA .

2. If there exists 6 e A such that, for all 6^ satis-
o

tying |60l <|6|, C(x,6Q) =C(y,6Q)

and that C(x,6) = u e V, C(y,6) = cd

then, for arbitrarily given a in D^, we can choose e-j ,e2,... ,en

in A and an environment p for which

Vllxe^- ••en3 p =a

W[Iye1e2---en]] p =J_ .
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Moreover, if a e A , we can choose p so that p(A) c A .
c •v»

Proof. Straightforwardly deduced from Lemma 3.4.5 and Lemma

o 3.4.6, using a technique similar to the proof of Corollary 3.4.9.
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3.4.8 Definition. Let

G = {c| ce A -> Vutoj}}
and

C = {c| ceA -*• S}

We define relation < over ID and (C as follows:

For C|, c2 e (D (£), c-| < c2 if and only if, for all

6eA, C|(6) =a) or ^(6) =c2(<5).

3.4.9 Corollary. For x, y in A, C(x) < C(y) if and only

if C(x) < C(y).

Proof. If C(x) < C(y), C(x) < C(y) is immediate from the

definition of C.

On the other hand, assume that C(x) <. C(y) does not hold.

This means that there is 6 e A such that

either Case 1. C(x,6) = (u,i) and C(y,6) = (v,j) where

(u,i) f (v,j)

or Case 2. C(x,<5) f m and C(y,6) = w.

C(x) ^C(y) is immediate from Case 2 by the definition of C.

For Case 1, let 6 be such that, for any 6' satisfying

6* < 6,

C(x,6') = C(y,6')

and

C(x,6) = (u,i)

C(y,6) = (v,j) .
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If u f v, C(x) £ C(y) is immediate.

Suppose u = v and i f j. Let

L(x,6) = Xt6olt6o2...t6om.uX1X2.-.Xn

Uy.«) =^6olt6o2...t6op.uY1Y2...Yq

where m-n = i and p-q = j. If we take K larger than n

and q,

C(x,6oK) =L(x,6oK) =t6o(K_n+m)

C(y,6oK) =L(x,6oK) =t6o(K_q+p) .

Since i t j, K- n+m f K- q+ p. Thus C(x,6) i C(y,6). D

3.4.10 Corollary. For x, y in A, C(x) = C(y) if and only

if C(x) =C(y). °

3.4.11 Corollary. For x, y e A, if x c y, then C(x) < C(y)ary,

D
00

Proof. Let us negate that C(x)<C(y). Then there must

exist 6 e A such that, for some u, v e V,

C(x,6) = u
either where u f v

C(y,6) = v

C(x,6) = u
or

C(y,6) = w .

In either case, there must be at least one 6 e A for which the

condition of part 1 or part 2 of Theorem 3.4.7 holds. Thus by
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the conclusion of the theorem, there exist e,,e2,...,e e A and

an environment p such that,

either V IIxe,e0---e^]] p = K
and 1 2 n

WHye^.-.eJp = H

or V [[xe^e^'-e^]] p = K
and ] 2 n

\Vlyeie2..-enI|p =1 ,

which contradicts x c y by Proposition 2.3.5 and Corollary 2.3.18
D
00 •—i

D

3.4.12 Corollary. For x, y e A, if x = y, then C(x) = C(y).
D
00

Proof. Similar to the proof of Corollary 3.4.11. •

In fact, the converses of Corollary 3.4.11 and Corollary 3.4.12

are also true and will be proved in Chapter 4.

We should note here that we can further formalize C-functions.

Since each variable z in V is in F or TA, we encode z

as follows:

If z = f. in F, En(z) = i e IN.

If z = t. in T^, En(z) = 6 e A.

Now the new version of C, C: A •*• (A-*-AuNu{u)}) is defined

by:

For x 6 A, C(x,6) = En(z) if C(x,6) = z e V

C(x,6) = w if C(x,6) = a)
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Thus we can discard the notion of variables. We do not take this

convention since this does not provide us with any substantial

improvement other than formalism.
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§5. C-function as Infinite Normal Form -- Extension of Bohm's Theorem

Theorem 3.4.7 can be regarded as an extension of Bohm's

Theorem [4] which is stated as follows:

3.5.1 Bohm's Theorem. Let x, y in A. If x and y have

different normal forms, then, for any two variables u, v e V, we

can choose A-expressions e,,e2,...,e e A, variables

z,,z0,...»z eV and closed A-expressions h1,h0,...,hm 6 A_
I c m I c m c

such that

ii
zrz2,...,zm

h-j ,h2»... ,hm >

and

z1,z2,...,zm

hrh2,...,hm

* CNV . ,.
e,e0-•#e > u
12 n

a CNV. w
ele2-"en >w D

If we translate Theorem 3.4.7 into one stated in pure

A-calculus language:

3.5.2 Theorem. Let x, y in A. If C(x) 4 C(y), then, for

any u, v e V, we can choose A-expressions, e,,e2,...,e e A,

variables z-.,z2,... ,z e V and closed A-expressions

h-,,h0,...,h e A„ so that one of the following 1), 2) and 3) holds
1 2 m c

Let

and

*

x =

z1,z2,...,zm

h-i »h2»... ,h ele2"-en
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Zi jZ/),... ,z
*

y =

1,^2,...,-m

y
hrh2,...,hm J

1> x*^Uu and y*-™Uv.

ele2'"en •

* CNV *2) x >u and y has no head normal form,

\ * * CNV r-i
3) x has no head normal form and y > u. •

The main point of the extension of Bohm's Theorem is that

we are no longer concerned with conventional normal forms,

Theorem 3.5.2 is a statement about general A-expressions no

matter whether or not they are normal. In this respect, we might

as well call C-functions <infinite normal form> or generalized

normal form. Refer to [21] for an alternative extension of Bohm's

Theorem.
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CHAPTER 4

CHARACTERIZATION OF THE D -VALUES OF THE A-EXPRESSIONS
00

The main result in this chapter is to characterize, using

the C-function, the partial ordering among the A-expressions

that is induced by D^. Namely, it is shown that, given two

A-expressions x, y, the relation xCy in D^ is equivalent

to C(x) <_ C(y) in the algebraic domain which includes the

range of C.
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§1. Structural Approximation

In Chapter 2, we defined the notion of approximant of

A-expressions. Roughly speaking, the approximant of x e A is

obtained from x by replacing the 3-redexes in x by J_.

In this section, we define another notion of approximation

which is more closely related to the C-function. For this purpose,

we need a class of subsets of A, called A-trees.

4.1.1 Definition (A-trees). A A-tree, T, is an infinite

subset of A such that

1) 0 e T.

2) If 6 e T, then pr(6) e T.

3) For all 6 e Tt there exists a positive integer N

such that 6ol,6o2,...,6oN e T and 6©K $ T for all K > N.

For a A-tree, T, we call N in 3) above yt(6), i.e.

YT(6) = #{6'l «' eT, Pr(6') =6}.

4.1.2 Example.

1111

/\
1112 1121 1122 1211 1221 2111 2211

11111 11112 11121 11122 11211 11221 12111 12211 21111 22111

A A I I I I I I I I

Let T be (ae (1,2}*| a= 3, S2y or 322y for 3, y e {1 }*}U{0}

(= 0 U 1* U 1*21* U 1*221*).

59



Obviously, T is a A-tree. Here, for example, Y-rOl) = 2» Yr021) = 1.

In Chapter 3, we formulated the expansion of A-expressions.

A-trees give in a way the opposite operation. Suppose, given the

C-function of a certain A-expression, we want to synthesize the

original A-expression from the C-function. Since the C-function con

tains arbitrary numbers of n-abstractions, we should restrict our

attention to finite and meaningful parts of the C-function, which

are represented by a A-tree.

4.1.3 Definition. Given a A-tree, T, n eFI and x in A,

n O <R

we define T (x) to be T where T is defined for 6 e T
X ,II X ,II

by:

1) If |<SI < n, then

a) if C(x,6) =u>, then T^ =ft.
X ,II

b) if C(x,6) = (z,k), then

T6 _ 1+ . + T6°lT6o2 T 'Tx
•x,n ~AX6or6o2"" *i:6o[YT(6)+k]*z,x,n,x,n"',x,n

2) If |6| =n, then T^>n =L(x,6),
where [ ] is the Gauss notation.

4.1.4 Definition. A A-tree, T, is said to be admissible to

x in A if and only if, for all n e ]N,

x—*Tn(x) .

3
n-ab

Intuitively, a A-tree, T, is admissible to x in A if

it is wide enough to cover the whole significant portion of x, i.e.
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%

the significant parts which were derived by 3-reductions rather

than by n-abstractions.

4.1.5 Definition. Let x be in A. We define N(x) to be a

subset of A such that

1) 0 e W(x)

2) Let 6 e W(x). Then 6oi e W(x) if and only if

L(x,6) -^Xs1s9---sm.zX1X9---X„
12 m 1 2 n

for i < n.

We should note that W(x) may be infinite or finite. For

example, if x is normal, or x is riot head normal, #(W(x))

is finite. We give L(x,6) a special name LT(x,6) if 6 e W(x)

4.1.6 Corollary. Let x be in A and T be a A-tree. Then

T is admissible to x if and only if W(x) c T. So, x has at

least one admissible A-tree. •

4.1.7 Corollary. Let ^, T2 be A-trees. If T, CL and T,

is admissible to •x, so is T«. D

4.1.8 Corollary. If T is a A-tree admissible to x, then

T^x) = x for any n. •

4.1.9 Corollary. If T is an admissible A-tree to x e A,

then LT(x,6) < Tn(x) for all LT(x,6) such that |6| = n. D
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4.1.10 Example. Let us look at T in Example 4.1.2. It is easy

to see that T is admissible to R in Example 3.3.2.

* T3(R) =X^tg.t^At^.tgtX^^.t^fR^^XRt^^jytt^flnJJttgOi)
{6| 6eN(R), |6| =3} = {111,112,121,122} ,

SO

LT(R.ni) =Rtni

LT(R,112) =RtinQ

LT(R,121) = fl • •

LT(R,122) = fl .

Let us see how T (x) is generated from x. First apply to

x all the 3-reductions that were necessary to generate all

LT(x,6)'s for |6| <n (x-^Z,). So, for each LT(x,6) such

that |<S| = n, LT(x,6)<Z,. Now, apply to 1, a-conversions so

that each bound variable, which occurs outside of all LT(x,6)

with |<S| = n, will be renamed and belong to TA (Z-. -^->Zp).

Now apply ^-conversions and replace each subexpression, which is

not head normal, by ft ^Z2~^Z3^' Finally aPP!y n-abstractions
for each node in {6| 6eT-W(x), |6| <n) (Z3 n"ab >Tn(x)). .
Note that no n-abstraction is made inside of LT(x,6) with

|<S| = n. We state the process above as a corollary:

4.1.11 Corollary. Let x be in A and T be a A-tree admis-

* sible to x. For n eIN, there exist Z,, Z2, Z3 e A such that

62



where Z2 matches Z3 except at occurrences of ft in Z3 and.

if any of the n-abstractions applied in Z3 ——>T (x) is of the

form A -*• As.As, A cannot be a proper subexpression of one of

LT(x,6)'s, |6| = n. Moreover, if Z2 has any 3-redex, it must

be contained in either LT(x,6) with |d| sn, or in one of the

subexpressions which were converted to ft in Z2 —>Z3- •

4.1.12 Definition (Structural Approximation). Given x in A,

n eIN and a A-tree, T, which is admissible to x, a"(x,T),

structural approximation of x, of order n, with respect to T,

is defined by: a"(x,T) = fiP n where A^ n is recursively defined
p x,n x,n *

for 6 e T. by:

1) If \&\ < n, then

a) if C(x,6) =o) then A^ =ft
b) if C(x,6) = (z,k), then

Mx,n "AX6or6o2"'l6o(k+Yr(6)),ZMx,nMx,n",Mx,n

2) If |6| = n, then A6 =ft.

4.1.13 Corollary. For x e A, n eH and A-tree, T,

admissible to x,

1) AJJ(x,T) is obtained from Tn(x) by replacing, by ft,
each L(x,6) in Tn(x) such that |<5| = n.

2) A?(x,T) c x
Doo00

3) If m<n, then Ap(x,T) c a"(x,T). D
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4.1.14 Example. For T in Example 4.1.2 and R in Example 3.3.2

3

A (x,T) = At1t2.t1(At11.t2(At111.t11ftft)(t11ftft))(t2ftft)

The following corollary characterizes the relation between

the C-function and the structural approximation.

4.1.15 Corollary. Let x be in A and T be a A-tree admis

sible to x. Then, for each n e IN,

n ,C(x,6) if |6| < n •or 6 $ T
C(A"(x,T),6)=

v |(o if \6\ > n and 6 e T

The assertion remains valid when we replace C by C.

Proof. Since x » Tn(x), L(x,6) z L(Tn(x),6) for all 6

and C(x) = C(Tn(x)). The conclusion of the corollary is immediate

si nee, by Corollary 4.1.13-1, A"(x,T) matches T^x) except at

occurrences of ft in A"(x,T). D

aJ(x.t)-
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§2. Convergence Lemma

Our objective here is to prove Lemma 4.2.2 which is funda

mental throughout the rest of this thesis. We use the proof

technique of typed A-calcuius in Chapter 2.

4.2.1 Lemma. Let x e A and T be a A-tree admissible to x.

For any x in T(x), there is a sufficiently large n such

that, x* c A"(x,T).
Doo P

Since the proof for Lemma 4.2.1 is very long with a high

complexity, we first give the outline of the proof in order to

ease the unreadability of the full proof.

1: There exists a typed 3-reduction sequence x* -»• x* so that

x has no typed 3-redex (by Lemma 2.3.13).

2: There exists a (usual) 3-reduction sequence x -*• x so that
/ t\

W(x ) is a reduced approximant of x (by Lemma 2.3.14).

3: For keIN, there are Qk, Qk and Wk eA, so that

xp -£» Qk -S* Qk n~ab >Wk and Wk matches Tk(x) except at
occurrences of ft and LT(x,6) with |«S| = k in Tn(x) (by

Corollary 4.1.11 and the Church-Rosser Theorem). The parts in Wk

to match ft in T (x) are non-head normal.

4: Correspondingly, there is a typed conversion sequence

xt _t3^yt Jz±yt_*+yt where yt 6 I(QkK yt e I(Qk} and

Y1 e T(Wk) (* is 'modified' tn-ab) and x* c Yt.
P n

k k °°
5: By the definition of T (x), T^(x) contains each variable

z such that C(x,6) = z° for each 8 e T with |6| = k-1.
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k A 1*
6: By 3, W contains each z in 5 and, by 4, Y contains a

typed variable t[z6] e T(z6) for each z6 in 5.

7: We consider the process in which zu in W is derived:

[1] z already occurs in x .
P

[2] z6 is derived in x -&-> (£.
[3] z6 is derived in Qk n"ab>Wk..

8: If we take k large enough, we can reassign type 0 to each

t[z6] in Y* so that |6| =k-1 and still have x* c Y* valid,
p D~

~ 00

for,

a. [1] cannot occur for z° if k is 1

b. In [2], z is from a 3-redex in x , but x* has

arge enough.

p- — -p has no
typed 3-redex. (The 3-redexes have degenerated to ft in xt.)

c. In [3], note that typed n-abstraction reduces the type

of the variable by 1(i.e. A(n) +As.fA^s^V""1').
So, if k is large enough, t[z ] is of type 0.

9: Since we have reassigned 0 to each t[z6] in Yt with

|6| = n-1, we can replace the subexpressions applied to t[z6]

by ft(0) and still have x£ cY* (by Theorem 2.2.5). Further-
(0) Dco t

more, we replace, by ftv ', each subexpression in Y that

corresponds to a non-head normal subexpression in W (pointed

out in 3).

k k
10: Since W matches T*-(x) except at LT(x,6) (|6| = n) and

occurrences of ft in T (x), and Ak(x,T) is derived from
k
T (x) by replacing L(x,6) (|6| = k) by ft, we conclude that

Y* obtained in 9 is in I(Ak(x,T)). So, x* = x* C Y1 c
k, P Doo pD„ DooAp(x,T).
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The following is the reason why the proof is so difficult:

The transformation x -»• T (x) involves both 3-reductions and

n-abstractions. The structure, T, is arbitrarily given regard

less of the structure of x. In addition, the transformation

T (x) -*• A (x,T) is rather an artificial deformation and the parts

in T^x) that are replaced by ft include variables added by

n-abstractions as well as subexpressions generated by 3-reduc

tions.

Proof. By Lemma 2.3.13, there exists the following typed

3-reduction sequence:

x •+ x-, •* x« -••••-». x„
1 2 p

t t t twhere x.. e A and x.+1 derives from x. by one application

of typed 3-reduction and x has no typed 3-redex. Correspond

ingly, by Lemma 2.3.14, there is a 3-reduction sequence:

x - X] * x2 -

where x^+1 derives from x.. by one application of 3-reduction

and x.. matches W(x.) except at occurrences of ft in W(x.).

Since x has no 3-redex, W(x*) is a reduced approximant of

x, and so, every 3-redex in x is contained in a part of x

which has no corresponding part in W(x^) except ft.

W(x!): r Q Q
" P

Xn=L '///, V/A

\ \
a 3-redex can exist only

in these areas.
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Given any k in IN, by Corollary 4.1.11 there exist

Zk, Zk, Zk eA such that

k k kwhere Z2 matches Z3 except at occurrences of ft in Z3
kand every 3-redex in Z2 is contained in a part which corres

ponds to ft in Z3 or in LT(x,6) for |6| = k. Also, if

A -*- As.As is made in Z3 •* T (x), A is not a proper subexpres

sion of LT(x,6). By the Church-Rosser Theorem, there exist

1 2

Qk' ^ 6 A sucl1 t'iat

x^

* k
zi

X

l2

So

x-^x^

«\ P \
\ k
Zl Q?

aX.k-^

\ a

ft\Xzk^ab^Tk(x)

i/

Since every 3-redex in Z2 is either in a part which corresponds

to no part except ft in Z3 or in LT(x,6) for |<S| = k, it
k kfollows that Z3 matches Q« except at occurrences of ft and

LT(x,6) in Zk.

On the other hand, since all the n-abstractions in
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Zk J3zik^Tk(x) are made externally to LT(x,6) with |6| =k, we
k

conclude that there are n-abstractions which, applied to Q2,
k k

yield W e A which matches T (x) except at occurrences of ft

and LT(x,6) in Tk(x) such that |6| = n. Thus we have:

*P
1> Qk JL> Q* J=*Mk ^

It follows that the structure of W is described as follows

Wk =Wq where Wk (6 eT) is of the form:
1) if 1«SI = k, then Wk =w(6) for some w(6) eA such

that w(6) ~ L(x,6)

2) if |6| < k, then

a) if C(x,6) = u), then Wg is a certain expression

which has no head normal form

b) if C(x,6) = (z6,r6), then

Wk =At. ,t. 9---t. ..z6Wk iWko?---Wk m .
6 6o1 6°2 6o(Yr(6)+r6) 6o1 6°2 6°Yt(6)

r k 6 k
We examine each z which appears in W . z in W must

satisfy one of the following conditions:

nlnnniii<; tn nne in x.[l] This occurrence of z is homologous to one in x

(i.e. Jt occurs already in x ).

8 k[2] It was derived in the process of x -^Q-j.

[3] It was derived in the process of Qk n"ab> Wk.

(In any case (1), (2) and (3) above, z may have been renamed

in q£^*Q*.)
Is

Let j = 1, 2 or 3. We define nui) to be the subset of

T determined by:
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n^(i) ={61 6eT, |6| =i, C(x,6)/(o and z6 in Wk is derived
as in [j]} .

Since x is a finite expression, there is m, in N for which

ft[1] above cannot occur for z if \&\ >m,, Let m2 be the

maximum type among the types that were assigned to the components

of x*. We set n=m,+m2. (To simplify the description
of the proof, we set n= m, +1 if m2 = 0.) We set k= n and

8 6 n
develop x -=-» x -=-> Q, into

x=V xl "x2" '•• "Xp"Xp+l " '" "Xq =Ql

where x^+1 is the result of an application of 3-reduction to

x... Correspondingly, we define a sequence typed A-expressions:

t t t t t t

in the following way:

Step 1: Set y* = x* eT(x ).
•— o - o

Step i: Suppose y^ is in I(x^_-,) and that the redex

which is reduced in x. -, + x. is (As.M)N -»• fM and that the
1 ^ t JN

corresponding occurrence of (As.M)N in y] , is of the form
,, t(nl} t(M t J((As.ML) ' Nl) c where W e T(M) and IT e T(N). We define

y. as follows:

t <M t (MCase 1. If h1 >0, replace ((As.lT) ' N ) c in

Aa b*

c M*]
[N*L , "^(^-l.h^

'h,-l

t (h-,) t (h«)
Case 2. If h] =0, replace ((As.M1) ' \C) . by
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'oh 0

Obviously y^ defined above is in T(x.).

Moreover,

t ,- t
yi-l - yi »iiD i

for, if Case 1 occurs, then it is exactly typed 3-reduction. So

by Theorem 2.3.12,

t t

yi-l = yi •1 ' D
oo

On the other hand, in Case 2, we could have replaced

(Us.Mt)«»Nt)(h2) in yt., by
rS

(0) 0
ft

without changing D^-value of ylj i'. Since

fs t
[ NT] c [

V°> 0Doo

fS tMt]

t ~ t
yi-l - yi1 I D 1

By induction, we conclude that, for any i such that 1 < i < q,

y\ eT(x.) and y*^ Cyf .
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Thus we have proved that there exists a typed A-expression y .

in T(Qn) such that x c y* Also it is easy to see that, for
i D q

00

i such that 1<i<p, y^ matches xj except at occurrences
of ft in x..

Now we apply typed a-conversions to y which correspond

to Q" -^Qg. Let this result be y* eT(Q^). (So, y* -^y*.)
Next, let us develop Q2 ^"ab> wn into the sequence:

0" -Yl *Y2 * '•• *Yd-1

where Y. is derived from Y. , by an application of

n-abstraction.

Correspondingly, we define a sequence of typed A-expression

Yt-Y**.-.*Y*

as follows:

Step 1: Y* =y*

Step i: Suppose that Y. , ——>Y. is the replacement of A in

Y._1 by As.As and that Y^ is in W^.,). Let A1 eT(A)
be the corresponding occurrence of A in Y. •.. We replace it

with (Xs.(Ats^J'"1^)^J"1^)^^ to have yJ. Now it is easy
see that Y* is in T{Y.) and •Y*^ =Y^. We set Y1 =Y*.

oo t
We have proved here that there exists a typed expression Y

to

in T(Wn) so that x1 c Y*. Since Y* is in T(Wn), we name
t Dop n

each component of Y via the corresponding component of W ,

that is,
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ft +" • £ n
t[z ] in Y corresponds to z in W

and .

t[wg] in Yl corresponds to w" in Wn .

Our next stage is to transform Y into another typed

expression in T(a"(x,T)) without violating xt c vtm Consider
Doooo

ft +all t[z ] in Y such that |<S|. =m1. As we have observed

as for Wn,

either fien"^), n"^) or n"^) ,

but it is impossible that 6en"^) because of the definitii
of mr Let Sen"^). Then z6 has been derived in x -4> Qn

Since x matches yn except at occurrences of ft in xt
P P p

and xp has no 3-redex, every 3-redex of yjj is in apart which
has no corresponding part in xjjj except ft. Thus, by replacing
each 3-redex in y* by d°\ x* c y* still holds. Since

v P d P
00

ft t" +
t[z ] in Y was derived from some 3-redexes in y , we can

reassign to t[z6] the minimum type 0and still have x* =x£ cYt.
For each 6 in n^), t[w"] is as

in Y where (*)'s are types.

Since t[z ] is now of type 0, we can replace each t[W~ •]
Ool

(i =l,2,...,Yr(6)) by rf°) without affecting the D^-value of Y*.
(If aeir0(U. (•••((ab1)b2)-..)bn -(•••((aJJi)--.)! by
Theorem 2.2.5.) So, at least, we can reassign the minimum type 0

to each component of t[w|J .] in Y and still have x C Y.
Doo

ion
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Especially, for 6' e T with |6*| = n-1 for which there exists

6en2(m-j) such that 6<6*, t[z6 ] is of type 0.
Next, we consider 6 such that 6enj^m,). Then z was

derived in Q2 n"a >Wn. Since the highest type among those that
are attached to the components of x is m2 and the conversion

x -> y e T(Q2) does not increase any type, the highest type
t ftin y is not more than m2. This means that t[z ] is of type

t t tat most m2-l by the way the sequence Y-j •> Y2 -* ••• -*• Yd is defined

On the other hand, if t[w"] is as
0

(•••((t[zS]t[^ol])(*)t[wJ82])W...)(*,t[nS (6)]) (*)

t ft n
in Y , since z comes from n-abstraction, so does each W, .

Ooi

(i =l,2,...,6oYr(6)) and, so, w"oi is, in fact, the variable
z . Since t[z ] is of type at most [m2-l],

t[z ] is of type at most [m2-2]

t[z o1] is of type at most [m0 -(i+1)] ,
t t 4-

again by the way the sequence Y, -> Y« -»• ••• -»• YV is defined.

This indicates that if we take &' e T with |<5'| = m-, +s for

which there is 6 e n3(m-j) such that &< 6*, then t[z ] is

of type at most [m2-(s+l)]. Especially, if s=m2-l,

(i.e. |6'| = n-1) then t[z6 ] is of type at most 0.

What we have proved is that we have transformed Y so

that, for any 6 e T such that |<S|= n-1, the type of t[z6]

in Y is 0. So we can replace each t[w"] with |6| = n by

ST' without affecting the D -value of Yt.
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Finally, we replace t[w£] in Y* by ft® if C(x,6) =o>.
Since Wg in W has no head normal form,this transformation

does not affect the D -value of Y , either.
00 '

We remember that Wn matches Tn(x) except at occurrences

of ft and LT(x,6) (|6| = n) in Tn(x). So Wn matches

Ap(x,T) except at occurrences of ft in a"(x,T) since each
L(x,6) (|6| = n) in Tn(x) is replaced by ft in A"(x,T).

It follows that Y* eT(An(x,T)).

We conclude that

xt c yt c An(x j D
D" D" p

4.2.2 Lemma (Convergence Lemma). Let x be in A and T be a
00

A-tree admissible to x. Then x = ua"(x,T).
D n=0 p
00

Proof. Since A"(x,T) c Tn(x) = x, for any n,
p D D

u A"(x,T) c x .
n=0 p D

00

On the other hand, by Lemma 4.2.1, for all x* eT(x), there

exists nsuch that x* c A"(x,T). By Lemma 2.3.9, x = UT(X).
D^ P D00 00

CO

Thus x c ua"(x,T). D
D n=0 p

4.2.3 Corollary (Park). Let Y be the fixed point operator.
CO

Then Yf = u fn(J) for f e A. '
D n=0
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Proof. Let T = U\ <5= (111---1) for some neIN}u{0}. Then

n

A"(Yf,T) = f(f(f(---(f(fl)« ••)))•)- The result is immediate from
P * -v '

n

Lemma 4.2.2. •
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§3. Characterization of Devalue of A-Expressions

In this section, we prove the converse of Corollary 3.4.11

and 3.4.12 using the Convergence Lemma 4.2.2.

4.3.1 Theorem. Let x, y be in A. If C(x)<C(y), then

x c y.

Proof. Suppose C(x) < C(y). By Corollary 3.4.9,

C(x) £C(y). We take a sufficiently large A-tree, T, which is

admissible to both x and y. We compare a"(x,T) and A"(y,T).

Since C(x) < C(y), a"(x,T) matches A"(y,T) except at occurrences

of ft in A"(x,T) by Definition 4.1.12. So

A"(x,T) C A"(y,T) .
CO

By Lemma 4.2.2, x c y. D
D
00

*

4.3.2 Theorem. For x, y in A, x ^ y if and only if
Dw

C(x) £C(y), and so, x = y if and only if C(x) = C(y).
D
CO

Proof. By Corollary 3.4.11 and Theorem 4.3.1. D

4,3,3 Example. Let YQ = Y, the fixed point operator, and

define inductively Yi = Y.. -|G where 6 = AxAf.f(xf). We can

D

show that Y. = Y. for any pair (i,j). For example, we prove

C(YQ) =C(^).

YQ =Y-^Af.f((Ah.f(hh))(Ah.f(hh)))
-^Af.fn((Ah.f(hh))(Ah.f(hh)))

Refer to [24] for an alternative characterization of C.
Dm
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Let G* denote (Ah.G(hh)J(Ah.G(hh)). Note that

G* -&->G((Ah.G(hh))(Ah.G(hh))).

Y1 =YG -&->G* -£-»GG* -&-»Af.f(G*f) -^Af.f(GG*f)
-^Af.f(f(G*f)) -^Af.fn(G*f) .

Now it is obvious that C(YQ) = C(Y.j). We can see the proof

for Y. *Yj (i f j) in [3].

4.3.4 Example (Wadsworth). Let F = AfAxAy.x(fy) and J = YF.

So

B
J -=^ AxAy.x(Jy)

Let I = Ax.x. Then it is easy to show that C(I) = C(J). Thus

I = J. Obviously I %J. It was a surprising fact that a normal
D
CO

expression I is equal to a non-normal expression J. J might

be considered to be an infinite computation process.

Given an input, it returns the computation result little by little

taking an infinite amount of time. The limit of this infinite

computation turns out to be equal to the computation of I. The

conversion rules alone cannot describe the outcome of this infinite

computation. It is possible only after A is mapped into a

lattice space such as D where the limit of such infinite
00

computation can exist. As Scott claims in [16], = is a more
D

essential relation than the convertibilities. Further discussion

on computational interpretations of normality, non-normality,

head-normality of A-expressions will be given in Chapter 5.
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§4. Further Properties of A Mapped in D^

In this section, we state further properties of A mapped in

D^ lattice. These properties will be the basis of the theory on
00

lattice A which will be introduced in Chapter 6.

4.4.1 Theorem. Let x be in A. Suppose C(x,6) f w for any

6 e A, then x is maximal in A, that is, there is no y in A

such that x £ y.

Proof. If x c y for some y in A, it must be that
D
00

C(x) < C(y) by Theorem 4.3.2. Since there is no 6 e A such

that C(x,6) = a, x = y. •
D

4.4.2 Corollary. Let x be in A. If x has a normal form,

then x is maximal in A.

Proof. If x is normal, C(x,<5) f w for any <5 e A. D

4.4.3 Definition.

1. Let V be a subset of A. V is said to be directed

(with respect to D^ partial order) if V satisfies the follow

ing property: For F any finite subset of P, there exists an

element z of V such that, for each x e F,

Wlxlp. cv-lzjp

for all environments p.

2. Let V c A be directed. V is said to be interesting

if there is no x in V for which
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\VHx]]p = u {V|y]|p-| yeP}

for all environments p.

The following theorem is a generalization of Lemma 4.2.2.

4.4.4 Theorem (General Convergence Lemma). Let P be a directed

subset of A. We define c^e C by:

cvW =
u> if C(y,6) = a) for all yep

z e V if C(y,6) = z for some y e P.

Then cfl = C(x) for x e A if and only if x = up.

Proof. To prove that c^ is well defined,

assume that, for some y,, y« e P and 6 e A,

C(y,,6) f a), C(y2,6) 4 a) and C(y.,,6) f C(y2,6). Since P is

directed, there must be z in P for which both y, c z and

Doo00
y« c z, but this is impossible by Theorem 4.3.2. So given any

c D
CO

6 e A, either C(y,<5) = oj for all y e P or there is v e V

such that C(y,6) = v for all y e P such that C(y,6) f a>.

Let T be a A-tree which is admissible to x. Now suppose

Cp = c(x). For any 6 e T, there is at least one y in P such

that C(x,6) = C(y,6). Given n in IN, since #{S| |6|<n, 6eT]

is finite, there is a finite subset, F, of P such that, for

any <S e T with |6| < n, there is at least one y in F for

which C(x,6) = C(y,6). By directedness of P, there is z in

P such that, for any y e F, y c z. It follows that

C(A"(x,T))<C(z). So, by Theorem 4.3.1, a"(x,T) c z. By
P P Dm
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Lemma 4.2.2, x= ua"(xJ). Thus xcup. On the other hand,
Doo n=0 p D^

since C(y) < C(x) for any y e P, up c x.
D^,

Conversely, suppose that x = Uc^. By Theorem 4.3.1,
Doo v

C(y) <C(x) for all ye Cp. Assume, for some 6eA,

C(x,6) f a) and C(y,6) = w for all y e P. Using the fact that

Cp is directed, a discussion similar to the proof of Lemmas 3.4.5

and 3.4.6 leads us to prove that there exists an environment p

and e^,e2»...,e e A such that

l=Wlyeie2...en]]p £VIxe^.. -e^p

for all ye Cp. So, under p,

(uCp)e1e2...en =l^xe1e2...en .

This means that Ucp C x contradicting the assumption. •

However, it is not always the case that a directed sub

set of A has a least upper bound in A. But as we see in the

next theorem, every element of A that is not the bottom is the

least upper bound of a directed subset of A which does not include

the original element. In Chapter 6, this situation will be discussed

more uniformly.
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4.4.5 Definition. Let D be a directed-complete lattice and F

be a directed subset of D. Then F is said to be interesting

if F does not contain its own least upper bound, i.e. UF <£ F.

Note that any finite directed subset is not interesting and

that any infinite non-interesting directed subset can become

interesting by removing its least upper bound.

4.4.6 Theorem. Let x be in A. If x has a head normal form,

then there is a subset P of A which is an interesting directed

set such that

x = up

D

Proof. We take a sufficiently large A-tree T so that

1) T is admissible to x.

2) For any n > 0, there exists at least one 6 e T •

with |<S| = n, for which C(x,6) 4 w.

For example, T as defined below satisfies 1) and 2) above:

^ Take any A-tree T' admissible to x. Let T be a A-tree

which includes V u{6o(yt, (6) +1)| 6eT}. In the first place,

* •. it is obvious that such a A-tree exists. In the second place T

is admissible to x. Thirdly, since T' is admissible, each

L(x,6) with 6 e T-Tl is obtained by n-abstraction, and so,

in fact, L(x,6) is t-. for some k > 0.
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Since {6| |<5|=n, 66T-T'} f 0 for each n by the defi

nition of T, it follows that T satisfies 2), too. Since

there is at least one 6 e T with |6| = n for each n such

that C(x,6) f a) and C(a"(x,6),T) = w, we conclude that

a"(x,T) f x for all n by Theorem 4.3.2.
CO

00

On the other hand, x = u a"(x,T) by Lemma 4.2.2. Thus,
D n=0 p
00

V={A^(x,T),Aj(x,T),A^(x,T),...}

is an interesting directed set whose least upper limit is x. •

4.4.7 Theorem. Given x, y e A such that x C y. Then there

00

is z e A with x C z £ y.

00 00

Proof. Let T be a A-tree which is admissible to both x

and y. Let n e IN be such that there exists 6 with |6| = n

for which C(x,6) = io and C(y,6) 4 w- By Definition 4.1.3,.

^(y) contains L(y,6) as a subexpression. Since C(y,6) f to,

•L(y,6) -^Xs^g'-.-s .zY^g-'-Y .

Let z be derived from l^iy) by replacing L(y,6) in Tn(y)

by As,s2* "sDsD+vzYiY2",Yafi wnere sD+i does not appear free

in zYiY2 *Ya* Now nt 1S easy to see

xpf Ay) =y . •
00 oo oo
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The following fact is interesting in relation to co-complete

ness discussions in Barendregt [2] and Plotkin [11].

4.4.8 Theorem. Let x, y e A. If, for any z in A ,

xz = yz, then x = y.
D D
oo

Proof. Suppose x f y. By Theorem 4.3.2, C(x) f C(y).
D
00

By Theorem 3.4.7, there exist e1,e2,...,en e A and an environment

p such that

Vlxe^.-.e^p f \V[[ye1e2...en]]p . (*)

84

Since, by Proposition 2.3.5 and Corollary 2.3.18, the t can be realized
00

with both sides being in Ac, so we can choose p such that

P(V) c ac.

Let

and

x =

u1,u2,...,up
x

p(u-,),p(u2),...,p(u )

Vl,v2,...,vq
y

p(v1),p(v2),...,p(v )

,wl'w2- •••><(!•)

p(w]),p(w2),... .pCWjJj^-j)

»

ei

where u.j,u2,...,u are the free variables occurring in x,



>*

v,,v2,...,v are the free variables in yand w],wl,..•»wmM) are
the free variables in e. for i = l,2,...,n.

Now the inequality (*) is written as:

00

where x, y, e. e A . By extensionality of D , we conclude that

and so

'cx>

00

This indicates that if x f y, there exists e, e A for whi

Doo

xe, f ye, . D

Doo00

We translate this theorem into one which is stated by

C-functions:

4.4.9 Corollary. Let x, y be in A. If, for any z e A ,

C(xz) = C(yz), then c(x) = C(y). D

Theorem 4.3*5 is obvious if we replace zeA by z e Do

since D^ is extensional. The theorem says that

the extensionality holds in A modulo = .
c D

ch
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CHAPTER 5

INFINITE EXPANSIONS IN REAL PROGRAMMING LANGUAGES

We discuss informally how the concepts and formulations

introduced for the A-calcuius in the previous chapters are

applied to more realistic programming languages such as recursively

defined programs and Algol-like programs. We present algorithms

to translate a program written in these languages into a

A-expression. Using this translation, we show that the C-func

tion for the A-expressions, in fact, corresponds to the infinite

expansion or the executions on all possible inputs for the pro

grams in realistic languages. Most of the results here are not

essentially new.

86



SI. Recursively Defined Programs

We consider the programs which are defined by recursive

equations. (Discussions on this type of program are found, for

example, in [20]). The following is the syntax of the language

R.

Syntax of R

Elements

1. A.|,A2,...: Symbols for constants

2. X^,X2,...,X^: Symbols for variables

3. G.j,G2,... ,Gm: Symbols for known functions

4. F1,F2,...,Fn: Symbols for unknown functions

<term> ::= A, |Aj•••

x-, |x2|... |X^|

G1(<terml>,...,<term k,>)

Gm(<term 1>,...,<term k >
m m

F1(<term 1>,...,<term p,>

Fn(<term !>,...,<term p>

1 1' 9' ** *' I
<term 1>

<program> ::=

n 1' ?' ****̂ i <term n>

where we assume that <term k> does not contain any variable

symbol other than Xj,X2,...,Xp for k=l,2,.?.,n.
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For example

n = 1: F(X) + F(F(X))

n.2.r¥VV ^VVA"
lF2(X1) ^-G2(F2(X1),F1(X1))

are programs of R.

Computation of Terms

Given a program £ where £ is:

F1(X1,X2,...,Xk) ^-^(X1,X2,...,Xk )

Fn(XrX2,...,Xk )^Vn(XlsX2,...,Xk )

where ^(X^,... ,Xk ) is a term with occurrences of

X-|,X2,...,Xk for i= l,2,...,n. For a term T, a computation

of T according to E, is defined to be a sequence of terms:

W---»Tn

where T-j =T and T.. is obtained from T. , by replacing an

occurrence of Fj(srs2 sk ) by ^-(s^Sg sR ) where
s.'s are terms. We write T -=->T .
i £ n

Translation of R to A

Given a term T and a program £, we want to synthesize

a A-expression E (T) such that each computation of T accord

ing to £ corresponds to a 3-reduction sequence from E (T).

88



Let H^ytlny'** Xn ,Xp»•••»X» , g-i »9o> •••»9m> y-i 9^2'* *''*n

distinct variables in A.

Algorithm

(a) If T is Ar

Z'(T) - a. .

(b) If T is X^ then E'(T) = x..

(c) if T is G.(s,,s?,...,s ) where E'(s.) = S. for

j= l,2,...,p^, then Z*(T) = g.(S-|)(S2) •• *(S ). The parentheses

are omitted if S. is a variable.

(d) If T is F.(s,,s2,...,s. ) then

E£(T) =♦i(S1)(52)---(Sk ).

By applying the transformations (a), (b), (c), we obtain a

A-expression E'(T) e {a.,g.,<j>k}* for aterm T. Next we sub

stitute a A-expression for <j>, ^p.... ,<L in E'(T). For example

we see what to substitute for <j>,.

Let

Vi •YK-i.jVvi>)
. yn

yi+l,yi+2 yn

♦2'*3 *(,

•Jy2^3.....yn
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Then Y-j = y^ is the A-expression we want to substitute for <J>,

In the similar manner, we synthesize a A-expression Y. to sub

stitute for ^ (i = l,2,...,n). Now

fV<i>2,...,<j>n
MT> = Z'(T)

T19Y2,...,Yn

It is easy to see that:

5.1.1 Theorem. For terms T^, T2 and aprogram £, T, -?->T2
if and only if Z^) -&•» Z(T2). D

To translate the result of Chapter 4 to R, we introduce the

notion of semantics to R.

Theorem 4.3.2 can be read as:

"Given A-expressions (programs) x, y, if x and y

have the same C-function (infinite expansion), then x

is equivalent to y under the interpretation of the D^-

semantics."

Here, instead of D^, we use general domains to specify the

semantics of R (as in [20]).

Semantics of R

We define an interpretation, I, of R to be the pair

(P^Vj) where V^ is adirected complete partially ordered set

with 1=02^ and Vj is the semantic function which maps:

the constant symbols A., to elements a., the variable symbols

Xi to variables xi which range over P?, the known function symbols
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Gi to gi e \VT •* Pj]. Vj is extended in the obvious manner to

the terms generated from G., A and XR. Now aprogram 5 of
R can be translated via vT into an equation £* with the

unknown functions F.'s over Vjm By Scott's fixed point theorem
(Theorem 2.2.3) we can conclude that there exist continuous
functions

fl»f2 fn e [Pj •* Pj]

which satisfy £*. By way of the correspondence F. h- f. we

extend the definition of vx onto all terms of R. We denote
this extension by vS.

Now we have the following fact which corresponds to

Theorem 4.3.2:

"Given programs ^, 5 and terms T,, TOJ then
In- ^2Vj 1^1 =Vj [[T2J 'for all interpretation I

if and only if

C(Z51(Tl)) =CVT2)) '"

which says the semantic equivalence can be described by the equi

valence of the infinite expansion (C-function). It is easy to

see that "given aprogram 5. and aterm T, v| iTl =L for
all interpretations I if and only if .^(T) eA has no head
normal form."

On the other hand, in a straightforward application of the

formal language theory, we see that the property:
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j$

P(S,T) ="v^QTD =J^ for all interpretations I"

is decidable. So the head normality is a decidable property on R,

However, we do not know the answer to the following* question:

"Given programs £•,, S2 and terms T1, T2, is it

decidable whether or not

C(Z^ (T,)) =C(Z^ (T2)) ?"

which is equivalent to:

"Given programs ^, S2 and terms T1, T2, is it

decidable whether or not for aY\_ interpretations I

Si So
Vjl^l =v^|[T2]| ?"

This property is, of course, undecidable on A, for,the head

normality is already undecidable on A.

This problem is equivalent to the equivalence problem of the
deterministic pushdown automata. Refer to B. Courcelle, "Recur
sive schemes, algebraic trees, deterministic languages," Proceed
ings of the 15th SWAT Symposium (1974).
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§2. Algol-like Language

We take the translation algorithm based on the continuation

technique in [ 1]. The continuation is explained as follows:

Given a program:

where S^s are a (block of) statement(s).

We can regard S as a function over the program domain D

and ';' is understood in the following two ways:

(I) Each block S. is a function over D. Thus ';' is the

composition of two functions. Let f~ be the A-expression
5i

that corresponds to Sr Then the translation of S is:

Ax.fs (f (...(f X))) .
*n Vl bl

(II) Consider S;S*. Let f be the function over D which

is defined by S'. We regard S as a functional $$ which,

applied f, yields a new function. So the translation of S;S'

is

Ax.(*s(f ))(x) .

If S' is null, f is I = Ax.x. So, for example, the trans

lation of S,;S2 is

Xx,($ (• (I)))(x) .
51 b2

For S = Sj;S2;...;S , we give

Ax.($s (♦ (...(* (I))...)(x) .
1 2 n

(I) is not accurate when the program contains such statements as
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goto or halt since, in that case, execution of the program is

not necessarily sequential.

Here we show how some of the program constructs of Algol can

be translated into A-expressions based on (II).

Given a program

S = S *S • 'S

each S. is translated into a A-expression of the form:

s1 = X(|)X1x2-..xm.Si(x1,x2,...,xm,(l))

where S. is a A-expression that contains the variables

x1,x2,...,xm,<J). The x..'s are the program variables and <J> is

called the continuation variable and stands for the remaining

part of the program execution that follows the execution of S..

Now S is translated into:

s1(s2(---(snI))---) .

Algorithm. We state the translation algorithm in [ 1] for

some of the important program constructs. For the complete and

detailed description, we refer to [1]. For simplicity, we do

not consider the block structures and the program is assumed to

have the global variables x,,x2,...,x .

i) Assignment: x. <- f(x.j,x2,...,x ) is translated as:

Ad>Xlx2. •-x^xg.•-xi:if(x, ,x2,... ,xn)x.+1 ---xn

ii) Conditional Statement: rf a then S, else S?

where a =a(x,,x2»...,x ) is a Boolean expression. Let s.
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and s« be the translation of S, and Sp, respectively. Let

<a>''= <a(x,,x2>... 9x )> be the translation of a such that

<a>AB-£->A if a(x,,x2,...,x ) =true
<a>AB-£->B if a(x1,Xo>...>xn) =false .

Then if a then S, else S2 is translated as

X(J>x1x2-• •xn.<a>((s1<J))x1x2-•;xn)((s2(())x1x2-•-xn)

iii) goto V. We associate a certain part of the program P

to each label I. Let m be the label which is defined in P

next to I and I and m occur in P as

x,!b-i »b« j... jb »m;b ,-J .

Then we associate S-j;S2;...;S to I. So the translation of I

is:

M ss1(s2(...(sq([m])...)

where [m] is the translation of m and s. is the translation

of S. for 1 < i < q. If no label appears after l9

M ss-1(s2(---(sq(.I))---) .

Now goto I is translated as:

A<f>x1x2---xn.[ll]x.|x2---xn

Since goto & forgets the statements following itself, <J> does

not occur in Mx^x,,- •«xM.
\l n
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iv) while a do S: This statement can be regarded as W

which is recursively defined as:

W = if a then begin S; W enjd else no action

Since if a then begin S; W end is translated into

A(j)x1x2-•-xn.<a>((s(w(|)))x1x2-•-xn)(<J)x1x2-• *xn)

the translation of W, w satisfies the equation:

w-^U A(J)X1x2-•-xn.<a>( (s(w(f)) )x1x2-•-xn) ((|)X1 ••-xn)

So

w=Y(Xf4)X1-..xn.<a>((s(f(J)))x1...xn)((t)X1---xn) .

Example. Consider the followiing program:

begin

input(x,y); (i)
i := x; (2)

while i>0 do (3)

begin y := y2; (4)

if y>x then goto I (5)

i := i-1; (6)

end;

i: end (7)

Translation:

(1): We regard the input as an assignment and have

A = A<j>xyi.(|>abi

(2): B = A(j)xyi.<t)xyx

(4): Ce A<t>xyi.<f>xy2i

96



(5): De Ac|>xyi.<y>x >([>]xyi)(<|>xyi)

(6): E = A<j)xyi:xyi-1

(7): [*] = I

(3): F = Y(Af<j>xyi.<i>0>((G(f(()))xyi)((J)xyi)) where

6 = X4>.C(D(E4>)).

Now the whole program P = A(B(FI)). It is easy to see that

P-^»Axyi.<a>0>(<b2>a2>(ab2a)(<a-l>0>(<b4>a2>(ab4a-l)(...
p

•••)ab a-l)aba

which shows all possible executions for arbitrary inputs or the

infinite expansion of the program.

In the example, one might see the correspondence between

3-reductions and program execution.

Next we ask to what programming concept the head-normality

and the normality correspond under this translation. If we

assume that the computation of each Boolean function terminates,

the following is the answer:

"A integral part of a program is translated to a non-head

normal A-expression if and only if under any assignment of the

Boolean values (i.e. true and false) to the Boolean functions

occurring in the part, execution can never leave the part once it

enters it." (Note that this property is, obviously, decidabie.)

For example,

£: goto I

This goto statement is translated into
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GeA<J>x1x2---xn.Dl]x1x2---xn and [£] =A<J>.G(--«). Obviously, G

has no head normal form. On the other hand, a normal expression

corresponds to a program that has no loop in it, i.e. no while,

no goto that makes a loop. Thus, a normal expression is a program

which terminates upon all inputs. On the other hand, a non-normal,

head-normal expression corresponds to a program that may or may

not terminate depending on the input condition.

Now we have the following observations. Although the discus

sion to support these conclusions is informal and rather shallow,

they might give some intuitive insight and understanding to the

formal argument in the rest of the chapters.

(i) The process to generate C(x) from x e A corresponds

to program expansion or execution upon arbitrary inputs.

(ii) The ^-conversion corresponds to removal of meaningless

parts in the program (such as I: goto a).

(iii) Theorem 4.3.2 is understood as "two programs have the

same meaning if (and only if) they have the same infinite expan

sion."
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CHAPTER 6

GENERALIZED A-EXPRESSIONS,

A NATURAL LATTICE STRUCTURE OF THE A-CALCULUS

We generalize A-expressions to the infinite A-expressions.

The results on the A-expressions in D^ are extended to the

infinite A-expressions. It is shown that the lattice structure

of the infinite A-expressions (including the conventional .A-expres

sions) induced by the D^-partial order is equivalent to a directed

complete partially ordered set G-nf, which can be regarded as

the domain of all the infinite expansion of the A-expressions.

Since C. - is defined independent of D , $. £ can be said to
inT r °° mt

give a natural lattice structure of the A-calcuius.
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§1. Infinite Programs

How can a program be infinite? Probably in three ways.

1) non-termination, i.e. run time is infinite.

2) infinite work area, e.g. a Turing Machine is an

<infinite-program> in the sense that it has an infinite storage.

3) infinitely many commands, e.g. an Algol program which

is textually infinite.

Here, by an infinite program, we mean one in the category 3)

above.

However, one may ask how such a program can be realized.

In [12], Reynolds presents the following programming environment.

Let us imagine an interactive situation in which a person is

programming in front of a terminal. He builds up his program in

such a way that some of the integral parts (e.g., inside of a

begin-end block, a procedure body, or simply a statement) are left

unspecified. He can let the system execute this program. When

it turns out that the system needs the specification of an unde

fined part of the program to continue execution, the programmer

is requested to fill it with a code which could have several

unspecified parts, too. The programmer meets this request

probably considering the outcome of execution he has obtained so

far. This process of programming can continue infinitely. Since

a person with free will takes part in this process, it can become

a non-recursively enumerable object.

If we are to formalize this idea of <infinite programs>,

we shall probably have <infinite A-expressions>. Then, what do

infinite A-expressions look like?
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A "A-like-expression" can be infinite in two ways:

1) Infinitely wide expressions

a) number of applications: We define x by

x := (•••((A1A2)A3)...)An)An+1)--- ,

that is, x is the outcome of infinite applications

xl :" Al

x2 := X1A2

xn := xn-lAn-l

b) number of abstractions: Let x be an expression

of the form

x := Av,v2v3'*-v -".w ,

that is, x is a computation process which, given an infinite

sequence of inputs, {A,,A2>...,A ,...}, returns

vi

xAl + Xv2v3"",. ,.
ft1

¥„•••. W

fvl'v2

**^2--\ + XvM\+Z

vrv2.....vk
W

1 ' ? * * • • 9 1/
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c) combination of a) and b): For example,

x := Xv1v2---vn--..x1x2x3--- ,

that is,

x := Av,v0---v --'.w
l c n

where w := (•••(x1x2)x3)x4)*")x )••• .

In a sense, the C-function has this structure. To apply

infinitely many n-abstraction is to have an infinite expression

Xtlt2t3*",Xtlt2t3

from X e A.

2) Infinitely deep expressions: Consider such an expres

sion as

x := x^(x2(x3(---(xn(---))-*0

x would be the outcome of the application

xly2

where y2 would be the outcome of the application

where y3

where y would be the outcome of the application

Wn+1
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where y +, •••

• • • «

We will mainly study this <infintely deep A-expression> in this

chapter.

It is more likely that <infinitely deep A-expressions>

reflect the infinity of Reynold's infinite program. Let us take

the following sequence of Algol-like commands:

S = begin si;S2;•- -;Sn end

As we saw in Chapter 5, there are two methods to translate S

into a A-expression.

1) Regard S.. (i = 1,2,...,n) as a function: B+ID. Let

Sj be the A-expression translated from S.. Since S is the

map: D + D which is the composition of all S.*s, the translation

of S is:

Xv.sn(snl(---(s1(v))---)

2) Regard S.. (i = 1,2,... ,n) as a functional:

(D +D) -*• (D +B). Let s^ be the A-expression translated from

Sy Using the technique of continuation in Chapter 5, the trans

lation of S is:

\v.s1(s2(...(sn(I))...)(v)

where I is Ax.x.

In both 1) and 2), we would have an infinitely deep expres

sion letting n •*• °°. (However, here, note that 2) is more appro

priate as we see in the following discussion.)
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Given an infinite program:

S *S • «S •1' 7»»•••» n»• • • »

this program will probably be the limit of the sequence:

1' 2'*** n'-L *

Using 2), we have

Xv.^tDJv

Av.(s1(s2(l)))v

Xv.(Sl(s2(...(sn(l))...)v

So, probably, the infinite program above will be translated as

UAv.(Sl(s2(..-(sn(l))...)v
n=0 ' d n

We will formalize this idea in §3.
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§2. Characterization of C-functions

As in Chapter 3, let (D = {c| ceA -> Vu{oj}}. The C-func-

tion is a map: A + C. It is easy to see that the range of C

is only a proper subset of fC, i.e., C(A) C (D, but what sort of

subset is C(A)?

In fact, (D is of too arbitrary structure to attract any

interest. The following conditions characterize the hierarchy of

some interesting subclasses of C.

Given c e C.

Condition 1: If c(6) = z e V, then either z is free or

z = t6, for 6' e A where 6f ± 6 or 6' = 6<>m for some m eN

(i.e. if a variable is bound, it must be so in an outer context).

Condition 2: If c(6) = oj for some 6 e A, c(6') = u

for any 6' e A with 6 < 6' (i.e. once a subexpression turns

out to be bottom, any of its decendants must be bottom, too).

Condition 3: If c(6) ^ oi, there exists an integer V:

and a positive integer N^ such that, for all n> N^, c(6°n)

=Vn+kC) and c(6°no6,)=t6ono5' for a11 6'6A (1'e' c is
'finitely wide').

Condition 4: Let Fr(c) = {z| zeF, c(6) =z for some 6eA}.

Then #(Fr(c)) < ~ (i.e. the number of the distinct variables

which occur in {c(6)| 6eA} is finite).

Condition 5: There are partially computable functions

(|>c: A+W and \\)Q: A+V such that <J>c(6) = N^ and $ (6) =z

if c(6) =zeV, <j>c(<S) and ^c(6) are undefined if c(6) =w

(i.e. {c(6)| c(6)^o), 6eA} is a recursively enumerable object

and the width in Condition 3 is also partially computable).
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6.2.1 Theorem. Each .element of C(A) satisfies Conditions 1-5,

Proof. Conditions 1 and 2 are obviously satisfied by the

definition of C. Let x be one of the A-expression such that

C(x) = c.

Condition 3: Since C(x,6) f o>, L(x,6) f ti. Let

L(x,6) -^->At. ,t. 0--ts. n.zX1X9---Xrt .6o| 6o2 6op 12 q

Now set Ng =q and k*jj =p-q.

Condition 4: Since x is finite, x can contain at most

finite number of distinct free variables.

Condition 5: Obvious from the definition of C. •

The converse of Theorem 6.2.1 is true as demonstrated in

Theorem 6.2.2.

Cfl-n and I. f are subclasses of (D defined as follows:

Q'fin = {c| eel, c satisfies Conditions 1-5}

Cjnf = (c| eel, c satisfies Conditions 1-3}

We have the sequence: (Dfin C Cinf CC. The smallest class

Cfl-n is, in fact, the same as C(A) as proved in the following

theorem.

6.2.2 Theorem. Let c be in I. If c satisfies Conditions 1-5,

then there exists a A-expression x such that C(x) = c.

Proof. We give effective codings of 2, a and V into A

as:
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En:

n e Z w- n e A

6 e A h- 6 e A

t e T. »• ft e A
6 A 6

f. e F h- f. = f. e A
ill

We assume that En(E), En(A), En(TA) and En(F) =Fare mutually

disjoint.

Given c e Ifin> let A be the subset of A consisting of

all 6 such that <j> (6) is defined. Obviously, A is recur-
*» c

sively enumerable.

In the rest of the proof, we depend on the following fact due

to Kleene:

"For each partial recursive function $: IN+1N, there exists

a A-expression 5 e A such that

$n -E-^m if $(n) = m.

in has no head normal form if $(n) is undefined.

where iii, n are the encodings of m, n eIN in A."

(For the proof of the proposition above, see, for example, [2].)

We define *rr e A by:

~ CNV a *-exPression without a head normal form
tt 6 >< if 6 $ Ac

IAx.x if 6 e A

A partially computable function M : A -* N is defined by:

undefined if c(6) = w
M„(6) =

kg +4»c(«) if c(6) t u) .
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P e A is defined by:

pJS U>IV> 6oi for i e IN and 6 e A

Finally we define 0 e A by the following recursive equation:

0c6e -^U7rc6(f60Mc(5)(j)c(6)cf6)e)

where f e A is defined by:

foimnze > ^ _ ^ (*)
As.f6T+Tmnz(N6i+Te) otherwise

where g e A is given by

g6jnze > < _ . A
(g6j+Tnze(0c(Pn-j6)e) otherwise

and N e A is given by:

m?t. - CNV Js lf z" ^oi
N6iez > ^ u ' (*•)

ez otherwise .

Note that s at (**) is the same as the bound variable at (*)

Now we assert that C(0c6l) =c. To prove this, we show

that there exists e.eA for each 6 e A such that:
o c

(1)6=0:

(a) If c(0) = w, then 0 01 is non-head normal.

(b) If c(0) =veV, <|)c(0) =q and q+kg = p,

ec6l -^Uxs1s2---sp.v(0cTeo)(ec2eo)---(0cqeo) .
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(2) 6 = 6'od f 0

(a) If c(6) = 03, then ©Jte-, is non-head normal.

(b) If c(6) =veV, <j>c(6) =q and q+k£ =p, then

Ve6' ^^Y2','Vvl0c6°1e6)(0c6;2e6),,*(0c6;qe6)
We only prove (l)-(a) and (b). (2)-(a) and (b) are proven

similarly.

(l)-(a): Since c(0) = oj, 0 $ A and so, ir 6 is non-

head normal. Thus,

0 01 >tt 0("*): non-head normal

(l)-(b): Since c(0) f u>, ^0 -^U I

ec0i-CN5U !(...)
^-> fOOpqvI

^UAsrf6TpqvI(N0Tl)

-^* As^- •-s .f0ppqv(N6p(N0FT( •••(NOTl)) •••)
P

(Set eQ =n6p(n6FT("-(N0TI))..-).)

CNV

>Xsls2,"sp,g0^ve0
-^U Xs^.g- ••sp.gOTqve0(ec(Pq6)e0)
-^7^ Xs^g- •-sp.g6Tqveo(0cOoqeo)

-^^ *s.,s2- ••sp.g6qqveo(0cOoleo)(0cOo2eo) •••(ec0°qeQ)
-^^ Xsis2" *•sq.eov(0cOoleo)(0cOo2eo) ••-(0cOoqeo)
-^^As1s2...sq.v(0cTeo)(0c2eo)...(0cqeo)

This completes the proof for (l)-(b). •
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Probably 6: If^^.A (9: c h- 0 ) corresponds to the

universal Turing machine.

6.2.3 Corollary. Cfin =C(A) . •

Now Theorem 4.3.2 can be stated as:

Cfin*V *

In the rest of this chapter, we shall mainly study C. -.

no



§3. Infinite A-expressions

In this section, we formalize the idea of infinitely-deep

A-expressions. We utilize the process of generating infinite

programs given in §1 to define the infinite A-expressions A°°.

6.3.1 Definition.

a. Ag is the set of the expressions to be defined by:

1) A variable veU alone is in Ag.

2) D e y^-j.

3) If £, c are in I^9 so is £ (c).

4) If n is in Ag and •veU is a variable, then

Av.n is in JU.

b. Let £, ce Ag. We say that c is a specification of

£ if either £ = r, or £ derives from £ by replacing some

occurrences of • in £ with elements in A-,. (We write

as c spec £.)

c. Given Ce Ag, we define c in A to be the

A-expression which is derived from t, by replacing each D in

C by a. • •

d. A , infinite A-expressions, is the set of all

sequences

ICi»Cp»•••'^n'* **'

where c1 6 Aq and c1+1 spec ci for each i= 1,2,...,

that is,

A°° =(n| n= (clsC2»...), ci eAg and
ri+l spec c.: for each i=l,2,...}
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Since A can be regarded as a subset of Ag by the obvious

injection: A•*• Ag , we can embed A into A°° as follows: Let

x e A, x: x ♦* (x,x,x,x,...) e A°° by i: A -*• A , we regard as

A c A°°. We define a" to be the set of the infinite A-expressions

which do not contain any free variables, i.e.

A~ =(c| c= (C-j»C2»...,Cn) eA" where ci has no
free variables for each i} .

The restriction of i to A, il. gives the inclusion: A c A°°.
c I r c c

Given n= (c-j ,C2,...,Cn>...) in A™, each r. can be
looked upon as a program which has some unspecified parts. D's

occurring in c^ are the unspecified parts. t-+1 is obtained by

filling • in r. with another £ of Ag. This process even

tually leads us to the infinite A-expression r\.

As we mapped A into D through' V, we are to define a
.00

semantic function W of A into D .
00 00

6.3.2 Definition (Semantics W of A°°). U is the set of all
1 • ' 00 ' •

variables of discourse and Env is the set of all functions:

U + D .
00

Now, W^: EN ->• (A00 -»• D^) is the following map: Given

n=(C-|>C2>...) eA°° and pe EN.

i=l 1

We should note that, in Definition 6.3.2,

VIc*3 Pc\v Ec*+1l P for each i
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So, V^Inl p is the least upper bound of a directed sequence

in D .
00

6.3.3 Corollary. Let x be in A. Then

VflXDp =\Voo[[i(x)]]p . D

6.3.4 Definition. Given £ and £ in A°°, we define the

application of £ to c, S(c) e A°°, as follows: Let

s ~ vsi»^2'^3'* **'

C ~ vCi»Cp>Co>•••/

Then

S(C) =(^(CjhSgCCgh^Ug),...) .

It is easy to verify that

\voo[TC(c)31p ^IOpOv^IcJp)

for £, C in A°°.

Now, we are ready to consider

the correspondence between A°° and tt. f. In fact, the similar
relation holds between A°° and (Dinf to that between A and

W
The following lemma is necessary to prove part 3 of

Theorem 6.3.6.

6.3.5 Lemma.

1. Let x and y be A-expressions which satisfy the

condition of Theorem 3.4.7-1. Then, by the theorem, given any

a, be D^, we can choose ei»e2>-**>en 6A and an environment
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p for which

and

W[[xe1e2---en]l p=a

Wlye^-'-e^ p=b .

Here if, for x, and y, e A, x c x, and y c y , then
1 ' D '' D '

00 00

V[[x1e1e2-"en]]p =a
and

W[[y1e1e2...en]]p =b .

2. Let x and y be in A. Assume that, for 6 e A, x

and y satisfy the condition of Theorem 3.4.7-2. Then, by the

theorem, given any a, b e D , we can choose e,,e«,...,e e A
i c. n

and an environment p for which

VIxe^- ••enIp =a
and

W[[ye1e2---en]Ip =J_ .

Here, if, for x,, y, e A, x c x,, y c y_ and
D ' D '

C(yr6) =to, then

\V|Ix1e1e2-..en]Ip =a
and

Wly1e1e2...en]]p =1 .

Proof* We prove only part 1 of the lemma. By the assump

tion of the lemma, there exists 6 e A which satisfies the

following:
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(*) For any 6' with 6' < 6, 6(x,6') = C(y,6') and

C(x,6) = (u,i)

and

6(y,6) = (v,j)

where (u,i) f (v,j).

Since ClxliCf^) and C(y) <C(y}),

C(x,6') =C(xr6') f

'l

for each 6' with 6' <_ 6.

So, (*) still holds if we replace x by x, and y by y.

As is seen in the proof of Lemma 3.4.5, the choice of

e.j,e2,...,en and p depends upon only C(x,6') and C(y,<5')

for 6' < <5, from which our assertion follows immediately. •

6.3.6 Definition. C^: A°° •> (E is the following map: Given

C=(C^^,...) eA°°,

fiu if C(c* 6) =a) for all i=1,2,..
[z eV if C(c*,6) =z for some i.

C^ is well defined since c* £ C*+1 and so C(c*) <C(c*+1).
00

6.3.7 Theorem.

1. C I. = C

2- C»<A >" «lnf

and

C(y,6') = C(y196l) t w
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3. For all £, C e A ,

5 £ C iff CJC) 1 Cjc)
D

oo

(where €£c means If C] p cw^lKD P for all p e EN and
D«

< is the partial order over tt as in Chapter 3).

So' «1nf "*"'••
oo

.00,

Proof. It is obvious that C I =C, and C (A ) c tt. ..
a>|A °° — int

To prove that C^ is surjective, we need a similar concept

to admissible A-trees in Chapter 4.

Let c e C.o, We say that a A-tree, T, is admissible to c

if T satisfies the following:

If 6eT, then 6ol ,6o2,... ,6^ are
also in T where N? is as in Condition 3

of «1nf

Now we define an(c,T) e Ag for c e tt.f, a A-tree, T,
admissible to c, and n e IN (similar to a"(x,T) in Chapter 4)

y\ f\ j>

a (c,T) =a where o£ (6 e T) is defined by:

1) If \6\ =n, a* =D.

2) If |6| <n and c(6) =u>, a£ =a.
3) If |«S| < n and c(6) = z,

6 1+ + «. 6ol 6o2 6oV6)
c 6o1 s°2 «.(YT(«)+k§) c c c

where kx is as in Condition 3 6f tt. ~.
o int
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Now it is easy to see that

an(c,T) eAq and <xn+1(c,T) spec an(c,T)

0 1 2for n = 0,1,2 and, letting a = (a (c,T),a (c,T),a (c,T),...),

a e A™ and C (a) = c.
00* '

To prove the last part of the theorem, let us assume that

US) icJs) for 9iven ? =(S^,...) and x, =(c^,...)
in A°°. By the definition of C^, there exist i, je]N and

6 e A for which

either C(??,6) = u and C(c* 6) = v with u f v

or C(?*,6) f u> and C(c£,6) =u for all kelN.

Since ?£ c ?£+1 and c£ c 5* for each k, by Lemma 6.3.5,
00 op

there exist e,,e2,...,e e A and an environment p for which

there exists K > 0 such that for all m > K,

WKmele2'''en:Dp =K
WLIC*e1e2...en]lp -H

or

Wtt€mele2""en][lp =K

W^mele2"-en3]p =l •
00 00

Since \VJOp= vVKCIp and W^ IcU P= uvJcJIp, by
k=l K k=l k

the definition of V , we conclude that ? £ c.
D„

On the other hand, let us assume that C (?) < C (c). We
00 * * — 00

take a A-tree, T, which is admissible to both C (?) and
00

cjc).
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We define 3(n>i) for n = ? or c and i > 0 as follows

3(n»i) = 3 (n»i) where 3 (n»i) (<S e T) is defined by:

1) If |6| = i, then 36(n»i) =n.

2) If |6| < i and C(n*,<5) =u>, then 36(n,i) =«•

3) If \6\ < i and t{r\*96) = (z,k), then

3(n,i) =xt6olt«o2"'t6o(YT(6)+k)-

ZB6o1(n,i)e5o2(r,,i)---/OYT(6)(n,i)

In the first place,

3(?,i) c ?* and 3(c,i) c c*
D 1 D" 1

In the second place, since

and

and

* _ .. An/,.*C = u A"(?*T)
1 n=0 p 1

00

c? = u a"(?* T) ,
1 n=0 p 1

Dooand °° for j > max(i,n)

we conclude that

A"(q,T) c 3(C,J)
p 1 D

(*) C = u 3(?,i) and ? = u $(c,i)
D„ i=l D„ i=l
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Since C^?) < C^c), by the definition of C^, it follows

that, for any p > 0, there exists a sufficiently large Q > 0

such that

C(3(?,P)) < C(3(C,Q)) ,

that is,

(**) 3(£,p) £ 3(C,Q) .
D
00

From (*) and (**), ? c £ is immediate. •
D
00

6.3.8 Definition. Given a complete lattice D, let E be a

subset of D.

The directed completion of E in D is the set

{a| there is a directed set F c E such that a =UF}

6.3.9 Theorem. CW^I?]] |?eA~} c n^ is the directed completion

of {\V Ixl |xeAc} c D^. Thus (W^ I?]] |?ea"} is adirected

complete subset of D .

(Note that the elements of A™ and A do not have any free

variables. So, their values in D^ do not depend on the environ

ment p e EN.)

Proof. The argument for the proof is similar to Theorem 6.3.7.

•

Theorem 6.3.9 shows that the relation between A°° and A
c c

is similar to that between the real numbers and the rational numbers
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Each real number is defined as the limit of a non-decreasing

sequence of rational numbers. In this way, we may well regard A°

as the generalization of A.

6.3.10 Corollary. The cardinality of D^ is strictly larger

than denumerable if D f {I}.
o -1-

Proof. Obviously, CJa") (c tt.nf) has acardinality
strictly larger than denumerable. Since ? and c in A°° are

mapped to different elements in D if C (?) + C (c), D must

have a cardinality strictly larger than denumerable. •
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§4. Lattice Structure of ttx..^ and tt. £
f1n inf

In the previous section, we generalized A to A°°. Here we

shall show that the lattice structure in A and A° induced by the

D^ partial order is equivalent to the lattice structure of tt. f

which is a directed-complete partially ordered set. In addition,

we shall examine the structure of tt. r and tt^. .
int fin

6.4.1 Proposition. ttfin and ttinf are partially ordered sets

with the order c defined by: For a, bett. f, a c b if and

only if, for all 6 e A,

either a(6) = w

or a(6) = b(6) . •

6.4.2 Proposition. ttfin and tt. f lower semi-lattices. More

precisely, we define anb ettinf (Gfin), a, be ttinf (ttfin)

as follows: Let m6 =max(N^,Ng)+1 where. N* and N^ areas
in Condition 3 of tt. ,. Define c = anb e tt. r (ttx. ) by:

int int fin J

fa(0) if a(0) =b(0)j*u> and a(mn) =b(mn)
1) c.(0) = < 0 0

[ a) otherwise.

2) Let 6 = 6'on and suppose that c(6') is already

defined.

a) If c(6') = a) then c(<5) = w.

b) If c(6') f a) then

a(6) if a(6) = b(6)f u and a(6°mJ= b(6om.)
c(6) = ^ 0 6

a) otherwise.
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Proof. If a, b e C *, c e tt. - since, obviously, c as

defined above satisfies Conditions 1 to 3 of I. £. In case
inf

a, be tf. , we only have to show that c satisfies Conditions 4

and 5 of ttfin to prove that c6 Cfin. Since c cannot contain

any free variable that does not appear in a or b, c satisfies

Condition 4. On the other hand, c(6) for each 6 e A is com

puted in the following way: If i|> (6) and \\>. (6) are both
a d

defined and ^(6) =^(6) and if i/>a(6o(max((j>a(6),<{>b(6)) +1))

=iJ>b(6o(max((f>a(6),(|>b(6)) +l)) then c(6) =^a(6). Otherwise

c(6) = u>.

This statement guarantees that there exists a partially

computable function \\t : A -*• V that satisfies Condition 5. Also

(J> : A •* IN is defined by:

{undefined if ifc is undefined

C

max(<f>a(6),<j>b(6)) otherwise.

On the other hand it is easy to see that there is no

de ttinf Ufin) such that cCd and both dC a and dc b. •

6.4.3 Corollary. Given x, y e A, there exists a A-expression

z e A such that

C(z) = C(x)nC(y) .

Proof. Immediate from Proposition 6.4.2 and Theorems 6.2.1

and 6.2.2. D

Given x, y, z e A, if C(z) = C(x)nC(y), z C xny by
Doo

Theorem 4.3.2.
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45&

However it is not generally the case that z = xr\y.
D.
00

6.4.4 Counterexample. Let

X = Axyz.xftz

Y = Axyz.xyft

Z = Axyz.xflQ

Obviously, C(Z) =C(X)nc(Y), but when D^ is continuous,

(unv)(w) =u(w)nv(w) for u, v, weD^, and so,

Z(Aab.auAab.b)II -£*n

X(>Aab.aUAab.b)II -&+ I

YUab.auAab.bJII -&•» I
So

Z C XnY .

*

6.4.5 Proposition. Any directed subset of ttinf has its least
upper bound in tt.nf. So tt.nf is directed-complete.

Proof. Let V be any directed set of tt. .. d e tt. ^ as
inf inf

defined below gives the least upper bound of V:

U if c(6)=u) for all ceP
d(6) = <

[z if c(6) =z for some ceP .

d is well defined by Theorem 6.3.7-3 since V is directed. It

is easy to see that d satisfies Conditions 1-3 of tt. * D
inf*

The following proposition shows that the lattice topology of

A and A°° induced by D^ partial order is, in fact, equivalent
to the lattice topology of tt. f.

Refer to [15] or [12] for the details. ~ ~~
*
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6.4.6 Theorem. For ? e A°° (A) and a directed set V c A°° (A),

? = W if and only if C(?) = UC(c)| Cefl} in ft. - (tt-. ).
D inf fin
00

Proof. For the case of V c A, we proved in Theorem 4.4.4.

Since the D^-value of each element of A°° is defined as

the limit of a directed sequence of members of A , this result

is extended to the case of Vc A°° in a straightforward manner. D

It would be interesting to ask if we could remove the condi

tion of directedness from Theorems 4.4.4 and 6.4.6. The answer is

'no' by the following argument.

6.4.7 Definition. 1) For a, bettinf, we say a and b are

compatible if there is no 6 e A such that

a(6) f a)

b(6) f a)

and a(6) f b(6) .

2) For 3c ttinf, S is said to be compatible if any two

elements of S are compatible.

6.4.8 Corollary. For Vctt.nf, if V is directed then V is
compatible. •

By Theorem 4.3.2 and Theorem 6.3.7-3, if C(?) =u{C(c)| £eS}

for ?eA°° and ScA°° such that (C(?)|Ce 5} ctt.nf is compa
tible, then us c ?. However it is not always the case that

oo

US = Z.
D„
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6.4.9 Counterexample. Let

X = Azxy.zfty

Y = Azxy.zxft

Z = Azxy.zxy

Obviously, X and Y are compatible and C(Z) = C(X)uC(Y), but

Z(Aab.ba)II -^» I

X(Aab.ba)II -&»n

Y(Aab.ba)II -fUfl
so

XUY C Z

Deo

We note that ttf-n and ttinf have the least element ft which
satisfies

8(6) = w for all 6 e A

6.4.10 Proposition. For all elements aettj f(tt .) except
ft, there exists an interesting directed set pet., (i„. )

- inf v fin'

whose least upper bound is a, i.e. xQa for all x e P

and a = up.

Proof. Similar to Theorem 4.4.6. •

6.4.11 Proposition. Given a, bett.nf (ttfin) such that aCb,
then there exists cett-nf (ttfin) such that
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Proof. Similar to Theorem 4.4.7. D

Here we state the negative result that tt. - is not
*

continuous. The following example shows that tt. ^ is not

continuous.

Let

an =C(Axyz.z(Fn(ft)y)x
b = C(Axyz.zyft)

c = C(Axyz.zyx)

where F = Afxy.x(fy). Since I = J = u Fn(ft),
D«> ft, n=0

c = u an .
n=0 n

Also, b c c, but it is not the case that bCa„ for any n > 1.
— * — n =

(The topological order, -< , on tt. ^ is trivial in a sense that

a < b for a, b e tt. * if and only if a = ]_.)

6.4.12 Proposition. Given a, be tt. f (ttf. ), we define a(b),

application of a to b, as follows:

a(b) = CJZM)

where ?eC~](a) and ceC~](b). Then $fi: J.nf •+ C-nf
(: ttfin •*• Cfin) for each aett.nf (Cfin), defined by $&(b) =a(b),

_

This fact was suggested with the example to the author by
Christopher Wadsworth.
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is continuous and tt. f (Gf-jJ is extensional with respect to

the application, i.e. given any a, be tt. * (Cf.jn) if

a(c) = b(c) for all ce tt. f (Gf-jn) tnen a = b.

Proof. The continuity of $ is immediate from the defini-
a

tion and the fact that the application of A-expressions is

continuous in D . The extensionality can be shown in a similar
00 "

way to Theorem 4.4.8. •

We now note that tt. f can become a complete lattice by

adding T (top) to b*nf Namely, we define aub e {T}Utt. -

for a, be'IHuC. f as follows:

1) If a = T, b = T or a and b are not compatible

then aub = T.

2) If a and b are compatible, determine c = aub by:

'a(6) if b(6) = co

c(6) = < b(6) if a(6) = w

. a) if a(6) = b(6) = o> .

6.4.13 Corollary. {T}utt. - is a complete lattice. D

However, Counterexample 6.4.9 shows that us reflects the

reality only if 5 c tt. f is directed. Also, the definition of

u above is artificially too strong. For example, take Ax.x

and Ax.xx. Since they are not compatible, by the definition

above Ax.xuAx.xx = T, but since

(VlAx.xxIuVlAx.xIftVllAx.xxID = W[lAx.xx]] U\V I(Ax.xx)(Ax.xx)]|

= WlAx.xx]]^ T .



So V lAx.xxJ u w [[Ax.x]] f T. However, can any interesting

theory be built if we allow u of mutual elements such as Ax.xx

and Ax.x not be T? I leave this question open here.
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CHAPTER 7

SUMMARY, CONCLUSIONS, PROSPECTS

Summarizing the results obtained in the previous chapters,

we show that only some abstract properties of D^ are needed to

deduce these results. This fact makes it possible to give an

axiomatization of the extensional model theory of A-calculus.

Some prospects for future research are given.
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§1. Summary

We start this chapter with the summary of the results in

Chapters 3, 4 and 6. The following diagram is illustrative:

7.1.1 Diagram.

where d and d are defined as follows:
00

For c e C. f, p e EN,
d^ Ic]] p =V^ I?]] p for ? e A°° such that c =Cj?)

For c e ttf. , p e EN,
d[[c]]p = V[[z]]p for z e A such that C(z) = c.

These definitions of d and d^ are valid, since, by Theorems

4.3.2 and 6.3.7-3,

K = n iff CJ?) = Cjn)

We list the results we have reached:

1) C and C are surjective.
00

2) d and 6 are injective.

3) C = C I. and d = d L
1 • fin

4) The diagram is commutative, i.e. W = doC and

W = d oC .
OO OO 00

5) d^: tt. ^ •*• [EN-^-Dj is a continuous map.

(So d is monotonic, too.)
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Let us prove 5). We regard [EN+Dj as a lattice by the

partial order induced by D^, i.e. given a, 3 e [EN+DJ, a £3

if and only if a(p) c $(p) for all p e EN. Given any directed

set PCttinf, let P={?eA°°| Cj?) eP}. Then

P is directed in D^. Let n =u^eA°°. By Theorem 6.4.6,

Cjn) =u{Coo(?)| ?eP}. Now, given any p e EN,

d.DWDp = d^lCjnJlp

=Woo[[ti]]p by the definition of dro

^lupJlp

=uW0OI?]]p| ?efl}

=u{dooId]|p| deP} by the definition of d^ .

This proves that d is continuous. •
00

Since d^ is 1 to 1, continuous, we can say that tt. f

give the lattice structure of A and A°° induced by D . Since
" 00

S'nf can be defined naturally from A, independent of D^, the

lattice structure of ttinf can be said to be the inherent

structure of A.
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§2. Universality of tt. f over A

We may ask what properties of D^ are essential to have the

theory summarized in the previous section. Namely, for what kind

of model of the A-calculus, could we draw Diagram 7.1.1 such

that the properties 1) to 5) may hold? This speculation will

probably lead us to a more general theory of A-calculus models.

To make the description of this section as self-contained as

possible, we start with the definitions of the A-trees and their

admissibility in Chapter 4.

7.2.1 Definition. An infinite subset T of the pedigree A is

said to be a A-tree if

1) 0 e A

2) If 6 e T, then there exists N e IN such that

6ol,6o2,...,6oN e T and 6<>k $ T for all k > N.

For a A-tree T and 6eT, define yt(6) to be N in (2), i.e.

YT(<5) = #{6' eT\ 6'=6om for some mefl}

We redefine the notion of admissibility as follows:

7.2.2 Definition. Given a A-tree T and c e tt. r, T is said
inf

to be admissible to c if, for all 6 e Tt yt(<$) >N^ where N^
is as in Condition 3 of tt. ,..

inf

7.2.3 Definition (Structural Approximation). Given c e I. f

and a A-tree T which is admissible to c, we define

Ap(c,T) eAg in the following way: a"(c,t) =A°(c,T,n) where
A (c,T,n) is defined for each 6 6 T inductively as:
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1) If |6| < n,

(i) if c(6) =a) then A6(c,T,n) =ft

(ii) if c(6) = z, then

A6(c,T,n) =Xt6olt.o2.--t .zA6ol(c.T,n)A6o2(c,T,n)--
6°(YT(6)+k6) 6 (6)

•••A (c,T,n)

where k^ is as in Condition 3 of tt. x.
o inf

2) If |6| = n, then A6(c,T,n) =D. .

Lemma 4.2.2 is rewritten as follows:

7.2.4 Lemma. Given x e A and a A-tree T, if T is admissible

to C(x), then

x = u(AjJ(C(x),T))*
Do, n=l p

where *: Ag •»• A is as in Definition 6.3.1. D

Obviously A '(c,T) spec A"(c,T) for cettinf and a
A-tree T admissible to c. So ?r =(A^(c,T),A2(c,T),...) is

c p p

in A00. This ? gives a decoding of c in A°°, i.e.

c = C (? ).oo *^c'

7.2.5 Definition. We say that a domain D is a reasonable

extensional model for the A-calculus if D satisfies the follow

ing conditions:

Axiom 1. D is a directed-complete partially ordered set

with the least element J_ = r»D and D / {JJL
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Axiom 2. There is the following pair of maps (<J>,ij;) that

are bijective and continuous

D<£=p[D-*D] .

Axiom 3. We map A into D by the semantic function W

as follows: Let EN = (U -*• D) for the set of variables U.

W: A + [EN -• D] is defined as:

1) For veU and p e EN, W Iv]] p = p(v).

2) For x, y e A, p e EN, V Ix(y)]] p = <j>(V Ixl p)(\V ly]] p)

3) For v e U, x e A and p e EN,

\V[[Av.x]]p = ty(A$eD: W Ix]] p[v/3])

where

p(u) if u f v
p[v/3](u) =

3 if u = v .

Then the following two properties hold:

a) For each x e A, V Ix]] p = ]_ for all p e EN

if x has no head normal form.

b) For each x e A and a A-tree T which is admissible

to C(x),

Wlx]]p =u{vlA"(C(x),T)]]p| neJO

for each p e EN.

7.2.6 Theorem (Universality of C. f over A). If D is any

reasonable extensional model for A, then Diagram 7.1.1 is valid

even if we replace D by D.
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?

Proof. This theorem asserts that all the theory developed

in Chapters 4, 5 and 6 depend on only the properties of D in

Definition 7.2.5. The proof is done by a careful inspection on

what properties of D^ are used to prove the validity of the

diagram. •

Here we note that Wadsworth's theorem on reduced approximants

also holds on D as defined in 7.2.5$

7.2.7 Proposition. Let A(x) be the set of all reduced approxi

mants of x e A. Then in a reasonable extensional model D,

x =UA(x)
D

Proof. Let T be a A-tree admissible to C(x). We show

that given a"(C(x),T) for any neIN there is e e A(x) such

that

A"(C(x),T) ce .
p D

i) If x has no head normal form, then x = ]_ and
D

A(x) = {ft}, so x = UA(x).
D

ii) If x has a head normal form, let us consider

a"(C(x),T). By Corollary 4.1.13, there is Ax) such that

x-^UTn(x)

and a"(C(x,T)) is obtained from Tn(x) by replacing each

L(x,6) in Tn(x) by ft for each &e T such that |6| = n.

Let x-=-»x' —^Tn(x) be the sequence of reductions so that
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T-

<j

»

x' •* T (x) does not contain any 3-reductions. Since a, n, ft-con-

versions do not increase 3-redexes, this resolution is possible.

Then let e be the direct approximant of x*. Then

A"(C(x),T) £ £
p D

because all the 3-redexes in x' are in Tn(x) and they are

in the parts of T (x) which have no corresponding part in
00

A"(C(x),T) except ft. Since x= ua"(C(x),T), x=UA(x). D
K Dn=0 P d

However Axiom 3b cannot be deduced from Axiom 3a or

x =UA(x) or the combination of both. One may ask if we could
D

reduce Axiom 3b to a simpler condition. This does not seem to be

possible if we consider Park's pathological model [10]. Park

showed that if a different (<J> ,i|; ) is adopted to construct D ,
00 0 0 CO

then Y f Af. u fn(J_) for the Curry's pathological combinator Y.
Doo n=0

As Corollary 4.2.3, Axiom 3b implies Y= Af. u fn(J_). This
D n=0

implies that Axiom 3b is not true in Park's model. This indicates

that this axiom cannot be deduced from such a simpler condition

as the continuity of D^. (We note that the proof of Axiom 3b

in D^ depends on the type construction of D^.) Probably,

Axiom 3b must be proved for each model D directly from its

construction.

By Proposition 7.2.7, we can conclude that, if D satisfies

Axioms 1-3, all the results on D^ vs. A due to Wadsworth [21,22]
OO

are valid on D vs. A. (So, I= J, Y = Af. u fn(|), etc.)
D D n=0
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§3. Prospects

We have completely ignored the other models of the

A-calculus. E^ in [21] and Pm in [17] are examples of non-

extensional models, on which the formulation of the infinite normal

form developed in this thesis is no longer valid.

It would be possible to formulate the infinite normal forms

on these non-extensional models. However, it does not seem

possible to give such a clean theory as is possible on D^. Many

interesting algebraic properties of tt. f are possible due to

the extensionality of D .
** 00

Another point to note is the problems of the compatibility

and inconsistency among the A-expressions. We say that two

A-expressions x, y are inconsistent if there exists 6 e A

such that C(x,6) f w, C(y,6) f w and C(x,6) f C(y,6). Some

of the problems caused by the introduction of u into the

A-calculus were discussed in §4, Chapter 6.

I am not sure at this point whether or not we could develop

an interesting theory by introducing the u operation into the

A-calculus.
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Lastly in this section, we focus our attention on A°°. One

may ask what A°° is in actuality. We can say that A°° is

arbitrary if we confine ourselves to the function over the

^ integers. For example, if we consider the flat space of:

0, 1, 2, 3, ...

i

00 ^,

A gives all continuous functions from W to W. Let us consider

the following sequence of mappings over A/. Let

,a • if n = 0
fn: W -*- N be f(n) = I °

|l if n>0

aQ if n = 0

f^ W+ Nbe f(n) =\<i} if n=1
1 if n > 0

,a. if n = i < p
fn: N + W be f(n) = i 1

1 1f n > p

©
Then fQ c f} c ... c fR c ••. . Since the choice of a. is

00 •

arbitrary, f= uf. can be the arbitrary continuous functi
i=0

This shows that to give the smooth property to A, we must

This fact was suggested to the author by Manuel Blum.
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inevitably include a rather non-computable structure. This is

similar to extending the rational number to the real number. The

real numbers contain all the arbitrary transcendental numbers, but

we cannot discuss any problem in the elementary calculus excluding

these objects. Another more hopeful view is that A°° may give

a certain significant proper subset of the continuous functions

if the domain's lattice structure is more complex and has the

continuous cardinality. For example, R = {[a,b]| a < b are real}

u {0} with the partial order a < 3 if 3c a and 1 = 0 e R.

(If LAMDA°° is generated from LAMDA [17] in the same manner as

A°° is generated from A, it will probably be the case that

Pw = LAMDA00, for any recursively enumerable set is in LAMDA

and any set of integers is the limit of an increasing sequence of

recursively enumerable sets.)
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