

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

GETTING STARTED IN INGRES - A TUTORIAL

by

M. Stonebraker

Memorandum No. ERL-M518

23 April 1975

GETTING STARTED IN INGRES r» A TUTORIAL

by

Michael Stonebraker

Memorandum No. ERL-M518

23 April 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the National Science Foundation Grant GK~43024x,
U.S. Army Research Office — Durham Contract DAHCO4~74-G0087, the Naval
Electronic: Systems Command Contract N00039-75-C-0034, and a Grant from the
Sloan Foundation,

GETTING STARTED IN INGRES
ft

TUTORIAL

by

MICHAEL STONEBRAKER

This docunent contains an introduction to the data base nanage-
nent systen/ INGRES/ and in particular stresses its user language
QUEL. It is neant to be read while interacting with the INGRES
systen at a terminal.

One's first encounter with INGRES is to type the UNIX shell com
mand

ingres data-base-nane

which has the effect of turning you over to INGRES for subsequent
interactions. The actual sequence is:

^ingres deno

Here/ we have entered INGRES and specified that we are interested
in the data base "deno" which will have in it the relations of
interest to this docunent. After a momentary pause the following
will be returned to your terminal.

INGRES vers 2.3 login
Sat Mar 15 14:16)04 1975
Set operators* Aggregate functions and X.ALL are not yet implemented
go

The first three lines constitute the current "dayfile" which
gives relevant information on the status of INGRES. The state
ment "go" indicates INGRES is waiting for your input.

Now type

help

"help" is an INGRES command which can deluge you with information

GETTING STARTED -I- 3-20-75

about the system. In this case* you will receive the page from
the INGRES reference manual which describes the help command
Sg" is a statement to INGRES to execute the "help" command
ithout waiting for additional input from the terminal. The

response from INGRES is:

query formulation complete

HELP(X) 4/22/75 NELP<X>

NAME
help - get information about how to use INGRES

SYNOPSIS
HELP C"iten-in-question" 1

DESCRIPTION ^ fc „*.,.« „*
HELP may be used to obtain information about any section of
this manual* the content of the current data base, or a
specific relation in the data base* depending on the lt8"*"
in-question. Omission of that argument is functionally
equivalent to HELP "help" . The other legal forms are as
follow:

HELP "section" - Produces a copy of the specified section of
the INGRES Programmer's Manual, and prints it on the
standard output device.

HELP •" - Gives information about all relations that exist
in the current database.

HELP "relnane" - Gives information about the specified rela
tion* but in greater detail than would HELP •" .

EXAMPLE

HELP

HELP "quel"
HELP •"

HELP "emp-

SEE ALSO

DIAGNOSTICS t.«.«--1-«*
Unknown name - The item-in-question could not be recognized.

BUGS L i. u-Alphabetics appearing within the item-in-question must be

GETTING STARTED
-2- 3-20-75

lower-case to be recognized

cont >nue

The final line contains the word "continue". This indicates
INGRES is ready to listen to you again.

At this point it is important for you to realize that INGRES
maintains a workspace in which you formulate your interactions.
This workspace is desirable so that you can correct spelling
errors and other mistakes which you may from time to time make
without having to type in your entire interaction again.

At the present tine your workspace contains

he Ip

If you type in "Sg" once more* INGRES will simple execute your
workspace which will give you a second printout of what you have
just seen above.

In order to clear out our workspace we use the command "Sr"as
follows:

Sr

go

Our workspace now is empty. It is still possible to type in "Sg"
as follows. However* it has no effect.

sg
query formulation complete
cont inue

lie will now try to exercise the "retrieve" command and will do so
on the data that now follows. To print the contents of any rela
tion (or table if you are more comfortable with that terminolo
gy)/ s tmp ly type:

print relation-name

If we type help"" we can obtain a list of relations in the data
base demo. One relation from this list is called "parts". Me
can print this relation as follows:

GETTING STARTED -3- 3-20-75

print parts

sg

query formulation complete

parts relat ion

pnun Ipname

1(central processor
2lnenory
3 Id isk drive

4 Itape drive
5 >tapes
6lline pri nter
7 II-p paper
8 Itern inals

13lpaper tape reader
14lpaper tape punch
9 Itern inal paper

10 Ibyte-soap
11 Icard reader

121card punch
cont inue

(color Iweightlqoh I
- — I

ipi nk 1 101 1 I

igray I 201 321

Iblack 1 6851 21

iblack 4501 41

igray 1 1 250 1

iye Ilow 5781 31

iwh ite 151 951

1blue 191 151

Iblack 1 1071 01

Iblack 1 1471 01

1wh ite 21 350 1

Iclear 1 01 1431

1gray 327 1 01

(gray 1 4271 01

Notice that the "parts" relation has information about the com
ponents in a hypothetical computer installation. Each row of
this table (or tuple in this relation) contains information on a
given part including its part number* its part name* its color*
its weight* and the quantity that are on hand.

Using a "retrieve" command we will be able to obtain portions of
this table which are of interest to us. (There is almost no lim

it on how large the tables can be* these examples are done on
small ones so that this tutorial does not become too large. In
fact* the actual Unit on the size of a table is approximately
30*000*000 bytes for those who are interested.)

To obtain information* we must first tell INGRES what table it is

that we wish to interogate. One way to do this night be the com
mand

I UANT TO TALK ABOUT parts

Although this is natural to the beginner* INGRES makes you do
something slightly more complicated. This added complexity is
necessary so that one does not get into trouble with nore compli
cated interactions.

GETTING STARTED -4- 3-20-75

The statement required in INGRES is

range of variable-name is relation-name

The variable-name is indicated to be a surrogate for the relation
name specified. Ue can declare p to be this surrogate for
"parts" as follows*.

Sr

go

range of p is parts

Notice that we first cleared our workspace so that the whole
parts relation would not be printed again.

Now* we can add a "retrieve" command which can be the following

retr ieve p.pnane

The interpretation is that we wish to obtain the pnane column of
the relation specified by the variable "p° .

In order to ensure that we have typed our interaction correctly
we nay use the special connand "Sp". This will simply print the
contents of our workspace as follows:

Sp
range of p is parts
retr ieve p.pnane

Since it appears to be a correct query we can execute it by the
HSg" command as follows:

sg
query formulation conplete
PERIOD = '.' : line 3* syntax error
cont »nue

Unfortunately* we have nade a syntax error. Uhat is nore unfor
tunate is that INGRES is not always overly helpful in showing us
what i t is.

The problem with this interaction Is an arbitrary convention iin
INGRES that whatever you wish to retrieve nust be enclosed in "<
>• . Ue will correct our mistake by retyping the query as
follows :

GETTING STARTED -5- 3-20-75

\r

go

range of p is parts
retrieve (p.pnane)

Sg
query formulation complete
pnane

central processor

memory

disk drive

tape drive
tapes
line pr inter
l-p paper
tern inals

paper tape reader
paper tape punch
terminal paper
byte-soap
card reader

card punch
cont inue

Everything has now worked out all right and we have obtained the
colunn of the parts table which contains the names of the parts.

Ue can retrieve nore than one colunn at once by simply indicating
a sequence of colunn nanes separated by a comma. Hence we could
obtain part nanes and colors as follows.

Sr

go

range of P i S part s

retrieve (p

Sg
query fornu

. pn

lat

ane *

ion

P-

con

color)

plete
Ipnane (color 1

1centra I processor 1pi nk I
inenor

tdisk

ttape

y

dr ive

drive

Igray I
Iblack I

Iblack I

ftapes
1 I ine

ll-p p
1terni

pr

ap<

na

int

&r

Is

er

Igray i
1yellow i
Iwhite 1

Iblue 1

GETTING STARTED -6- 3-20-75

(paper tape reader Iblack
(paper tape punch Iblack
Iterninal paper Iwhite
Ibyte-soap Iclear
(card reader Igray
Icard punch Igray
cont inue

Notice in the printout each column contains the name of the
column so we do not get confused. Sometimes we require more com
plex results than sinply the nanes of columns. Suppose* for
example* we require the computation "1000-qoh". In other words*
we wish to know for each part how nany less than 1000 we possess.
This can be stated as follows:

Sr

go

range of
retrieve

sg
query formulation conplete
(pnane iconputi
I I

9991

9681

9981

9961

7501

9971

9051

9851

lOOOt

10001

6501

8571

10001

10001

p is parts
(p.pnane* computation=1000-p.qoh)

(central processor

Inenory
(disk dri ve

Itape drive
Itapes
(line pr inter
1 l-p paper
(terni nals

Ipaper tape reader
Ipaper tape punch
(terni nal paper
ibyte-soap
(card reader

(card punch
cont inue

Note that the heading on our printout is the first six characters
of the name "conputation" which we have given to the computed
quantity "1000-p.qoh".

In order for INGRES to accept conputed quantities you must always
give them a nane . This is sinply done by picking a name and put
ting it to the left of an equals sign in the retrieval.

GETTING STARTED -7- 3-20-75

Note also that the presence or absence of blanks makes no differ
ence in between the "()".

rt is important that you spell correctly any colunn nanes which
you use in an interaction* since INGRES has no spelling correcter
at the present time.

Note lastly that you need not put interactions on three lines as
we have been doing. The following works equally well.

\r

go

range of p is parts retrieve
query fornulation conplete
pnane Iconputi
-- I

(p.pnane* computation « 1000-p.qoh) Sg

central processor
memory

disk dr ive

tape drive
tapes
Iine pr inter
l-p paper
terni nals

paper tape reader
paper tape punch
terminal paper
byte-soap
card reader

card punch
cont inue

9991

9681

9981

9961

7501

9971

9051

9851

10001

10001

6501

8571

10001

10001

It is usually wise to space your
readable as possible.

interactions so they are as

So far we have produced interactions which give us columns of the
"parts" relation. Ue now indicate how to obtain only portions of
columns. The basic mechanism is a "where" clause which can be
added onto the end of the interactions we have been doing. If we
wanted the previous query only performed for those parts whose
color is pink we would do the following:

Sr

go

range of p is parts
retrieve (p.pnane* computation«1000-p.qoh> where p.color * "pink"
sg
query fornulation conplete

GETTING STARTED -8- 3-20-75

ipnane
l_

(central processor

cont inue

iconputI
I

I 9991

The "where" clause linits the nunber of rows which are examined
to only those which satisfy the qualification given i.e. to those
which satisfy "p.coI or ="pink". Only the central procesor has
this property so it is the only entry in the output.

Ue are now to the point where we are typing enough information so
that errors in typing are likely. It is very annoying to have to
reset the workspace and try again every time an error is encoun
tered. Two nechanisns are supported in INGRES to help with this
problen.

1) INGRES accepts the synbol • to nean "backspace". Consequent
ly* one can sinply backspace and retype errors which occur. One
can backspace as many times as one wishes; INGRES will continue
to back up until it reaches the beginning of the current line.
Subsequent backspaces will have no effect. If a line has become
so garbled that the user wishes to sinply erase it and start typ
ing again one can use the synbol 8 which neans "erase the whole
line"

2> Wore complicated corrections are often necessary than can be
done easily using mechanism 1). These are supported by calling
on the features of the UNIX progran called the editor. A tu
torial on the editor is available in the UHIX programmer's manu
al. Here* we will sinply discuss two features of this program.
Since it is a very powerful program* the serious IHGRES program
mer would be wise to study that tutorial in nore detail than the
few exerpts we present here.

Suppose we type in an incorrect query as follows:

Sr

go

ranhe of p is perts
retr ieve p.pnane

where p.pcolor = "pink="

This query has nany errors and we might do better to start over*
but for the exercise we will use the editor which we obtain by
typing Se as follows:

Se

>>ed

GETTING STARTED -9- 3-20-75

The statenent ">>ed" says now we are in the hands of the UNIX
editor and our workspace has been sent to it.

Ue can sequence through our program by typing a line number fol
lowed by a carriage return i.e.

1

ranhe of pis perts
2

retr ieve p.pnane
3

where p.pcolor » "pink3"
I

ranhe of p is perts

retr ieve p.pnane
3

where p.pcolor = "pink-"

Ue have now looked at each line twice and are ready to fix each
one.

Ue do this with a substitute connand. This has the form:

s/this character string/that character string/

The editor goes through the current line of our command and finds
the first instance of "this character string" and replaces it
with "that character string". In this way, we can find offending
portions of our interaction and fix then.

First we do it for line I.

i

ranhe of p is perts
s/ranhe/range/
s/perts/parts/
1

range of p is parts

After two substitutions* everything is fine.

Notice that you only need to specify enough of "this character
string" so that the editor can correctly make the substitution.

Also* if you sinply put a "p" after the last "/" * the current
line will be automatically printed.

GETTING STARTED -10- 3-20-75

Notice lastly* that t and 8 work the sane way in the editor as in
INGRES.

Ue now proceed to fix the rest of our statenent without further
connents.

retrieve p.pnane
s/p/Cp/
s/ne/ne)/p
retrieve (p.pnane)

where p.pcolor = "pink="
s/pc/c/
s/k=/k/p
where p.color « "pink"

Ue have now fixed all lines and use the command "w" to send the
corrected statenent back to INGRES as follows:

u

Ue now issue a "q" conmand to quit the editor and return to
INGRES as follows:

<<moni tor

The echo "<<monitor" is to remind you that you have returned to
INGRES.

It is usuallly wise to make sure INGRES got your corrected in
teraction back fron the editor correctly by typing "Sp" i.e.

Sp
range of p is parts
retrieve (p.pnane)
where p.color = "pink"

A "Sg" will now execute the corrected conmand.

Sg
query fornulation conplete
(pnane I
((

(central processor i

GETTING STARTED -11- 3-20-75

cont inue

Ue now indicate the boolean opperators which may be used
exanple* the interaction that follows is accepted by INGRES

Sr

go

range of p is parts
retrieve (p.pnane)
where p.color ="pink

sg

or p.color = "gray1

query fornulation conplete
ipnane
(

(central processor
imemory
Itapes
Icard reader

(card punch
cont inue

For

The operators "not"* "and" and "or" are supported in INGRES.
Users may simply use the operators remembering only to put a
space on either side of them. It is sometimes essential to
remember that the precedence of boolean operators is "not" then
"and" then "or". Users who wish to alter this precedence (or who
do not remember it) may use parentheses to precisely specify
their neaning. The following interaction gives an example of
multiple boolean operators.

Sr

go

range of p is parts
retrieve (p.pnane)
where (p.coI or••pink" or

Sg
query fornulation conplete
(pnane

(centra I

Inenory
Itapes
cont inue

processor

color • "gray") and p.pnun < 10

Three points should be carefully noted about the above
interaction:

GETTING STARTED -12- 3-20-75

1) Character strings nust be enclosed in double quote marks while
numbers may be typed with no special delimiters.

2) Note the arithmetic operator "<"
Valid relational operators include:

in the above interaction

= (equals to)
< (less than)

> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
!= (not equal to)

3) There is no limit to the complexity of the expressions which
can be constructed using relational and boolean expressions.

Ue now do one last exanple concerning arithmetic operators in
QUEL. This exanple finds the total weight (weight times qoh) for
each part with a part nunber less than 10.

sr

go

range of p is parts
retrieve (p.pnane* tot= p.weight*p.qoh>
where p .pnun < 10

Sg
query fornulation conplete
Ipnane Itot I

(central processor

Inenory

(disk dri ve

(tape drive
(tapes
(line pr inter
Ii-p paper

Itern inals

tterni nal paper
continue

1

101

6401

13701

18001

2501

17341

14251

2851

7001

It should be noted that arithnetic operators can be used in the
qualification portion of an interaction as well as in the portion
indicating the desired infornation. Valid arithmetic operators
include *

+ (add it ion)

(subtract ion >

GETTING STARTED -13- 3-20-75

*(nultiplication)
/ (floating point division)
** (exponentiation)
nod (integer division)

It should also be noted that any user can save any result of an
interaction by sinply specifying the name of a relation into
which the answer should be placed. The following suggests an
equivalent way of obtaining the previous result. First a rela
tion is created with the answer then the print command is used to
d isplay the resu11.

Sr

go

range of p is parts
retrieve into local(p.pnane* tot»p.weight*p.qoh>
where p.pnum < 10

sg
query formulation complete
cont»nue

Sr

go

print local

sg
query fornulation conplete

I oca I relat ion

pnane

central processor

nemory

disk dr ive

tape drive
tapes
line printer
l-p paper
terni nals

terminal paper
continue

Notice that local renains as a relation in the data base and may
be used in any future interactions by sinply declaring a range
var "« ab le for it.

Ue turn now to interactions which involve more than one relation
at a time. It is in these interactions that 0UEL is especially
useful because of its ability to connect information in different
re lat ions.

GETTING STARTED

Itot

1 101

I 6401

1 13701

1 18001

1 2501

1 17341

1 14251

1 2851

1 7001

-14- 3-20-75

m 9
0

m <
3

e
n i 0
4 I

IS
)

o
I

-
a

C
fl

i
w

v
O

s
O

v
O

s
O

v
D

s
O

v
B

s
O

fO
rO

rv
>

4
k
4

*
fS

)
*

-
*

4
»

-
t-

fc
i-

*
i-

*
4*

-
4*

4
fc

4
»

«
,o

v
O

sO
N

O
\o

v
*

so
v
©

c
r»

<
r>

4
k
4

fc
4

k
4*

w
ro

n
n

^
*

w
*

m
m

m
-m

-m
-m

-4
s
o

s
0

\p
s
&

s
0

s
0

\o
<

<
0

N
N

^
h

*
M

v
p

i^
o

o
c
n

u
ia

>
o

o
u

iu
i(

o
^
>

-
k
o

io
io

iv
)
o

o
(
o

tn
c
fl

(
»

o
o

c
n

u
)

I
3

I
C

I
3

I

<
©
^
O
*
C
f
l
4
f
c
0
4
M
*
*
4
*
t
J
I
0
4
I
V
>
^
t
n
C
l
l
t
f
l
U
)
4
*
4
k
^
^
*
*
W
0
4
4
f
c
0
>
O
*
^
^
^
I
S
>
N
>
4
f
c
W

'
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

-
^
^

I
3

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
3

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I

•
^
^
•
^
.
V
|
^
«
>
|
-
>
|
.
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
>
J
%
l
^
^
-
>
J
"
,
4
'
>
l
*
>
l
,
>
J
"
>
J
"
,
4
'
N
l
"
>
l
*
>
l

•
W

9
>

^
»

^
»

»
^
^
c
f
l
u

i
u

i
a

i
c
n

o
i
u

i
u

i
c
n

c
A

4
%

u
i
«

4
k
U

A
C

i
i
A

4
t
u

i
u

i
u

i
o

i
^
«

w
o

i
4

k
*

w
i

y
I

I
I

I
I

I
I

I
I

I
I

t
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

~*
0

0
0

0
0

O
O

O
0

0
0

O
0

0
0

0
0

0
«

—
O

»
-
»

0
i
-
*

0
»

—
•-

•»
-*

O
O

O
O

t^
O

^
*

0
»

-
*

0
»

*
*

I
"O

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

t
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I-

I
I

I
I

<
p

O
O

O
O

O
O

O
O

O
O

J
O

O
O

O
O

«
-
t»

-
fc

N
>

»
-
*

O
M

O
W

»
-
-
C

*
ir

O
»

—
O

O
O

»
-*

tV
A

0
4

W
»

-*
0

J
W

0
a

I
C

f

_
.
_

.
—

—
—

—
—

—
—

—
—

—
—

—
.

—
.

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

I
—

i
ja

••
*

O
•-

*
O

»•
*

•"
»

0
4

IS
>

C
4

(V
)

l-
»

»-
••

©
«-*

•
(V

>
H

*

1 1
c

i
p

h
*

»-
»•

ft
>

M
»

1
3

CT
)

*M
IS

>
0

4
4*

.
4

*
4

*
U

J
P

O
0

4
1

o
c
n

o
f
f
^
o

4
4

»
r
o

»
-
k
r
o

o
4

»
—

a
^
r
o

j
k
.o

o
j
f
c
.^

o
o

^
r
o

'—
i
—

r
o

"
-
*

1

C p

X
I
T

3
iQ

/

C
-?

O
1

«
—

"
5

3

•
♦
»

W

0
C

1
T

5

3
T

J
C

•—

—
iC

P
^

c
t-

if
i

o 3 n o 3 *
o o c
*

1 (A <
r

C 1 c
r

P W o n o 3 O
.

1 <
D

•
-
»

P <
*

O 3 c
r

3
*

P c
f

C a 3
"

* (f
t

o .
o c

9991

999 1

999 1

9991

9991

999 »

241 I

241 >

131 I

131 I

131 I

131 I

81

81

81

81

81

81

81

81

cont inue

This relat

hypothet ica
cates the

quant ity in
be shipped
charged . No
relation a

nect" the t

suppli er nu

One way to
the part nu

91

101

11 I

121

131

141

81

91

81

81

91

91

11 I

121

111

121

81

91

1 I

21

1006176-

1006(76-

1006 176-

1006176-

1006176-

1006176-

1005175-

1005175

1001175

1002175

1001175

1002 175-

1004175

1004 175-

1007176

1007176

1004174

1004174

1007176

1007176

01-011

01-011

01-011

01-011

01-011

01-011

07-011

07-011

03-151

03-151

04-311

03-311

01-011

04-311

02-011

-02-011

•12-201

•12-311

-02-011

•02-011

1001

14

I

I

1441

21

1 I

2001

1001

21

31

31

21

51

5001

II

10241

ion gives information on conditions under which the
I conputer installation can buy more parts. It indi-
supplier nunber fron whom each part is available* the
which it can be ordered* the date such an order could
and the job nunber to which such an order could be

tice that the colunn pnun appears in both the parts
nd this relation. Using this information we can "con-
wo relations. For example* we might want to know the
nbers of suppliers who sell central processors.

proceed is to interrogate the parts relation to
nber of central processors as follows:

Sr

go

range of p is parts
retrieve (p.pnun) where p.pnane » "central processor
Sg

The answer returned is:

query fornulation conplete
Ipnun i
1 1

(1 (

cont inue

find

GETTING STARTED -16- 3-20-75

Hence* part nunber 1 is the central
interrogate the supply relation seeking
nunber 1 as follows:

Sr

go

r a

re

sg
qu

s

nge of s is supply
trieve (s.snun) where s.pnum =1

ery formulation conplete
nun I

I

4751

81

81

475 I

241 (

9991

81

nt inueCO

processor. Then we could
the suppliers of part

N o t ic e

sors .

that suppliers 8*241* 475 and 999 supply central proces-

Notice also that suppliers 8 and 475 are repeated more than once.
Because of the internal way that INGRES is organized* much faster
response tine can be supported if the "answer" is printed on the
terninal with duplicate values sometimes present. In this case*
the user nust look at the response and note the duplications. On
the other hand* should the user wish the systen to detect and
delete the duplicates* the user need only retrieve his answer
into a tenporary relation and then print that relation. The
instructions are the following:

Sr

go

range of s is supply
retrieve into cpu(s.snun) where s.pnun « 1
pr int cpu

sg

cpu relation

Isnun I
I j

(4751

i 81

GETTING STARTED -17- 3-20-75

(241 i

(999 1

cont inue

In any case* it is rather inconvenient to have to issue
trieve conmands to get the information we require.

two re-

Uhat is even more inconvenient is the necessity of obtaining the
first output* nanely the nunber 1* and then manually substituting
this into the second query. It would have been extremely incon
venient if the central processor had had several part numbers; we
would have had to substitute them all.

The following indicates one way around this inconvenience.

Sr

go

range of p is parts
retrieve into cpu(p.p.nun) where p.pnane ° "central processor"
range of c is cpu
range of s is supply
retrieve (s.snun) where s.pnun "c.pnun
sg

Here* we have executed the first half of the query as before
obtaining in cpu the answer "1". Then the second half of the
query is executed with a variable declared over the cpu relation.
In the second retrieve statenent the c.pnum simply has the value
alM and the statenent should work correctly.

Unfortunately* ue get the following response:

In the CREATE of "cpu " a duplicate relation name
"cpu " caused execution to halt.

INGRES takes the attitude that it should warn you when you are
about to destroy information in a relation by putting new infor
mation in it. Hence* it will not let you execute the above
statenent until you either:

1) destroy cpu (which was created earlier) indicating you do not
need the old information any nore or

2) change the nane of the cpu relation in the interaction so it
does not conflict with a relation that exists.

Ue take the latter course and change cpu to cpunum by entering

GETTING STARTED -18- 3-20-75

the editor and using the substitute command. Uhen we return to
INGRES we should have the following:

range of p is parts
retrieve into cpunun(p.pnun) where p.pnane ;
range of c is cpunun
range of s is supply
retrieve (s.snun) where s.pnun "cpnun
Sg

A more precise way to think about queries with nore than one
variable is the following. Ue will indicate a conceptual way
that INGRES NIGHT process such a query in a step by step fashion.

Ue deal with the second half of the above query nanely

range of s is supply
range of c is newcpu
retrieve (s.snun) where s.pnunsc.pnun

The first step of processing this query night be:

Sr

go

range of s is supply
range of c is cpunun
retrieve into partanswer(snun»s.snun* spnun«s.pnun*cpnunec.pnun)
print partanswer

sg

central processor"

The relation partanswer contains one row for each and every pos
sible pair of rows in supply and newcpu. The printout is the
following. Exanine it carefully so you understand what is hap
pen ing .

query fornulation conplete

partanswer relation

(snun Is pnun Icpnun 1

i 4751 11 11

1 4751 21 11

i 81 11 11

i 81 11 11

1 4751 31 1 1

i 4751 41 1 1

GETTING STARTED -19- 3-20-75

1 81 21 1 1

i 81 21 1 1

i 1221 71 1 1

I 1221 71 1 1

1 1221 91 11

(4401 61 11

{ 1311 81 11

(241 I 41 11

i 621 31 11

1 4751 21 11

1 4751 11 11

(81 61 11

(81 61 11

(51 41 1 1

i 51 41 11

(201 51 11

(201 51 1 1

i 41 1 51 11

1 91 51 1 1

(241 f 11 11

i 241 I 21 11

1 241 t 31 1 1

I 671 51 11

1 671 41 1 1

I 9991 11 11

t 999 1 21 1 1

(999 1 31 11

1 9991 41 11

(999 1 51 1 1

(9991 61 11

1 9991 71 11

(9991 81 1 1

1 999(91 11

1 999 1 101 11

1 9991 111 11

(999 1 121 1 1

1 9991 131 11

{ 999» 141 1 1

(241 1 81 1 1

(241 1 91 1 1

1 1311 81 1 1

i 131 1 81 11

1 131 t 91 11

(131 I 91 11

(81 111 11

(81 121 1 1

(81 111 11

(81 121 11

i 81 81 11

GETTING STARTED -20- 3-20-75

(81 91 1 1

i 81 11 1 1

1 81 21 1 1

cont inue

The second portion of the processing of this query now involves
the partanswer relation. Notice that the original qualification
statenent

s.snunsc.pnun

which involved two different relations (cpunun and supply) can be
stated using only the partanswer relation as follows:

Sr

go

range of a is partanswer
retrieve (a.snun) where a. spnun°>a. cpnum

sg

The response to this interaction is the correct answer as follows:

snun I
I

4751

81

81

4751

241 I

9991

81

cont inue

Notice what has been printed is each row of the partanswer rela
tion that has identical entries in its second and third columns.

Uhenever you are in doubt concerning the neaning of a query with
more than one variable in it* always think of the two step pro
cess described above and you will not go wrong. Uith this in
mind* convince yourself that the correct answer to our interac
tion above can also be found using the following code.

Sr

go

range of
range of
r e t r ie v e

sg

s is supply
p is parts
(s.snun) where s.pnunBp.pnun

GETTING STARTED -21-

and p.pnane*"central processor"

3-20-75

So far in this docunent we have considered how to retrieve por
tions of a relation (or relations) that are of interest. The

examples have indicated the power of QUEL for retrieval purposes.
The only feature which has not yet been considered is aggrega
tion.

Ue now illustrate the use of this construct in two examples. The
following connand finds the nunber of part names from the parts
relation which are black.

Sr

go

range of p is parts
retrieve (total= count(p.pnane where p.color = "black"))
Sg
query fornulation conplete
(total I

I (

(41

cont inue

The next connand finds the sun of quantities of part number 6
able to be supplied before October 1* 1976.

Sr

go

range of s is supply
retrieve (s * sun(s.quan where s.pnuns6 and s.shipdate<"76-10-1"))
Sg
query fornulation conplete
(s I

(-I

I 91

cont inue

The following points should be noted about aggregates:

a) aggregates have the form
agg-op(target-list where qualification).

agg-op can be
ni n

max

count

sun

avg (sun/count)

GETTING STARTED -22- 3-20-75

The target list is the quantity for which the aggregate is
desired using those tuples which satisfy the qualification.

b) There is no limit on the nunber of variables which can appear
in an aggregate.

c) Aggregates can be nested* i.e. the target list and qualifica
tion nay thenselves contain aggregates.

d) The "QUEL" section of the reference manual indicates certain

illegal aggregations. For exanple* avg is only allowed for quan
tities which are numeric. An attempt to find the average of a
quantity that is alphanuneric (for exanple pname) will result in
an error.

e) An aggregate can appear anywhere in a QUEL interaction.

Ue now turn to the other features of QUEL.

First* a user nay put connents anywhere in his QUEL statements in
order to nake then nore readable. This feature is especially
useful when interactions are saved and reexecuted at a later

tine.

INGRES considers any text string bounded by "/*" on the front and
"*/" on the rear to be a connent. It sinply deletes the comment
during processing as illustrated below.

Sr

go

range of s is supply
/* This is a connent to indicate the fornat acccepted by QUEL for
connents*/

retrieve (s.snun) where s.pnun = 1

sg

Another connand which proves useful is the exit connand which is
aSq"* i .e.

Sr

go

Sq

This connand will type a friendly greeting on your terminal and
return you to the care of UNIX for any further processing you nay
wish to do. The current greeting is the following:

GETTING STARTED -23- 3-20-75

query fornulation conplete
INGRES vers 2.3 logout
Tue Nar 18 13:39:01 1975

goodbye - cone again

The only other way to "bail out" of INGRES is to hit the "del"
key. This should only be used in energency (for exanple to abort
a printout which is nuch too long). It has the effect of return
ing you directly to UNIX.

The other connand which you should know about at this time is the
destroy command. It has the following syntax:

Sr

go

destroy cpu

sg

It "wipes away" the cpu relation entirely. It should be used
when you are finished with the information in a relation or when
you want to reuse the nane of a relation for new information.
The only response fron INGRES which you receive is:

query fornaulation conplete
cont inue

Ue will now discuss the three update commands that are available
in QUEL* respectively delete* replace and append.

The delete connand is especially sinple and has the following
format:

delete variable-name where qualification

The following illustrates the effect of a delete statement.

go

range of s is supply
delete s where s.snun * 8

sg

All that INGRES will echo is:

query formulation conplete
continue

GETTING STARTED -24- 3-20-75

The effect of a delete statenent is that all rows of supply are
found which satisfy the qualification "s.snun «8" and instead of
being returned to the user's terninal are instead deleted.

To convince yourself that this
the supply relation.

is indeed the case try printing

The qualification of a delete statenent nay be as complicated as
it can be for retrieve statenents. Therefore*

natter to delete fron the supply relation the
to those suppliers who supply the part called
sor" . Try to formulate this delete statenent
self that it worked correctly.

it is a sinple
rows corresponding
"central proces-

and convince your-

Unfortunately* there is currently no facility in INGRES for the
rows which are getting deleted to be echoed on the user's terni-
na I.

Also* you nay only delete rows fron ONE relation at a tine using
the delete connand. Therefore* only one variable can appear
between the delete connand and the "where" statenent. There are
several reasons for enforcing this restriction which are beyond
the scope of this nanual.

Note finally that a delete statenent which has no "where" state
ment is allowed. It has the effect of deleting all the rows in a
relation. Uhat renains is a perfectly legal relation which has
nothing in it.

Ue turn now to the effect of replace connands. They have the
following general format:

replace variable-nane(colunn-name = result*...*colunn-nane 3 result)
where qualification

Before formally explaining this connand we do sone exanples.
First* we will change supplier nunber 475 to 495 in the supply
relation as follows:

Sr

go

range of s is supply
replace s(snun«495) where s.snun = 475

Sg

Again all that is echoed is:

query fornulation conplete

GETTING STARTED -25- 3-20-75

continue

You nust again print the supply relation if you do not beleive
that INGRES did what you wanted. Ue will now change the supplier
nunber to 400 of all suppliers who supply the part "central pro
cessor" as follows:

Sr

go

range of s is supply
range of p is parts
replace s(snun=40G) where s .pnunsp.pnun and

p.pnane="central processor"
sg

Again the only echo is an indication of completion of the con
nand.

More fornally* one can think about replace statements in the fol
lowing way.

1) All the rows in the relation specified by the variable direct
ly after the "replace" are found which satisfy the qualification.
(In this last exanple it will be those rows which have s.pnun=l>.

2) For all such rows* the infornation inside the parentheses is
examined and whatever is on the left of each equals sign is re
placed by whatever is on the right of It.

The following points should be noted concerning replace
statenents:

a) INGRES echos only a "continue" or any error nessages which nay
be present in the connand.

b) The qualification nay involve any number of variables and nay
be as conplex as desired.

c) The quantity on the right of any equals sign nay be any compu
tation possible in a retrieve statenent.

d) The equals sign may be replaced by any of the words* "is"*
Mbyu .

e) there is no requirenent that any of the rows be changed by a
replace statenent; if no rows qualify* then none are changed.

f) It nay happen that you try to replace a data Iten in a rela
tion by nore than one value. This represents a situation of "non

GETTING STARTED -26- 3-20-75

functionality". The issue of
sued further in this nanual.

non functionality will not be pur-

Ue now turn to the issue of getting new information into INGRES.
There are two mechanisns which can be used. One is to use the

append connand.

This connand allows the user to add information to a relation

which already exists. In its sinplist forn it looks like the
fo11ow ing :

Sr

go

append to parts(pnun=l8*pnane»"dIsk rewinder"*color«"blue"*
we ight =7* qoh =l)

sg

Again the only nessage you get fron INGRES is:

query formulation conplete
cont >nue

Again you nust print the parts relation if you do not believe
your update had the correct effect. After you do this try the
connand to delete the row you just put in.

In this sinple forn an append connand has the forn of

append to re lation-nane(colunn=function*. ..*colunn=function>

Each colunn nust appear inside the parentheses and nust be set
equal to sonething (in the exanple above various constants).
These constants are put into their appropriate places in a new
row of the reUtion indicated by relation-name. Note clearly
that a new row can be added to any relation in this fashion.

If one

create the relation using the INGRES create connand.
the effect of creating an empty relation with a given
nane and given column nanes. In a create statenent the
each colunn nust formally be specified. An example of
statement is the following.

wishes to enter data into a new relation* he nust f irst

This has

relat ion

format of

a create

Sr

go

create example(character

sg

GETTING STARTED

«= clO* integer = i2* float » f4)

-27- 3-20-75

This statenent creates a new relation called example with columns
character* integer and float. These columns are respectively a
character string of length 10 bytes* an integer of length 2 bytes
and a floating point nunber of length 4 bytes. This format in
formation enables INGRES to correctly store and retrieve data of
various types. The types currently supported are the following:

11 * i2*

f4* f8

cl* c2* c255

(integers)
(floating point numbers)
(character strings)

Try printing the exanple relation to see what happens.

You can now execute append statenents to add rows to the exanple
relation since it now exists.

Successive application of append statenents can add any number of
rows to a relation. However* if one has many additions to nake
it nay be easier to use the second update mechanism.

INGRES supports a facility to copy a relation into INGRES fron a
given user file in UNIX. The general forn of a copy statenent is
the followi ng:

copy relation-nane(colunn « fornat*
(fron* to> "UNIX-file-nane"

.* colunn » fornat)

Ue do an exanple of the copy operation at this time.

Sr

go

copy example(character « clO* integer • 12* float « f4)
fron "/mnt/nike/example"

Sg

This example finds the file "/mnt/nike/example" and reads the
first 16 bytes into row one of the exanple relation It then
reads the next 16 bytes into row 2 and continues until an end of
file. In this way a user who has a tape in a given fixed length
fornat can copy it into a UNIX file and then use the INGRES copy
connand to forn a relation fron his data. Likewise* a user who
wishes to take information away fron INGRES for processing under
control of UNIX nay use the INGRES copy command to a UNIX file
(instead of fron a UNIX file).

GETTING STARTED -28- 3-20-75

There are several points to be renenbered about copy:

a) the relation nane to be copied into or fron must exist prior
to the copy command.

b) The fornat statenents in the copy connand specify the data
fornat of the UNIX file. This fornat need not be the same as the
one used for the INGRES relation being copied.

c) The colunns in the copy command need not be in the sane order
as they appeared in the create command which forned the relation
involved. INGRES correctly reorders colunns where necessary.

d) If the length of the colunn in the copy command does not equal
the length of the colunn fron the create statement but the data
types are the sane* the following operations take place:

for character string- they are padded with blanks if a larger field
is required. If a shorter field is desired* an error message results

for integers- they are converted to the appropriate length. The
result is unpredictable if this conversion causes an overflow.

for floating point- they are converted to the appropriate length

d) If the data fornat of a column is not the sane in the UNIX

file and the INGRES relation* appropriate conversions are nade
using standard conventions.

Often one wants conversion to take place fron character strings
of a variable length to either integer or floating point fornat.

Suppose* for exanple* one creates using- the UNIX editor a file
called /nnt/nike/sanple with contents:

123* 46.5

402* 34.1

20* 7.3

2000* 700.0

In the editor it is a quick operation to perform this task. Uhat
one would like now is for INGRES to convert the first field to an

integer and the second to a floating point nunber for each of the
four desired rows during the copy operation. Moreover* one would
like INGRES to recognize the conna and carriage return as delim
iters between the variable length fields.

GETTING STARTED -29- 3-20-75

This is done as follows:

Sr

go

create exanple2(int = i2* float
copy exanple2(int = cO* float »
Sg

» f4)

cO) fron /nnt/ni ke/sample

This will correctly copy and convert the four rows. The format cO
says sinply look for a character string delimited by a comma* a
carriage return or other non nuneric character and convert it to
the type specified in the create statenent. Unfortunately, you
cannot put a decimal point into fields which you wish converted
to integers.

Of course* the user could have done the sane transfer by correct
ly alligning the information in /mnt/nike/sample so each column
was of fixed length. However* cO format spares the user this
hassle.

The last notion ue discuss in this nanual is how to discover what
fornat a relation is stored in. This is sometimes necessary when
we have to know whether to put quote narks around strings that we
use in an interaction.

For exanple in the parts relation discussed above there is a
colunn called pnun. In one interaction we required part nanes
that (anong other things) had the property that pnun was less
than 10. If pnun was stored as a character string we would have
been required to put quotes around the 10 in order for the in
teraction to work correctly. However*,we knew it was an integer
and the interaction worked correctly as stated.

To find the fornat of a relation sinply type

help "relation-name"

and the various colunns* their fornats and other information will
be returned to your terminal.

GETTING STARTED -30- 3-20-75

	Copyright notice 1975
	ERL-518

