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Abstract

The condition number of an eigenvalue measures the sensitivity of

that eigenvalue to small changes in the matrix elements. Such extra

information is nice, sometimes useful, but how much does it cost?

A program is presented here for the most difficult case of a real

square matrix whose eigenvalues are wanted without their corresponding

eigenvectors. The program requires no extra storage space (this is our

reason for presenting it) and the running time is about 50% longer than

for the fastest reliable program which only computes eigenvalues.

Research sponsored by Office of Naval Research Contract N00014-69-A-
0200-1017.



There are many industrial applications in which the matrix elements

are known to only two or three decimal figures. Each condition number

will indicate how accurately such a matrix determines the associated

eigenvalue. When no digits in an eigenvalue are reliable the suspect

eigenvalue should be tagged and this information passed on to a higher

level in the whole computation.

A number of programming devices keep the code, storage, and running

time down to a minimum.

An interesting case study is included.
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1. THEORETICAL BACKGROUND

1.1 The Sensitivity of Eigenvalues

Several good programs are available for the computation of the eigen

values of real and complex matrices [Wilkinson & Reinsch, EISPACK, IMSL].

Due to the limitations of finite precision arithmetic these programs cannot

produce, in general, the exact eigenvalues of the given matrix A. However

the computed numbers are always (very close to) the eigenvalues of a

matrix A + E which is very close to A. This matrix E is not unique

and error analyses [Wilkinson, 1965] have shown the existence of E's

with satisfactorily small upper bounds on ||E[|/I|A||. Here II-|| denotes

an appropriate matrix norm.

It follows from these remarks that a good program will not always

deliver accurate approximations to A's eigenvalues. It can happen that

some, or all, of the eigenvalues are very sensitive to changes in the

matrix elements. So some, or all, of the eigenvalues of A+E may

differ sharply from those of A. Actually this is true only for non-

normal matrices. Real symmetric matrices — indeed all normal matrices

— determine their eigenvalues very well; the change induced in an eigen

value of such an A cannot exceed the spectral norm of E (which is

defined below).

Two questions arise. How can this sensitivity be measured and how

cheaply can it be computed?

Simple Eigenvalues

To any simple eigenvalue X of A there correspond both a column

vector x and a row eigenvector y* (the conjugate transpose of y)

which are unique to within a scalar multiple. Thus



Ax = xA , y*A = Ay* (1)

and x = y if A is normal (i.e. A*A = AA*). The most popular mea

sure of A's sensitivity was called by Wilkinson [Wilkinson, 1965] the

spectral condition number cond(X). Let 0 denote the acute angle

between x and y, then

cond(A) = secant 6 = llyll •11x11/|y*x| where ||v|| = /v*v . (2)

This definition gives a number in [l,00) which is monotonic increasing

with A's sensitivity to changes in A.

In order to justify this definition two popular matrix norms will

be used;

flMll = max UMvll/OvH = A (M*M) ,
,n max

*° (3)
IIMIL = i/rTfrnTTP" = /trace(M*M) .

& . . i 1
i J J

Let |6A| be the change in A corresponding to a change 6k in A.

It can be shown that

cond(A) = sup 16A |/[|SAIL over all non null infinitesimal SA . (4)

Another useful characterization of cond(A) is the following. The

spectral projector P, of A is the matrix which projects every vector

into a multiple of A's eigenvector. It is easy to verify that for

simple A

P, = xy*/y*x (y*x is a scalar) , (5)

and, by using the fad that: P is of rank one, one can



show that

cond(X) = ||PXHE = ||Pxli . (6)

It is this characterization which can be generalized.

Multiple Eigenvalues

When X has geometric multiplicity m almost all perturbations of

A break X into m simple eigenvalues in such a way that sup|6X| /||6A[|

is unbounded. Thus it is customary to set

cond(X) = °°

in this case.

There is more to be said however. A reasonable definition (see

[Kahan 1972]) puts

cond(X) = sup|6X|/||6A0 (7)

over all non null infinitesimal 6k which preserve X's multiplicity.

This number can be estimated because

cond(X) < HPxHE/m

where the spectral projector P, satisfies

^x - pxA • Xpx+Nx

and N, is nilpotent (i.e. NT = 0). Moreover P, can be found from

the expression

Px =X(Y*X) *Y* (8)



where the columns of X and rows of Y* are bases for X's invariant

subspaces.

We have followed the usual practice (cond = ~) in our program CONDIT

but wish to point out that it is feasible to bring into adjacent positions

on the diagonal of the Schur form any associated ill conditioned eigen

values. The spectral projector for this group of eigenvalues can then

be found from (8) and if its norm is small then the group can be desig

nated as a cluster. That is another project.

If more specific information is required then the individual ele

ments of P. will be involved because

dX ie
da~ = eiPXei (X simple) . (9)

A warning should be offered at this point. The measures presented

above are based on the Euclidean vector norm and the convention that A

acts on vectors in Euclidean n-space. It can happen that this model is

quite inappropriate for certain applications and then the conventional

condition numbers will be irrelevant. However it is only the order of

magnitude (base 10) of cond(X) which is wanted, in most cases, and

this will be constant over a large range of norms.



1.2 Invariance Properties

When the role of the matrix is to be stressed the condition number

is written cond(X,A).

Theorem. If Q is unitary, i.e. Q*Q = QQ* = I, and X is a simple

eigenvalue of A then

cond(X,QAQ*) = cond(X,A) .

Proof. Let Ax = xX, y*A = Xy*. Then

(QAQ*)(Qx) = (Qx)X , (y*Q*)(QAQ*) = X(y*Q*) .

Because X is simple y*x ^ 0 and

cond(X,QAQ*) = ||y*Q*[|«!lQxO/|(y*Q*)(Qx)| ,

= lly*MlxQ/|y*x| ,

= cond(X,A) ,

because the Euclidean norm is unitarily invariant. •

Corollary. If a given matrix B is reduced to Hessenberg form H

by unitary similarities (such as Householder transformations) and the

QR algorithm is applied to H to produce, in the limit, ji quasi-triangular

matrix T then

cond(X,B) = cond(X,T) .

1.3 The Use and Cost of Condition Numbers

A computed eigenvalue X of a given matrix A is an exact eigen

value of many matrices including some close to A. Let A+E designate



one of the closest matrices. Provided that (HeIL/OaIL)2 is negligible
E E

the error in X is bounded by cond(X)||E(|_. Error analyses [Wilkinson

1966] give an upper bound $ on (II Ell /IIAll ) when the Householder/QR

method is used. It follows that

log10(|X|/8-cond(X)«llAllE)

gives the number of decimal digits in X which are assuredly correct.

When no figures in X can be relied on then a warning tag should

be attached to X for most applications. Conversely when an adequate

number of figures are certified as correct in each eigenvalue of A then

the subsequent calculations are placed on a sounder footing.

These estimates of the number of correct figures have proved useful

in comparison of rival eigenvalue programs and in debugging big programs

of which the eigenvalue calculations were merely a part.

A natural question at this stage is how much extra does it cost to

compute cond(X) as well as X? The answer must depend on whether the

user also computes x and/or y along with X. We focus on real

matrices and real arithmetic.

[A] If a complete Jordan factorization A = XAY* (Y*X = I) is

computed then each cond(X.) can be found from the definition

llx.il lly 11/|yx| at negligible extra cost in storage and time. No special

program is needed and this case will not be considered further. Few

dependable Jordan factorization routines are currently available.

[B] If a program is used which yields X and A but not Y* then

it is necessary to compute the triangular factorization L U and store

it in an extra array. Then cond(X ) = [|e*X II• llXe II. To invert X

3
costs n basic operations whereas X and A may be found in



3
approximately 7n operations using the double QR transformation.

No special program is needed. The time penalty is slight but the

extra storage requirement is substantial. This case will not be dis

cussed further.

[C] The eigenvalues X of A may be found (EISPACK path, ELMHES, HQR) in

/l 3
under 4tii operations and with no supplementary n x n storage arrays

provided that A can be overwritten. This is the most interesting case.

No extra arrays are needed for the computation of cond(X ), i = l,...,n

3
but the multiplication count rises to approximately 7n . See the section

2
on Operation Counts for more details. The 0(n ) terms bring down the

ratio of running times and the increase is approximately 50% (± 15%).

Our method is easily described. The given matrix A is reduced to

Hessenberg form H by orthogonal similarity transformations. Then H

is transformed to quasi-triangular Schur form T by the double QR

algorithm working on the whole of H and not just the remaining principal

submatrices. None of the orthogonal transforming matrices is retained.

Finally the column and row eigenvectors of T are found, for each X,

by back substitution and then discarded immediately after cond(X) has

been calculated.

By Theorem 1 cond(X,T) = cond(X,A).

30
For simplicity all condition numbers exceeding 10 are recorded

in30as 10 .

The program uses only real arithmetic even if A has complex eigen

values .



1.4 Operation Counts

In [Parlett & Wang 1975] it is pointed out that straightforward

counts of multiplications and additions are unreliable indicators of

running times. Nevertheless they are good to within a factor of 2 and

they do give insight into the way the algorithm spends its time. An

op is defined as a scalar multiplication or division followed by an

addition.

ORTHES: The (n-j) step transforms the last j rows and columns

while reducing column (n-j) to upper Hessenberg form.

Row Operations: A -*• A' =A-wy(wTA), y =2/wTw, wT = (0,... ,0,x,... ,x)

Computation Y w A
T T
v =y(w A) A TA- wv Total

Cost j i2 j j2 2j (j+1)

Column Operations: A' -»• A" = A' -yA'WW

Computation Y A'w u = yA'w At T
A' - uw Total

Cost 0 nj n nj n(2j+l)

n-1
5 2Grand Total: £n(2j+l) +2j (j+1) =^n (n-1) +0(n)

j=l J

The program ELMHES is approximately twice as fast as ORTHES but will not

preserve condition numbers.

CONDIT: It suffices to assume that all eigenvalues are real. To

find the column and row eigenvectors for the j eigenvalue requires

backsolving triangular systems of (j-1) and (n-j-1) equations

respectively.

10



Computation X

*

y Cond

Cost

1=1 i=l

j

13 12Grand Total: ^n +-^n +0(n)

HQR: A typical double QR transformation acts on a j * j submatrix

of a Hessenberg matrix. To restore column k to Hessenberg form requires

the following operations.

Computation Key quantities Row operations Column operations

Cost 9 is
fc=k

min(k+3,j)
I 5

Total: I [9 +5(j-k+l)+5(k+3)] =5j2+29j +0(j)
k«l

Assume four initial full transformations with j = n and then two

iterations per eigenvalue.

10 3 2Grant Total: -yn +54n +0(n)

QR2N0Z: The same transformations as in HQR must act on the whole

matrix. This changes the range of the row operation and not the column

because the j x j submatrix being transformed is the leading principal

submatrix.

Computation Key quantities Row operations Column operations

Cost 9

n

£*k

min(k+3,j)
I 5

A=l

Total : I [9 + 5(n-k+l)+5(k+3)] - 5nj+29j+0(j)
k=l

With the same assumptions as above

3 2
Grand Total: 5n +54n +0(n)

11



Summary of Op Counts

ELMHES + HQR

ORTHES + HQR

ORTHES + QR2N0Z + CONDIT

13 124^1 + 53±n + 0(n)

5n3 +52^n2 +0(n)
7n3 +52|n2 +0(n)

The actual timings were more favorable to our program than these

operation counts suggest. The assumption of two iterations per eigen

value is unrealistic. In practice there are more iterations with larger

values of j and fewer with small values. With 20 £ n £ 60 our program

ran, on the average, 50% longer than did ELMHES + HQR; the worst case

ran 65% longer.

12



2'. APPLICABILITY

The program accepts real square matrices which can be stored in the

high speed memory of the computer.

The condition numbers of all eigenvalues of all normal matrices

(and this includes symmetric matrices) are unity and consequently the

program is intended for use with nonnormal matrices.

Before our programs QR2N0Z and CONDIT are used A should be reduced

to Hessenberg form H by orthogonal congruences. We recommend the

procedure ORTHES in [Wilkinson & Reinsch, 11/13] and its Fortran counter

part ORTHES [Eispack Guide, p. 297],

Our program QR2N0Z is an adaptation of HQR2 (Eispack Guide, p. 248)

designed to avoid the formation of the product of all the similarity

transformations used in the double QR algorithm and the calculation of

the eigenvectors of the final matrix of the QR sequence. A listing is

included for completeness.

13



3. ORGANIZATIONAL DETAILS

3.1 Standardization

(i) In the course of the QR algorithm applied to H it is possible

for two real eigenvalues to be found, at the same time, as the roots of

a 2x2 diagonal block

a 3

I Y 6 J

It is convenient in such cases to do a supplementary plane rotation which

will reduce this diagonal block to upper triangular form and change the

corresponding rows and columns of H accordingly.

If this transformation is done at the time the eigenvalues X and

X« are recorded then some of the quantities which determine the correct

angle of rotation will be available.

This device is employed in HQR2 and has been carried over to QR2N0Z.

The details are given below.

The parameters c = cos 6, s = sin 0 are determined so that

' 1

c -s

k s c .

a 3

Y 5

( \
c s

-s c
V )

is upper triangular. Thus

2 2
yc - dcs -3s =0, d=6-a

Let t = (d/2) + 3y then

cot 6 = (d/2 + sign(d)/t)/2y ,

s= sign(cot 6)(l +cot20)"1/2

c = s»cot 0 .

14



(ii) It is also convenient to perform a supplementary plane rota

tion after a pair of complex conjugate eigenvalues, A ± iy, has been

recorded in the course of the QR algorithm. In this case the transfor

mation of the diagonal block is

» «

c s

-8 c ,

'o 6'
( 1

c -s

=

• X 0 "

.5 *.

where £0 = -y . This device is not used in HQR2.

Note that it is not in general possible to transform

a 3

lY 6 J I" * J

using orthogonal similarity transformations.

The purpose of the transformation is to yield a simple solution to

certain systems of linear equations which must be solved. The supple

mentary plane rotation is done at the stage when the eigenvalues are being

2
recorded in QR2N0Z. In this case t = p +3Y < 0» P = (a-6)/2. We want

to choose c = cos 0 and s = sin 0 so that

ac + (3+Y)cs + 6s = 6c2 - (3+Y)cs + as2 .

Hence

tan 20
2sc

2 2
c -s

- & = *k. •sign(-pa) , a = 3+ Y •

Let T « /o*2 + 4p2. Then

0=q=^|(l+cos 20) =/(l+|a|/T)/2 ,cos

sin 0 = sin 20/2 cos 0 = |p|sign(-pa)/Tq .

15



3.2 The Computation of the Eigenvectors of a Standardized Real,

Block Upper Triangular Matrix

For each real eigenvalue X the eigenvectors u, w* satisfy

Tu = uX , w*T = Xw* .

For each complex conjugate pair of eigenvalues X±iy the eigen

vectors u+iu2, w* +iw* satisfy

T(U;L,u2) = (U]L,u2)E , (wrw2)*T =E(w1,w2)*

where

E =
X u

l-n X J

In effecting the back substitution process in real arithmetic there

are four different cases which can occur, depending on whether the matrices

D and E shown below are lxl or 2x2.

• •

D =

a or

' a 3

. Y a J

X or

X 0

0 X

j;

where 0<J) = -y .

The positions of D and E should be exchanged when considering the

row eigenvectors.

Type 1: pair-pair (E is 2x2, D is 2x2).

Imagine that the elements of u.., u„ in the same row as D are

about to be computed. All elements below these have already been found,

16



the elements below E being 0.

Let jl, j2 be the rows of T in which D lies. Then the unknowns

are

V =

ux(jl) u2(jl)

{ ux(j2) u2(j2) J

The equation to be solved in the column case is

where

rx(jl) r2(jl)

[rx(j2) r2(j2)

In the row case let

V m

- DV + VE = R

i + 1 rm = jl, j2 ,
(m) = I t u (k) , \ (1)

V k=j2+l m'k V lv - 1, 2 .

w1(jl) w2(jl)

{ wx(j2) w2(j2) J

then the equations to be solved are

T * T T
- V D + EV = R (2)

where R is as above except that k runs from i to jl-1. Trans

posing yields

T AT
- D V + VE = R .

Comparing this with the column case we see that it is only necessary to

transpose D and E (i.e., to exchange 3. Y and y, -y) in order to

use the same code for both cases. The way that this exchange is accom

plished is described in Level Three.

17



The way in which these four linear equations in four unknowns are

solved is described in the next section.

Type 2: pair-single (E is 2x 2, D is 1x i).

The relevant equations are

and

-a(U;L(j),u2(j)) + (u1(j)fu2(j))E = (ri(j),r2(j))

.xx£T-tx(w1(j),w2(j)) + (w1(j),w2(j))Ei = G^CO.r^j)) .

2 2 I ^ ^or colu™11)
Let d = X-a, den = d +y , val =«{ The solution for

both cases is
•{"L-y (for row) .

v = (r »d + r -val)/den ,

v2 = (-r *val+r «d)/den

Type 3: single-pair (E is lxl, d is 2x2).

The relevant equations are

- D

ul(jl)

.ui<J2> .

ux(jl)

>ul02)
X =

'r,(jl) '

.rl<J2> ,

(3)

T
and the same equation for w with D in place of D. Set d = X-a,

den = d - 3y. The solution is

where 3

v± = (r1(jl)-d+r1(j2)-3)/den ,

v2 = (r1(jl).Y+r1(j2)«d)/den ,
(4)

3 (for column)"! - fY ^for column)l
> and "Y ~ i >. In practice

y (for row) J L3 (for row) J
3 = T(JJ,J), y = T(J,JJ) and the setting of J and JJ is described

•{
at Level Three.

18



Type 4: single-single (E is lxi, D is 1 x l).

vl ~ rn(j)/den » den = X-a .

Type 5: formula breakdown.

If in any of the previous cases D = E then the formulae for solu

tion breakdown. There are two cases to consider.

(i) Linear Independence. Any element v for which the formula

yields 0/0 can be set to any value, the most convenient is 0. This

represents the existence of a whole space of eigenvectors associated

with E.

(ii) Defective Case. Any element v for which the formula yields

a value exceeding 1/TOL will cause the condition number to exceed 1/TOL.

If this case is detected computation is interrupted, the condition number

is set to 1/TOL and the program proceeds to the next eigenvalue.

-30
We propose that TOL = 10 will be suitable for most applications

and most computers.

These tests make the code simple and machine independent. However,

it is possible to devise matrices for which the given value 1/T0L for

the condition is very misleading. We know of no failsafe procedure which

does not involve deciding the rank of T - £ for all £ in a neighborhood

of X. This is a costly, difficult, and often unrewarding task.

3.3 Closed Form Solution for Equations of Type 1

The equations to be solved are of the form

- DV + VE = R

where

19



D =

a 3

I Y a

E =

X y

-y X
R =

rll r12

[ r21 r22 ^

The standardization of the block triangular matrix T forces the diagonal

elements of D to be equal. This yields simple formulas for the elements

of V.

Rewrite the equation as

(vll V12 V21 v22^

where

Observe that

where

B -yl,

-3I2 B

B -YI;

-3i2 B (rll rl2 r21 r22)

B =

X-a y

> -M X-a t

r jr
B YL

3l2 BJ
= TI4 + 2yJ4

t= (X-a)2+y2-3Y (and 3y <0),

= r

0 0 0 Y

J4 =
0 0

o 3

-Y

0

0

0

_-3 0 0 0

Further

, I, is the kxk identity matrix.

Hence

(Tl4+2yJ4)(Tl4-2yJ4) =[T2 -4y2(-3Y)U4

(vll v12 vn v22)(T2+4y23Y) =rT

20

( »T
B Yl2

.31, BT J(TI4-2^J4)



= r

where

e -f Yg -Yh

f e yh Yg

3g -3h e -f

Jh 3g f e ,

d = X-a , e = dT, f = y(x + 23Y) , g = t - 2y , h = 2dy .

Note that

t2 + 4y23Y = (d2+y2- 3y)2 + 4y23Y
= g +h

(= 0 if and only if a= X, y2 = -3y) .

These same formulae will be valid for the row eigenvectors provided that

we exchange (3.Y) and (y,-y).

The alternative to using this closed form solution is to code up a

special version of Gaussian Elimination with pivoting. It is the pivot

ing which would lengthen the code considerably.

3.4 The Condition Number of Conjugate Pairs of Eigenvalues

Let X± iy be a complex pair of eigenvalues of the real Schur matrix

T obtained by the QR algorithm. In the course of the algorithm the

following real equations are solved for real n-vectors u., u«, w-, w«

TGi^u^ = (ulfu2) P y1 (w w )*T - fp y-y pJ ' <W T [-y p t(wrw2)* . (5)

Thus span(u-,u2) and span(w*,w?) are real invariant subspaces under T,

However {u-,u2} and {w*,wj} are very special bases of these spaces.

21



Lemma. With the notation given above u ± iu_ and w* + l\a* are

the column and row eigenvectors belonging to X± iy.

Proof. From (5)

Hence

Tux =UjX-i^y , w*T =Xw*+yw* ,

Tu2 =uxy+u2X , w*T =-yw*+Xw*

K^+iu^ = ux(X +iy) + iu2(iy+X) ,

(w*-iw*)T = (X + iy)w* - (X+iy)iw* .

The eigenvectors for X- iy are obtained in the same way. •

Consequently

cond(X±iy) = O^+i^D-Owj^-iw^D/IwJ^+w^+KwJuj-w*^)] .

Use was made in the lemma of the quasi-triangular nature of T.

A consequence of this form is that u. and w- can be packed into the

same real n-vector with two overlapping elements as indicated.

u1 = (x,...,x,p±,qi,0,...,0) "|

w* =(0,...,0,p1,qi,x,...,x) J
i = 1, 2

The equations to be satisfied by p , q are of the form

X 3

I Y X J

Pl P2

I q

'Pl 51 '
IP2 ^2

1 q2

X 3

I Y X j

pl p2 X y

[-y X jI *i ^o )

X y

-y X 4

t —

pl ql

[P2 q2

where y = -3Y- These equations reduce to

22
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3q2 •p^ » PjG "^2 *

3q1 «-yp2 » 3p2 ="Vi^i •

The simplest solution (which we adopt) takes

Pl -px «i, qx »p2 =qx »p2 so, q2 »v/G , 52 =1/q2 •

With this choice

(w1-iw2)*(u1+iu2) « (5lP;L+p2p2) + (q1q1+q2q2) =2

and

cond(X±iy) - [(Buia2+Bu2a2)(Qwin2+flw2y2)]1/2/2 . (6)

23



J loop

4. FLOW CHART FOR CONDIT

<START> 1 = 1

<STCJ^> < YeS (l>N?) Increment I

Set NJ = 0

column eigenvector
Set NJ = 1,

row eigenvector

Initialize ith element

of eigenvector(s)

Initialize J, index of
current element(s)

Find KS, KF:
DO loop scope

Eigenvector^
v^completed?^

Set critical

indices

Yes

1 by 1 _/£rder nf^ 2 by 2
D?

EQ: -D*V + V*E = R(NJ = 0)

-DT*V+V*ET =RT(NJ =1)

No

(*ET?)

Compute

norm

Yes,
compute

^condition
number

585: record

out of range
condition

numbers

No /eigenvalue\Yes
V complex?

No /eigenvalue^ Yes
complex?

E is 1 by 1
solve EQ

if defective

go to 585

E is 2 by 2
solve EQ

if defective

go to 585

Next J

-1 (NJ = 0)
(NJ = 1)[J+1
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E is 1 by 1
solve EQ

if defective

go to 585

I

E is 2 by 2
solve EQ

if defective

go to 585

Next J

J-2 (NJ = 0)
J+2 (NJ= 1)J



5.FORMALPARAMETERSANDUSAGE

C
CSUBROUTINEORTHES
CFROMEIGENSYSTEMSUBROUTINEPACKAGE(EISPACK)

e~-~pTjiftPas^'"".-.—.-.—...—-.--
CTHEFORTRANSUBROUTINEORTHESREDUCESAREALMATRIXTOUPPER
CHESSENBERGFORMUSINGORTHOGONALSIMILARITYTRANSFORMATIONS.
C......--~
c"Callingsequence
CTHESUBROUTINESTATEMENTIS
CSUBROUTINEORTHES<NM,N,LOW,IGH,A,ORT).

CNMISANINTEGERINPUTVARIABLESETEQUALTOTHEROWDIMENSION~~
COFTHFTWOOIMENSIONALARRAYAASSPECIFIEOINTHE
CCALLINGPROGRAM.
CNISANINTEGFRINPUTVARIABLESETEQUALTOTHE_ORDEROFTHE
"CMATRIXA.NMUSTBENOTGREATERTHANNM•
CLOW.IGHAREINTEGERINPUTVARIABLESINDICATINGTHEBOUNDARYINDICES
CFORTHfcBALANCEDMATRIX.IFTHEMATRIXISNOTBALANCED,SET
CLOWTO1ANOIGHTON.^^
C"-~xIsAREALTWO-DIMENSIONALVARIABLEWITHROW01MENSIONNl*
CANOCOMUMNDIMENSIONATLEASTN.ONINPUT,ACONTAINSTHE
CMATRIXOFOROERNTOBEREDUCEDTOHESSENeERGFORM.ON
COUTPUT.ACONTAINSTHEUPPERHESSENBERGMATRIXASWELLAS
C"SOMFINFORMATIONABOUTTHFORTHOGONALTRANSFORMATIONSUSED
CINTHEREDUCTION.
CORTISAREALOUTPUTONF-DIMENSIONALVARIABLEOFDIMENSIONAT
CLEASTIGHCONTAININGTHEREMAININGINFORMATIONABOUTTHE
CORTHOGONALTRANSFORMATIONS'."
C

C

c-^L
c

c
CSUBROUTINEQR2N0Z

C_.
CPTJRPOSE*""*
CTHEFORTRANSUBROUTINEQR2NCZCOMPUTESTHEEIGENVALUESOFAREAL^
CUPPfcRHESSENBERGMATRIXUSINGTHEQRMETHODANDREDUCESTHE^iMm
CMATRIXTOASTANOARIZEDQUASI-TRIANGULARFORM•COMPUTATIONS^'^
CAREDONE!NRFALARITHMETIC.
C
CTHESUBROUTINESTATEMENTIS
C__SUBROUTINEQRgNOZ(NM,NtLOW,IGH,H,WR,WI,IERR)._

NM^^SANINTEGER'INPUTVARIABLESETEQUALTOTHEROWPi
C.~'OT"^THFARRAYH"As"SPECIFIEDINTHECALLINGPROGRAM"»'
CNISANINTEGERINPUTVARIABLESETFQUALTOTHFORDFROFTHfc
CMATRIXH.N.LE.NM
CLOW,IGHAREINTEGERINPUTVARIABLESINDICATINGTHEBOUNDARYINDICES
CFORTHEBALANCEDMArRIX.tFTKEMATRIXTS~NOTBALANCED"STT
CLOWTO1ANDIGHTON.
CHISAREALTWO-DIMENSIONALARRAYWITHROWDIMENSIONNMAND
CCOLUMNDIMENSIONATLEASTN.ONINPUTITCONTAINSTHE
CUPPF*HESSENBERGMATRIXOFORDERN.ONOUTPUTITCONTAINS
CTHESTANOARIZEOQUASI-TRIANGULARMATRIX.
CWR,WIARFKEALOUTPUTONE-0IMENSIONALVARIABLESOFDIMENSIONAT
CLEASTNCONTAININGTHF.REALANDIMAGINARYPARTS,
CRESPECTIVELY,OFTHEEIGEnVa'COE'SOFTHEHE^SEN^ERGMATR~lX.
CTHEEIGENVALUESAREUNOROEREOEXCEPTTHATCOMPLEXCONJUATE
CPAIRSOFEIGENVALUESAPPEARCONSECUTIVELYWITHTHE
CFIGENVALUEHAVINGTHEPOSITIVEIMAGINARYPARTFIRST.
CIFS&IS~A^INTEGFROTJTTPUTVARIABLESETEQUALTOANERROR
TCOMPLETIONCOOT'.IFMORETHAN10ITERATIONSARFRFQUIPEO
CTODETERMINEANEIGENVALUE,THISSUBROUTINETERMINATESWllh
C.IERRSFTEQUALTO„_THEINDEXOFTHEEIGENVALUEFORWHICH
CFAILUREOCCURS.THEEIGENVALUESINTHEWRANDWIARRAYS
CSHOULDBECORRECTFORINDICESIERR+1•IERR+2,•••,N.IFALL
CTHEEIGENVALUESAREDETERMINEDWITHIN30ITERATIONS,IERR
CISSETTOZERO.
C—
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C
c __

"c "" " " "'" "
C SUBROUTINE CONDIT
C
C CONDIT COMPUTES THE CONDITION NUMBERS OF THE EIGENVALUES OF A
C STANDARIZED QUASI-TPI ANGULAR MATRIX.
C
C THE SUBROUTINE STATEMENT IS
C _ SUBROUTINE CONDI T( NM,N ,A tVl ,V2 ,WI_, COND )•
C ON INPUT
C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO DIMENSIONAL
C ARRAY AS DECLARED IN THE CALLING PROGRAM.

_C„ _N_ IS THE OPOER OF THE MATRIX. N.LE.NM
C A CONTAINS THE STANbARIZED QUASI-TRIANGULAR MATRIX'PRODUCEDBY
C OP?NOZ.
C WI CONTAINS THF IMAGINARY PARTS OF THE EIGENVALUES. THE
C EIGENVALUES ARE UNOR&EREP EXCEPT THAT COMPLEX CONJUGATE PAIRS
C APPEAR CONSECUTIVELY.
C VI,V2 ARF FOR TEMPORAPY STORAGE.
C

.JL.OM OUTPUT
C A IS UNALTERED.
C CONO CONTAINS THF CONDITION NUMBERS CORRESPONDING TO THE
C FIGENVALUES IN (V2,WI). CONf) = 1 ./TOL IF THE USUAL
C FORMULA WOULD CAUSE OVERFLOW OR YIELD A VALUE EXCEEDING
C 1/TOL. TOL NEED NOT DEPEND ON THE COMPUTER.
C V2 CONTAINS THF REAL PARTS OF THE EIGENVALUES.
C

c
c
C TYPTCAL USAGE
C

C ~
C DIMENSION A<5C,5C),WR(50),WI(50),COND(50),ORTC50)
C
C*******************ENTFR MATRIX A AND DIMENSIONS N,NM******************

"c
C LOW = 1

C IGH = N
C CALL ORTHES(NM,N,LOWf IGH,A,ORT)

CALL QR2NOZ(NM,N,LOW,IGH,A,WR,Wl,IERR)
C CALL CONDIT(NM,N,A,OPT,WR,WI,COND)
C
C***it*******************************************************************

' r. "'
C NOTE. THF USE OF ORT AND WR IN CONDIT
r

r
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6. PROGRAMS AND COMMENTS

OR2NOZ is a modification of the EISPACK program HQR2.

SURPOUTrNr QR2N0Z(NM,N,L0W,IGH,H,WR,WI,ierr>
DIM-NSI ON H(NM,N),W R(N),WI(N)
REAL NQPM,MACHEP
INTEGER FN,ENM2 "
LOGICAL NOTLAS
DATA MACHEP /O16424000000000000000/
IFPP = C

c ' "" ""
C STORE PHOTS ISOLATFD BY BALANC
C

Of) SO I = 1,N
IF (t.GE.LOW .AND. I.LE.IGH) GOTO 50 '~
WR(I> = H(I,1)
WI(I) « 0.0

5 0 CONTINUE
C '

CN = IGH

T = 0.0

C
C SEARCH FOR NEXT EIGENVALUES
C

60 IF(EN.LT.LOW) RETURN
I TS = 0
NA = EN - 1

FNM2 = NA - 1
C

C LOOK TOP SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=FN SfEP -1 UNTIL LOW DO
C

70 IF (FN.FQ.LOW) GOTO 9C
DO 30 LL=LOW,NA

L=EN+LOW-LL
TF(ABS<H(L,L-1))•LE.MACHEP*(ADS(H(L-1,L-1))

X + ABS(H(L,L))))GO TO 100
BC CONTINUE
QO L = LOW

C

C FORM SHIFT
C

100 X = H(FNfFNT
IP fL.FO.FN) GOTO 27C
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L.EOVNA) GOTO 30TF
IF (ITS.E0.30) GOTO 1000
IF (ITS.NE.1C .AND. TTS.NE.20) GOTO 130

C
C 'FORM EXCEPTIONAL SHTFT
C

T = T ♦ X

C

DO 120 I =' LOW ,FN
120 H(I,1) - H(I,I> - X
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130
C
C LOOK FOP TWO CONSECUTIVE SMALL SUB-DIAGONAL
C ELEMENTS. FOP M=EN-2 STEP -1 UNTIL L DO
C "

DO 140 MM = L,FNM2
M = rMM? f L - MM

7Z = H(M,M) . . _
P s X - ZZ
S = Y - ZZ
P = (P*S -W)/H(M+1,M> + H<M,M+1)
Q=H(M+19M+1)-ZZ-R-S _ _ ...._.
P = H(M+2,M+1)
S = ABS(P) + AHS(Q) 4- ABS(R)
P s P/S

0 = Q/S _ - ~-
R = R/S
IF (M.EQ.L) GOTO 150
IF <AHS(H(M,M-l))*(ABS(0) + A3S(R)).LE.MACHEP*ABS(P)

X *(ABS(H( M-l ,M-1 ) ) + ABS(ZZ) + ABS ( H( M+1 , M+ l ) ) ))_ GOTO 150
14 0 CONTINUF

s = ABS(H(EN,NA>)
X = 0.75 * S
Y = X

W = -0.4275*S*S
ITS '* ITS 4- 1

150 MP2 = M 4- 2

+• ABS(H(NA,ENM2))

DO 160 I ' MP?,EN
H(I,I-2) = 0.0
TF (I.EQ.MP?) GOTO 160
H(If1-3) =0.0

i <r> 6 cont inuf.
c
C DOUBLE OR STEP INVOLVING POWS L TO EN
C AND COLUMNS M TO FN,
C

DO ?60 K = M,NA
NOTLAS - K.NF.NA
IF (K.EQ.M) GOTH 170
P = H(K,K-l)
O = H( K>] ,K-1 >
" = 0.0
TF (NOTLAS) R = H(K«-2,K-1)
X = ARS(P) + ABS(Q) + ABS(R)
IF (X.EO.O.v.) GOTO 260
P = P/X
Q = Q/X
o s P/X

170 S - SIGN(SQPT< d*P + Q*Q 4- P*P),P)
IF (K.EQ.M) GOTO 180
H(K,K-l) = -S*X
GOTO 190

1B0 TF (L.NF.M) H(K,K-1) = -H(K,K-1)
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\*)* P "a 'P 4- S
X = P/S
Y = Q/S

ZZ = P/S _
q~"= q7p"
R = R/P

C
C ROW MODIFICATION
C

DO ?10 J = K,N
P = H(K,J) 4- Q*H(K4-1,J)
IF ( .NOT.NOTLAS) GOTO 200
p = p + R*"HTK^r2,XT
H(K4-2,J) = H(K4-2,J> - P*ZZ

200 H(K+1,J) = H(K + 1,J) - P*Y
H(K,J) = H(K,J) - P*X

210 CONTINUF
r

J - MINC(FN,K4-3)
C _ _
C COLUMN MoDIFTCATTON
C

DO 230 I = 1,J
P = X*H( I,K) + Y*H(I ,K4-1 )

- IF ( .N~0TiW0TLA"Br~G0TO""22*T"
p = P + ZZ*H(I,K4-2)
H(IfK4-2) = HU,K4-2> - P*R

220 H(I,K+1> = H(I,K+1) - P*0
hci ,k> =-HTriKl—- p -

230 CONTINUE
26 0 CONTINUE

GO TO 70

c "" "
C ONE ROOT FOUND
r

P70 H(EN,EN)=X4-T
WRfENT=H(EN,EN1 " ~ "
WI(EN)=0.0

C
?Q0 EN = NA

GOTO 60 "
C
C TWO ROOTS ^OUNO
C

70C P = (V-X)/?.0~
o = P^P + w
ZZ = SQRT(AFS(Q))
H ( EN , EN ) = X 4- T
X = H(EN,FN ) "•
H(NA,NA) = Y 4- T
IF (O.LT.O.O) GOTO 310
7.1 - P 4- SIGN(ZZ,P)

c " '""
C REAL PAIR
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WP(NA) = x 4- ZZ
WP<^N) = WP(NA)
TF ( ZZ.NE.C.O) WP(EN) = X - W/ZZ
WI(NA) = 6.0
WI(FN) =0.0
X = H(EN,NA)
R = S0RT(X*X + 7Z*ZZJ_
P = x/R

Q = ZZ/R
GOTH 320

C . . _..
C COMPLEX PAIP
C

310 WR(NA) = X 4- P
WR(FN) = X + P
WI(NA ) = ZZ
WI(TN) = -ZZ

r

C MAKE DIAGONAL ELEMENTS EQUAL _
C

IF (o.EO.0.0) GOTO 380
3PC « H(EN,NA) + H(NA,EN)
TX = SOPT(BPC*8PC + _4.0* P*P)
O - SORT( . 5" * ( 1 . 0 4- "ABS< BPC ) /TX ) )
P = S IGN(P/( 0*TX) , -BPC*P)

C

C ROW MODIFICATION „........_ .
r '

32 0 DO 330 J = NA,N
ZZ = H(NA,J)
H(NAjJ) = Q*ZZ + P*H(EN.J)
H(EN,"JT ='"~0*H(FNfj) - P*ZZ

^3? CONTINUE

C
C COLUMN MODIFICATION
C

DO 34 0 T = 1 ,N
ZZ = H(I,NA)
HCI.NA) = Q*7Z 4- P*H_(I,EN)
H( T,EN ) = Q*H(17EN ) -' P* ZZ

34 0 CONTINUE
3^0 FN = FNM?

GOTH 60

I'COO IERR = EN
RETURN

END
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SUBROUTINE CONDIT(NM,N,A,V1,V2,WI,COND)

DIMENSION AjNM,NM),Vl(NM>,V2(NM),WI(NM)ACOND(NM)
DIMFNSION Rl{2),P2(2)
DATA TOL/1.E-30/

C

* = l
"500 IF (i.GT.N) GOTO 590

VALR = A( I , I )
VALT = W!( I )
VALI2 = VALI*VALI

C NJ"GIVES EIGENVECTOR TYPE, 0 FOR COLUMN, 1 FOR ROW

C INITIALIZE NONZFRO ELEMENTS OF EIGENVECTOR (VI,V2)
Villi » 1*0
V2(T> = 0.0

505 J = I - 1 4- 2*NJ
IF (VALI.FQ.0.0) GOTO 510
V2U+U = VALI/AI I , 1+1 )
VMI+1) =0.0
IF (NJ.EQ.l) V2(14-1) = 1.0/V2CI+1)
J = I - 1 4- 3*NJ

C

C FIND THF INDICES OF ELEMENTS COMPUTED SO FAR
C
510 KS = J + 1 4- NJ*(T-J-1)

KF s I + 1 + NJ*(J-I-2)
IF (VALI.EQ.C.0.ANO.NJ.EQ.0) KF = KF - I

C
C TEST FOP COMPLETION OF FIGENVECTOR

IF (( J+NJ.LT.l ).OR. (J4-NJ.GT.N4-1 )) GOTO 560
C
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The same section of program (the J loop) computes the column and

t*Vi
the row eigenvector for the I eigenvalue. J, which always points to

the block D, decreases for the column eigenvector (NJ = 1) and increases

for the row eigenvector, as shown in the following diagram:

NJ = 0 NJ = 1

The J loop computes first the column eigenvector and then the row

eigenvector.

lines 505-1 We always give values to V2 even when only VI is needed.

fl-1 (NJ =0)\ . „ATT , . ,
= <T+1 /NT_ i\f unless VALI = u ? 0 (complex

eigenvalue), in which case J = < " ; ~ :>.

If VALI # 0, initialize V as in Section 3.4.

lines 505 and Initial J

after

line 505+2

lines 510

line 5104-3

The lower limit KS
fj+1 (NJ =0)\ „. w ^

=\ I (NJ =l)/; theuPPer limit
KF =ij^ (NJ=1)J'unless Eis 1by 1and NJ =0, in which
case KF := KF-1 = I. See equations 3.2-1, 3.2-2, and

comments to line 560. v

V is completely computed if for NJ = 0, J < 1, i.e.

NJ + J < 1 or if for NJ » 1, J > N, i.e. J + NJ > N+l.
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r***************************************^C*IoXVF -D*V 4- V*F = R FOR V =-fVr,V2). D IS A DIAGONAL BLOCK IN ROWS *
C* J1,J2, AND E IS THE REAL CANONICAL FORM OF THE ITH EIGENVALUE. *

C FIND J1 AND 32 (Jl.LF.J?) FOR ALL CASES
C

J J - J
IF (WI(J).NF.O.O) JJ = J - 1 + 2*NJ
J 6" = NJ*(J-JJ)
Jl = J J 4- JO
J2 = J - JO
Dt = VALR - A(J,J)

C CALCULATE RIGHT HAND SIDE R
C

DO 53C L = Jl ,J2
LJ = L - Jl + 1
Rl(LJ) = P2(LJ) =0.0

IF ( VALI.NE.0.0) GOTO 520
DO 515 K - KS,KF
LK = NJ*(K-L)
AA = A<L+LK,K-LK1

515 Rl(LJ) = RKLJ) ♦ AA*V1(K)
GOTO 530

520 DO 525 K = KS,KF
LK = NJ * (K-L)
AA = A(L>LK,K-LK)
Pl(LJ) = RKLJ) 4- AA*V1(K)

5?5 R2(LJ) = R2(LJ) 4- AA*V2(K)
5_3* CONTINUE

IF (JJ.NE.J) GOTO 545
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lines 510+4 The pair {J,JJ> is the same as the pair {J1,J2}. However

Jl <_ J2 whereas J >_ JJ when NJ = 0 and J <_ JJ when NJ = 1.

By this device D is transposed when NJ = 1 as required by

Section 3.2.

We need

Jl = J2 =* JJ » J when D is lxl,

Jl = JJ = J -1, J2 « J when Dis 2x2 and NJ = 0,

Jl = J, J2 = JJ = J + 1 when Dis 2x2 and NJ = 1.

This is achieved without IF statements by utilizing JO.

lines 515 In order to avoid repetition of a condition, two inner DO

loops are used, and VALI need only be tested in the outer

loop. If E is 1 by 1, (VALI = 0.0), R is computed from

the first inner DO loop, i.e., only Rl(LJ) is computed

(since V is real). If E is 2 by 2, the second inner DO

loop computes Rl(LJ) and R2(LJ). If D is 1 by 1, Jl - J2;

hence LJ = 1. If D is 2 by 2, Jl 4 J2, and LJ = 1, 2. KS

and KF, the indices of the previously computed elements,

are correctly set for the two cases. It is only necessary

to reverse the indices of A: for NJ = 0, LK = 0,

AA = A(L+LK,K-LK) = A(L,K). For NJ = 1, LK = K-L,

AA = A(L+LK,K-LK) = A(K,L). See equations 3.2-1, 3.2-2.
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c
C*********:*****:-******.********!") IS 1 SY 1 *******•**********************"*
r

IF (VALI.NF.CiO) GOTH 53 5
C 1 IS I HY 1 (D IS 1 HY 1)
C

IF ( ABMD1 ) -L T.TOL*ARS(Rl ( 1 ) ) ) GOTO 585
VI (J ) = V2(J ) = C .C
\* (Ol.NE.C.C) V1(J) = PKD/D1
GOTO 540

C
C ETS?OY2(DISinYl)
r

535 DEN = D1*D1 4- VALI2
VAL = VALI*(-1.n)**NJ
VI (J) = Rl(l)*Dl 4- R2(1)*VAL
V2(J) ~ R2(1)*D1 - RM1)*VAL
VMAX = AMAX1(ABS(Vl(J)),AQS(V2(J)))
IF (DFN.LT.TCL*V^AX) GOTO 5*5
VKJ) = V1(J)/DEN
\/?(J) - V2(J)/OCN

C NEXT J
54C J = J - 14- ?*NJ

GOTO 510

C

c
e********************************o IS 2 HY 2****************************
c

545 IP ( VALI .NF .CO ) GOTO 550
C

C E IS I BY 1 ( D IS ? BY 2)
C

DEN = H1*D1 4- WI(J)**2
V?(Jl ) = V2(J2) = 0.ft
VMJ1) - Pl(l)*01 + P1(2)*A(JJ,J)
VI(J2) - Pl(1)*A(J,JJ) 4- Rl(2)*0 1
VMAX = AMAX1 (APSfVl <Jl )) vABSCV1 (J2 )))
IF (DFN.LT.TOL*VMAX) GOTO 535
VI (Jl ) = VI (Jl )/PRN

V1(J2) = V1(J2)/DEN
GOTO 555

C
C F TS 2 BY 2 (D IS 2 BY 2). CLOSED ^OPM SOLUTION
r

550 B = A(JJ,J)
C = A(J,JJ)
VAL = VALI*(-lmC)**NJ
BXC = B*r

H = 01*01 4- VAL I 2 - BXC
f = n i * h

F = VALMH 4- 2.«"V*^XC )
G = H - 2.0*VALI2
H - ?.0*D1*VAL
V1(J1) = R1(1)*F 4 R?(1)*F 4- R1(2)*8*G 4- R2(2)*B*H
V2(J1) = -Rl(1)*F 4- P2(1)*E - P1(2)*H*H 4- R2(2)*3*G
VKJ?) = r>l(l)*C*G 4- R?(!)*C*H 4- P1(2)*E 4- R2(2)*F
V?(J?) = -Pl(l )'C*H 4 P2(1)*C*G - R1(2)*F 4- R2(2)*F
VMA* = AMAX1 (ADM VI < Jl ))9AOS(V2 (Jl )),ABS(VI (J2)),ABS(V2(J2)))
r>FN - G*G 4- H*H
IF (DFN.LT.TCH_*VMAX ) GMTn 5B5
TF (DFN.FO.C.0)"GOTO 555
VI (J I ) = VI ( Jl 1/DFN
V2(Jl) - V2(Jl)/OFN
VI (J?) = VI ( J? ) /PIN

V2(J?) - V?<J?)/OfN
r

r
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line 535-5 If VALI O, E is 2 by 2.

line 535-3 Since E is 1 by 1, V2(J) is set to zero.

lines 535-4 Since there is a strict LT, the defective case (GOTO 585)

holds for ABS(Dl) = 0, ABS(Rl) ^0. If both are zero, the

less than condition does not hold, and the special zero

solution is chosen. (See Section 3.2, type 5).

line 535+1 The sign of VAL depends on NJ (see equation 3.2-3).

line 535+5 DEN > 0 (DEN is set at line 535), since VALI ^ 0. Hence

special solution does not occur.

line 545+1 DEN is again greater than zero.

line 545+2 Since E is 1 by 1, V2(J1) and V2(J2) are set to zero.

lines 545+3 Because of the special definition of J and JJ, we have for

lines 550 NJ = 0: A(JJ,J) = A(J-1,J) = D(l,2) = 3

A(J,JJ) = A(J,J-1) = D(2,l) = y

NJ » 1: A(JJ,J) = A(J+1,J) = D(2,l) = y

A(J,JJ) = A(J,J+1) = D(l,2) = 3

See equations 3.2-2 and 3.2-4.

line 550+16 If DEN = 0.0 = VMAX, we go to 555, skipping the lines where

V is set. But. from line 550+13, we see that VMAX =0.0

implies V1(J1) = V1(J2) = V2(J1) = V2(J2) = 0 (the special

solution).
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c
C NFXT J
555 J = J - ? 4- 4*NJ

GOTO 510

C
C COMPUTF EIGENVECTOR NORM

C

56C VMAX = CO

DO 565 K = KSfKF
565 VMAX s VMAX 4- Vl(K)**2 4- V2(K)**2

IF (NJ.FQ.i) GOTO 570

C
C PPFPAPE TO COMPUTF ROW C-I c.ENVFCTOP
C

NJ = 1

CNO^M2 = VMAX
GOTO 50 5

C
C COMPUTF CONDITION NUM6FR
C
57C CONO(T) = SOPT<CNOR|V«2*VMAX)
575 IF (VALI.F0.0.D) GOTO 5*0

rnNP(I) = CONO(I)/2.^
CONO( 14-1 ) - CCNO( I )
1 = 14-1

C NEXT I

5HC I = 14-1
GOTO 50r

r

C DEFECTIVE CASF
C

585 CONO(I) = 1. 0/TOl.
GOTO 5 7b

C
C PLACF RFAL PAPT OF FIGFNVALUF IN V2

C

5QC 00 595 T = 1 ,N
505 V2( I ) = A( I t I )

RFTURN

FNO
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line 560 Verification of the correct index limits KS and KF for com

putation of DVQ:

NJ = 0, 1^1: For the last computation of VI(Jl), etc.,

before NJ is set to 1, J = 2 (D is 2 by 2)

or 1 (D is 1 by 1). After J is incremented,

J = 0. Then KS = J+1 = 1, KF = 1+1 (E is

2 by 2) or I (E is 1 by 1), and the vector

is complete.

NJ = 0, 1=1: Initialization sets J = 0, hence KS = 1,

KF = 2 or 1, i.e., only the initialized

elements are summed.

NJ = 1, WI(N) = 0, I < N: For the last computation J = N.

After J is incremented, J = Nfl. Hence

KS = I, KF = J-l = N.

NJ = 1, WI(N) = 0, I = N: Initialization gives J =1+1

= N+l. Hence KS = I = N, KF = J-l = N,

NJ = 1, WI(N) ^ 0, I < N-l: For the last computation,

J = N-l. After J is incremented, J = N+l,

KS = I, KF = J-l = N.

NJ = 1, WI(N) ^ 0, I = N-l: Initialization gives J = 1-1+3

= N+l. Hence KS = I = N-l, KF = J-l = N.

Incrementation of I gives 1 = Nfl, and the

program ends,

line 565 If E is 1 by 1, V2(K) for K = KS,KS+1,... ,KF was set to zero

when the equation was solved,

line 575+1 See 3.4-1 for explanation of halving of cond when E is 2 by 2.
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7. RESULTS

The matrix L descripted in Figure 1 came (in punched card form)

from a large industrial company. It was causing their eigenvalue pro

gram to fail.

An inspection of the form of L suggests that perhaps the strange

diagonal element in I and the discordant sign of the (1,1) element

of T- were key punch errors. So let us consider the matrices result

ing from the removal of these anomalies.

Y =

0 X 0 Y
~ -V,

» M =
** ~

I 0 I 0

f

D T" 0

108
~

h T -F
il ~2 9

i

0 -F F
~3 *4 J

where T_ is obtained from T- by reversing the sign of its (1,1)

element.

Notice that L's eigenvalues are the square roots of X's:

.1 ?.

r "\
U

. Y .

- A

r \

U

. Y -

4 »-Xv = X v , u = Xv

The eigenvalues of L , L and M are given in Table 1 and we

offer the following comments. Every eigenvalue of L is moderately

ill-conditioned and the zero pair appear to belong to a quadratic elemen

tary divisor (only one eigenvector). Perhaps some of this is due to the

unbalanced nature of L . The thirteenth row of L is null and this

must be permuted out of the way before the rest of the matrix is balanced.
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Figure 1

24 x 24 Matrix for Case Study

Is the 0diagonal element in 1° akeypunch error or did it really belong
in the user's problem?

I = diag(0,l,!,...,!);L° =
0

. 1°

x'
»

f

D T 0

X - h ll-h
0 -h !J

10
a b

c d

a 0 0 b

0 a -b 0

0 -c d 0

c 0 0 d

-3D o diag(.5221,.3563,.5552x10 ,.1328) ;

' .5221 0 0 -.8951 '

?1-
0

0

-.3563

0

.6109

-.5552x10"

0

3 0
•

9

0 0 0 -.1328 t

-.0976 0 0 0 )

hm
0

0

-.0666 0 0

.02659 -.4218xl0"4 0
-.03896 0 0 -.1009X10"1

j

' 2.859 0 0 1.079

r~i~
0

0

2.828

-.2389

-1.026

.4294

0

0

•

>

.2513 0 0 .4607 t

' 2.761 .5891 ' '1.627 .5373 '

!2 = !
•

: F =
~3

F

.2123 .3590 .1096 .2868

•tX r 5x108 .
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45*
to

Table 1

Eigenvalues and Condition Numbers of L°, L, M

The imaginary pair of eigenvalues had real parts less than 10~6 (a relative error
V denotes a digit that changed when the matrix was balanced.

of IO"11).

X.(L°)

± .21534594x 10

t .18667890 xio5

± .11076317 xi05i

± .82614552xio4

± .83281998 xio4

= .41438248x io4

± .64209960x io4

± .33632953x io4

± .35102700 xio4

± .30530592 xio4
t

± .0T

± .23559292x10*

The unbalanced matrix L° had a negative eigenvalue -2x 10~8 instead of -0.

Cond(L )

10

10

6x10"

6x10"

6x10*

7x10"

7x10*

5x10"

2x 10*

3x10"

IO15

102

Cond(L )
(balanced)

10

4x10"

5x10"

1

io4

3

9x10"

4

30
10

1

X±(L)

± .21534594 xio3

± .18654343x io5

± .1098663Vx 105i

± .8646568Vxio4

± .83281998 xio4

± .7026706Vx IO4

± .64209960 xio4

± .38448590 xio4

± .35102700 xio4

± .30530592x io4

± .29241979 xio4

± .23559291x IO3

Cond(L)

10H

IO4

6x10*

104

6x10"

IO4

6x10"

3x10"

2x10"

3x10"

3x10"

IO2

X±(M)

± .21534594 xio3

± .18692513 xio5

± .11142610x l05i

± .86339960 xio4*

± .83281998 xio4

± .71883679 xio4*

± .64209960 xio4

± .38458962 xio4*

± .35102700 xio4

± .30530592 xio4

± .29134631 xio4

± .23559292 xio3

Cond(M)

10^

104

6xio3

IO4

6xi03

104

7 xio3

3xi03

2xi03

3xl03

3xl03/

IO2



The result was that none of the computed eigenvalues changed but half

of them became almost perfectly conditioned.

In fact we can say that the ill-condition of all six pairs is due

to the zero element in position (13,1). When this is replaced by 1 we

obtain the matrix L which has six pairs of eigenvalues almost identical

to the well conditioned pairs of the balanced L . Four of the other

six pairs are changed completely, the remaining two (±.186x10 and

±.11x10 i) are substantially altered. Interestingly the balanced ver

sions of L and M are almost normal and we have not bothered to record

the condition numbers. The six pairs of eigenvalues which were unchanged

by the move from L to L were also invariant in the change from L

to M. The other six pairs had relative errors less than 2.5%,

We can tell in advance what the balanced form of L and M will be!

L =

' 0 10"4X " • 0 10"4Y "
A

10 I o .
M =

104I 0 .

r» —ft n

The change from L° to L is tiny relative to |)L D (= 10" DL fl) but

the change from L to L is approximately flL||.

We conclude that the suspicious element in L was probably a key

punch error. Concerning the (1,1) element of T- we cannot say, both

L and M are reasonable matrices and indeed the change of sign does

not affect the leading two decimals in any eigenvalue.
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