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ABSTRACT

In this paper, we consider the problem of solving a system of

nonlinear equations f(s) = b, where b is a known vector in Rm (the

Euclidean m-dimensional space), f: R -* R with m and n not necessarily

equal. An iterative procedure with a great deal of flexibility is

proposed. Various aspects of the proposed iteration equation are

examined. In particular, we discuss the relationships between the con

verged value of the iterated sequence and a weighted least squares

solution. We also show that the flexibility of the proposed iteration

scheme may be employed to improve the condition of ill-conditioned

matrices, to distribute weights (of importance) among equations and to

study the error due to finite precision arithmethic. Finally, we show

that under normal computation noise, the proposed iteration scheme is

the best first order estimator of the solution based on the previously

iterated point.

Research sponsored in part by National Science Foundation Grant
GK-32236X1.



I. INTRODUCTION

In this paper we consider the problem of solving a system of nonlinear

equations of the form

f1(x1,x2,...,xn)" b.

f2(x1,x2,...,xn)

f(x) a £b (i)

VW-'-'V m

Twhere x= [x^x^.. ,xn} is an unknown column vector in Rn (Euclidean n-dimensional
T m lspace), b = [b^b^... ,bm] is a known column vector in R and f(-) is aC

mapping from Rn to Rm. We say that f: U c Rn -* Rm is Ck on U if

3x. 9x. ... 9x

Jl h Jk

is acontinuous function of xin Ufor i=1,2,...,m and J1,J2,...,j, = 1,2,...,n.

It is well known that closed form solutions of nonlinear equations are not,

in general, possible. In the special case when n « m in (1), Newton's method and a

wide variety of quasi-Newton methods [1-3] may be used. In this paper we

will consider the general case where m and n in (1) are not required to be equal.

To find a solution of (1) we propose to utilize the iteration equation

ck+1 =xk -[JT(xk) RJ(xk)]+ JT(xk) R[f(xk) -b] (2)

k k k k T n
where x = [x^x^... ,xn] is the previously iterated point with x being the

initial approximation to the solution of (1), J(x) is the Jacobian matrix
9f.(x)

of f(») evaluated at the point x with the ijth element of J given by —^ ,
dx.

R is a positive definite and symmetric matrix of order m, lending

flexibility to the proposed iteration scheme of (2), and AT and A* respectively

denote the transpose and the Moore-Penrose generalized inverse [4,5] of the



matrix A. Note that if A is non-singular, the inverse of A, denoted by A~ ,

exists and under this condition A* = A~ .

Various aspects of the iteration equation (2) are discussed in Section II.

In particular, we show that the converged value of (2) minimizes a weighted

least squares error function defined for (1). Furthermore, we show that the

iteration equation (2) is strictly a downhill method. In Section II, we explore

the results obtained by various judicious choices of the matrix R in (2).

We will show that R may be used to better the condition of an ill-conditioned

matrix and to assign weights to individual equations in a system of equations

such that those equations which are considered more accurate or more important

are weighted more heavily than the remaining equations in the system. We

also show that under the usual computation noises, i.e. round off or truncation

errors due to finite precision in the computation, (2), with a particular

choice of R, is the best first order estimator of a solution of (1) based on

a guessed point generated by whatever means possible, including by (2) itself.

Throughout this paper, we let ||a|| denote the norm of the matrix A, i.e.,

T
the square root of the spectral radius of A A [6]. For a vector, y, we shall

let ||y| | denote the Euclidean norm of y [6]. Finally, we always let I denote an

identity matrix whose order is inferred from the context.

II. THE ITERATION EQUATION

In this section we discuss various properties of the iteration equation (2).

T
We begin by studying the matrix product J (x) R J(x) which is central to the

iteration scheme. Next, we show that the converged value of (2) minimizes

a weighted least squares error function defined for (1). Detailed computational

procedures, resulting in two algorithms, are given in the following subsection.

Section II is concluded with the introduction of a modified iteration equation



which requires fewer calculations per iteration than that of (2).

T
II.1 Properties of J (x) R J(x)

A T
Observe that (2) involves a generalized inverse of the matrix G(x) = J (x) R J(x)

Note that G(x) is symmetric and positive semidefinite (possibly positive definite)

since R is an arbitrary positive definite symmetric matrix. We will, in this

subsection, quote some properties of positive semidefinite matrices which will

be useful in our subsequent discussions and provide three methods to compute

the generalized inverse of G(x).

II.1.1 Properties of Semidefinite Matrices

We give several results on positive semidefinite matrices which will be

useful in the sequel.

Lemma 1 [7]

Let A be an n x n, symmetric, positive semidefinite matrix of rank r.

Then there exists an orthogonal matrix Q such that

T
QAQ1 = Ax 0

0 0

where A is an r x r diagonal matrix with rank r.

Lemma 2 [7]

Let A be a symmetric positive semidefinite matrix of order n, C be an

r x n matrix and

A A T
A = C C + A. (3)

i
Let B = AT. Then B is a positive semidefinite matrix of order n. In addition,

if we define

&=B- BCT[I +CB C1]"1 C B, (4)

then B = AT if and only if

N(A)£n(C) (5)



where N(Z) denotes the null space of the matrix Z.

then

(i) B A = BA

(ii) A B = AB

(iii) B is positive semidefinite, and

(iv) § = A" if anrl nnlv -i-P R = Al.f and only if B = AT.

Lemma 3 [8]

Furthermore, if (5) holds,

Let M be a positive semidefinite symmetric matrix. Then M may be partitioned

as

M =

T
C B

where A and B are positive semidefinite symmetric matrices. Moreover, the

generalized inverse of M is given by

M# o
7+A* CQ* CT A^ -A* CQ^

-n+ nT A*Q' C A1 J

T I,X ATwhere Q = B - C AT C. Let M be of rank rM, A be of rank rA and let B be of
M A

order r -r . Then Q is nonsingular. Hence Q^ = Q .

Lemma 4 [9]

Let M be a matrix of rank r which may be written in the form

A C

M =

T
C B

where A is an r x r matrix with rank r, and A and B are symmetric. Then there

exists a matrix P such that



A P A [I P1]
M =

P A PAP

where P is a matrix relating the dependence of the dependent rows to the

independent rows of M. In addition,

7 [(I +PT P) A (I +PT P)]_1[I PT].
MT =

Lemma 5 [10]

Let A be an n x n matrix. If A = BC where B and C are both matrices of

rank r, then

A* =CT [C C1"]"1 [BT B]"1 BT =C* B*.

II. 1.2 Computation of the Generalized Inverse

:+,Here we describe three methods to compute G'(x), the generalized inverse

of G(x). Recall that G(x), defined by G(x) =JT(x) RJ(x), is apositive

semidefinite and symmetric matrix.

II. 1.2.1 First Method

that

By Lemma 1, there exists, for each xeRn, an n xn orthogonal matrix Q(x), such

A(x)

G(x) = Q(x)
T

Q (x) (6)

where A(x) is a diagonal matrix with nonzero diagonal entries and, furthermore,

if G(x) is of rank r, then A(x) is of order r. By Lemmas 3 and 4

C^fx) =(x) = [Q^U)]1'

A_1(x)
Q(x)

A"1 7

_0 0

0

Q_1(x)

T
Q (x). (7)
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Furthermore, GT(x) is positive semidefinite and symmetric. Notice that

if J(x) is of rank n, then G(x) is nonsingular and (7) implies

G*(x) =G'^x) =Q(x) A_1(x) q'(x). (8)

II. 1.2.2 Second Method

n iFor each xeR ,GT(x) may also be computed by performing simultaneous

row and colum operations of G(x) until G(x) may be written in the form

G(x) = Q(x) M(x) QT(x)

where the upper left hand corner of M(x) contains a nonsingular symmetric

matrix of order equal to the rank of G(x)j and Q(x) is an orthogonal permutation

matrix containing zeros and ones. We write Q(x) to stress the fact that for

different values of x the permutation matrix Q(x) may change, even though

it is a constant matrix for each fixed value of x.

Since G(x) is positive semidefinite and symmetric, M(x) is also positive

semidefinite and symmetric. Hence, by Lemma 3, we may partition M(x) as follows

A(x) CQO

M(x) =

M(x) =

_CT(x) B(x)_

where A(x) is nonsingular, and A and B are symmetric matrices. By Lemma 4

we have r% —|

A(x) [I PT(x)] (11)
P(x)

(10)

where P(x) is, for each choice of x, a constant matrix, but which may vary

for different choices of x. Lemma 4 implies

I

M^(x) =
P(x)

<p +PT(x) P(x)] A(x) [I +PT(x) P(x)]|'1 [I PT(x)]# (12)



Since Q(x) is orthogonal, repeated application of Lemma 5 yields

G*(x) =Q(x) M+(x) QT(x)

=S(x) f[I +PT(x) P(x)] A(x) [I +PT(x) P(x)]V1 ST(x) (13)

where

S(x) ^ Q(x) (14)

P(x)

II. 1.2.3 ThirdMethod

k A i k vLet H(x ) = GT(x ). Suppose we have already obtained the matrix H(x ). In

order to continue the iteration scheme (2), we must compute G^xk+1). It

would be computationally advantageous to utilize Lemma 2 as an updating

technique.

k+1 k
If G(x ) - G(x ) is either positive semidefinite or negative semi-

definite, we may write

G(xk+1) =±CT C+G(xk) (15)
since both G(x ) and G(x ) are symmetric. If the null space of G(xk) is

contained in the null space of C, then Lemma 2, after some algebraic manipulation,

indicates that H(x +)=G* (x +1) may be computed by the following equation:

H(xk+1) &H(xk) *H(xk) CT [I ±CH(xk) cY* CH(xk) . (16)

This updating technique is computationally very attractive if C is

r x n with r being a small positive integer compared to n.

We note that the condition (15) is often satisfied. In particular, in

circuit analysis with piecewise-linear elements and no controlled sources it

has been shown [11,12] that (15) will always hold with C being a 1 x n matrix.

n- 2 Properties of the Converged Values of the Iteration Equation

In this subsection, we examine the relationship between the converged value



8

of the iteration equation (2) and a solution of the original system (1). In

particular, we show that the converged value of (2) minimizes a weighted

least squares error function defined for (1). Our discussion will cover the

three cases m > n, m < n and m = n separately.

Define a weighted least squares error function, e(x) by

e(x) = [f(x) - b]T R [f(x) - b]. (17)

Note that e(x) may also be written as:

e(x) = [f(x) -b]T R1/2 R1/2 [f(x) -b] = ||R1/2 [f(x) -b]|| (18)

1/2 1/2 1/2 1/2
where R is the square root matrix of R such that R ' R ' = R. R is

positive definite and symmetric [13].

It follows that

Ve(x) = 2JT(x) R [f(x) -b] (19)

where Ve(x) =[|f^-> |f^-, ..., j^-f is the gradient vector of e(x).
12 n

s s
We will call x a stationary point of e(x) if Ve(x ) = 0. In addition, if

s s
x is a minimum point of e(x), then x is called a least squares solution of

(1) with weight R.

II. 2.1 m > n

Before we proceed to discuss this case, several lemmas are required.

Lemma 6

If B is m x n with rank n, then Brj = 0 if and only if n. = 0.

Lemma 7

If J(x) is an m x n matrix of maximal column rank (i.e. the rank of

J(x) is n for all x), then

[JT(x) RJ(x)]* =[JT(x) RJ(x)]"1. (20)



T
Indeed, J (x) R J(x) is positive definite for all x.

Proof: Define w(x,z) = J(x)z. By Lemma 6, w(x,z) is zero if and only if

z = 0. Let zeR and let z be different from zero. Then w(x,z) ± 0. Since

T
R is positive definite, the quadratic form w (x,z) R w(x,z) is greater than

zero. But w (x,z) R w(x,z) = z J (x) R J(x) z. Thus J (x) R J(x) is

T I
positive definite and hence nonsingular. Consequently [J (x) R J(x)]T =

[JT(x) RJ(x)]"1.

Q.E.D.

Lemma 8

Let J(x) be an m x n matrix of rank n. If the sequence {x ,x ,...}

generated by (2) converges to a point x*, then x* is a stationary point of (17)

Proof: Assume the sequence generated by (2) converges and that x* is

the converged value. Then (2) implies that

x* = x* - [JT(x*) RJ(x*)]_1 JT(x*) R [f(x*) -b]. (21)
Thus

[JT(x*) RJ(x*)]_1 JT(x*) R [f(x*) -b] =0.
T

By Lemma 7, J (x*) R J(x*) is positive definite and therefore its inverse is

also positive definite. Hence,

JT(x*) R [f(x*) -b] =0. (22)

In light of (19), (22) implies that Ve(x*) = 0 and the conclusion follows.

Q.E.D.

Before we proceed to establish the main results for this case (m > n),

several definitions are needed.

Define the matrix M(x) by

M(x) A J(x) JT(x) (23)

Note that M(x) is an m x m, positive semidefinite symmetric matrix. Define

the space P(x*) by
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P(x*) ={yeRm:[I -M^x*) M(x*)] y=0}. (24)

Clearly, P(x*) is a subspace of R . In addition, for every vector yeRm, define

y =M^x*) M(x*) y (25)
and

IMIp- IIXpll =I|M+C x*) M(x*) y||. (26)
Then ||y|| is a semi-norm on R [13] and a norm on P(x*). In fact, \\y\\

is the Euclidean R norm of the projected vector of y onto the subspace P(x*).

Now consider e(x) as defined in (17). If [f(x) - b] is projected onto

the subspace P(x*), then e(x) takes the value

eP(x) &[f(x) -b]£ R[f(x) -b]

=||R1/2 [f(x) -b]p||. (27)

Theorem 1

Let J(x) be an m x n matrix with rank n. Suppose that the sequence

{x ,x ,...,} generated by (2) converges to a point x*. Then x* is a

least squares solution of (1) with weight R when the vectors in R are

projected onto P(x*). That is, x* is a minimum value of (27).

Proof: By Lemma 8, x* is a stationary point of (18). We must show that

there exists an e > 0 such that

ep(x* + ez) = [f(x* + ez) -b]T R [f(x* + ez) -b] > ep(x*) (28)

whenever |e| < eQ and for all zeRn such that ||z|| = 1.

Write

f(x* + ez) = f(x*) + e J(x*)z + o(e) (29)

where

lim ll°(e)|| . Q
e-K) e
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Substituting, we have, after some manipulation,

ep(x* + ez) = ep(x*) +2 [f(x*) -b]T R [0(e)]

+2£{[f(x*) -b]£ R[J(x*)z]p +[J(x*)z]£ R[0(e)]p}
+e2 [J(x*)z]^ R[J(x*)z]p +[0(e)]J R[0(e)] (30)

Thus

ep(x* + ez) = ep(x*) +2 [f(x*) -b]T R [0(e)]
p Jp

+2e[f(x*) -b]£ R[J(x*)z]

+e2[J(x*)z]£ R[J(x*)z] +$(e2) (31)
where o(e) &2e[J(x*)z]£ R[o(e)] +[o(e)]£ R[o(e)] ,and

lim ||6(e2)|| _
e+o 2 " u

e

Now consider the term

[f(x*) -b]£ R[o(e)]p =[o(e)]£ r[f(x*) .b] (32)

Notice that M(x*) is asymmetric matrix. Hence M^ Mis adiagonal matrix

with diagonal elements being zeros or ones. Thus

M+(x*) M(x*) R=RMT(x*) M(x*). (33)

Since y =M*(x*) M(x*)y, (32) may be written

[f(x*) -b]p R[o(e)]p =[o(e)]p M+(x*) J(x*) JT(x*) R[f(x*) -b]
= 0 (34)

by virtue of (22).

Note that (22) implies that the term [f(x*) -b]T R [J(x*)z] must also
p Jp

vanish, just like the case of (34). Thus, we have,

ep(x* + ez) = eP(x*) + e2 [J(x*)z]T R [J(x*)z] +o(e2) (35)
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Since R is positive definite, there exists e > 0 such that, for all
o '

|e| < ec.

ep(x* + ez) - ep(x*) >0 (36)

Therefore, x* is a least squares solution of (1) with weight R when all

Q.E.D.

vectors in Rm are projected onto P(x*).

Since m > n, (22) does not require R[f(x*) - b] = 0. Indeed,

(22) requires only that the vector R[f(x*) - b] be orthogonal to the

matrix J(x*). Thus the solution to (22) is not necessarily unique. In fact,

T
the null space of J (x*) is an (m-n) dimensional space -- R[f(x*) - b] may

take on any value in this (m-n) dimensional space and still satisfy (22). In

general, we have

R [f(x*) - b] = 6 (37)

where

6 = [ I - MT(x*) M(x*)]y (38)

for some yeRm.

Equation (37) implies

f(x*) =b+ R"1 6 (39)

Thus, even if the sequence generated by (2) converges, the converged value

x*, which is a least squares solution of (1) with weight R, may not be an

actual solution of (1). This conclusion, in general, is unavoidable since

there are more equations than unknowns so that overspecification of constraints

among the n variables may occur. Hence, there may not exist a vector xeR

such that f(x) = b is satisfied. In this case, a least squares solution is

probably the best that may be hoped for.

One way to overcome this difficulty is to put weights on the equations

of (1). For example, if the equations j_, j_, ... , j, are thought to be very
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reliable or very important, if the equations Jk+1> Jk+2,...,j are felt
to be trustworthy and if the remainder of the equations i i i arP

Jp+1' •,p+2,#' *,Jm

considered to be less reliable or trustworthy, we may then choose R = Tr. 1 to be
ijj

a diagonal matrix with

r. . > r. . > r.

•'a-'a J$J$ JyJy

where a= 1,2,...,k; $= k+1, k+2,..., p and Y=p+1, p+2,...,m. This point

will be expanded upon in Section III.

It may occur that 6 in (38) is zero. In this case x* is an actual

solution of (1). Consider the special case of a linear equation of the form

f(x) =Jx where J is an mxn matrix. Thus we consider the equation

Jx = b (40)
and (39) becomes

Jx* =b+R"1 6 (41-j
and the general solution has the form [9]

x* =J* (b +R"1 6) +J* [I -JJ+]Z (42)

where z is an arbitrary vector in Rm. Note that (38) implies that 6 is a

vector in R orthogonal to the space SM spanned by the column vectors M(x*).

In view of (23), SM is also spanned by the column vectors of J. Since R

is nonsingular, the vector R'1 6is also orthogonal to SM- Thus we may write,
R-1 6=[i .jj+] 2 (43)

for some 1 in Rm. Hence (42) becomes

x* =J* b+J* [I -Jj+]y (44)

where y=z+z is an arbitrary vector in Rm since z in (42) is arbitrary.

Equation (44) is precisely the general solution of (40) [15], and the

best approximation solution [16] of (40) is obtained by setting y in (44) to

zero. Hence, (39) may be viewed as a logical generalization of the linear case.
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II.2.2 m < n

Since m < n, the maximal rank of the matrix J(x) is m. Recall that

A T
G(x) = J (x) R J(x) and is therefore an n x n matrix. Thus, for this case,

G(x) is always singular.

Proceeding in an analogous fashion to the case m > n, define a subspace

of Rn, P(x*), by

P(x*) ={zeRn: [I -G^x*) G(x*)] z=0} (45)
and for each zeRn, define

zp *G*(x*) G(x*) z (46)
and

IWIP- ll*gll =l|G+Cx*) G(x*) z||. (47)

Thus z^ is the projection of z onto the subspace P(x*) which is spanned by

the column vectors of G(x*) . Note that since G(x) is symmetric, G^x) G(x) is

diagonal. Hence we have

G+(x) G(x) =G(x) G^x)/

Lemma 9

Let {x , x , } be the sequence generated by (2) with the initial

approximation to the solution of (1) being x . Suppose the sequence converges

to a point x*. Then x* is a stationary point of the error function defined

by (17) when the gradient is projected onto the subspace P(x*), that is

[Ve(x*)]g =0.

Proof: Since x* is a converged value of (2), we have

x* = x* - [G(x*)]T JT(x*) R [f(x*) -b]

which implies

[G(x*)]T JT(x*) R [f(x*) -b] = 0. (48)
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Projecting Ve(x) onto P(x*), we have

[Ve(x)]g =G(x) [G(x)]T JT(x) R[f(x) -b], (49)
Thus, by (48),

[Ve(x*)U = 0. (50)
P

Q.E.D.

Theorem 2

Suppose J(x) is of rank m. If the sequence {x^x1, }generated by
(2) converges to x*, then x* is a solution of (1). Hence, x* is a stationary

point of e(x) and a least squares solution of (1).

Proof: By our assumptions, [JT(x*)R] has dimension nxmand rank m,
T i

thus [J (x*)R]T J(x*) R = I [9]. Furthermore, since x* is a converged value

of the sequence generated by (2), (48) may be written as

[JT(x*) RJ(x*)]T JT(x*) R[f(x*) -b] =0 (51)

By Lemma 5, we have

[JT(x*) RJ(x*)]+ =[J(x*)]+ [JT(x*) R]+.
Thus, in view of our earlier remark, (51) becomes

[J(x*)]+ [f(x*) -b] =0. (52)

Note that J(x*) is itself of dimension m x n and rank m, so [J(x*)]T

is of dimension n x m and rank m. Therefore, by Lemma 6, (52) implies

f(x*) - b = 0. (53)

That is, if x* is a converged value of a sequence generated by (2), then

x* is a solution of (1). Clearly, (53) also implies e(x*) = 0 and Ve(x*) = 0.

Q.E.D.

Note that Theorem 2neither asserts that the sequence generated by

(2) may converge to only one point nor that the solution of (1) is unique.

Indeed, there may exist an infinite number of x* which satisfy (53). Since
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we are dealing with the case m < n, there are more unknowns in (1) than

equations constraining the unknowns. Thus, even in the linear case, we would

not expect a unique solution.

II.2.3 m = n

In this case J(x) and G(x) are both square matrices of order n. Furthermore,

G(x) is nonsingular if and only if J(x) is nonsingular. The proofs of

Lemma 10 and Theorem 3 will not be given since they are parallel to the proofs

of Lemma 8 (Lemma 9) and Theorem 1 (Theorem 2), respectively.

Lemma 10

Let {x ,x ,...} be the sequence generated by (2) with x being the

initial approximation to the solution of (1). Suppose the sequence converges

to a point x*. Then x* is a stationary point of the error function defined

by (17), where the gradient is projected onto the subspace P(x*). If J(x*)

is nonsingular, then Ve(x*) = 0.

Theorem 3

Suppose J(x) is of rank n. If the sequence {x ,x ,...} generated by (2)

converges to x*, then x* is a solution of (1). Hence x* is a stationary

point of e(x) and a least squares solution of (1) with weight R.

Just as in the previous two cases, the solution of (1) is not necessarily

unique even when m = n. The difficulty here arises from considerations which

are quite different from the previous cases. In this case there are, at most,

a countably infinite number of x* which satisfy (53). If a certain norm

condition on f(x) is satisfied, then x* is the unique solution of (1) [17,18].

II.3. Computational Procedures

In this subsection we shall consider a computational procedure for (2)

which resembles, in some respects, the procedure used in [1]. In addition,
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we show that the iteration procedure either reduces the error function defined in

(17) with each cycle of computation or else reaches a stationary point of (17).

In the latter case, by Theorems 1, 2 and 3 we consider the procedure to have

reached a (least squares) solution of (1) and hence the computation is

terminated.

Consider the case when the iteration is at the k stage. Let the

direction of search be denoted by p . Then

pk &-[JT(xk) RJ(xk)]+ JT(xk) R[f(xk) -b]. (54)

Denote the next iterate by

k+1 k k
x = x + skp (55)

where s, is a scalar chosen either to satisfy

;k

or such that the function

l|f(xk+1) -b|| -||f(xk +aKpk) -b||

||f(xk +s,pk) -b|| < ||f(xk) -b|| (56)

»min ||f(xk +spk) -b||. (57)
s>0

To see that it is always possible to satisfy (56) or (57) whenever

ve(x ) j 0, consider [-pk]T Ve(xk). We have

[-pk]T Ve(xk) =2[f(xk) -b]T RJ(xk) |[JT(xk) RJ(xk)]*\T.
^TT(xk) R[f(xk) -bft. (58)

T k k
Since the matrix J (x ) R J(x ) is positive semidefinite, its generalized

inverse is also positive semidefinite. Thus, by (58),

t-pk]T Ve(xk) >0. (59)

By treating the cases m ^ n and m _< n separately, it can be shown that

in both cases (58) may be written as:



18

["Pk]T Ve(xk) =2[f(xk) - b]{JT(xk)>* JT(xk) R[f(xk) - b] (60)
Now, x is not a stationary point of e(x), i.e.

Ve(xk) =JT(xk) R [f(xk) - b] i 0. (61)

k k
Thus R [f(x ) - b] is not orthogonal to all the column vectors of J(x ). Since

T k i T k m
the matrix [J (x )]T J (x ) is a matrix which projects vectors in R onto the

subspace spanned by the column vectors of J(x ), we have

[jV)]* JT(xk) R[f(xk) -b] i 0. (62)

From (60) and (62) we see that the inequality in (59) is strict and therefore

[-pk]T Ve(xk) >0 (63)
v

whenever Ve(x ) 4 0.

Thus p has components along the negative gradient of the error function

of (17). Hence the iteration equation yields a downhill process. That is,

there exists s, such that (56) and (57) are possible whenever Ve(x ) ? 0.

The preceding discussion justifies the following two iteration procedures

which will be presented in the form of algorithms.

Algorithm 1

Step 1: Let k = 0. Choose an initial estimate x •

Step 2: If ||f(xk) -b|| <e stop. If not, go to step 3.

Step 3: If ||Ve(x )|| < e2, terminate the computation.

Otherwise, go to step 4.

3
Step 4: Compute

>k =-[JT(xk) RJ(xk)]^ JT(xk) R[f(xk) -b] (64)

by solving

JT(xk) RJ(xk) pk =-JT(xk) R [f(xk) -b] (65)

Step 5: Let x = x + s, p

where s, is chosen to satisfy either (56) or (57).
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Step 6: Increment k by 1 and go to step 2.

In general (56) is computationally more efficient and the program is

also simpler.

It is possible to utilize the information gained from the fact that

k T k
[-p ] Ve(x ) indicates the descending direction of the error function to

modify step 5 in Algorithm 1. The resulting algorithm, which we shall call

Algorithm 2, is the same as Algorithm 1 except that steps 5 and 6 are

replaced by steps 51 and 61:

k k
Step 5•: Let S = [s.. ] be a diagonal matrix such that

Sii=si if -PitVe(xk)]. >0 (66)
or

Sii =° if -Pi^O^iiO (67)
for i = 1, 2,..., n and where the s. are chosen such that

||f(xk+SkPk) -b|| < ||f(xk) -b||
or

,k k||f(xK +SK pK) - b|| =min ||f(xk +Spk) - b||
SG6

(68)

(69)

where 4 is the set of diagonal matrices where entries satisfy (66) and (67).

Step 6': Let xk+1 =xk +Sk pk.

As an illustration of the use of the preceding algorithm, consider the

following system of equations:

xl " 3x2 = 34
2x1 + x2 = 14

xx s -15.

This system was first solved by Algorithm 1with x° = [0 0]T and R= I.

The results of this calculation are summarized in Table I. Step 5 was implemented

using (56).
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k r kiT[x ]

Tabl e I

[P ] Sk e(xk)

0 [0 0] [14 -11.33] .25 1577

1 [3.5 -2.83] [6.65 3.90] .25 207.52

2 [5.16 -1.86] [-.77 -1.77] 1 61.36

3 [4.39 -3.62] |1.12 .79] 1 27.99

4 [5.51 -2.84] |;-1.52 - .93] .5 24.35

5 [4.75 -3.31] |;.75 .64] .5 5.56

6 [5.13 -2.98] [;-.39 - .21] .5 1.61

7 [4.93 -3.09] I .22 .20] .5 .47

8 [5.04 -2.99] I-.13 - .07] .5 .16

9 [4.98 -3.03] [ .08 .07] .5 .05

10 [5.01 -3.00] .02

0 T
The system was then solved by Algorithm 2 with, once again, x = [0 0]

and R = I. The results of this calculation are summarized in Table II. Step

5' was implemented using (68).

Table II

k [xk]T [pk]T [Ve(xk)]T Sk e(xk)

0 [0 0] [14 -11 .33] [-28 204]
r:25

.25J 1577

1 [3.5 -2.83] [6.65 3 .9 ] [-219.27 143.13] [725
IS I 207.52

2 [5.16 -2.83] [-.53 - .44] [18.45 4.07] 1? 1 2.13

3 [4.9 -3.06] [.32 .21] [-15.88 2.40] C25 3 .74

4 [4.98 -3.06] [.06 .09] [1.24 -5.75] e 1 .15

5 [4.98 -3.01] [.07 .04] [-3.16 .36]
(725
|o

ol
o| .03

6 [5.00 -3.01]
-

.01

II. 4 A Modified Iteration Equation

The algorithms in subsection II.3 require the computation of the generalized

k kinverse of G(x ) or equivalently, the computation of p of (65) at each new iterated

k
point. The computation of p generally dominates the complexity of the entire

computation.
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In this section, we consider a modified iteration equation:

xk+1 =xk -[JT(x°) RJ(x°)]*JT(x°) R[f(xk) -b] (70)
We now give a theorem which assures the convergence of the sequence generated

by (70) under certain conditions.

Theorem 4

Let f: R -*» R be aC map with m>n and let x° be the initial approximate

solution of (1). Let a, 3, y±, y2 ^d y3 be positive constants such that

1. l|H(x°)|| <a (71)
where H(x°) &[JT(x°) RJ(x°)]+ (72)

2. ||H(x°) F(x°)|| <3 (73)

where F(x) =JT(x°) R[f(x) -b], (74)

3- llRll <Yx; I|J(x°)|| <y2; llJ'toH ^y3, and J(x) is of rank n
for all x in N(x ) with

N(x°) £ {xeRn: ||x-x°|| <p(h)3> (75)
where

p(h) - R (76)

and Jf(x) is the derivative of J(x) or the second derivative of f(x) [6], and

4. h = a 3 Y < 1/2

where y = y2 Y2 Y3- (77)

Then the sequence {x , x , ... } generated by the modified iteration equation

xk+1 =xk -[JT(x°) RJ(x0)]* JT(x°) R[f(xk) -b] (78)
converges to a point x* in N(x ) with the rate

Xk+1-X*|ll qk+1 ||x° -x-|| (79)
where

A
q = 1 - /l - 2h < 1. (80)



Proof: By condition 3, J(x°) is of rank n, so the matrix

G(x°) &JT(x°) RJ(x°)

is, by Lemma 7, nonsingular. Thus we have,
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(81)

H(x°) =G-^x0). (82)

Let us define

g(x) ^x-H(x°) J(x°) R[f(x) -b]. (83)
Differentiating (83), we have

g'(x) =I-H(x°) J(x°) RJ(x) (84)
and

g"(x) =-H(x°) J(x°) RJ'(x) (85)

where g*(x) and g"(x) denote the first and second derivatives of g(»), respectively,

evaluated at the point x.

Note that

g'(x°) =I-H(x°) J(x°) RJ(x°) =I-H(x°) G(x°) =0 (86)
by virtue of (82). Furthermore, whenever xeN(x°),

llg"Cx)|| < ||H(x°)|| ||J(x°)|| ||R|| ||J«(x)|| <ay (87)

From (78) and (83), we see that

k+1 , k.
x = g(x ) (88)

and, by condition 2,

Hx1 - x°|| =||HCx°) F(x°3|| <e.

Using a Taylor's series expansion for p(h), we find

i n v h 3h 15hp(h) =i-^nr _ - i1 - - ir - si - 4!—

(89)

-J+51 +IT+# +1W W
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where Q(h) contains terms of the form a h with a > 0 for all r. Hence
r r

p(h) > 1 for 0 < h < 1/2. (91)

Thus, we may write (89) as

Hx1 - x || <3 <p(h)3. (92)
Therefore, x*eN(x ).

0
Let xeN(x ), then (86), (88) and (89) imply

Ngoo -*°ll < llg(x) - x1!! + Hx1- x°||

1 l|g(x) - g(x°)|| + 3

= llg(x) - g(x°) - g'(x°)(x - x°)|| +3. (93)

Using a Taylor's series expansion on g(x), (93) becomes

ll*M -x°|| <||ig»(x)|| ||x-x°||2 +3. (94)
where x is some point on the line segment L(x,xJ joining x and x°. Since

N(x°) is closed and convex, x and x are in N(x°). Thus (87) applies at the

point x and (94) becomes

||g(x) - x || <1/2 aYp2(h)32 +3

= 1/2 hp2(h)3 +3

= P(h)3. (95)

Therefore, g(x)eN(x ). Summarizing, we have shown that if xeN(x ), then

g(x)eN(x ).

Consider the sequence {x , x , } generated by (78). Now x eN(x ) by

definition; hence x = g(x )eN(x ). Similarly, x = g(x )eN(x ). Proceeding

inductively, we conclude that every element in the sequence {x , x ,...} is

0 0 n
in N(x ). N(x ) is a compact set in R ; therefore there exists a subsequence

{x , x 2, x 3, ...} of the original sequence {x , x ,...} and a limit point

x* [6] such that



lim x J = x*.
j-H.

That is, x* satisfies the equation

(96)
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x* = g(x*). (97)

0
Let x be a vector in N(x ) . Then by (86) and (97) we have

MgOO " x*|| = ||g(x) - g(x*)||

= llg(x) - g(x*) - g'(x°)(x - x*)||. (98)

By repeated application of the mean value theorem [6], (98) may be written

as:

MgW - x*|| <||g»(x3|| ||S-x°|| ||x-x*|| (99)

for some x and $ where x is a point on the line segment L(x,x*) and x is a

point on the line segment L(x,x°) . Since xand x* are both in N(x°) so is

x* and, consequently, x is also in N(x°). Thus (87) applies and (99) becomes

l|g(x) - x*|| <oy II* - x<>|| ||x - x*||. (100)

Since x is on L(x,x*), we may write

x = 6x + (1 - 8)x* for some 6e[0,l]. (101)

Thus

||x -x°|| =||6Cx -x°) + (1 - 9)(x* -X0)||

< max {||x - x°||, ||x* - x°||}. (102)

Since both x and x* are in N(x°), (102) implies

||x -x°|| < p(h)3. (103)

From (100) and (103), we have

||g(x) - x*|| <a 3Y P(h) ||x - x*|| = q ||x - x*||. (104)

Since we have shown that every element of the sequence {x°, x1,...} is in
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N(x ), (104) applies to each point in the sequence; thus we have,

||g(xk) -x*|| <q ||xk -x*||, k=0,1,2,... . (105)

Using (88) and (105), we find

ll*k+1 -x*|| <q ||xk -x*||

<q ||xk -x*|| <q2 Mx^1 -x*|[. ..
- k+1 ,, 0 .,|
£q l|x - x*|| (106)

Thus the entire sequence {x ,x ,...} converges to a limit point x* with the rate

||xk+1 -x*|| <qk+1 ||x°-x*||. (107)

Q.E.D.

Theorem 4 suggests an algorithm which may be used to implement the

modified iteration equation (70). This algorithm has the attractive feature

that it does not call for the computation of the generalized inverse of the

matrix G(x ) at each new iterate.

Algorithm 3

Step 1: Let k = 0. Choose an initial estimate x .

Step 2: If [f(x ) - b] £ e, terminate the computation. The solution

is x°. If [f(x°) - b] > e, go to step 3.

Step 3: Check to see if the conditions of Theorem 4 are satisfied at

x . If they are not satisfied go to step 1. If the conditions

are satisfied go to step 4.

Step 4: Compute T = [JT(x°) RJ(x°)f JT(x°) R.

Step 5: Compute xk =xk"1 -T [f(xk_1) -b].

k kStep 6: If [f(x ) - b] <_e, terminate the computation, x is the solution.

If [f(x ) - b] > e, increment k by 1 and go to step 5.
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As we have indicated, the algorithms in subsection II.3 (implementations

of the iteration equation (2)), either reduce the norm ||f(xk) -b|| or else

have reached a stationary point of the error function. Since the iteration

equation (2) is quite similar to a Newton-Raphson iteration equation, we may

say with confidence that when the initial guess is near enough to the actual

solution of (1), the convergence of the algorithms in II.3 is quadratic.

In Theorem 4, the modified iteration equation of (70) converges only linearly,

However, the amount of computation per iteration required by (70) is much less

than that required by (2). This compensates for the slow convergence rate

of (70). Thus, implementing (70) will be superior to using (2) on many occasions.

Clearly, it is possible to take advantage of the strengths of each algorithm by

using a combination of algorithms 1, 2, and 3.

III. USES OF THE R MATRIX

III.l Conditioning the Jacobian Matrix

Let 6(G) be the largest absolute value among the entries of G = [g..], i.e.,

6(G) = max |g |.
i,j = l,...,n J

A nonsingular matrix G is said to be ill-conditioned if 6(G~ ) is very large

compared to 6(G). This condition normally occurs when the determinant of G is
4

very small.

T
Consider first the case with J (x)J(x) nonsingular. The matrix R in (2) may

A Tbe used to great advantage in conditioning the triple product G(x) = J (x)RJ(x).

T 2
For example, if det J (x)J(x) = e where e is small, we may choose a positive

2
definite symeetric matrix R such that det R = e" . In this manner, det G(x) = 1

and this will imply that 6(G~ ) is comparable to 6(G).

For example, let f(x) be a linear function of x. In particular let



r., s A T A
f(x) = Jx =

6.00001

J is an ill-conditioned matrix since

300000.5 -300000
r-l

-100000 100000

P-l
and 6(J ) = 300000.5 is large compared to 6(J) = 6.00001. This occurs

k-5 .since det J = 2 x 10" is very small compared to the entries of J.

A T
Now if we consider G = J R J, we find

G =

6.00001 6.00001

4a 12a + 2xl0"5b

12a + 2xl0"5c 36a +6xl0"5(b+c) + 10"10d

where a= r± +r2 +r3 +r4, b=r2 +x^ c=r3 +r4 and d=r^

Then,

det G=4x10"10 (r]Lr4 -r^).

In order to make G well-conditioned, we choose

-2 i ndet R = r2r4 - r2r3 = e = 1/4 x 10 .

Asuitable choice for this example is r =r =1/2 x105 and r9 =r3 = 0
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(108)

(109)



With this choice we find

and thus

det 6=4x 10~10 [i x 1010] = 1,

G =

.-1

4 x 10' 12 x 10 + 1

-512 x 105 + 1 36 x 105 + 6 + .5 x 10

36 x 105 +6+ .5 x 10"5 -(12 x 105 + 1)

-(12 x 10° + 1) 4 x 10*

Clearly 6(G) » 6(G ). In general, this makes G a better conditioned

matrix than the J matrix of (108).

T
Consider now the case where J (x) J(x) is singular. Let the rank

T
of J (x) J(x) be r and let

max [JT(x) j(x)L = e2
S r

28

(HO)

T T
where [J (x) J(x)] denotes the determinant of an r x r submatrix of J (x) J(x)

Tand S is the set of all possible r x r submatrices of J (x) J(x).

Define

M(x) &[JT(x) J(x)]+ [JT(x) J(x)]. (HI)

Then M(x) is a diagonal matrix with diagonal elements being either zero or one.

Choose R = Itaa] in tne following manner:

r.. = n if [M(x)].. = 1

r.. = 1 if [M(x)].. = 0
li L v 'Jn

r -2 T
where r\ = e . It may be shown in a manner similar to the case with J (x) J(x)
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T i
nonsingular, that 6([J (x) R J(x)]T) is approximately the same order of

T
magnitude as 6([J (x) R J(x)]).

Thus, R may be chosen to better the condition of the triple product

JT(x) RJ(x).

III. 2 Weighting Equations

Call [fk(x*) - bk] the residue of the k equation of the system (1).

Suppose that the equations f.(-) = b., f.(-) = b0,..., f (•) = b are not
J- i z i m m

all equally important in the sense that relatively large residues in some

component equations are more tolerable than in others. Thus an a priori

decision is made that certain component equations of [f(x) - b] may have larger

residue values than others. To implement this decision, we choose R =

diag [ij, r2,...,rm] judiciously. The selection scheme is straightforward:

Pick r. to be relatively large if the residue of the j equation may not^

be allowed to be large and pick r. to be relatively small if the jth residue

may be large. Since the iteration equation (2) will attempt to converge to

a weighted least squares solution of (1), those r. which are large will have a

greater influence on the converged value than those that are small. Such

situations may occur when modeling physical phenomena, such as in power systems.

For example, let (1) be the following system:

fx(x) =x2 +x2 +2=0
f2(x) = xl + 4x2 +7=0

f3(x) = 2xx + 9x2 + 1= 0.

If we wish to have a solution which will minimize |f (x) | (which means, of

course, that we would like to have f,(x) solved as exactly as possible), we

may choose R= [r. .] to be given by rn = 105, r00 =r, =1 and r.. =0 for
ij 11 22 33 lj

i j* j. Then (17) becomes
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e(x) =r11(x1 +x2 +2) +r^^ +4x2 +7) +r^^ +9x2 + l)2. (112)

Equation (112) is minimized when 3^ =x"2 =0. Thus e(x)~ 4x105. Note that

the values of 5^ = 59, x2 = -13 exactly satisfy the second and third equations

but results in an error function having the value e(x) z 13 x 1011.

III.3. Computation Noise Considerations

Round off and truncation errors due to finite precision are often

of interest. It is possible to choose the matrix R such that the iteration

of (2) will give the minimum variance in locating the next iterate value.

The variance is a minimum under the assumptions that the variance is due

to the finite precision effect and that only first order estimators will

be allowed.

For simplicity, this subsection will be written for the special case m = n.

We will also assume that J(x) is nonsingular. The extension to the general

case of m/ n and J(x) singular is straightforward but cumbersome. In

those cases where interpretations are necessary in order to make the extensions

to the general case, we will state the interpretations explicitly.

Suppose we are given a point x . Let

yk k F(xk) -Nk (113)

where F(x) = f(x) -band Nk = [Nk Nk ...,Nk] is the error vector in the
i c m

computation of f(x ) by (2) due to finite precision effects. We will assume

k k k
that N^ N2',,,,Nm are statisticaHy independent; this is normally the case

in practice.

We begin by deriving the consistency constraint for the first order

estimator. Let

x= xk +WkF(x) (114)
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be an estimate of x* based on x . A Taylor expansion of F(x) shows that (114)

may be written as

x=xk +WkF(xk) +WkJ(xk) (x -xk) +0(X -xk) (115)
k kwhere o(x - x ) represents the terms of order two and higher in. ||x - x 11.

Considering the first order term only, (115) becomes

x=xk +WkF(xk) +WkJ(xk) (x -xk). (116)

If5

WkJ(xk) =I, (117)
then (116) may be written as

x = x + W F(x ). (118)

Note that (118) is of the form of (114) with x = x . Thus, for consistency, we

require the estimator to satisfy (117) and we call (117) the consistency constraint

We may now directly consider the problem of estimating x* based on x .

By (110), we have, for a first order estimate,

x* = xk +WkF(x*). (119)

Expanding F(x*) in a Taylor's series about x and using (113), we find

x* =Wkyk +WkJ(xk) (x* - xk) +WkNk +xk. (120)
rtk k k

Thus n = W N represents the estimation error term due to the error in

evaluating f(-) of (1) at the point x . To find the best first order estimate

of x* it is necessary to minimize the covariance matrix of the estimation error.

Let C denote the covariance matrix of the estimation noise derived from

the evaluation of f(«) of (1). Then C is a good measure of the error due

to finite precision arithmetics and registers. We have

cK = e[nk(nV]

=E[WkN NT(Wk)T]

=Wk Q[Wk]T (121)
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A T
where E(-) denotes the expected value and Q = E(N N ) is the covariance matrix

of the computation error in evaluating f(«). Since we assume statistical

k
independence among the N. for j = l,2,...,n, Q is a diagonal matrix. If all

registers are of the same precision, then Q may be written as a I. In any case,

Q is symmetric and positive definite.

With this background we may now give the main result of this subsection.

Theorem 5

Let x* be the solution of (1). Then the iteration equation (2) is the

best first order estimator of x* based on x .

Proof: To minimize the error in the estimation we wish to minimize E(N NT)

subject to the estimator's consistency, VT J(x ) = I. Using theLagrangian

multiplier method [22], we define a scalar function

L(Wk,A) &vf Q[Wk]T - 2[Wk J(xk) -I]A (122)

where 2A is the Lagrange multiplier matrix. To find aminimum of E[N NT],

we must find A and W such that

and

where

3L

3Wk
—•* = 0 (123)

3L n
31 = ° (124)

/3L\ A pL -l . r3L , A 3L

13 j

Equations (123) and (124) imply that

Q[Wk]T =J(xk)A (125)

and

Wk J(xk) = I. (126)
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Transposing (125) and noting a property of Q, i.e. Q_1 exists, we have

Wk =AT JT(xk) Q"1. (127)
Postmultiplying (127) by J(xk) and using (126), (127) becomes

AT JT(xk) Q"1 J(xk) =I.

This implies

AT= [JT(xk) Q"1 J(xk)]"1 (128)
In the general case when m ^ n or J(x ) is singular, then

AT= [JT(xk) Q"1 J(xk)]+ (129)

Using (127) and (128), we find

wk= [jV^-W^+AxW1

= [JT(xk) RJ(xk)]t JT(xk) R. (130)

where R = Q . Note that R is positive definite and symmetric since Q is

positive definite and symmetric.

Let x be the first order estimate of x*. By (114), the first

order estimate in the mean of x* is given by

xk+1 =Wk yk ♦ xk -Wk [f(xk) -b] ♦ xk. (131)
Using (130), (131) becomes

xk+1 =[JT(xk) RJ(xk)]+ JT(xk) R[f(xk) -b] +xk. (132)
Note that (132) is precisely our iteration equation (2). Thus, if R in (2)

is chosen to be Q , the inverse of the covariance matrix of computation error

in evaluating f(-), then (2) is actually the best first order estimation of

x* based on x .

Q.E.D.
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IV. CONCLUDING REMARKS

In this paper we have introduced an iteration equation which may be used

to solve a system of m nonlinear equations in n unknowns. The iteration equation

presented has a great deal of flexibility due to the utilization of the R

matrix. We have shown that the R matrix may be chosen: (1) to improve the

conditioning of an ill-conditioned matrix; (2) to assign weights among

equations in a system of equations; and (3) in the presence of the usual

computation noise, to give the minimum variance in the next iterate value.

We have also presented two algorithms which serve as computational procedures

for the iteration equation. In addition, a modified iteration equation has

been introduced. This equation has the advantage of requiring fewer calculations

per iteration. An algorithm to implement this modified equation has also

been presented. Furthermore, a theorem giving sufficient conditions to

insure the convergence of the modified iteration equation has been

established.

We note that each step of the proposed iteration of (2) will either decrease

k kthe value of e(x ) or reach the termination state, i.e. Ve(x ) = 0. Since

Ve(x ) =0 only gives a local minimum there is no way that we can be sure that
k

e(x ) is the global minimum and thus, the best possible solution.
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Footnotes

1. J(x) being of rank n implies n <_ m.

2. The proof of this lemma appears elsewhere; see, for example, [14].

k T k k i
3. If p is desired rather than [J (x ) R J(x )]T, an efficient way

to compute p from (65) is given by [19], However, if [J (x ) R J(x)]'

is also required, then the updating equation (16) may be used.

If (16) is efficiently programmed then a straightforward computation of

(64) is also desirable. This is particularly attractive in piecewise-

linear circuits (which may contain controlled sources since J(x) is

not required to be symmetric) [11,12] where C in (16) is 1 x n.

4. For a more complete description, see [20],

5. Equation (117) is called the exactness constraint in estimation theory [21]
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