
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



IMPLEMENTATION OF INTEGRITY CONSTRAINTS AND VIEWS BY QUERY MODIFICATION

by

Michael Stonebraker

Memorandum No. ERL-M514

17 March 1975

- ELECTRONICS RESEARCH LABORATORY

J College of Engineering
University of California, Berkeley

94720



IMPLEMENTATION OF INTEGRITY CONSTRAINTS AND VIEWS BY QUERY MODIFICATION

Michael Stonebraker

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Because the user Interface In a relatonal data base management system may be decoupled from
the storage representation of data, novel, powerful and efficient integrity control schemes
are possible. This paper indicates the mechanism being implemented in one relational system
to prevent integrity violations which can result from Improper updates by a process.
Basically each interaction with the data is immediately modified at the query language level
to one guaranteed to have no integrity violations. Also, a similar modification technique
Is Indicated to support the use of "views," i.e. relations which are not physically present
in the data base but are defined In terms of ones that are.

I INTRODUCTION

Integrity of stored data can be corrupted in at least two ways: 1) By concurrent update by two or more
processes; 2) by inadvertant, improper or malicious update by a process.

The first mechanism is a well known operating system problem [1] which is addressed in [2,3] in the context
of a relational data base system. In this paper we shall focus only on the second mechanism.

These corruptions can result from access violations, i.e. an unauthorized user updates the data base in an
unapproved way. In a recent paper [4] we indicated that user interactions with a data base could be
efficiently.modified into ones guaranteed to have no access violations. However, integrity can also be
destroyed by inadvertant update by an authorized user. For example, a data base containing salaries of
employees might be inadvertantly updated to give some employee a negative salary. Such an update would
violate a constraint which might be put on a data base that all salaries be ndn negative. Other possible
constraints are that employees with a job classification of Assistant Professor must make between $12,000
and $16,000 and that department chairman must be full professors. In this paper we will show that a wide
variety of integrity constraints can be effectively guaranteed using the same interaction modification
technique indicated in [4].

We also show that support for "views" (i.e. virtual relations which are not actually present in the data
base) can be handled effectively in the identical manner.

The solution of these problems at the user language level should be contrasted with lower level solutions
(such as providing data base procedure calls in the access paths to data [5,6,7] where they will be called
repeatedly).

The observation is made in [8] and [9] that integrity constraints should be predicates In a high level
language. However, neither suggests an Implementation scheme. The specification of our integrity
constraints are very similar to those in [8] and [9]; however, we Indicate reasonably efficient
Implementation algorithms. The suggestion is made in [9] that views can also be stated in a high level
language. Again, our contribution is the indication of an implementation algorithm.

These mechanisms are being Implemented in a relational data base system [10,11] under development (and now
mostly operational) at Berkeley. This system, INGRES, must be briefly described to indicate the setting
for the algorithms to be presented. Of particular relevance is the query language, QUEL, which will be
jdlscussed In the next section.

II QUEL

QUEL (QUEry Language) has points in common with Data Language/ALPHA [12], SQUARE [13] and SEQUEL [14] in
that it is a complete [15] query language which frees the programmer from concern for how data structures
are implemented and what algorithms are operating on stored data. As such it facilitates a considerable
degree of data independence [16]. We assume that the reader is familiar with standard relational
terminology [17] and now indicate the relations which will be used in the examples of this paper.

NAME DEPT SALARY MANAGER AGE

Smith toy 10000 Jones 25
Jones -toy 10000 Johnson 32

FMPT/>vin* Adams candy 12000 Baker 36
uurujizr. Johnson toy 14000 Harding 29

Baker admin 20000 Harding 47
Harding admin •40000 none 58



Indicated above is an EMPLOYEE relation with domains NAME, DEPT, SALARY, MANAGER and AGE. Each employee
has a manager (except for Harding who is presumably the company president), a salary, an age and is in a
department.

The second relation utilized will be a DEPARTMENT relation as follows. Here, each department is on a floor,
has a certain number of employees and has a sales volume In thousands of dollars.

DEPT FLOOR]? 0EMP SALES

DEPARTMENT

A QUEL interaction includes at least one RANGE statement of the form;

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables which will be used as arguments for tuples. These
are called TUPLE VARIABLES. The purpose of this statement is to specify the relation over which each
variable ranges.

Moreover, an interaction includes one or more statements of the form:

COMMAND Result-name (Target-list)
WHERE Qualification

Here, COMMAND is either RETRIEVE, APPEND, REPLACE, or DELETE. For RETRIEVE and APPEND, Result-name is the
name of the relation which qualifying tuples will be retrieved into or appended to. For REPLACE and DELETE,
Result-name is the name of a tuple variable which, through the qualification, identifies tuples to be
modified or deleted. The Target-list is a list of the form

Result-domain • Function, ...

Here, the Result-domain's are domain names in the result relation which are to be assigned the value of the
corresponding function.

The following suggest valid QUEL interactions. A complete description of the language is presented in [10]
and [18].

Example 2.1. Find the birth date of employee Jones.

RANGE OF E IS EMPLOYEE

RETRIEVE INTO W(BDATE » 1975 - E.AGE)
WHERE E.NAME = 'Jones'

Here, E is a tuple variable which ranges over the EMPLOYEE relation and all tuples in that relation are
found which satisfy the qualification E.NAME » 'Jones'. The result of the query is a new relation, W,
which has a single domain, BDATE, that has been calculated for each qualifying tuple. If the result
relation is omitted, qualifying tuples are printed on the user's terminal. Also in the target list, the
'Result-domain =' may be omitted if the function is a simple domain (i.e. NAME ° E.NAME may be written as
E.NAME - see example 2.6).

Example 2.2. Insert the tuple (Jackson,candy,13000,Baker,30) into EMPLOYEE.

APPEND TO EMPLOYEE(NAME - 'Jackson', DEPT = 'candy', SALARY » 13000, MGR - 'Baker', AGE - 30)

Here, the result relation EMPLOYEE is formed by adding the indicated tuple to the EMPLOYEE relation.

Example 2.3. Delete the Information about employee Jackson.

RANGE OF E IS EMPLOYEE

DELETE E WHERE E.NAME - 'Jackson'

Here, the tuples corresponding to all employees named Jackson are deleted from EMPLOYEE.

Example 2.4. Give a 10 percent raise to Jones.

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1 * E.SALARY)
' WHERE E.NAME - 'Jones'

toy 8 10 1,000
candy 1 5 2,000
tire 1 16 1,500
admin 4 10 0



Here. E.SALARY Is to be replaced by 1.1*E.SALARY for those tuples in EMPLOYEE where E.NAME - 'Jones'.
(Note that the keywords IS and BY may be used interchangeably with '-' in any QUEL statement.)

Also. QUEL contains aggregation operators including COUNT, COUNT', SUM, SUM', AVG, AVG', MAX, MIN, and the set
operators, SET and SET'. Two examples of the use of aggregation follow.

Example 2.5. Replace the salary of all toy department empolyees by the average toy department salary.

RANGE OF E IS EMPLOYEE •
REPLACE E(SALARY BY AVG'(E.SALARY WHERE E.DEPT - 'toy')) WHERE E.DEPT - toy

here, AVG' is to be taken of the salary domain for those tuples satisfying the ^"fJcati°n'^°EPJ "1^1
Note that AVG'(E.SALARY WHERE E.DEPT - 'toy') is scalar valued and consequently will be called an AGGREGATE.
For the example chosen this aggregate has the value (1/3)*(10000+10000+14000) which equals 11,333. It is
sometimes useful to allow, aggregates to be taken in such away that duplicates tuples are not *»£«*»•
Non primed aggregates (SET, AVG, COUNT, and SUM) perform this function. For example, AVG(E.SALARY WHERE
E.DEPT - 'toy') has a value 12,000.

More general aggregations are possible as suggested by the following example.

Example 2.6. Find those departments whose average salary exceeds the company wide average salary, both
averages to be taken only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO HIGHPAY(E.DEPT)
WHERE AVG'(E.SALARY BY E.DEPT WHERE E.SALARY >10000) >

AVG'(E.SALARY WHERE E.SALARY>10000)

Here, AVG'(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is an AGGREGATE FUNCTION and takes avalue for each of
E.DEPT. This value is the aggregate AVG'(E.SALARY WHERE E.SALARY>10000 AND E.DEPT - value) as indicated
below.

E.DEPT AVG'(E.SALARY BY E.DEPT WHERE E.SALARY>10000)

toy 14000
candy 12000
admin 30000

The qualification expression for the statement is then true for departments for which this aggregate
function exceeds the aggregate AVG'(E.SALARY WHERE E.SALARY>10000). The later is simply the scalar .21,500.
Hence, admin is the only qualifying department.

As with aggregates, aggregate functions can have duplicates deleted with an unprimed operator.

In the sequel there will be several integrity control algorithms applied to APPEND, DELETE and REPLACE
statements. Consequently, we indicate their general form and Interpretation at this time.

An APPEND statement is of the following general form:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

APPEND R(Dl-fl,...,Dr-fr) WHERE Q .

Here, XI,...,XN are tuple variables over relations R1,...,RN

R is the name of the result relation and may or may not be Rl for some 1.

Dl,...,Dr are the names of ALL domains in R. They may be defaulted as indicated earlier.

fl,...,fr are valid QUEL alpha-functions. For a discussion of alpha-functions, see [10].

Q is a qualification statement in variables XI,...,XN, i.e. Q - Q(X1 XN), or a subset thereof.

Conceptually, the interpretation of an APPEND statement is the following:



1) Issue the statement

RANGE OF XI is Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

RETRIEVE INTO TEMP (Dl»fl,...,Dr»fr) WHERE Q

An error results if TEMP and R do not have identical domains. Also, if Q is absent and fl,...,fr are
simply the domains from a given relation, then step 1) would be a copy operation. Hence, it need not be
done in this case.

2) Perform a set union* of TEMP and R into R

The general form of a DELETE statement is the following:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN
DELETE XI WHERE Q

The interpretation is the following:

1) Issue the statement

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

RETRIEVE INTO TEMP(XI.ALL) WHERE Q

Here, ALL is a keyword indicating all domains.

2) Perform the relative complement of Rl and TEMP into Rl

The general form of a .REPLACE statement is the following:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

REPLACE Xl(Dl-fl,...,Ds-fs) WHERE Q

Here, Dl,...,Ds are a subset of the domains in Rl.

The interpretation is the following:

1) Issue the statement

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE' OF XN IS RN
RETRIEVE INTO TEMP(XI.TID,fl fs) WHERE Q

Here, TID is a tuple Identifier which is guaranteed to be unique to a tuple.

2) For each tuple in TEMP, obtain the tuple in Rl identified by TID, substitute fl,...,fs for Dl,...,Ds
Land replace the tuple. Should there be more than one tuple in the TEMP with a given TID, the update is



NON-FUNCTIONAL and is aborted. This problem is discussed further in [3].

A RETRIEVE statement is processed by breaking it into a sequence of RETRIEVE statements each of which
involves only a single tuple variable. This decomposition is discussed in [10] and a similar one in [19].
These single variable queries involve only one relation and can be directly executed (in the worst case by
a sequential scan of the relation tuple by tuple). Often the relation will be stored^ln such a way that a

tr-' complete scan is not needed. Also, secondary indices which can profitably be used to speed access are
utilized.

V The actual processing of update commands follows the general flavor indicated above. However, where
possible, the creation of TEMP is avoided and steps 1 and 2 performed at once.

Ill INTEGRITY CONSTRAINTS

For each data base we allow ASSERTIONS to be stored. Each assertion is (logically) a RANGE statement and a
valid QUEL qualification in variables specified in the RANGE statement. This qualification is true or
false for each tuple in the Cartesian product of the relations specified by variables In the RANGE
statement. In the next four sections we indicate algorithms which guarantee that the qualification is TRUE
for all tuples in the product space after each update. The general mechanism is to modify each user
interaction so that updates which violate an assertion are disallowed. In the remainder of this section
we Indicate examples of possible assertions.

Example 3.1. Employee salaries must be positive

RANGE OF E IS EMPLOYEE

INTEGRITY E.SALARY>0

Example 3.2. Everyone in the toy department must make more than $8000

RANGE OF E IS EMPLOYEE
INTEGRITY E.SALARY>8000 OR E.DEPT + 'toy'

Example 3.3. Employees must earn less than ten times the sales volume of their department if their
department has a positive sales

RANGE OF E IS EMPLOYEE

RANGE OF D IS DEPARTMENT
INTEGRITY E.SALARY <10*D.SALES

OR E.DEPT + D.DEPT
OR D.SALES.= 0

Example 3.4. No employee can make more than his manager

RANGE OF E,M IS EMPLOYEE
INTEGRITY E.SALARY * M.SALARY

OR E.MANAGER / M.NAME

Example 3.5. Harding must make more than twice the average employee salary

RANGE QF E IS EMPLOYEE

INTEGRITY E.NAME + 'Harding'
OR E.SALARY > 2*AVG» (E.SALARY)

Example 3.6. Name must be a primary key

RANGE OF E IS EMPLOYEE

INTEGRITY COUNT(E.TID) - COUNT(E.NAME)

Example 3.7. Floor* is functionally dependent [20] on DEPT

RANGE OF D IS DEPT
K INTEGRITY COUNT(D.FLOOR)? BY D.DEPT) - 1

There will be four algorithms of increasing complexity (and cost) for dealing with!

^ 1) one variable aggregate-free assertions as in Examples 3.1-3.2.

2) multivariate aggregate-free assertions with only one tuple variable on the relation being updated as in
Example 3.3.

3) multivariate aggregate-free assertions with two or more tuple variables on the relation being updated
as in Example 3.4.



4) assertions involving aggregates as in Examples 3.5-3.7.

We deal with each case Individually in the next four sections. For all sections we deal with APPEND, DELETE
and REPLACE in their general form indicated in Section 2. Hence, notation introduced in Section 2 will be
used throughout.

IV ENFORCEMENT OF ONE VARIABLE AGGREGATE-FREE ASSERTIONS

Intuitively, a one variable aggregate free assertion specifies a condition which is true or false for each
tuple in a relation. Hence, integrity assurance reduces to checking each tuple that is inserted or modified
to ensure the truth of the assertion. Tuples may, of course, be deleted with no checking whatsoever. As
a result, a DELETE statement can be processed with no regard for such integrity constraints.

The following algorithm must be applied to APPEND statements.

ALGORITHM 1

a) Find all one variable aggregate-free assertions with RANGE OF Y IS R for some tuple variable Y. Call
the corresponding qualifications Q1(Y),...,Qh(Y).

b) Replace Q, the given qualification, by Q AND Q* where
Q* - Ql(fl,...,fr)

AND Q2(fl,...,fr)
AND

AND Qh(fl,...,fr)

Here, OJ(fl,...,fr) results from Qj(Y) by replacing Y.Dk by fk whenever Y.Dk appears in Qj.

The APPEND statement can be processed normally assured that R will satisfy all one variable aggregate free
'assertions after execution. The result of the RETRIEVE portion of the algorithm to execute APPEND
istatements will contain only tuples which satisfy the constraints; R, of course, satisfies the constraints;
hence, the set union of R and this result will also.

The tuples which are not APPENDED to R because of an integrity violation can be easily found as follows:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

RETRIEVE INTO MISTAKE(Dl - fl,...,Dr - fr) WHERE Q AND NOT Q*

The algorithm for REPLACE statements differs only slightly from the algorithm above.

Algorithm 2

a) same as step a) for Algorithm 1

b) Replace Q by Q AND Q* for which Qj(fl,... ,fs) is formed by replacing Y by XI then by replacing XI.Dk
by fk wherever XI.Dk appears.in Qj.

The tuples which cannot be altered are found by:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

RETRIEVE INTO MISTAKE(XI.ALL) WHERE Q AND NOT Q*

Two examples illustrate these algorithms at work. Here, we enforce the constraint on positive salaries
given in Example 3.1.

BTAmplA A.i. Insert the tuple (Jackson, candy, 13000, Baker, 30) into EMPLOYEE



APPEND TO EMPLOYEE(NAME - 'Jackson', DEPT - 'candy',
SALARY - 13000, MGR - 'Baker', AGE - 30)

This is exactly Example 2.2 and becomes after application of the algorithm:

APPEND TO EMPLOYEE(NAME » 'Jackson', DEPT - 'candy',
*•'•' SALARY - 13000, MGR-'Baker', AGE » 30)

WHERE 13000>0

J Hence, Jackson's tuple will be added only if he has a positive salary. Tuples disallowed by the integrity
constraint would be found by:

RETRIEVE INTO MISTAKE(NAME =» 'Jackson*, DEPT - 'candy',
SALARY - 13000, MGR- 'Baker ', AGE - 30)

WHERE NOT 13000>0

In fact, the following format issues both statements at once:

APPEND TO EMPLOYEE(NAME = 'Jackson'» DEPT » 'candy',
SALARY » 13000, MGR = 'Baker*,.AGE - 30)

ERRORS TO MISTAKE

Example 4.2. Give a 500 dollar paycut to Jones

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY = E.SALARY-500) WHERE E.NAME » 'Jones'
ERRORS TO MISTAKE

Upon modification, this becomes:

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY » E.SALARY - 500) WHERE E.NAME » 'Jones'
AND E.SALARY-500 > 0

RETRIEVE INTO MISTAKE(E.ALL) WHERE E.NAME - 'Jones'
AND NOT E.SALARY-500 > 0

'V ENFORCEMENT OF MULTIVARIATE AGGREGATE-FREE ASSERTIONS. I

Here, we consider the case that all assertions have two or more tuple variables but only one ranging over
the relation being updated. In this case each tuple which is inserted or modified will add or change many
tuples In the product space for which the assertion must be guaranteed. As a result the algorithms in this
section are more complex than previously. Note, however, that tuples may- still be deleted from a relation
with no checking.

The following algorithm must be applied to APPEND statements:

Algorithm 3

a) Find all multivarlable assertions which contain RANGE OF Y IS R for some Y. Let these qualifications
be Ql,...,Qh.

If fl,...,fr are simple domains with only a single tuple variable, say Xm., then do b), otherwise do bl)
and b2).

b) Append Q* to the users qualification where Q*«Q1* AND ..- AND Qh* and where Qi* is found as follows.
Let Qi be qualification in variables Y, Ul,...,Uq, i.e. Qi - Q1(Y,U1,...,Uq). Then Qi* is:

COUNT(Ul.TID,...,Uq.TID BY Xm.TID
WHERE Qi(Xm,Ul,...,Uq))

J" COUNT(Ul.TID,...,Uq.TID)

bl) Do step 1 of the algorithm to process APPEND statements therefy creating TEMP (as noted in Section 2).
< b2) Issue the interaction

RANGE OF Z IS TEMP

APPEND INTO R(Z.ALL) WHERE Q*

Here, Q* is the qualification QI* AND ... AND Qh* where Qi* is:



COUNT(Ul.TID,...,Uq.TID BY Z.TID
WHERE Qi(Z» Ul,...,Uq))

a

COUNT(Ul.TID,....Uq.TID)

The algorithm for REPLACE statements is the following.

Algorithm 4

a) Find all multivariate assertions which contain RANGE OF Y IS R for some Y. Let these qualification be

QI Qh.

b) For the i-th qualification, let Qi have tuple variables Y, Ul,...,Uq, i.e. Qi - Qi(Y, Ul,...,Uq).

c) Replace Q, the given qualification, by Q and QI* AND ... AND Qh* where Qi* is:

COUNT(Ul.TID,..'.,Uq.TID BY XI.TID
WHERE Qi(fl,...,fs, Ul,...,Uq))

m

C0UNT(U1.TID,....Uq.TID)

Here, note that Qi(fl,...,fs, Ul,...,Uq) is Qi with Y replaced by XI then XI.Dk replaced by fk wherever it
appears.

The following examples illustrates these algorithms.

Suppose one wants to enforce the constraint of Example 3.3 that an employee must earn less than 10 times
the sales volume of his department if sales volume is positive.

Suppose the employee tuple for Jackson is In a relation W and is to be added to EMPLOYEE as follows.

Example 5.1.

RANGE OF Y IS W

APPEND TO EMPLOYEE(Y.ALL) WHERE Y.NAME - 'Jackson'

Upon modification this becomes:

RANGE OF Y IS W

RANGE OF D IS DEPARTMENT

APPEND TO EMPLOYEE(Y.ALL) WHERE Y.NAME - 'Jackson'

AND COUNT(D.TID BY Y.TID
WHERE Y.SALARY < 10*D.SALES

OR Y.DEPT / D.DEPT
OR D.SALES • 0)

COUNT(D.TID BY Y.TID)

The algorithm applied to Example 4.2 now follows.

Example 5.2. Give a 500 dollar paycut to Jones

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY = E.SALARY-500) WHERE E.NAME » 'Jones'

Upon modification this becomes:

RANGE OF E IS EMPLOYEE

RANGE OF D IS DEPARTMENT

REPLACE E(SALARY = E.SALARY-500) WHERE E.NAME » 'Jones'

AND COUNT(D.TID BY E.TID
WHERE E.SALARY-500 < 10*D.SALES

OR E.DEPT j D.DEPT
OR D.SALES - 0

COUNT(D.TID BY E.TID)

VI ENFORCEMENT OF MULTIVARIATE AGGREGATE-FREE ASSERTIONS. II

We now consider the case of assertions such as Example 3.4 which contain two or more tuple variables
ranging over the relation to be updated. This situation differs from the cases considered previously in

8



lr '

the following respect. In effect, integrity control was exercised by examining each tuple to be updated,
allowing updates for those tuples satisfying the assertions and denying them otherwise. Unfortunately,
updates subject to the assertions considered in this section must be allowed or disallowed as awhole, and
decisions cannot be made Incrementally. The following example illustrates the problem which arises.

Consider the combination of two relations on employees (which might happen If two companies merge) i.e.

RANGE OF N IS NEWEMP
APPEND TO EMPLOYEE(N.ALL)

Moreover, suppose one wants to enforce the constraint of Example 3.4, i.e. that each employee must make
less than his manager. Lastly, suppose most of all of the employees in the relation NEWEMP violate this
condition.

Now, suppose one inserts tuples from NEWEMP into EMPLOYEE In an order such that each employee is inserted
before his manager. Each employee who is not a manager can be inserted without a violation while each
manager will not be allowed. On the other hand, if managers are inserted first, at least one will satisfy
the constraints while all non managers will fail. Hence, the order in which the tuples are inserted will
affect which ones are in violation of the constraints. Since ordering of tuples in a relation should not
affect the outcome of any operation, one must treat an update subject to this form of integrity constraint
as an entity and allow or disallow the whole procedure. Consequently, the algorithms are somewhat
different than those in the previous sections.

It can again be noted that DELETES can be processed with no checking; the integrity assurance algorithm
for APPENDS now follows.

Algorithm 5

a) Find all multivariate assertions which have twd or more tuple variables ranging over R. Let these
qualifications be Ql,...,Qh.

b) Do step one of the algorithm to process APPEND statements, thereby creating TEMP

c) Issue the interaction:

RANGE OF Z IS TEMP
APPEND TO R(Z.ALL) WHERE Q*

Here, Q* - QI* AND ... AND Qh* and where Qi* is found as follows. Let Qi have tuple variables Yl,...,Ym,
Ul,...,Uq where Yj ranges over R and Uj does not for all j.

Then Qi*' is the following:

AND ... AND COUNT(Vl.TID,...,Vm.TID, Ul.TID,...,Uq.TID
VI in Vm in
{R.TEMP} {R.TEMP} WHERE Qi(Vl,...,Vm, Ul,..-,Uq))

a

C0UNT(V1.TID Vm.TID, Ul.TID Uq.TID)

The reader should note several points concerning this algorithm:

1) the COUNT term when Vi»R for all i can be eliminated since R satisfies the constraint before the update,

2) when Vi=TEMP for all 1, only one of the m permutations need be included since the rest would be
redundant.

3) new tuple variables are required in the second APPEND statement because of the introduction of Q*.

4) aggregates appear in this algorithm instead of the aggregate functions In algorithms 3 and 4. In this
way Q* has either the value TRUE or FALSE and the update as a whole is either allowed or disallowed as a
result.

The reader can also note the changes which must be made to create a working algorithm for REPLACE
statements.- We now indicate an example of the algorithm at work ensuring Example 3.4.

Example 6.1. Add Jackson to EMPLOYEE

RANGE OF Y IS W

APPEND TO EMPLOYEE(Y.ALL) WHERE Y.NAME - 'Jackson'



Upon modification this becomes:

RANGE OF Y IS W

RETRIEVE INTO TEMP(Y.ALL) WHERE Y.NAME - 'Jackson'

RANGE OF T, T2 IS TEMP
RANGE OF E IS EMPLOYEE

APPEND TO EMPLOYEE(T.ALL) WHERE

COUNT(T.TID,T2.TID WHERE
T.SALARY < T2.SALARY

OR T.MANAGER ?* T2.NAME)

COUNT(T.TID, T2.TID)

AND COUNT(T.TID, E.TID WHERE
T.SALARY < E.SALARY

OR T.MANAGER 7s E.NAME)

COUNT(T.TTD, E.TID)

AND COUNT(E.TID, T.TID WHERE
E.SALARY < T.SALARY

OR E.MANAGER * T.NAME)

COUNT(E.TID,T.TID)

VII CONSTRAINTS INVOLVING AGGREGATES

The reader can note that constraints involving aggregates have the same problem that occurred with the
previous class- of constraints, namely updates must be allowed or disallowed as a whole. Again the reason
is that the tuples which violate the constraints depend on the order in which they are changed or added.
There is, however, a more serious problem.

For example, the assertion AVG'(X.SALARY) < 14000 might be applied to the following update.

RANGE OF Y IS W

APPEND INTO EMPLOYEE(Y.ALL)

as follows

RANGE OF Y IS W

RANGE OF E IS EMPLOYEE

APPEND INTO EMPLOYEE(Y.ALL) WHERE
SUM*(E.SALARY) +SUM'(Y.SALARY)

< 1A000

COUNT(E.TID) + COUNT(Y.TID)

In this fashion the revised average salary would be computed and checked for the integrity constraint
during the update. Unfortunately, there may be tuples in W which are also in EMPLOYEE.

If so, the APPEND statement will, of course, delete the duplicate tuples when it performs a set union of
EMPLOYEE and W. However, the added qualification is, -in effect, the integrity statement with the
duplicates present. There is no way in QUEL to express the fact that the constraint should be taken with
duplicates deleted.

Therefore, the algorithm for constraints involving aggregates must be to try the update, test the
resulting relation for the integrity constraint and then undo the update if one is not satisfied.

VIII EFFICIENCY CONSIDERATIONS

The addition of single variable aggregate-free integrity constraints will usually result in the same
decomposition to a sequence of one-variable queries that would have resulted otherwise. Each such one
variable query is further qualified by one or more integrity qualifications. Such one variable queries
are usually at least as efficient to process as those without constraints. In fact, the added
qualification may be employable to speed access. Hence, the cost of integrity for one variable aggregate-
free assertions should be negligible.

unfortunately, this is not the case for the other forms of constraints. All involve testing for equality,
pairs of aggregates or aggregate functions. These operations are usually very costly. Consequently, the
user may enforce more complex controls but only at considerable cost.

10



Note that our algorithms generally have the effect of testing constraints for only small subrelatlons on
each update. Of course, this is to be preferred to examining the whole relation each time.

Also, if controls are desired at each update, we believe the proper approach is to append them at as high
a level as possible. In this way checks in the access paths are avoided, and any information available
can be utilized to perform the update as efficiently as possible. Note also that schemes which append
integrity controls at lower levels have considerable difficulty enforcing complex controls (such as those
involving more than a single tuple variable).

Lastly, note that the power of RETRIEVE statements can also be used to ascertain the truth of integrity
constraints. Thus, users who do not wish to pay the price of checking each update may less frequently
make their own checks and take appropriate action.

IX SUPPORT FOR VIEWS

"Views" or virtual relations are relations which do not physically exist In the data base but may be
definable In terms of ones which do exist.

One such view might be the relation EMPTOY with domains NAME, SALARY, AGE, and DEPT defined as follows:

RANGE OF E IS EMPLOYEE

DEFINE EMPTOY(NAME=E.NAME, SALARY«=E.SALARY,AGE»E,AGE,DEPT-E.DEPT)
WHERE E.DEPT » 'toy'

Note again that defaults could have been used for the names of the domains in EMPTOY.

In INGRES any user is allowed to define views for his own use. Moreover, the data base administrator can
define views which apply to others. The syntax of a DEFINE statement Is identical to a RETRIEVE statement
and is parametrically:

RANGE OF XI IS Rl

RANGE OF X2 IS R2

RANGE OF XN IS RN

DEFINE VIEWNAME(Dl«f1,...,Dj-fj) WHERE Q

Note that the RANGE statement of a view can involve a relation which is itself a view. Views are supported
for two reasons.

1) user .convenience as a 'MACRO' facility

2) the stored relations may change over time and views allow previous relations to be defined in terms
of current ones. Hence, programs written for previous versions of the data base can continue to be
supported (with certain restrictions to be discussed presently).

Our view algorithm now follows.

Algorithm 6

For each tuple variable V specified in a user interaction which ranges over a view defined by a target list
Tv and qualification Qv:

1) Delete V from the RANGE statement of the user interaction and add all tuple variables In the view
definition (modifying them to have unique names if necessary).

2) If VTEWNAME is the relation in a DELETE statement from which tuples will be deleted, then replace
V by Xm in the Result-name portion of the interaction if fl,...,fj have only a single tuple variable,
say Xm. Otherwise, abort the command.

Similarly, if VTEWNAME is the relation to which tuples are to be added by an APPEND statement and if
fl,...,fj involve only a single tuple variable, say Xm, then replace VIEWNAME by Rm, the relation over
which Xm ranges, as the result relation. If fl,...,fj involve more than one tuple variable, abort the
Interaction in this situation.

Lastly, in REPLACE statements for which V indicates that VIEWNAME is to be modified, then append V to each
domain name to the left of an equals sign in the target list; do step 6 of the algorithm; then factor
out the tuple variable again. If more than one tuple variable results to the left of an equals sign then
abort the command.

3) Abort all REPLACE statements which update a domain appearing in *Qv. In this case several problems are

11



present. One is the possibility of updating a tuple in such a way that it is deleted from the view (for
example by updating DEPT in the previous example). This anomoly should not be allowed.

4) Append

AND Qv —*

to the user's qualification.

5) Append Qv to the qualificaiton portion of any aggregate or aggregate function which contains V unless
V appears as part of the BY argument in the qualification portion of the user's interaction. In this case
the variable is not local to the aggregate in question. Hence, step 4 appropriately conditions such
functions.

6) Replace each domain V.Dj in the user interaction with fj from the target list of the view definition.

The following points should be carefully noted concerning this algorithm:

1) The algorithm translates Interactions on views into interactions on real relations.

2) The resulting interaction may be syntactically illegal. For example, APPEND and DELETE statements may
be so modified that TEMP created in step 1 of the execution algorithm (see Section 2) does not have the
correct domains. Such an interaction will be aborted automatically.

3) In step 2 of the view algorithm an abort occurs because a SINGLE interaction on a view must be
translated into MORE THAN ONE interaction on real relations. Such a translation is, in general, impossible
as noted in [21].

The following examples illustrate the algorithm at work.

Example 9.1 Give Jones a 10 percent raise

RANGE OF Y IS EMPTOY

REPLACE Y(SALARY - 1.1*Y.SALARY) WHERE Y.NAME = 'Jones'

Upon application of algorithm 6 this becomes:

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY - 1.1*E.SALARY)
WHERE E.NAME - 'Jones' AND E.DEPT = 'toy'

Example 9.2

The following statements define a second view of EMPLOYEE.

RANGE OF E IS EMPLOYEE
DEFINE EMPOTHER(NAME-E.NAME, PROGRESSES.SALARY/E.AGE)

jThe update

! RANGE OF 0 IS EMPOTHER
REPLACE 0CPROGRESS-1.1*0.PROGRESS)

becomes

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY/AGE »1.1*E.SALARY/E.AGE)

which is syntactically illegal and is aborted.

Example 9.3

The following statements define a view involving both EMPLOYEE and DEPARTMENT.

RANGE OF E IS EMPLOYEE

RANGE OF D IS DEPARTMENT

DEFINE COMBEMP(NAME=E,NAME, SALARY-E.SALARY, FL00R#»D.FLOORS)
WHERE E.DEPT=D.DEPT

The update

12



RANGE OF C IS COMBEMP
REPLACE C(FLOOR0-3) WHERE C.NAME - 'Jones1

becomes

RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPARTMENT
REPLACE D(FLOORff"3)

WHERE E.NAME - 'Jones 'AND E.DEPT-D.DEPT

which la processed correctly.

The following table summarizes the actions of the view algorithm.

REPLACE
(tuples
in the
view)

APPEND

(to the
view)

DELETE
(from the
view)

RETRIEVE
(and all
other
updates)'

~ .4 ^ «^,™et» is the following . If the view were materalized (by replacing the DEFINE with aTho notion of "correct la tne renewing . « «« „r„-««aed« the result would be the same as would

results and materalizlng the view.

Note that this algorithm processes all RETRIEVES *^J^™^ £^Sf ^eSfJS- forusually disallowed. Moreover, it is easy ^ Implement "j^^^^™^ >osalble which will
protection and integrity constraints. ^tl^^"S^S?S «« for certain views in the
SS 5LT2i?£?K£ dSfKi/TESS the difficulty of handling most other disallowed
caJe7ap?ea^ very great, and in some cases there may be no possible procedure.
X SUMMARY

The advantages of these integrity control and view support algorithms are briefly recapitulated here.

[2,5]).

2) Little storage space is required to store integrity assertions and view definitions.
3) These algorithms involve small overhead at least in the simpler (and presumably more common) case..

ACKNOWLEDGEMENT

Research sponsored by the National Science Foundation Crant GK-43024X and the Naval Electronic Systems
Command Contract N00039-75-C-0034.

13

(A)
The view
is a restriction!15]
of an existing
relation

(Example 8.1).

correct (unless
disallowed by 3)

correct

correct

correct

(B)
fl,...,fj
involve a single
tuple variable but
(A) la not
satisfied

(Example 8.2)

correct (unless
disallowed by 3
or syntactically
illegal)

syntactically
Illegal (point 2)

syntactically
illegal (point 2)

correct

(O
fl fj
involve more than
a single
relation

(Example 8.3)

correct (unless
disallowed by
2 or 3 or

syntactically
illegal)

disallowed by 2

disallowed by 2

correct



REFERENCES

[1] Brinch Hansen, P., Operating Systems Principles, Prentice Hall, Englewood Cliffs, N.J., 1973.

[2] Chamberlln, D., et al. "A Deadlock-Free Scheme for Resource Locking in aData Base^ Environment,"
IBM Research Laboratory, San Jose, Ca., March 1974.

[3] Stonebraker, M., "High Level Integrity Assurance In Relational Data Base Systems," University of
California. Electronics Research Laboratory, Memorandum M473, August 1974.

[4] Stonebraker, M. and Wong, E., "Access Control in aRelational Data Base Management System by Query
Modification," Proc. 1974 ACM National Conference, San Diego, Ca., Nov. 1974.

[5] Committee on Data Systems Languages, "Data Description Language," U.S. Dept. of Commerce, National
Bureau of Standards, Handbook #112, January, 1974.

[6] Hoffman, L., "The Formulary Model for Flexible Privacy and Access Control," Proc. 1971 Fall Joint
Computer Conference, Las Vegas, Nev., November 1971.

[7] Fossum, B., "Data Base Integrity as Provided for by aParticular Data Base Management System," Proc.
1974 IFIP Conference on Data Base Management Systems, Cargese, Corsica, April 1974.

[8] Plorentln, J., "Consistency Auditing of Data Bases," The Computer Journal, vol. 17, no. 1, February
1974.

[9] Chamberlin, D. and Boyce, R., "Using aStructured English Query Language as aData Definition
Facility," IBM Research Report RJ 1318, San Jose, Ca. December 1973.

[10] Held, G., et al., "INGRES -ARelational Data Base System," Proc. 1975 National Computer Conference,
Anaheim, Ca., May 1975. (to appear).

[11] Held. G. and Stonebraker, M., "Storage Structures and Access Methods in the Relational Data Base
Management System, INGRES," Proc. ACM-PACIFIC-75 San.Francisco, Ca., April 1975.

[12] Codd, E., "A Data Base Sublanguage Founded on the Relational Calculus," Proc. 1971 ACM-SIGFIDET
Workshop on Data Description, Access and Control, San Diego, Ca., November 1971.

[13] Boyce, R. et al., "Specifying Queries as Relational Expressions: SQUARE," Proc. ACM SIGPLAN-SIGIR
Interface Meeting, Gaithersberg, Md., November 1973.

<14] Chamberlin, D. and Boyce, R., "SEQUEL: AStructured English Query Langnage," Proc. 1974 ACM-SIGFIDET
Workshop on Data Description, Access and Control, Ann Arbor, Mich., May 1974.

(15] Codd, E., "Relational Completeness of Data Base Sublanguages," Courant Computer Science Symposium.
May 1971.

(16] Stonebraker. M., "A Functional View of Data Independence," Proc. 1974 ACM-SIGFIDET Workshop on Data
Description, Access and Control, Ann Arbor, Mich, May 1974.

C17] Codd, E.,"A Relatonal Model of Data for Large Shared. Data Banks," CACH, 13 6(June 1970).
[18] McDonald, N. and Stonebraker, M., "CUPID -AFriendly Query Language," Proc ACM-PACIFIC-75, San

Francisco, Ca., April 1975.

[19] Rothnie, J.. "An Approach to Implementing aRelationaTData Base M-f^"^^ ^ ""
ACM-SIGFIDET Workshop on Data Description, Access, and Control, Ann Arbor, Mich., May i*/*.

. [20] Codd. E., "Normalized Data Base Structure: ABrief Tutorial," Proc. 1971 ACM-SIGFIDET Workshop on
Data Description, Access and Control, San Diego, Ca. November 1971.

[21] Codd. E.. "Recent Investigations in Relational Data Base Systems." Information processing '74. North
Holland. 1974.

v?
14


	Copyright notice 1975
	ERL-514

