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Abstract

Several theorems are presented which predict in a qualitative manner
the behavior of dynamic nonlinear networks. 1In particular, conditions are
given which assure that the voltage and current waveforms of a dynamic non-
linear network<¢A'are bounded or eventually uniformly bounded, or converge
to a unique steady-state solution. The periodic nature of the solutions
is examined,and'conditions are given which guarantee that the solutions
are perio&ic, almost periodic or asymptotically almost periodic. These

conditions are the best possible for the class of networks considered here.

The theorems are significant in that the& apply to a large class of
networks. Furthermore, their hypotheses are simple and easily verifiable.
The hypotheses are of two types: First, very general conditions on the
network state equations, and second, conditions on the individual element
characteristics and their interconnection. The 1étter type of theorems
use graph-theoretic results of [14] and involve solely the examinaﬁion of
the global nature of each network element and the verification of a

topological "loop-cutset" condition.

Research sponsored by Naval Electronic Systems Command Contract N00039-
75-C-0034 and the National Science Foundation Grant GK-32236X1.



I. Introduction

Much of.the analysis of dynamic nonlinear networks has been in the
area of the formulation of networks equations [1]-[5], and in the area of
numerically solving these equations [6]-[7]. There are results concerning
the behavior of networks containing specific nonlinear elements such as
transistors or iron-core inductors [8]-[10] but there are relatively few
results which examine in a qualitative way the behavior of general non-
linear dynamic networks [1], [4], [11], [12], [13]. This paper is the
third of three papers which develop methods for predicting in a qualitative
way the behavior of dynamic nonlinear networks. The other two papers'are
titled "Graph-Theoretic Properties of Dynamic Nonlinear Networks" [14],
and "A Qualitative Analysis of the Behavior of Dynamic Nonlinear Networks:
‘Stability of Auﬁonomous Networks," [15]. 1In [14] graph-theoretic methods
are used to determine properties of network equations. We combine these
results with the mathematical analysis of the equations to determine the
behavior of autonomous networks in [15], and to determine the behavior of
nonautonomous networks in this paper. We answer the following types of
questions in these papers: Let';Albe a dynamic nonlinear network. Under
what condition may we conclude all network voltage and current waveforms
are bounded, or eventually uniformly bounded (Def. 5)? If(JU contains a

T-periodic source, when is there a T-periodic solution of(,AL or a sub-

harmonic solution? If(z&‘contains constant independent voltage and current

sources, when does-;AJhave a unique, globally asymptotically stable equi-

librium point? When.gAlhas time-varying sources, under what conditions

does\J&lhave a unique steady-state solution (in the same sense as with

linear networks)? In this case, do the transients decay exponentially?

While answer to some of these questions have been published for various
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classés of nonlinear differential equations [16]-[18], they are strictly
mathematical in nature and often contain conditions which are too strong
or impractical ﬁhen applied to networks. The main feature of our results
is that many of the theorems are couched in graph- and circuit theoretic
terms so that they can easily be verified by examining only the network
topology and the elements' constitutive relations. The graph theoretic
methods have been presented in [14], and applied to autonomous networks
in [15]. 1In this paper we study nonautdnomous networks.

in Sec. II, a very general class of dynamic nonlinear networks is
defined along with a characterizationvof the various‘types of resistive
n-ports to be considered in the sequel. Various properties of functions
such as the passivity property, the increasing property, the strictly
increasing property, etc., are défined. The properties have been.dis-
cussed extensively in [14]. The graph-theoretic résults of [14] which
are needed later are presented and discussed here. Qualifative properties
of the nonlinear, nonautonomous differential Eq. (15) aré defined. Of
special interest is the definition of a unique steady-state solution.
This concept is well-known in the study of linear systems and is important
in the study of nonlinear networks.

In Sec. III the mathematical results used in this paper are presented.
In Theorem A.l conditions are given such thét the,splutions of the nonlinear
differential Eq. (15) are bounded or eventually uniformly bounded. In

Theorem A.2 we define an Incremental Lyapunov Function which is used to

show that (15) has a unique steady-state solution. This is a natural ex-
tension of Lyapunov's direct method and has been used in [9], [12] and [18].

Variations of Theorem A.2 are presented in Corollaries A.l1-A.4. In

Theorems B.1-B.3 we define and discuss almost periodic functions. Theorem




C prescribes properties of a Cl-strictly increasing diffeomorphic state
function.

In Secs. IV and V, theorems are given for analyzing the qualitative
behavior of nonlinear dynamic networks. The hypotheses of these theorems

are of two types; namely, conditions upon the network state equations, and

conditions on the constitutive relations of the network elements and their

interconnection. The difference between these two types of hypotheses is
discussed in a general way in Sec. III. These conditions are used in

Theorems 1-11 to show (i) that the waveforms of<¢A[are bounded or eventually

uniformly bounded, or (ii) that the waveforms converge (possibly exponen-
tially) to a unique steady-state solution. The important aspect of our
results is that the hypotheses apply to a large claés of networks and that
they are easily verifiable. In their final form, the hypotheses involvg
simply investigating the passive or increasing nature of each network
element, and satisfying an easily verifiable topological "loop-cutset"
condition on the interconnection of the elements. As illustrated in the
examples in Secs. IV and V, the results may be applied foAa variety of

nonlinear dynamic networks.

II. Characterization of State Equations

Consider the dynamic nonlinear networkiJk[shown in Fig. 1. It contains

n, (possibly coupled) one-port capacitors, and n (possibly coupled) one-
n n

9 ER ¢ and v. i‘L’ ?LE R L denote

port inductors.1 Let v, 1 vy

~C

1There is no loss of generality in our choice of this network model, since
any multi-port of multi-terminal capacitor (resp., inductor) can always be
modeled as a system of "coupled" one-port capacitors (resp., inductors).
Observe also that an (n+l)-terminal element can always be modeled as a
"grounded" n-port. ' ‘
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respectively the capacitor voltages, currents, charges, and the inductor
voltages, currents and fluxes. The constitutive relations of a charge-

controlled capacitor and a flux-controlled inductor are given respectively

by:
Ve = belag)
' 1)
1, = Bu(ep)

e "¢ o AL 3

where bcz R "+ R ané l;le R™ + R ~. Define npfvectors (np_—.nc-!—nL)

(the.subscript "p" denotes a "port variable")

R ) i (¥
T\ - i/} T\
P 'L -P "L P *L/.

we

(2)

_ (%), , =%
2P v/’ ~p 4
then (1) becomes
= h
§P ‘”P(gp) ' (3)_

T . . ,
(where the superscript "T" denotes transpose).

h ) = [BgC).nr ()]

Remark: 1In [14], the capacitors and inductors are respectively ‘.

voltage-controlled and current-controlled; i.e., instead of (3), we have

gp = gp(gp). We use gp in [14], an& we use bp here and in [15] purely

for ease of notation in each paper. In some of the theorems in this paper

and in [15], Bp is bijective; hence gp = b; exists, and either.pp or gp

may be considered as the capacitor-inductor functibn. See Example 1.

We view the n, capacitors and the ni inductors as attached to an



(np+ns)—port N. Time—varying,2 independent voltage and current sources
.n
are attached to the remaining ng ports of N. Let ug €ER S denote the

voltages of the independent voltage sources, and currents of the independent
n
current sources. Let we € R 8 denote the currents of the independent

voltage sources, and voltages of the independent current sources. The
vectors §p’ Zp’ ug and W, are port variables of N as well as capacitor,
inductor and source variables. N contains (nonlinear) one-port resistors,
(nonlinear) multi-port resistors,3 and constant independent voltagé and

' current sources.

Assume resistor R, of N is an n,-port resistor. 1Its voltage and cur~-
- ‘

rent are, respectively, v €ER * . In defining its constitutive

i
> =
R(l RC'.

relations (when it exists) we assume that for each port of the n_-port
resistor either the port voltage or the port current is an independent

resistor variable, and the remaining port variable is a dependent resistor
a .
variable. Let x , yp € R ® denote respectively the independent and
o o

dependent resistor vectors. The constitutive relation is therefore

o

g = gRa (§Ra) (4)

Let my be the number of resistors of N, and let ny be the number of

all internal resistor ports of N (mR=nR if, and only if, all resistors are

nR

two-terminal elements). The composite resistor vectors are vRe }R.é R
Here, a source is considered time-varying if it indeed varies with time,

or if it is a constant source which is to be represented by the source
vector u.

3N also contains controlled voltage and current sources in the following

sense: We assume every controlled source of N is represented by "coupling"
within multi-port resistors. For example, although transistors, FET, and
operational amplifiers are multi-termimal elements  which are often modeled
using controlled sources, they can also be represented as multi-port re-
sistors. Hence, a transistor can be characterized as a 2-port with the
constitutive relation (57) of Example 1.



representing respectively all internal voltages and currents. Let the L™

resistors be described by their constitutive relation gR (-),g

ety s
K e

and let Xps Yp € ngﬁg'denote, respectively, the independent and dependent

resistors vectors. Then
Yr = (%) | @

is the cbmposite resistor constitutive relation representing all internal
r O

T
)] . The
my

constitutive relation of the "overall resistor" (np+ns)-port N (when it

, T T T _ T
resistors, where gR(-) = [gR (), gr («)seee, gr (o),...,g
1 2 o »

exists) is given by

zp = -gp(}.Sp’Es) . . ' (6)
¥s = "Bg(%,ug) - o
‘n +n n ‘ n +n n

where gp(-,-): rRP 8 >R P and gs(°,°: RP s.-»ms

Remark: Equations (6) and (7) have a negative sign because the port
currents (in Fig. 1) are directed away from the porté on "voltage-driven"
(i.e., capacitor and voltage'éource) ports, and the port voltages are re-
versed on the "current-driven" (i.e., inductor and current source) ports.
These reference directions and polarities are chosenlto be consistent with
those assigned to the capacitors, inductors, and soufces.

Using (3) with (6) and (7), we can write the dynamical system repre-

sentation [19] of<¢AL Note first that'é% gp(t) = ép(t) = Zp(t); we have

2, = -gp(hé(%p)’es) . | - o (@)
Wg < —§s(bp(§p)’gs) | - '(9)



These-equations describe the input-output system where u,(*) is the input,

=8
ys(~) is the output, and gp(t) denotes the state at time t. An alternative
way to viewgJM-is to assume that the source waveform gs(t) represents fixed
time-varying sources, in which case we are interested only in the capacitor
and inductor ﬁavefbrms_described by the state equation (8). 1In all cases,
it is (8) which is of primary importance in determining the behavior of
;AL and to this differential equation we devote our attention in the sequel.
In Secs. IV and V each result concerning the behavior of vAjtakes two
forms: First, the behavior of the solutions of the network state Eqs. (8)
is analyzed using the mathematical methods of Sec. III, and the following
definitions. Th; hypotheses of these theorems are in the form of conditions
on the function bp describing the capacitors and inductors, and on the func-
tion gp which describes the overal; resistive (np+né)—port N. 1In each of
the theorems, we make the following assumption: The qualitative behavior
of the voltage and current waveforms of each element ofi;k[may be uniquely
determined from the behavior of solutions gp(-) of (8). 4In its second

form, the conclusions are identical but the hypotheses are in terms of the

individual network elements and the interconnection of these elements. The

conditions placed upon the elements are those placed on the resistor func-

tion gR s O = 1,2,...,mR, and upon the capacitor-inductor function h . We
R, ~P

then use the graph theoretic results of [14]. At this point, it is instruc-

tive to state the interconnection assumption of the theorems of [14].

Fundamental Topolqgical'Assumption: There is no loop (resp., no cutset)

formed exclusively by capacitors, inductors, and/or independent voltage

sources (resp., current sources).

There is an equivalent way to restate the Fundamental Topological

Assumption: Upon replacing all voltage sources (résp., current sources)

-8-



with short circuits, (resp., open circuits), there is no loop and no cut-
set formed exclusively by capacitors and/or inductors.
If this assumption is satisfied, we know for example that if each gr
o

is strictly increasing (Def. 2), then gp(-,us) in «(6) is strictly increasing
n
for each ug € ]RS

throughout the sequel.

[14; Theorem 9]. This conclusion and others are used

The following definitio_ns characterize the various types of n-ports

considered here.
' . n n
Def. 1: The function £: R > R is

(i) passive wifh respect to X € r" if, and orily if, for all x € y

(g-gO)Ti(:s') >0 , o)

(ii) strictly passive with respect to x, € r" if , and only if, (10)

is true and the left side is positive for all x # 1:0;

(iii) eventually passive with respect to x, € Rr® Cif , and only if, there

exists ko > 0 so that4

2 £ 2 0, 2R . an

(iv) eventually strictly passive with respect to %, € R" if, and only

if, (11) is satisfied where the left side is strictly greater than zero.

Cn
Remarks: 1. If X = 0OER p, we say simply that f is passive,

strictly passive, eventually passive, or eventually strictly passive.
2. In (i) and (ii), the domain of f may' be an arbitrary

n
connected set D C R P :goe D.

% . ' ‘
The norm -l we have used in this paper is the Euclidean norm lxl =

[(xl)2 + ...+ (xn)2]1/2. 0f course, the following results remain valid
for ahy choice of norm in R".



Def. 2: [20] Let D C R™ be convex. The function £: R > R is

(1) increasing on D if, and only if for all x', x" € D

(§|_§11)T(f(§1)_§(§n)) > 0 | (12)

(i1) strictly increasing on D if, and only if, the left side of (12)
is positive for all x' # x".

(iii) uniformly increasing on D if, and only if, there exists y > 0

such that for all x', x" € D

G- (£H-£GM) 2 yix' -l | (13)

(iv) strongly uniformly increasing on D if, and only if , there exists

Y > Y > 0 such that for all x', x" €D,

e < e (26-£G) < Tix'-x1” | (14)

Def. 3: [20] Fof any integer u > 0, f: R" +R" is a Cu—diffeo-
morphism on Rr® (oi: is a C“-diffeomorphic function on ]RIB if, and only if,
f is injective on an, and the functions £, f-l are CM. Furthermoré, f is
a CVM-diffeomorphism mapping Rr® onto }Rn if, and only if, f is a cH-
diffeomorphism, and f 'is surjective. A Co-diffeomorphism is called a

homeomorphism.

DefA. 4: [21] The Cl-function 1:': ]Rn +]Rn is a state function if,

af(x)
ax

and only if, its Jacobian is symmetric for all x € Rr".
In order to develop theorems governing the behavior of the solutions
of the network state equation (8), we first examine the solutions of the

general nonlinear nonautonomous differential equation

% = -£(x,6) B » (15)

-10-



where x € an, £ G]Rm, and f: R°x R® +R" is a Cl-function. The variable
x is not to be confused with the port variable §P; Eq. (15) is an arbitfary
nonlinear differential equation not necessarily used to describe the
behavior of a network. The variable §(-) is a continuous function of time.
This differential equation is more general than the usua; time-varying
differential equation % = -f(x,t) in that (15) reduces to this equation
when m = 1 and g(t) = t. We will find (15) useful because ﬁhe periodic
nature of tﬁe nonautonombus differential equation is expressed completely

by the periodic nature of §(-).

Def. 5: [18] The solutions of (15) are eventually uniformly bounded
if, and only if, there exists a compact setEj(o g;nf‘ such that for any

solution x(+) of (15) there is a time t0 € ]fl such that

x(t) €K : ¥t | (16)

Remark: When the solutions of the network state equation (8) afé‘
eventually uniformly bounded, we know that equivaléntly all voltage and
current vaveforms of(,Afare eventually uniformly bounded. |

The concept of a "unique steady-state solution" is well-known in thg
study of linear systems. In the following this concept is extended to the
study of solutions of (15). |

Def. 6: The differential equation (15) has a unique steady-state

solution if, and only if, for any pair of solutions x'(+) and x"(-) of

(15), both solutions are bounded, and

lim lx'(£)-x" () = 0 ‘ .an
>t ‘

Remarks: 1. 1If (15) has a unique steady-state solution, then its

-11-



solutions are eventually uniformly bounded.

2. It is possible that (17) could be true, .and no solution

is bounded. For example, for the first order differential equation
X =-x+ eZt, (17) is true, but all solutions tend to 4+~ as t +», and

to say that the solutions converge to a unique steady-state is meaningless.

3.’.Equation (17) is an incremental criterion. Often, there

is a particular choice of a steady—state solution. For example, for the
differential equation x = -x, the solution x(t) = 0 is usually called the
unique steady-state solutioﬁ, and by this it is meant that all other soiu¥
tions asymptotically converge to it. Def. 6 does not overtly specify any
particular steady-state solution. There are a number of reasons for this:

(1) As we shall see in Theorem A.2, it is possible to conclude that
(15) has a unique steady—étate solution without knowing any particular
solution §(-).

(ii) Any solution x(-) may be viewed as the unique steady-state solution

“tof x = —x

if such a solution exists. For example, the solution x(t) = e
is the unique stead&—state'solution because all other solutions (including
x(t) = 0) converge to it.

(iii) At times, the "natural" choice of the unique steady-state wave-
form is not a solution at all! For example, the differential equation
X = -x + e-Zt has x(t) = 0 as the unique steady-state waveform, but it is
not a solution.

Def. 7: [12] Let §(-): ]Kl + R™ be continuous. Define

(qQT(§(~)) 4 {% € R™: there exists t > T such that £(t) = g} (18)

-12-
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and

R (5) = Tfe‘mﬂ?q; ) a9

Remark: When(g(-» is bounded,quw(g(-)) is compact and connected in

R". We interpretiqgw(g(-)) as the (closure of the) eventual range of

§(t) as t + o,

II1. Mathematical Methods

In [15] a useful theorem [Theorem B.2] is presented which gi&es con-
ditions under which the solutions of (15) exist for allvt as t >+ (i.e.,
there are no finite escape;time solutions), though solutions may grow
arbitrarily large as t tends to +®. In the following theorem, conditions
are given which guarantee that solutions are bounded,Aor eventually
uniformly bounded.

.Theorem A.1l: [16], [22] Assume there exist constants k., > 0 and

0
kl > Orand a Cl—function C\): R® > ng' such that ‘
lim C\K§) = 4 ; (20)
Hgﬂ»m
and
2% £x,8) 20 -, ¥ixl>ky ,  ¥lgl <k (21)
3@ A [ 2V &® V) Q)
Where = ] Se o 0¥ a. 9
9x axl 3x2 3xn
then for any continuous §(<) such that
lece)l < k yeemt ' (22)
2 1 ’ o

the solutions of (15) are bounded.

5For any set D c lRm, D denotes its closure.

- =13-



Furthermore, if

= £(x,8) >0 ¥lgl >, wlel <k (23)

0 1

then the solutions of (15) are eventually uniformly bounded. In particular,

define ﬁo = gup /Wj(x); then for any solution x( ) of (15) there exists.

ﬂx"<k0
tO € R~ such that
§(t)€‘j<o 4 {{c: CU(;S) < ﬁo} y ¥ t> t0 (24)

Finally, if in addition E(-) is periodic with period T > 0, then (15)
has a solution 5*(-) which is periodic with period T. |

Remarks: 1. The conclusion that the solutions of (15) are bounded
or eventually uniformly bounded is proved in [16] and [22], and is dis-
cussed in [14]. The conclusion that (15) has a T-periodié solution g*(-)
if E( ) is T-periodic can be shown in the following way [22], [18] We
first show that there is a compact and convex set‘ﬂ{o DAK in R" such
that if x( ) is a solution such that x(0) € ‘120, then x(t) € F}( for all
t > 0. This fact can be shown using the eventual uniform boundedness
conclusion. Next, for every x(0) é R®, and corresponding solution x(°*),
the mapping x(0) into x(T)is a continuous map fromj( intoJ( Using
Brower's Fixed Point Theorem [20] we see that there exists x (0) €5ﬂ]<
such that x (T) = X (0). From this we conclude that the solution x (')
is periodic with period T.

2. If (15) is autonomoﬁs, i.e., E(t) = & € ]fn, and the

solutions of (15) are eventually uniformly bounded, then (15) has an

. * oy %
equilibrium point x € T}\O‘ We can reach this conclusion by using the

theorem to show that for every T > 0 (15) has a solution xT(-) which is

14—



periodic with period T. This is true in particular for arbitrarily small
T > 0, and we can show that (15) has a constant solution in ?KO'
3. 1In application to the study of circuits, the difference

between bounded and eventually uniformly bounded waveforms is nontrivial.

For example, the linear network of Fig. 2(a) has no unbounded solutions
(so long as w #1//LC), but the magnitude of the solutions can be arbitrarily
large. On the other hand, the waveforms of the 1ineaf networks of Fig. 2(b)
and Fig. 2(c) are éventually uniformly bounded.
| The following theorem and corollaries are similar to Theorem 19.1

of [18].

Theorem A.2: Assume the solutions of (15) aré eventually uniformly
bounded. Leti Dx 2 ?KO (compact set {:KO is défiﬁed in Def. 5, Eq. (16))
be open and bounded in R, and let DE QCQ(E ( )) be open and bounded in

R". Assume there exists a Cl-function CUA: Dx x Dx > IRI such that

CUA(?E:?S) =0 ’ ¥ ?f € Dx
‘ (25)
C‘}A()fl’}f") > 0 , . v ?fl # }En € Dx
and
w(}f”’f") ().5"}.5")
__A_ax'— g(}fl’g) + ﬂT f(,su,g)
=0, V§'=§"6Dx, VgEDg
Q| (x"»x™) aCU(x",x" @0
—‘A‘E,;.— £0) + ——w— £G&",8)
> 0, : V}S'#)E"EDX, VgGDE

Then (15) has a unique steady-state solution.

-15-



Remarks: 1. This theorem and Corollaries A.1-A.4 are proved or

discussed in the Appendix.

2. We call.CUA(°,°) an Incremental Lyapunov Function. It

can be interpreted in the following way: Let x'(*) and x"(*) be two
arbitrary solutions of (15). Then,CUA(f'(t),f“(t)) is a measure of the
"incremental Lyapunov energy" between the two solutions at time t. We use
(25) and (26) to show lhncl)

A
tro
An alternate interpretation of C\A§-,°) is contained in the following:

(g'(ﬁ),g"(t)) = 0 which in turn implies (17).

Corollary A.1l: The condition in Theorem A.2 requiring that the solu-
tions of (15) be eventually uniformly bounded may be réplaced by the con-

ditions (i) £(-) is bounded, and (15) has a bounded solution, (ii) Egs.

(25) and (26) are satisfied with D_ = R" and D, = R®, and (iii)
lim Q)x',x") = + 27)
lx? =g lse B~ 7~

~ ~

Remark: Here, if g*(-) is the bounded solution of the hypothesis,
then Cbk(g(t), g*(t)) is the "Lyapunov energy" between any other solution
§(.) and g*(-) at time t. Equations (25), (26) and (27) are used to show
that all solutions asymptotically converge to the solution g*(-) which is
therefore called the unique steady-state solution. In the special case
where §*(t) = §* € nfﬁ i.e., §* is an equilibrium point,thencbk(-,f*) is
the standard Lyapunov function.

In the following corollary, conditions are given such that, as in

linear systems, the "transients" of (15) decay exponentially to the unique

steady-state solution.

Corollary A.2: Assume further in Theorem A.2 or in Corollary A.1l

that there exist constants Y, Z'Yl > 0, 74‘3 Y, >0and B >0 such‘that

-16-



for all x', x" € Dx and for all £ E Dg’

v he-xl® < Qatsx < vy le-x® (28)

Y3“§"’~""B_<_ E(JS":{S) i Y4“§"’f""8,

(29)
Then for any continuous £(*) such that CQO (g(-)) c DE and any two solutions

x'(*) and x"(*) of (15) which lie in Dx for all t > 0, we have for all

t >0,

"ry,/2 -t/
[1] e ™Ikt (0)-x"(0)l< Ix' (£)-x"(t) |

Y,
Y, 11/2 -t/t -
< [—ZJ e UL 0)-x"(0)] (30)
Yl ~ ~
where
A BY4 Al BYZ
Toin - Tl | and Tax - —;G (31)

Remark: When the hypotheses of Theorem A.2 are satisfied, the con-
stants 4o Y3 YZ’ and Yl in (29) and (30) exist if, and only if, for

constant B > 0, the expressions

lim 1 O ot x"

"x"x"||->0[||x'_x"[|6 fl)A(Jf s ) (32)
tim |1 2VEE Q&

I -x"1-0] 1"~ 1B oxT fELE s L (xE)

are well-defined, positive, and bounded away from zero, for all x" € Dx and

for all ¢ ¢ DE.

Corollary A.3: TIn Theorem A.2 and in Corollary A.1l, the hypothesis (26)

-17-



may be replaced by the conditions: (i) £(+) satisfies a global Lipschitz

condition, (ii)

aCUA (}5' ’;5") aCUA (}5| ”5") -
——— £G',0) e £(x",8)
> 0, ¥x', x" € D, ¥ € Dg (33)

and, (iii) for any continuous &(-) such that pr(éjb)) C DE; and for any

two solutions x'(-) and x"(-), there exists a time £. € R' such that for

0
any compact time interval
1 & [,r] £ o<t < | (34)
t 1:*2 00— ‘1 2. T )
we have
[ d (x t), "(t)) =0 VtET
dt A ? t : .
= [}5 (t) = x"(t), ¥t€ It] (35)

Remarks: 1. Note that if the definition of I, in (34) is changed

from 1, < Tys to 1, < Tys then this corollary is identical to Theorem A.2

1 1
or Corollary A.l. In other words, in this corollary the hypotheses of the'

LY, (x @.x"®) =

previous theorem and corollary are relaxed to allow —— 3

at isolated times t € Egl

t

2. There are a number of networks where it is pos31ble to
show that there is a unique steady-state solution using this corollary

while it is not possible to do so using Theorem A.2 or Corollary A.l. For

example, at the end of Sec. V we show that the network of Fig. 2(c) has a-
unique steady-state solut1on using Theorem A.2, but the same conclusion is
reached for the network of Fig. 2(b) only by applying Corollary A.3. An

3

autonomous version of this corollary is discussed and applied in [15].
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The next corollary is used in Example 3.

Corollary A.4: In Theorem A.2 and in Corollary A.l the hypothesis

thatCL£ is C1 and that (26) is true may be replaced by the conditions:
: +

(i)Cléis CO, (ii) the right-hand derivative [20]-£L—C1£(§'('),§"(-)) of

dt
Cbh(g'(-), g"(')) exists for every pair of solutions x'(+) and §"(-), and

(iii)

—d:CU (x'(t). x"(t)) <0 veer
dt A\~ = = :

(36)

[;5'(.) # ;5"(.)] = [ag;.ch(g'(t),:s"(t)) <0, ¥te IRl]

Remark: It is also possible to extend the hypothesis of Corollary
A.2 in the same way. Specifically, Eq. (29) may be rewritten in the form
of (36).

An important class of nonautonomous networks consists offnétworks
containing periodic sources. ~ Often, the periodic sources do not generate
periodic waveforms in the network. TFor example, examine the network 61‘.

Fig. 2(a). The capacitor voltage waveform vc(-) has the form (when w # 1//1_.6)
v.(t) = Asint + Bsin—l—t (37)
C vic .

where A and B are appropfiate constants. Now, vé(') is periodiclif, and
only if, V/IC + w € ]Rl is rational. The probability of this is zero (i.e.
the set of rational numbers has measure zero in ]Rl ). Thus we expect that
VC(-) is not periodic. However, for every L, C and w, VC(') is almost
periodic. We make explicit the; definition of an almost periodic function
in the theorem which follows. The theorem also states some important
properties of almost periodic functions which are used in the proof of

Theorem B.3. The following three theorems are stated without proof; references
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include the classic work by Favard [23] and the modern treatment by

Yoshizawa [18].

Theorem B.1l: TLet £(+): Rl

> R" be continuous. The following state-
ments are equivalent:

(i) &(*) is almost periodic

(ii) for any € > 0 there exists 2(¢) > 0 such that every time interval

of length 2(€) in HJ' contains a time t such that

lg(e+ty - g(e)l < ¢ , ¥ter - (38)

Here, T is called the e-translation number of'g(-).

(iii) there exists a countable set of real numbers {wk} called Fourier
exponents and a corresponding countable set of vectors in ]fn{gk} called

Fourier coefficients such that

jw, t ‘
ICEP T (39)
: — ¢ | .

where j 4 /3, Let £;€ denote the countable set of real numbers which

are integer combinations of the Wy The set S;g is called the spectrum

(also known as a o-module) of E£(*).

‘ oo
(iv) For any infinite sequence of real numbers {tk}k=l there is a
subsequence {tk } such that the sequence of functions {E(5+tk )} converges

L %
uniformly to a continuous function §&: ]@1 > R, :

Remark: While (ii) is the formal definition of an almost periodic .
function, much insight can be gained by gxamining (iii): Eq. (39) states
that the continuous §(°) can be uniformly approximated by the C -summation
on the right side of (39). Thus, for examplg, vC(;).in (37) is almpst
periodic. The relationship between almost periodic and periodic functions

is clear using statement (iii)$ an almost periodic function g(-) is periodic
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if, and only if, for any integers k and &, wk/mz is rational. Carrying
this comparison further, we interpret the spectrdm S;g as the set of
harmonics generated by the "frequencies" W * Note also that the continuous .
almost periodic function £(+) is uniformly continuous and bounded.

We know for the linear networks of Fig. 2(b) and Fig. 2(c) that all
current and voltége waveforms éonverge to a (unique) periodic waveform.
That is, the waveforms are "asymptotically" periodic. This concept may be
extended to almost periodic waveforms and a formal definition is given in
the following theorem due to Yoshitawa [18].

1, R™ be continuous. . The following

Theorem B.2: Let £(*): R
statements are equivalent:

(i) £(+) is asymptotically almost periodic.

(ii) £(*) may be (uniquely) decomposed in thevfollowing way

E(t) = £, (6) + £ (8), ytER (40)

where EO(°) is continuous and almost periodic, gT(o) is continuous and

~

lim gT(t) =
to-teo

O

(iii) For every € > O there exists £(¢) > 0 and Te-e ]ﬁl such that

every time interval of length &(g) in.]R1 contains a time T such that

| gt - g(t)!l < g, ¥t>T, (41)

(iv) For any infinite sequence of real numbers {tk}zél such that

lim tk = 4o there exists an infinite subsequence {tk } such that the
koo 0 .

sequence of functions {E(-+tk£)}converges uniformly to a continuous

function £(+): ]Rl-

> R".
We next examine the behavior of the solutions of (15) when g(.) is

periodic, almost periodic, or asymptotically almost periodic, and (15) has
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a unique steady-state solution. We begin with the observation that if
g(-) is T-periodic, and (15) has a unique steady-state solution, then
every solution f(') of (15) is asymptotically T—periodic. This conclusion
comes from Theorem A.l. We can extend this observation to the case where
g(-) is asymptotically almost periodic:

Theorem B.3: [12], [18] Assume §(°) is asymptotically almost periodic
and is Lipschitz continuous. Assume (15) has a unique.steady—State solution.
Then every solution 5(;) of (15) is asymptotically almost periodic, and in
the steady state Qx C .Qg.

Remarks: 1. This theorem is proved by Shaeffer'[12]‘under the
additional assumption that there exists an Incremental Lyapunov Function:
fl/A satisfying the conditions of Theorem A.2. In [18] Ydshizawa proves
the theorem in the more génepal case, however he assuﬁes that §(‘) is
almost periodic rather thén asymptotically almost periodic. His proof uses
the equivalence of (i) and (iv) of Theorem B.1 apd by the similar equibalence
of (i) and (iv) of Theorem B.2 we obtain the theorem as presented here.

Note that since §(') is Lipschitz continuous and is asymptotically almost
periodic, it satisfies a global Lipschitz condition;

2. The conclusion that Qx Cc ng in the steady-state means
that when we partition-the asymptotically almost periodic functions x(-)
and £(+) as in (ii) of Theorem B.2, then Qx c Q |

E L]
0 0 .
case, the conclusion may be interpreted as stating that the "harmonic content'

As in the periodic

of go(-) contains no component not found in the harmonic content of go(-).

The following mathematical theorem is discussed and proved in [15]:

Theorem C: Let f: RrR® » lf? be a.Cl-strictly—incféasing diffeomorphic

state function mapping R" onto R". Define F: Rr" » ]fl to be the unique

2
C -function such that
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VF(x) = £(x), ¥x € R F(f_l(O)) =0 (42)

Then the following properties hold:

A-1
F(-) is a strictly-convex function6

A-2

F(x) > 0 ¥ x # £1(0) (43)
A-3

lim _1 = 4o ’ ,

“x"%m‘WgW F(x) = + , (44)
b

lim l1 T

—— x f(x) = 4= ' (45)

A-5 For each k > 0, the set
A n ) '
K= {x€R: F(x) < k} (46)
.6, n
is compact and convex in R .

IV. Networks with Eventually Uniformiy Bounded Solutions

Theorem 1: Assume the nonlinear dynamic network fJU is described by

the state equation (8). Assume the capacitor-inductor function h is a

~

_ n
Cl-state funct:l.on,7 and there exists a Cz-function Ing: RP . IR]' such

6AA function F: R" » ]Rl is strictly convex if, and only if, for each
o € (0,1), for each pair x', x" € R°,
F((1-0)x"+x") < (1-0)F(x') + F(x")

A set S C R" is convex if, and only if, for each o € (0,1), for each
pair x', x" € 8, x; & (l-0)x' + ox" € S.

7'I'he condition that h, is a state function is equivalent to requiring that

the capacitors and inductors be reciprocal. This is a weak condition and
is satisfied by most capacitors and inductors of practical interest. This
assumption is made throughout this paper.
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that VH (z_ ) = h_(z_). Let h_and H_ satisfy
P -P ~P .P ~P .P
1lim h (z) ==
lz > PP :
~P 47)
lim H(z) = 4=
Iz [ P ~P
~p
1 s '
Let kl > 0 and assume uS(-): R > R is continuous, satisfying

f uS(t)II' < k1 for all t € RY. Under these conditions,

1. If gp(-,g ) is eventually passive for all gs S R?S such that
“ysn_ﬁ kl, then every solution Ep(') of (8) is bounded..v

2. 1f gp(’,gs) is eventually strictly passive for all ug € ];H; such
that "98" < k;, then the solutions of (8) are eventually uﬁiformly bounded.

In particular, let k > 0 be the constant such that

T -
§p§p(§p’gs) %‘0 R ¥ ﬂ§pﬂ > k, V‘ﬂgsﬂ <k | (48)

then there exists a positive constant ko such that

[121 > k) = [ui:pu = 1h ()l > k] | 49)

and, if we define the constant

~

A ‘ _

k. = sup H (z) . (50)

0 gz i<k, PP , |
~p—0

then there exists a compact set

A np ~ .
Z = ER : H k (51)
{z, € o (&) <

p 0}

‘ ' . o 1 ,
such that for any solution zp(*) of (8) there exists a timerto € R such

that

-24—



¥t>t (52)

Ep(t) € Zp ? 0
Furthermore, if gs(-) is periodic with period T, then (8) has a periodic
solution with period T.

Proof: First, from (47) we conclude that for every k > 0 there exists
a ko > 0 such that (49) is true, and also from (47) wé conclude that ﬁo in
(50) is well-defined and that Zp in (51) is compact. The proof comes
directly from Theorem A.l where C\k-) = Hp(-). ’ n

Remark: From Theorem C we know that (47) is sétisfied.if bp is a
Cl-strictly'increasing diffeomorphism mapping ];H) onto I;&ﬁ

We next examine conditions placed upon the resistors of;dA’such that
§p has the appropriate properties of Theorem 1. Fi:st, we note that even
if egch resistor function gRa(-) of;JM is eventually (strictly) passive,
the composite resistor function gR(~) may not be eventually (strictly)
passive. This fact is illustrated by the two resistor v - i curves of .

Fig. 3; assumeidA[contains solely the two resistors of Fig. 3. Resistor

R1 is eventually strictly passive, while R2 is strictly passive. Yet

g
g = <gR1) is not eventually strictly passive. To show this, fix ve = 3/2,
R2 1
then
vT w,) = | -9/4 + (v )2 ¥
YRER YR R, ’ | I"RZI <1
~0/4 + ¥ |v
T R vg | > 1
R2 2
(53)
<0 , ¥v,6 € r!
. R
2
The reason that gr is not eventually strictly passive is because while R2
is strictly passive |v i | <1 for all v, . It is shown in [14] that if
Ry Ry Ry
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T
lim [x, ] [g, (x, )] = 4= for each o = 1,2,... then indeed g_ is
I, | R, 'ER TR 143+ 5lps Er
~a

eventually strictly passive. When the network contains constant independent
sources, it is shown further in [14] that the requirement for g to be

1 T
eventually strictl assive is 1i; —_— =4+, H
y y P v m Tx, 1 (%) gRu(gcRu) ® owever,

"§R fl-+0
a
with conditions of this form, it is no longer possible to prescribe an

eventually passive 8r that is not eventually strictly passive. Hence, in .
the following theorem, we prove only that gp is eventually strictly fassive
as in (ii) of Theorem 1.

Theorem 2: Assume ﬁhe dynamic nonlinear networkcJA[is described by
the state equation (8). Assume the capacitor—in&uctor function Bp is a
Cl—state function, and there exists a Cz-function Hp: .]Rnp > IB; sqch that
VHp(fp) = gp(gp). Let bp and Hp satisfy

lim Ilh (z )l = +=
Iz, I PP

54)
1lim Hp(gp) =.+¢°

Iz lsw
~P

Assume further that gAfsatisfies the Fundamental TopologicalyAssumption;

Under these conditions if each resistor function gR is.eventually strictly
[+ ]

passive, satisfying

f X oo -“"SR

lim 1 T _ ~

o o
then all voltage and current waveforms of(]“ are eventually uniformly
bounded. Furthermore, if the sources of\JU are periodic with period T,

theni,A|has a T—pefiodic solution.

Proof: This follows from Theorem 1 and Theorems 8 and 9 of [14]. ™
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In special cases it is possible to relax the condition (55) on the
resistor functions 8g *
Corollary 1: Assume in Theorem 2 that<,A1contains only voltage-

controlled resistors (resp., current-controlled resistors), i.e., for each

resistor R = v (resp. = i_ ). Further assume that all
@ Ry TRy ' TRy T SRy
independent sources ofLJU are voltage-sources (resp., current-sources).

Then condition (55) may be replaced by

Lim G ) g (kg ) = e o (56)

Proof: This proof also follows from Theorem 1 and Theorems 8 and 9

of [14]. x

Theorem 2‘and,Corollary 1 are discussed (in'their autonomous form)
éxtensively in [15]. 1In this paper they are used in conJunctlon w1th |
theorems establishing the existence of a unique steady-state solution. We
- present below two examples which are re-examined in Sec. V.

Example 1:. Examine the transistor circﬁit of Fig. 4. The transistor
may be modeled as a groundedliwo-port resistor using the Ebers—Mollbequation
[8]. Let i, and Vg be the current and voltage respectively‘of the emitter-

E

base junction, and let iC and Ve be the current and voltage respectively

of the collector-base junction. The resistive two-port is described by

its constitutive relation:

( E/VT' ' .

i v 1 I_.(e -1)

E\ _ E\ A | { “Es V.

<1C> - gtr(vc) - [—uF 1 ]( (evC/ T‘fl)) ‘ , (57)

where the subsc?ipt,"tr" denotes transistor. 1In (57),»IES,'ICS, Qps VT’

and op are positive constants, and furthermore qR < 1,.aF <1, and aRICS =

aFIES' Now, it can easily be shown that
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C C

v, /v, v./V
E T cC''T
+ qRICS(vE vc)(e -e )

T
v v v._./V
(vE> Ber (vE) = (I~ap)Ipgvp(e Tl 4 (A2 )Tagve(

1)

(58)

Hence, we conclude (see [15]) that'gtr is strictly passive and satisfies

(56). The state equation of the network can be written in the form 8,

where
1
v q - 0 0 q
C1 C1 C1 L C1
v - . |_] O = 0 q
Co | =Bl G Cy L Cy
v q 0. 0 =J\q
C3 C3 C3 C
and
i v E_(t)
C 1 'S
i = - v E.
i . v E '
C3 C3 2
G1+G2+G3+G5+G6 —GS-G6 | G6 Vcl
= - _GS-G6 G4+GS+G6 —G6 vc2
| G “C¢ %*°1) \'c,
B | Vcl/ Yr |
1 - (IES(e.V P "1)> 6 G G5 [Eg(t)
C T
- - 2 - - -
op 1 Ics(e 1) 0 0 G5 El,
0 0 0] 0" 0 E

(59)

- (60)

We apply Corollary 1 and conclude that if ES(°) is continuous and bounded,

then the voltage and current waveforms of the network of Fig. 4 are eventually
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uniformly bounded. Furthermore, if Es(o) is periodic with period T, then
there is a T-periodic solution. | -

Example 2: The netwérk of Fig. 5. is a straight—forward illustration
of Theorem 2. Since each network element is described by a one-dimenéional
Cm—strictly-increasing bijective function, the hypotheses (54) and (55) of
Theorem 2 follow imﬁediately. Thus, the voltage and current waveforms of
the network are eventually uniformly bounded. Furthermore, there is a
~ periodic solution with frequency w = 1. 1In Sec: V we display a periodic
solution. We also present an '"almost subharmonic” solution.

In the next two theorems and corollary, the methods used in Theorems
1 and 2 are extended to show that under certain conditions a "small signal"
Ug (¢) yields a "small 51gnal" z ( ). The main result is:

Theorem 3: Assume the nonlinear dynamic network ¢ k‘is descrlbed by
the state equation (8). Let the capacitor—inductor function h_be a Cl-
strictly increasing diffeomorphic state function mapping I:&) onto IRnp.

Let the function g (. »Ug ) be a strlctly 1ncreasing eventually strlctly
n

passive C -diffeomorphism mapping R p onto R p for all ug € R S
n
Under these conditions, for any ug €ER S, and any € > 0 there exists

* n g * . .
§ > 0 and a unique zP €ER S such that gp(hp(zp),us) = 0. Moreover, for

any continuous and bounded us(-) satisfying
"pr(‘ls(')) - gl <8 - (61)

the corresponding solution zp(-) satisfies

8
CzlégS(O)) is the ultimate range of Yg (e ) (Def 7) Equation (61) has
the ollow:.ng interpretation: for any ug € ZE Zu (e )), we have

“us u, u < 60
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u@w(gp(.)) AR G

regardless of the initial conditions.
Before we present the lengthy proof of this theorem, it is instruc-

tive to present first a corollary and some remarks.

Corollary 2: Assume the functions Bp and gp satisfy the hypotheses
% n ‘ n
of Theprem 3. Then for every ug ER S there exists a unique zp € R S

x % :
such that gp(@p(gp),gs) = 0. Moreover, for any continuous gs(') such that

* .
lim yo(t) = yg (63)
too
the corresponding solution §p(-) satisfies
* ,
lim z_(t) = z (64)

P

£t

regardless of the initial conditioms.

Remarks: 1. The Cl—strictly increasing diffeomorphism gp(-,és)
mapping ]Rnp onto anp is eventually strictly passive if it is a‘state
function (Theorem C) or if it is a uniformly increasing function (see [14]).

2. Corollary 2 is an extension of Theorem 5 of [15] where

, * ,
the same conclusion is found assuming gs(t) = gs, and without assuming -that

g

. : : *
gp(-,gs) is eventually strictly passive for all ug ER . Note that Ep

* :
is not an equilibrium point of (8) unless gs(t) z ug. That is, gp(t) = Ep

is not a solution of (8) which is driven by a time-dependent input gs(t).

* n
Proof of Theorem 3: First, we conclude that there is a unique gp €ERP

-~ ~

* % *
such that gp(bp(gp),gs) = 0. This is because the function g (Pp(-),gs)
is a composite of two bijections and is therefore itself a bijection.
Next we see that the‘hypotheses of Theorem 1 are satisfied and thus the

solutions of (8) are eventually uniformly bounded. That is, there exists
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a compact set Zp c ]Rnp such that for every solution gp(-) of (8) there
is a time t,; € R' such that g.p(t) € Zp for all t 2_'1:1.

In order to show that for every € > 0 there exists 6 > 0 such that
(61) implies (62) we first derive the constants 'y > 0, v, > 0 and e' > 0,
time ty € ]Rl and the compact set Zp'(e') Cc Zp: First assume § > 0 is known
and (61). is true. Since CDm(gs(-) ) is closed, there exists time to € IRl

such that

*
[]98(.) - l‘s“ < 8, ¥Ft>t (65)

0

Furthermore, assume for any particular solution zp (+) in this proof that
to > tl; i.e., for any particular solution gp(-), we can assume also that

Ep(t) € Zp for all t > ¢t Next, using Theorem C we conclude that Zp (in

0
(51) of Theorem 1) is also convex. Thus the strictly increasing function
bp(.) and the strictly increasing function gp(',gs) are uniformly increasing
in Zp[llo]. More specifically, there exists constants Yl > 0 and Y2 >0
such that [14];

1_ T ' _ " vty 2
(58 (8, g, (pon0)) 2 vy

(66)
¥ h_l(x'), h_l(x") €z
~p ~P ~p ~P P
*
¥ UBS-HSH < §
and
'~z (0 z")-h M) 5 v, 1z'-z" 12
=’ \7p P’ pp’) 2 2"%p7F
¥ El;’ f; € Zp (67a)

from which we obtain [15] '



e

PR EUCIR

~ds s,

Theorem A.l is satisfied. We have only to find a constant k

Ty " v_,u ¥yz'.z2"e 2z 67b
I Gzp)-h Ol > v iz -2 , z250%p € Zp (67b)
Because g_ is continuous, for every €' > 0 there exists § > 0 such that for

~

all lug-ugl < &

* * % %*
- = ]
oo (1 20 -15) = (o o5 ) = Dy o )] < (68)
We now reapply Theorem A.l; the function h () - (z ) is a Cl-

strictly increasing diffeomorphic state function mapping ]R P onto IR p
hence using Theorem C we can define the Cz-function CU R p > ]R1 such
that ch(gp) =hy (gp) - t_}p(gz). From Theorem C we conclude that (20) of
0_>_ 0 such that
(23) is true. '

Using Eqs. (66), (67) and (68),
35\/(3 ) - . AT
9z §p(hp(§p)s93) PP(EP)‘EP(Ep)d [gp(yp(gp),us)]

-

~ * 3 » *
= - - h
by 20~y (2, | [8,(Bp (2,085 = £p(1p (25 +25)

J

-3
)

4
—

+ oG on @] (b, a0 )]
z )-—- Z V4 u
L~p ~p° ~p ~p ] Lgp ~p ~p ’~S

|v

%*
Ih -h 12 ~n -h_(z_)le
Y, ~p(gp) ~p(§p) II.,P(gp) ~p(~p)ll

* *
> Ih_(z)-h_(z vy, lz -z"1 - ]
2 I,z )-h (z ) P&Yz z,72,0 — €
£’ VA
*I < & (69)
¥ lug-ygl
Define the positive constant
ke & max Wz ) a0
Iz -Z;II< g'
Y1Y2
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n
and the compact set in R P

8 '
z(e) 2z s V(z) < k) (71)

It follows from Theorem A.l that
R (z (-)) Cz (") (72)
*®\~P
We now prescribe Zp(e') such that (61) implies (62): For every € > 0
define the positive constant

k(o) & min Q)(z )
I 2" 5’; l<g P

with Yl and Y2 defined in (66) and (67). Pick ' > 0 such that for k(e')
defined in (70), k(e') < k(g). With €' so chosen, find § > 0 such that (68)
is true. Thus, from (69) and (72), we conclude that (62) is true. x

The following theorem is similar to Theorem 3 and Corollary 2 but with

the mathematical conditions on gp(-,gs) replaced by more circuit-theoretic
conditions involving the constitutive relations of the internal resistors

and topological constraints.

Theorem 4: Assume in the dynamic nonlinear networkuu that the

capacitor-inductor function h_ is a C]'-strictly increasing diffeomorphic
n n
state function mapping R P onto R P, Assume u\‘ satisfies the Fundamental

Topological Assumption and let each resistor function 8r be a Cl-strictly
~Rqg
ng ng,
increasing homeomorphism mapping R onto R , satisfying
]

. 1 T ~
lim ——n-"xR [(}ERG.) gRa(gRa)] = oo (74)

IIE'R oo "= o

Under these conditions, the state equation (8) describing Jf exists, and
n

*
1. For any Ug ERS and for any € > 0 there exists § > 0 such that
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for any continuous bounded gs(') satisfying

uCPm(QS(.))_Q;u <§
n

* * %
there is a unique g-p € R S such that gp(hp(zp),gs) = 0, Moreover, the

~

(75)

corresponding solution zp(°) satisfies
*
ﬂme(zp(ﬁ) - ol <e (76)

regardless of the initial conditions.

* » 3
2. If, in addition lim us(t) = Ug» then the corresponding solution

oo
*
gp(') satisfies lim fp(t) =z, regardless of the initial conditions. Fur-
oo ’

thermore, every voltage and current waveform of(dklasymptotically converges

to a unique constant.

Proof: This theorem follows directly from Theorem 3, Corollary 1,

and Theorems 8 and 9 in [14]. x

»

Remarks: 1. As we have previously noted, (74) is true if the function

g is (in addition to the other conditions of Theorem 4) either a uniformly
- B —

increasing function or a state function. This remark also applies

to Theorems 6, 8 and 10.which follow.

2. Using Theorem 11 of [14] we may relax the condition that

;A‘satisfies the Fundamental Topological Assumption to allow loops of capac-
itors and constant voltage sources, and cutset of inductors and constant cur-

rent sources, Indeed this remark also appliesto Theorems 6, 8 and 10 which
" follow.

For a complete discussion of this extension of these theorems, see

[14] and [15].

V. Networks with Unique Steady-State Solutions

In this seétion we apply Theorem A.2 and Corollarieé A.1-A.4 to

<
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establish that a variety of nonlinear dynamic networks have a unique steady-
state solution. In each of these theorems it is required that the resistor

functions gRa are strictly increasing. We shall see that this condition

ieads to an intuigive application of Theorem A.2 and its corollaries. Before
we derive these theorems, however, it is instructive to point out that Theoren
A.2 may be applied to networks whose resistors are not strictly monotone.

For example, Sandberg [9] (this article is also reprinted in [5]) uses a

form of Corollary A.4 to show that networks containing transistors, linear

resistor and voltage sources have unique steady-state solutions (the network
dynamics are due to nonlinear capacitors which are intrinsic parts of the
transistor model) when certain conditions are satisfied. Sandberg's method
can be easily extended to allow external capacitors and inductors which are
not intrinsic in the device's circuit model. The following example is a case
in point.

Example 3: Examine the network of Fig. 4 where the transistor is
described by the Ebers-Moll equation (57), and the network state equation
is given (implicitly) by (59) and (60). .

Claim: If

G6 < min[G1+G2+G3, G4, G7] (77)

then for any bounded and continuous ES(-), the network has a unique steady-
T

OF qCB(->] RO

~

state solution. That is, each solution [qc (), 9
1 2

of (59) and (60) converges to a unique steady-state solution. Furthermore,

if Es(o) is Lipschitz continuous and asymptotically almost periodic, then

each solution zp(-) is asymptotically almost periodic, and in the steady-

state, Qz Cc Q‘E .
: P S
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Remark: In this claim as well as in the following theorems, we will

show that the solutions of the state equations converge to a unique steady-

state solution. From the assumptions discussed in the Introduction (e.g.,

the Fundamental Topological Condition) this leads us to conclude that each

voltage and current waveform converges to a unique steady-state. This
conclusion is abbreviated by the phrase "the network has a unique steady-

state solution." 1In the same way, the conclusion that Qz C QE in the
p S

steady-state implies that for each waveform of the network we have the
same conclusion.
Proof: We have shown in Example 1 that the solutions of this network

are eventually uniformly bounded. We apply Corollary A.4: Define for

. T T
each z' = [q' » q' 5 q! ] and z" = [q" , q© , q" ] the Incremental
P LG Gy Gy P LG G G
Lyapunov Function CUA: 1R3 X 1R3 - IRl
A
CU(Z',Z") a Iqt -q" l + 'qc -q" | + lqv -q" I (78)
A~p’~p C; ¢ c, C, Cy Cq

‘ 1
For any differential function x(*): ]Rl > ]Rl, define at each time t € R

(

sgn(x(t)) 4 1, if x(t) > 0, or
if x(t) = 0, and x(t) > O
<—l, if x(t) < 0, or
if x(t) = 0, and x(t) <0
LO, if x(t) = 0, and x(t) = 0 (79)

It is easy to show that for any pair of solutions gl')(') # 5;(°), the right-hand

derivative of C\)(z'(-),z;(-)) takes the following form:
- a-p -
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+
d ~ 1] " —
e Q) A(zpccT),zpm) =

- 1 1 ]
[ 1] -0 - L r.t N
sgn(q; —qg )| | G #G,¥644646,  —G=G, Gy ¢ lag —9¢ ]
1 "1 ! 1
- |sgn(q) -9 )| |-G<-G G,+G.+G, -G = [q" -q" ]
C, ]S 6 4775776 6 22 ¢y e,
sgn(ql —-q! ) G -G G +G = [q} -4 ]
|7 ¢ T L6 6 6 7] Leyiey e

] 11] V
qclfvTcl qcl/ °1
'Sgn(q(': _q" ) Tr 1 -0 IES e -e " .
- 19 [ r] ag,V1C2  ag,/V1lr

- -e

[sgn(q), -qn )] [% 1
c, c,’-

o

' 1 | 1 ' " ‘
< =-=1q} -4 [G +G,+G,-G ] - = |4, -qa [C -G ] - |as -1 |[G -G ]
C1 I Cl Cl 1727376 C2 C2 C2 4 76 C3 C3 C3 7°6

1 "

qcllv'rcl qcl/VTc%)
- L | - _ [P 1 ]
lqc1 qC1| IES(l af) e e /(qC 9 )

1 1
qézlvrcz qulvrcz
e -e /(qé -qg ) (80)

-l -q" | 1..(1))
C C CS r 2 2

2 "2

The first three terms on the right side of (80) are negative because of
(77). The last two terms are negative because er is a strictly increasing

function of x. The remaining conclusions come from Theorem B.3. X

Networks with Linear Capacitors and Inductors

Theorem 5: Assume the nonlinear dynamic network LAlis described by

the state equation (8), where the capacitor-inductor function h_ is linear;

i.e.,

h =T ‘ 81
B (2) =Tz, (81)

n_xn '
where fp emrP P jg positive definite symmetric. Assume further that

gp(°,us) is a Cl—strictly increasing, eventually strictly passive function

g

for all ug € R °. VUnder these conditions, for any continuous and bounded
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gs(‘), (8) has a unique steady-state solution. Furthermore, if BS(') is
asymptotically almost periodic and Lipschitz continuous, then each solu-
tion gp(‘) of (8) is asymptotically almost periodic, and in the steady
state, gzp c Q“s.

Proof: The hypotheses of Theorem 1 are satisfied and the solutions

of (8) are eventually uniformly bounded. We apply Theorem A.2; define

‘ 1
the following Incremental Lyapunov function CVA: RPxmrP +m:
- 'yz" z'-z" I_(z'-z7 82a)
Vyzloz) & (2h-2'r @mat) (

The function:v is C°°, and (25) of Theorem A.2 is satisfied. We next

show (26) using the strictly increasing property of g (shu S

BCU (z',z") Q}(zv z")
202
—-——u“az. g, (I 2! u0) P A ug)
Z, ~p~P oz, PP’
=2+ (z!-2""r [g (Tzpug) — gL z"u )]
7% o5 B ~s
=2+ (T 2'-T 2" T z - r
T,z pp>[ <pp 1) - 8 (T2 u0)]
. g
> 0, ¥ 5; 2z, ¥u €R (82b)

Hence, (8) has a unique steady-state solution. The periodic nature of
vthe solutions comes from Theorem B.3. x

The condition that gp(-,gs) is strictly increasing means that gp(o,gs)
is a homeomorphism in ]Rnp . By strengthening this condition slightly, we

can apply Corollary A.2 to obtain the following result:

Corollary 3: Assume in addition to the hypotheses of Theorem 5 that
: n n n
1_ 9 P P S
gp(-,gs) is a C'~diffeomorphism” mapping R * into R © for all ug € R ".

9Sll'“:“l g (+»u.) is a homeomorphism, it is in addition a Cl—dlffﬂaomorphism
if, and only if, it is a local diffeomorphism everywhere in R p; jnf and
only if, the determinant of its Jacobian is nonzero for all z € R p’ for
all yg € R'P. R
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Then for every continuous and bounded u_(.) and for every pair of solutions
zl')(.) and z;(-) of (8), there exists a constant y satisfying 1 >y >0 and

> 0 such that

. i > T
times Tmax and T satisfying Tmax 2 Toin

min

~-t/1
v1t/ 2 minugé(O)-g;(o)u < lzp(6)-z3 ()]

1/2 -t/t

e Nzl ) , ¥E20 (83)

S by

- A A

Furthermore, if ) = max. eigenvalue [Ep] and A = min. eigenvalue [EP],'
A

then vy = =,
A

Proof: We apply Corollary A.2. First, we see that from (82), Eq. (28)

n

is satisfied for all z;, gg ER p’ where Yy = A, Y, = A, and B = 2. Next,
- n

since the solutions of (8) are eventually uniformly bounded, let Zp CR P

be any compar::t and convex set which contains EI')(-) and E;(') for all t > 0.
Let DuS CR S be any compact set containing tl}e bounded gs(-) for all

t > 0. Then, the strictly increasing Cl-diffeomorphism gp(-,gs) is strongly
uniformly increasing [14] on the compact set Zp, unjformly for all u, € Du .

S S

We can find constant Y > Y > 0 and form an equation similar to (14) which
holds for all g € Du . The verification of Eq. (29) of Corollary A.2

S
follows directly from this. x

Theorem 6: Assume in the dynamic nonlinear network Jj that the

capacitor-inductor function hp is linear; i.e., hp(zp) =T 2z where T
n_xn N s mbe
RP P g positive definite symmetric. Assume LN satisfies the Fundamental

Topological Assumption and let each resistor function gRa be a strictly
D n
a o

increasing homeomorphism mapping R onto R and satisfies

. 1 T . ‘
— = 4
ﬁlm | I, 1 [(gF) g, (x )] 4w ) (84)

Under these conditions, the state equation (8) describing \_N exists, and

- 39—



for any continuous and bounded gs(-), LAlhas a unique steady-state solution.
Furthermore, if ES(.) is Lipschitz continuous and asymptotically almost

periodic, then every solution of<¢Alis asymptotically almost periodic and,'

Ny P ngS
morphism mapping R~ onto R , then for any continuous and bounded gs(-)

in the steady state, £}z CIS}U . Moreover, if each gRa is a Cl-diffeo-

and for any two solutions E;(') and gg(o) of (8), there exists a constant

tisfyi > >
Y satisfying 1 > vy > 0 and times T ax and T satisfying Thax > © >0

min min

such that (83) is true.

Remarks: 1. This theorem is proved using the previous theorem and
corollary, and the results in [14].

2. 1In [15], an algorithm is presented which computes Yy
and T ax of (83). The algorithm.does not require forﬁing the state
equation (8). Rather, the algorithm requires. knowledge only of the
individual network constitutive relations, and their interconnections.

Example 4: We apply Theorem 6 to the network of Fig. 6, and conclude
that the network has a unique éteady—state solution which, in the steady-
state, is periodic with frequency w = 1/2. We apply the algorithm in [15]
to conclude that for any pair of solutions E;(') 4 [¢£('),qél('),qé2('5]T
and gg(-) = [¢£(-),qcl(-),qu(~)]T, we have for all t >0

. -t/8 ,
Iz (£)-2p ()1 < V20121 (0)-27 (O) e _' | (85)

RC and RL Networks with Linear Resistors

Theorem 7: Assume the nonlinear dynamic neﬁwork<d&[is described by
- L 1
the state equation (8). Let the capacitor-inductor function h be a C-
n
strictly increasing diffeomorphic state function mapping R P onto R P.

Assume gp is linear; i.e.,
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- (86)
%p(fp’gs) Gp}'sp + gSES
n_ xn n6<ns
where Gp erP P is positive definite symmetric, and G-S €ER .

Under these conditions, for any continuous and bounded gs(-), (8) has a
unique steady-state solution. Moreover, for any pair of solutions gI')(-)
and §;(~) there exists a constant Y satisfying 1 > vy > 0 and times T ax

,_ satisfying Tt > T
and Tmin atisfying max >

> 0 such that
min o
[Y]llze—t/ T“’-inllz' 0)-2"(0) Il < lz! (£)-2"(t)I
~p- P = %p 7 <p
1/2 -t/T
<B1 e "z 021 )1, ¥t>0 (87)

Moreover, if ug is Lipschitz continuous and asympto;ically almost periodic,
then each solution gp(t) of (8) is asymptotically almost periodic and, in

the steady-state, 9 c 9 .
z — “u
P S
Proof: We will apply Corollary A.2 to show (87). The remaining con-

clusions follow from Theorem B.3. First note that the hypotheses of

Theorem 1 are satisfied, and the solutions of (8) are eventually uniformly

n n
bounded. Define the following Incremental Lyapunov function CVA: "RP xmP
> ]Rl :

T -1
4 z'. z" é z'-z") "G z'=z" 88
fUA(- %) T ) S 77 %

The function CUA is Cm, and (28) of Corollary A.2 is satisfied, where
B =2, Yy = min. eigenvalue of [gp] and Y, = max. eigenvalue of [gp]. Next,

Yz, 2 3l (2! ,2") -

' ~ "
52" [gpl.}p @Q*‘fs‘fs] + 52" [ by (fp)+?si'sJ
~P ~P . .
A T -1
= 2(z'-2")"¢ |6 h (z")-C h "]= 2(z'-z2")}h 'Y-h (2" ] : 8
e A AN O L0 L MR N B

Since the hypotheses of Theorem 1 are satisfied, we can assume that the

41~



right side of Eq. (89) is evaluated for gé,gg € Zp where Zp is compact and
convex. Then there exists a constant Y2 > 0 such that (67a) is satisfied,

and this equation together with (89) shows that (29) of Corollary A.2 is

satisfied. x

Remark: The key condition in this theorem is that gp is symmetric.
That is, we know [14] that if(J&‘contains strictly passive linear

resistors such that the Fundamental Topological Assumption is satisfied,

then gp in (86) exists and Gp is positive definite. Matrix Gp ﬁay be

symmetric ifc,AIcontains linear controlled sources, but when no such

sources exist, matrix gp is not symmetric if(JAlcontains'EgEE capacitors
and inductors [7]. Hence this theorem in general may be applied only to
RC andvRL networks. The following theorem is stated for RC networks, but
its dual applies immediately to RL networks.

Theorem 8: Assume the dynamic nonlinear network LAjcontains no
inductors and let the capacitor function 9 be a Cl-strictly increasing

: n n S .
diffeomorphic state function mapping R P onto R P. Assume JI satisfies

the Fundamental Topological Assumption and let each resistor function 8p
"o

be linear; i.e.,

B, p,) " Safy, o -0

('}
n,xn, : .
where G, € R is positive definite symmetric. Under these conditionms,

the state equation (8) describing LAJexists, where gp is given by (86),

and for any continuous and bounded gs(-), gAJhas a unique steady-state

solution. Moreover, for any pair of solutions g;(-) and g;( ) of (8)

(where zp = qc) there exists constant Y > 0 and times Toa > 0

>
x = "min

such that (87) is true. Furthermore, if gs(-) is Lipschitz continuous



and asymptotically almost periodic, then every solution of LN is asymp-
totically almost periodic and, in the steady state, Qz C g“s.

Proof: Tﬁe important part of this theorem is the conclusion that if
each Ga is positive definite symmetric, then the resulting (}p in (86) is
positive definite symmetric. This fact comes as a corollary of theorems

in [21]. The remainder of the proof follows from Theorem 7 and results

in [14]. X

Networks with "Small Signal' Inputs

Theorem 9: [12] Assume the nonlinear dynamic networkdfis described

by the state equation (8). Let the capacitor-inductor function h be a Cl-
n

strictly increasing diffeomorphic state function mapping R P onto R P s
oh_(*) n
and let gg-s-— be (locally) Ligschitzlo continuous everywhere in R P,
Assume gp( -,gs) is a Cl-strictly increasing, eventually strictly passive
n n_ n
diffeomorphism mapping R P onto R P for all Ug e R S. - Under these con-

. n
ditions, for every Ug € R S there exists § > 0 such that for every

continuous and bounded gs(-) satisfying

ufpm(gso)) - g;u <6

(91)

whereCQm gs(-) is the eventual range of uS(-), Eq. (8) has a unique steady-
state solution. Furthermore, if gs(-) is Lipschitz' continuous and asymp-
totically almost periodic, then every solution zp( ) is asymptotically

almost periodic, and, in the steady state, Qz c Qu .
P S

10 : n
That is, for every 5; € R P there exists constants §>0and ¢ >0
_ - z
such that

1% (5 _ b, ()]

< L 1] : [T SN 1]
afp | aEP | = 2z I z) gpll ? ¥ llgp ‘gpl‘l <6
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Proof: The hypotheses of Theorem 3 are satisfied by this theorem,

and we shall use the conclusions and the details of the proof of Theorem

3. Specifically, we will define constants Yl, Yz, Yz apd 50 such that (94)
is satisfied, and then Theorem A.2 will be applied.
First, let g; S IRnS be fixed and let ﬁu be any bounded open set con-
taining ug in IRnS which is large enough so t?hat if -"93—9;" < §, then ug € Dus.
For every continuous and bounded gs(-) such that CQ»(QS(;)) c ﬁu Theorem

n S
1l is applicable, and there exists Zp CR P Ghich is compact and convex

(and is independent of the choice of us(-)) such that every solution gp(')

of (8) eventually lies in Zp. " Also, the functions t-!p and gp(-,gs) are

uniformly increasing in Zp and there exists constants Y]. > 0 and Y, >0

such that (66) and (67) are true (where in (66) we have ug € ﬁu instead
oh () - S
32 satisfies a global Lipschitz

-

condition with a Lipschitz constant zz >0 in Zp; namely,

*
of llus-uS l < 8. In the same way,

oh_(2') dh_(2") . )
" 3z T T oz = f'zllér',’@;ll s ¥ gl'),gg € Zp. (92)
25 Z,

n .
Next, as in Theorem 3 let zp € R P be the unique vector such that
* * . . \ ‘ .
h (z ),u )= 0. From the continuity of (h (¢) .) for every- ¢, > 0
gP(~p(~p)’~p) ~ yor g \3pt)s0)s T 0

there exists € > 0 and 6§ > 0 such that

* *
h =l (n )- (h 20),u )H
ugp(w(%p)’lfs)n H§p<~ (Ep)’ES & ~p(~p)’~p
, %
¥Viz-z1 <c¢
0 i ~P ~P (93)
X
¥ H‘Es"fs" <8

From Theorem 3 we further conclude that for every € > 0 there exists §>0

: ' *
such that (91) (which is (61)) implies (62); namely ll@wgp(-‘)-gpﬂ < ¢ for

Y



every solution gp(-). Combining these facts together, we reach the following
conclusion: For every € > 0 there exists € > 0 and 8 > 0 such that (61)

implies (62), such that (93) is true, and
2 1 '
- =4 >
Yl(YZ) 2%% 0 (94)

This equation is true because €& 0 as § > 0, while v;, v, and %, do not

A *
depend on 6. We can now apply Theorem A.2, where D = {zp: “Ep-gp" <el,

P
*
and Du = {933 HES-ES" <8}. Define the Incremental Lyapunov function
S
p Al T
Q). (z',z") & =(z'-2") " |h (z')-h (2" ] (95)
rVA(~p’~p 2% 72p) [~p(~p) 2 (2p)

and (25) follows. We have only to show (26); let us denote as in (8)

A
2 = - h ' )
~p g1>(~1>(§p)"33 (96)
9
2" : -g (h (z"),u )
P P\~p ~p’’ -8
then for all z',z" €D , for allu, €D ,
~p ~p z ~S u
P S
30}/ LA ey t o n
/lh(§?’~p)é (h (z"),u ) +.3:}Q£§E:§Elg (h (z"),u )
8z,  “p\~p ~p"’-8 3,  ~P\-p ~P -8
T oh (z')  8h_(2")
= _1 ey o 1 Tr%p'~p . ~p -p .
= - =|h 'Y~h " ] Ty _ Ee 11 A A
2["P(§P) ~p(§p) (Ep Ep) Z(EP ‘:‘p.) [ 92, -P 9z, ~p]
T 1 T
= -|h (z")-h " sv_sn +,_ﬁl "Y-h " ] s1_sn
[~p(~p) ~p(§p?] Gp2p) H &) () | Gl
h (z! h (2"
- l(zv_zn)T ELEiﬂliv _.ELREZBlgn (97)
2°°p ~p agp “p agp %
Now, applying the Mean Value Theorem [20],
; 3h (%))
sr_simyT ' my] = s sy _~p ~p° r_n
- -h = - -
Gyt [oy ) n, )] = (i) [ b ey (98)
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where for some A € [0,1],

~ A ’
z =2z" + \[2'-2" (99
~p ~p A[-\v‘p ~p]
Hence
2V (a7 520) QCVA(Z"Z;) " )
z , “p’s
22! ~p(13p(f ’i’s) T ~p(l~lp(§p)’us
~P - ~pP
T ah_(z') ah (Z)
e . 1 T ~p ~p “P P J:0
= -|h (z")-h (2" '-2") - =(z'-2" = z
[*p(gp) ~p(§p)] (2p2p) 2(2p72p) 92, %, J°p
dh_(Z_ ) ~ dh (2")
+< =P P~ _ _P P’ | sn
9 ' < (100)
T

¢

We use (66), (67) and (96) to analyze the first term oh the right side of
(100); |
T | T o o
-[bp(gl':)_bp(fg)] (Ep2p) [1313(51;)-9?(5;)] [§p(13p(§1;)’98) —'§p(l~lp(5;)’l~ls)]

2
1y 1]
2 ¥, b, (z2)-h (2 )]

|v

v, () Hzi-z2 Qo)

We use_(92), (93) and (99) to analyze the second term on the right side of

(100); _ o
[oh_(z') oh (z h (z "
%(z._,zu)'f ( P ~p~ _ ~p(~p)) 3 _<a~p(gp) _ azlp(izp) an
~p ~p z ~ -
L\ 2z, 2z, P 8z, 92, /-P
dh (z') 9h_(z 3h (2 h (z"
> - 2z’ =z [ e I YN f' ) a""(gp)l . ué"n]
- ~p ~ Z 92 ~ ~
z, z, p | 3z, 2z, P

Iv

1., o~ . ~ .
212 ~pu[saerp 2,0 1200 + 2, 0E, zpu.uepu]

1 ]
iy
= - l Lp |} T_,n . “ ] IX1}

= - 310z gpn[qu 2l DI + 1z!-2 2 1201]
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|v

~Longrmi2r 1o
3 gﬂgp gpﬂ [ A)eo + Aeol
- -1 12
zlzeoﬂgp gpﬂ . (102)

Hence, for all z;,g; S D, for all ug € Du » using (94), (100), (101) and

P s
(102), we obtain
3V z! 2! 2Vz!,2")
2 NpRp? , =p’* "y
2z B 13p(?fp)’gs) * oz7 §p(§p(§p)’98)
2 2 1
N -
2 12572, [y (vp)™ = 5% €]
>0 ¥z #z" . 103
Zo 2, (103)

Remark: The Lipschitz constant zz in (92) is a measure of the non-
linearity of the capacitors and inductors. Indeed, when ;he capacitors
and inductors are linear, then lz =0, (94) is'automatical;y satisfied,
and Theorem 5 is therefore a corollary of Theorem 9. Equation (94) has
the following interpretation: Assuming Y > 0 and Yy > 0 are fixed, for
every measure of the nonlinearity of the capacifors and inductors — 22-——
we must fix the "small signal" component of ES(°)~—— 8 — such that for the
corresponding "small signal" componen£ of gp(:)-—- €g — Eq. (94) is
satisfied. The relationship between €0 and § is examined more closely
following the next theofem.which follows from Theorem 9 and the results in
[14];

" Theorem 10: Assume in the dynamic nonlinear network pA{that the
capacitor-inductor functi?n bé is a Cl—strictly increasing diffeomorphic
n

state function mapping R P onto R p, and its Jacobian is Lipschitz con-

tinuous. Assume LAjsatisfies the Fundamental Topological Assumption and

let each resistor function 8r be a Cl—strictly increasing diffeomorphism
o
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Dy Ny
mapping R onto R , satisfying

1 T
1i — I(x, ) (x, )| = += (104)
HXE loeo R, [ ERu gRu §Ra ]

~Re

Under these conditions, the state equation (8) describing\,A’exists, and
n
* N
for every Ug €ER S there exists 6 > 0 such that for any continuous and

bounded gs(') satisfying

IR, ug() - ugl< 8 | | (105)

;JU has a unique steady-state solution. Furthermore, if gé(-) is asymp-
totically almost periodic, every solution ofL)U is asymptotically almost

periodic and, in the steady—statesg c Q . x
‘ 2, ug |
Theorem 9 and Theorem 10 are not constructive theorems in that there

is no explicit method given to calculate the constant & > 0 such that if
(105) 1is satisfied, then(¢&‘has a unique steady-state solution. The problem
with specifying & is that the key condition is given by Eq. (94) which

involves €. > 0 and not 6. It is true that the continuity of.gp(@p(-))

0
guarantees that for every €, > 0 there exists 8 > 0 such that (93) is
true. However, in practice it is difficult to determine § from €y° The

difficulty is illustrated in the following example:
Example 5: Examine the network of Fig. 7. The state equation takes

the form (8) where

v q 3/2 q, + 1/8 sin 4q .\ ' '
(iC): h <¢C>é <¢ c C) - (106)
L PA\%L L .

and -
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Ve
i . v +i -1-§ sin t ,
AT A _ 1C+1?3(i o (@o7)
V] “P\s sin t L ) R '

Here, we compute directly that

o>

i . = 1 —_— — = 108
Y, = 1 H 12 mln[l, 2 + inf(z cos 4qc)] 1 . ( )

and
!Lz = sup |-2 sin 4qC| =2 (109)
Hence to satisfy (94) we have to show

v ?
0 < eo <'I7§*E;— =1 (110)

Here u, = 1. Upon setting § = 0 in (107), we see that
* * .
* ve 1/2 * q, .27 .
X 5 2z = ’ (111)
X % » 2 * 50
P i 1/2 P op y

Claim: When § < %, the network has a unique steady-state solution.

ne
n

To prove this claim we will show that ¢, satisfies (110) when § = 1/4.

0
*

We first find the equivalence of € > 0 such that IICDm(gp(--)) - gp" < e.

Looking at the prqof of Theorem 3;

T
v,-1/2\'fv .+ i -1-1/4sint
( C )( c L 3 ) = (vc-1/2)2 + (iL-1/2)2

i - 1/2 i + 1/3(1L) - Ve

+ (iL-1/2)l/3(iL)3 - 1/4(v1/2)sin ¢

(112)

and the right side of (112) is positive for all lvc-1/2| > 1/4, and
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IiL-1/2| > 1/24. That is, it is positive for all

1/8 < 9 < 2/5 3 11/24 < ¢L < 13/24 (113)

Define

2
C 4 (071/2) 2 2
rU(gp) = 5 + 3/4 qq - 3/4 qq - 1/2 9 - 1/32 cos 4 q, + .095

(114)

‘ *
such that we have vc\kz ) =h (z) - h (z_), and CU(z*) = 0. After some
: -p° T ~p~p"  ~p P *p
computation we see that if 9 and ?L take on values given by (113), then
Clkgp)_s .02 (115)

Hence, we furthef conclude that all solutions gp(-) eventually lie in the

compact and convex set
Z 2 {z_:  1/8 < < 2/5 3« < .7} | (116)
P Ep. — qc — ' o9 - ¢L _ : .

and for z, in 2, ve have from (106) lvg-1/2| < 1/4 and |i;-1/2] < 1/5.

We are now ready to compute %

2 M 2
(c? < sup gf:
lvg-1/2] <1/4) "\ "L
IiL'l/Zl <1/5 1/4 sin t
2 2 2
< sup (Z(iL—1/2) +2(vc-l/2) +1/16 sin” (t)
lvg-1/2| <1/4 }
|1L—1/g| <1/5 - 1/2(i+v-1)sin t + 1/9(4;)
+ 2/3(1L)3(1L-vc))
< .62 (117)

Hence €y < .78 and the claim has been proved. M.
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Let us return to Theorems 6 and 8 and the Fundamental Topological

Assumption. There are a number of networks which have a unique steady-
state solution but do not satisfy this assumption; examine the networks
of Fig. 2(b) and Fig. 2(c) where for simplicity we replace the voltage

sources by short circuits. In both cases we know that the networks have

a unique steady-state solution which is the globally asymptotically stable

v 0

equilibrium point ( 1C = <0 . This conclusion follows from Theorem 4 for
: L

the network of Fig. 2(c). But there is a loop formed by the capacitor and

inductor in Fig. 2(b) and Theorem 4 is therefore not applicable. One way

v 0
C
to show iL =\o is the globally asymptotically stable equilibrium point

of this network is to use the Lyapunov function Q}'é c/2 (vc)2 + L/2(iL)2.

v.(*)
Then, for any solution iC ) of the network,
L

anif ¥ (t) 1
ECU(iE(t)) "% (v (£)) , ¥temr (118)

and

d ~of Ye®)
?ECV L (® = 0= [v (t) = 0] = [1,(t) = ip(t) = 0] = [4 (t) = 0]

(119)

Now, by a well-known extension of Lyapunov's Theorem [22] (or by Corollary

v 0
A.2) we conclude that ( iC)= 0 is globally asymptotically stable. Of
L

course, there are many networks where the Fundamental Topological Assump-~

tion is not satisfied, and there is no unique steady-state solution. For

example, in the network of Fig. 2(d), we see that

vcl(t) - [ B sin wt '
ch(t) -8 sin wt (120)

i 1
s a solution, for any B € R™, where w = 1//1C., We present below a
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condition which is weaker than the Fundamental Togologiéal Assumption and
will allow loops andvcutsets such as in Fig. 2(b), and prohibit those as
in Fig. 2(d). This hypothesis has been discussed extensively in [14] and
[15]:

Inductor-Capacitor Loop-Cutset Hypothesis (L.C. Hypothesis)

Let thevdynamic nonlinéar network<¢Alcontain capacitors, inductors,
resistors and constant sources. The capacitors and inductors are described
by hp in (4), whéfi hp is a g}l-strictly‘increasinng_i_f»f_‘epmorphic state
function mappitig.n AIRP onto R P,

Let S; be any set of capacitors and inductors such that any capacitor
or inductor in S;forms a loop and/or cutset exclusively with any combina-
tion of independent voltage and current sources, and other capacitors and
_inductors of S;. Let one of the following conditions be satisfied:

(a) There is # capacitorlcj in S; which is in a loop formed exclusively
with any combination of independent sources andnsthgr elements of S;, but
not in a cutset f&rmed exclusively with any combination of currents sources
and elements of S;. This capacitor is not coupled11 to Any other capacitor

of S;.

(b) There is an inductor Lj in S; which is in a cutset formed exclusively
with any combination of independent sources and other elements of Q but not
in a loop formed exclusively with any combination of voltage sources and

elements of S;. This inductor is not coupled to any other inductor of S;.

Remark: The statement of the L.C. Hypothesis given here differs from

that in [14]. Specifically, the interconnection conditions placed on the

dv dv
T o Cc C
That is, for any other capacitor C, in -, dqg =4 0.

Kk Cy

1
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independent voltage and current sources is slightly weaker in its present

form. Theorem 12 of [14] remains valid using this form of the L.C, Hypothesis

and its proof remains essentially the same as the earlier version.

Theorem 11: In Theorems 6 and 8 the hypothesis that Lﬂjsatisfies the

Fundamental Topological Assumption may be replaced by the following con-

ditions; (i) there is no loop (resp., cutset) formed exclusively by
capacitors and voltage sources (resp., inductors and current sources),

(ii) LA]satisfies the L.C. Hypothesis, (iii) the function uS(-) satisfies a

global Lipschitz condition, and the state equation (8) (which exists as
part of the conclusion) has at least one bounded solution, and (iv) each

resistor function gR and the capacitor-inductor function hp are C3-functions.
o -

Proof: We will épply Coréiiariﬂk;ﬁ._ First, we apply results in [2]

to conclude that state equation (8) describing(aklexists and all voltage
and current waveforms of LAjare Cl-functions of time. This latter con-
clusion comes directly from the condition (iv), and is necessary in applying
Theorem 12 of [14].

We will show that the conclusions of Theorem 6 are valid under these
hypotheses. The applicationof these hypotheses to Theorem 8 is similar
and need not be shown. Examine the Incremental Lyapunov function Cbk given

by (82). Then, using Tellegen's Theorem (see [14] for the details)

1 n L} "
’ =3 _‘p~p,~s

3z Eo\~pZp’Ys 2z" 8
“p P\~P~P %p P

1_omy T - )
205,-%3)" (8, (5pr8g) - £, Gpoug)]

]

2up-v) " (A1) | (121)

and since each resistor is strictly increasing, the right side of (121) is
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non-negative. Hence Eq. (33) of Cordllarx A.3 is satisfied. To show that
Eq. (35) is satisfied, as an extension of Theorem 12 of [14] we see that
for any time interval I, = [Tl,‘l'zl, TS Ty gl'{(t) - Yi{(t)‘ = 11'{(0 - ﬂ{(t) =0

for all t € Ir if, and only if, gé(t) - g;;(t) =0 for all t € L. L

A Network with More than One Steady-State Solution

In Theorems 3-10 we have shown that LN has a uniqtié .steady-state

solution if

1 C
(1) g,p(.,gs) is a C ~strictly increasing eventually strictly passive

n n n

diffeomorphism mapping R P-onto R P for all Yg ER S R

1 o
(1D h (+) is a C-strictly increasing diffeomorphic state function
a -
mapping R P onto R p,
and if other conditions in each theorem are satisfied. A natural extension

of these theorems is the following:

Conjecture: . Assume LN satisfies (I) and (II) above. Then for any
continuous and bounded ?S(')’ (8) has a unique steady-state solution.

~The conjecture is true when np =1, i.e., when LN is a one-~dimensional
system. For then, ép(-,gs) a gp( hp(-),gs) is a Cl—strictly increasing,

n
eventually strictly passive mapping lRl onto ]Rl, for all u, € R S, and

~S
the conjecture follows from Theorem 5. For np > 2, hoirever, this conjecture
is false. The counter example is given in the following:

Example 6:_ Examine the network of Fig. 5. It satisfies the hypotheses
of Theorem 2, hence (Example 2) its solutions are eventually uniformly
bounded, and it has a periodic solution with period 2w, Furthermore, this
network is a simple extension of the results presented previously in that

(1) the only nonlinear element is the inductor; otherwise Theorem 4 is

directly applicable (ii) if there is no capacitor the dual of Theorem 6
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is directly applicable (iii) np = 2, and the Conjecture is true for np =1,
(iv) Theorem 10 is applicable and if the voltage source E(t) = sin t is
replaced with a source E(t) = § sin t then we know that for some § > 0
the network has a unique steady-state solution.

We have analyzed this network using computer simulation in a computer-

graphics system CSMP [24]. The network has (at least) two steady-state

solutions. The waveforms of these solutions are shown in Fig. 8. Both are
"local" steady-state solutions in the sense that all other solutions "nearby"
converge to them. The periodic solution which is guaranteed by Theorem 1

is shown in Fig. 8(a). The top waveforn is ¢L(t), the lower waveform

is qc(t), and the frequency is w = 1. The second solution is shown in

Fig. 8(b). It is an "almost subharmonic" waveform. That is, it is an

~

almost periodic waveform with “frequency" w = 1/10 (its almost periodic

nature is easily observed in the lower wéveform). Again, the upper waveform

is ¢L(t) and the lower waveform is qC(t), In Fig. 8(c) the upper waveform

is the "almost sﬁbharmonic" ¢L(t) and the lower waveform is the periodic ¢L(t).
Networks of this type have been analyzed in the past (see, for example

[10]) because the inductor is a model of a non-hysteretic iron core inductor.

It is well known that such networks generate subharmonics.

We have shown using this example that the conjecture is false and

that Theorems 3-10 are the best possible for networks where pp(-) and

gp(',gs) satisfy respectively (I) and (II) above.

VI. Conclusions:
A number of results concerning the qualitative behavior of nonlinear
dynamic networks are presented. The hypotheses of these results are of two

types: First, very general and practical conditions on the network state
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equation, and second, conditions upon the individual element constitutive

relations and their interconnectién. In the latter form, the hypotheses

include (in general) the Fundamental Topological Assumption and the L.C.
profhesis. These conditions are simple, easy to verify, and therefpre
quite practical. -Thesevare the best possible conditions for the class of
networks such that gp(-) is a Cl-strictly increasing diffeomorphic state
function, and gp(a,gs) is a Cl-strictly increasing eventually strictly
passive diffeomorphism for all Yg*
The results developed in this paper and in [15] may be applied in a

useful way to the study of the structural sensitivity of nonlinear dynamic

networks. For example, assume we are building a circuit whose capacitors,

inductors and resistors are presumed linear.‘ We analyzemthe behavior of
the linear model so fo predict the behavior of the real circuit. Of
course, every real electrical element is nonlinear, but so long as the
elements retain the strongly uniformly increasing nature of their idealized
linear models, then the behavior of the real ﬁetwork_is the same as the
behavior of the linear model of the network. In particular, using the
results presented here we conclude that the boundedness of solutions, the
almost periodic nature of solutions; the existence of an equilibrium point,
and the existence of a unique steady-state solution are properties inherent
in the network and not dependent upon the linearity. This is a comforting
though expected conclusion.

We concludé with a comment concerning Incremental Lyapunov Functions

whose properties are illustrated in Theorem A.2 and Corollaries A.l-A.4.

We believe that the establishment of a unique steady-state solution is



important in the study of nonlinear dynamic networks, and therefore the

application of Incremental Lyapunov Functions will be of use to.future

researchers.
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APPENDIX

Proof of Theorem A.2: Since the solutions of (15) are eventually 'uniformly

bounded, using (25) it suffices to show that for any two solutions 15'(.)
.and 3:"(-),

lim C\}A(:y (t),g"(t)) =0 (A-1)
to ,

For purposes of contradiction, assume there are two solutions x'(+) and
x"(+) such that (A-1) is not true. More specifically, let t, e =t be

the time such that g' (*) and :5"(-) lie inﬂ<o for all t > t Then,

—— —0.
(notationally, we set CUA(t) to denote CVA(§'(t)’§‘|(t))) Eqs. (25)

e e -

and (26) dmply U, (t) > 0 and & QU (&) < 0 for all t > €, and (a-1) is

not satisfied if, and only if, there exists some € > 0 such that

CUA(t) >€ , ¥ttt (A-2)

By hypothesis DE Qcpw(g(-)) is open, and let time t; € ]R1 be such that

g(t) €D, for all t > t Define £ a max{to,tl}. We will show that

3 1° 0
(A-2) contradicts (26). First, we find constants €' > 0 and § > O:

The continuous function CUA(',‘) is uniformly continuous on the
compact set CJ<0 X%. Hence, for every € > 0 there exists § > 0 such
that for every (x',x") € CJ<0 x (‘:,KO,

[hx'-x"1 < 61 = [ Q) (5", %") < €] (A.3a)
Observe that Eq. (A.3a) is equivalent to

[V, &' 5" 2 el = [Ix'-x"1 >3] (A.3b)

Next, since Dg and Dx are bounded and CVA is Cl, for every 6 > 0 there
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exists €' > 0 such that (26) implies

inf. inf 3V ' 5% a:v,;(ic'.x")
D, (x',xMep T ex £(x',8) + — o £G&"0)]2 ¢
= Sr_on ~ i

Ix'-x"[>6 s

Thus, using Eqs. (15), (A.2), (A.3b) and (A.4), we conclude

__d_\_. ppay | &
dt/UA(t) < =€ , ¥ t> to (A.5)
Define time t, > Eo;
QJ, (t)-€
tzé%—+io+l (A.6)
Then
. t2
qf&tz) =CVA(E0) +J ditCUA(t)dt
to
ty
<~UkEy) +I (-e')dt
%o
Q) (& )-¢
. A
=Qgt,) - s'[—-———;:?——— +1

= € - ¢! (A.7)

which contradicts (A.2). x

The proof of Corollary A.l is similar to the proof of Theorem A.2

and need only be outlined: Let x'(-) be the a priori bounded solution

of (15) and let x"(¢) be any other solution. Since Dg = R® and Dx = R"
CUA(t) é%(x'(t),x"(t)) is defined for all t € ]Rl. From (25) and (26)

we conclude as in Theorem A.2 that CVA(t) > 0 and Edt-:- CUA(t) < 0 for all



t € IRl. This ﬁleans C\}A('-) is bounded and from (27) we conclude that

x" () is also bounded. Hence there exists open and bounded sets T)EE i
and ﬁx - R" such that §(t) € ﬁg for all t > 0, and :5‘ (t),x"(t) € ﬁx for

all t > 0. At this point Corollary A.l follows directly from Theorem A.2.

The proof of Corollary A.2 follows from (28) and (29) by noting that

for any two solutions x'(*) and 35"(') which lie in "J<O for all t > to,
-ECV(t)<-g-CU(t)<—ECU(t) ¥Ft>t (A.8)
Y, A —de AT =y, A =0 e

and (30) follows from this.

Proof of Corollary A.3: As in the proof of Theorem A.2, we have only

Ato show (A.l). For purposes of contradiction, suppose there exists a g(')
which sat_isfie's a global Lipschitz condition such thatqam(g(-)) c DE’ and
there are two solutions x' () and x"(+) such that (A.2) is true. Let

€0 € ]R1 be the time such that 15' (t),x"(t) € Dx for all t > EO’ §(t) € DE

for all t > EO’ and (this is condition (ii) of Corollary A.2) for any

time interval It 2 [Tl,‘tz], EO =< Tl < T2 (35) is true. Let us examine
(A.2) more closely; since ditq')A(t) <0 for all t > €0, CUA(-) is a de-
cregsing function of time for t € ['i:o,w) with values in the compact set
[e, CUA(QO)] C ]Rl. This means that there exists eoe [e,CUA(fo)] such
that

1inY) (¢) = éd | - (A.9)

£

which implies

d
J;fi d—tCUAm =0 | (A.10)

We will show that this contradicts (35). We define the following sequences:



o0

3 T ~
(i) The sequence of times {‘l‘j }j=1 such that Tj+1 > Tj’ '1‘1 >ty and
d 1
0> V(e > - 3 (A.11)

The existence of such a sequence {T,} is guaranteed by (A.10).

k|
(ii) The sequence of functions {f (.)}°°=1 defined by

gj(t) A g(t+Tj) (A.12)

Since £(+) satisfies a global Lipschitz condition, the sequence is

equicontinuous and there exists a subsequence which converges uniformly

on the time interval It = [11,12], to < .2 <1, to a continuous function

which we denote by £(°) [17]. We extend £ _(-) so that it is defined con-

tinuously for all t € ]Rl, and { (t) €ED for all t € IRl.

(iii) The sequences of solutions {x'(-)}w=l and {xg(')};zl defined by

ie>

x'(t) = x'"(t+T,)

h| (A.13)
be (t:-l-Tj )

e

xg(t)

These sequences also are equicontinuous and corresponding to the subsequence
of {gj(-)} which converges to 5«,(')' the subsequences of {)53(’)} and {ggb)}
converge to §°‘a(e) and 2_;;(') on It [17]. These are furthermore solutions of
(15) when E£(¢) = Ew(-). Corresponding to the extension of §°°(°), we
extend the solutions 1;;(') and 1{2(-) such that (possibly redefining
S:m(°) if necessary for t ¢ It) x!(t) ,xl(t) € D_ for all t > EO' By

construction, from (A.10),

d L} A1
>3 A<§j(t)’§j(t)).3 --% , LA (A.16)



Hence'é%cxﬁ(gi(t),g:(t)) = 0 for all t € It' This contradicts (35). L)

Remark: The condition that g(-) satisfies a global Lipschitz
condition is necessary so that £ (*) is "continuous in the same way as
A
£(+)." For example, £(t) = cos(t)2 is not Lipschitz continuous at "t = ="

The proof of Corollary A.4 is identical to the proof of Theorem A.2

and Corollary A.l since the behavior ofclé(t) is the same in all instances.
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FIGURE CAPTIONS

Fig. 1 The Dynamic Nonlinear Network .

Fig. 2 (a) A Network whose Waveforms are Bounded and (Unless w/LC is a
Rational Number) Almost Periodic. (b) and (c) Networks with
Eventually Uniformly Bounded Solutions and Unique Steady-State
Solutions, (d) A Network which Oscillates.

Fig. 3 (a) the v-i Curve of Resistor R,; the Function gR is Eventually

1
1
Strictly Passive, (b) The v-i Curve of Resistor RZ; the Function
g, 1s Strictly Passive. The Composite Function g_ = (gR »8 )T
R2 R 1 R2

Is Not Eventually Strictly Passive.

Fig. 4 A Transistor Network whose Solutions are Evéntually Uniformly
Bounded (Example 1) and which has a Unique Steady-State Solution
(Example 3). The Linear Resistors are Described by Their Conductances.

Fig. 5 A Network whose Solutions are Eventually Uniformly Bounded (Example
2) and has More than One Steady-State Solution (Example 6).

Fig. 6 A Network with a Unique Steady-State Solution (Example 4).

Fig. 7 A Network with‘a "Small Signal" Input and a Unique Steady-State
Solution (Example 5)

Fig. 8 Two Local Steady-State Waveforms of Fig. 5. (a) A Periodic Wave-
form (w=1); ¢L(t) is the Upper Waveform and qC(t) is the Lower
Waveform, (b) An "Almost Subharmonic'" Waveform; ¢L(t) is the Upper
Waveform and qC(t) is the Lower Waveform, (c) ¢L(t) of Both Wave-

forms.
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