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GRAPH-THEORETIC PROPERTIES
OF DYNAMIC NONLINEAR NETWORKS+

Leon 0. Chua and Douglas N. Green++

ABSTRACT
Graph-theoretic concepts are used to deduce properties of nonlinea.
networks and properties of nonlinear resistive n-ports. The basic result

is that if the ports of an n-port form no loops and form no cutsets, then

the port voltages and currents are linear functions of the internal
voltages and currents only; i.e., no other external port voltage or port
current is involved. This result is very general in the sense that it is
independent of the constitutive relations of the internal n-port elements.
It is also a rather subtle result because it forms the basis of a large
number of network and n-port theorems. For example, in examining the
closure properties of n-ports, this result is used to show that if the
resistors of an n-port are passive or strictly increasing, or eventually
strictly passive, etc., then the n-port also has the property. Many of
these conclusions remain valid when the n-port contains independent
voltage and current sources.

Two extensions of this main result are presented. First, using the
constitutive relations of the resistors, graph-theoretic conditions are
given such that the resistor voltages and currents are functions of the
port voltages and currents of a resistive n-port. Second, in a network
containing cépacitors, inductors, resistors, and sources, graph-theoretic
conditions are given such that the voltage and current waveforms of the
capacitors and inductors are functions of the resistor and source voltage
and current waveforms.

Dynamic nonlinear networks containing capacitors, inductors, resistors,
and sources such that there are loops of capacitors, or cutsets of inductors
are shown to be equivalent to networks without such loops or cutsets.
Explicit analytical expressions are given for specifying the constitutive
relations of the elements of the equivalent circuit. This result allows
the generalization of many previous results in nonlinear networks which

exclude capacitor loops and inductor cutsets.
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I. Introduction

Much of the use of graph theory in network analysis has been in

the area of linear networks [1]-[3]. When applied to nonlinear net-
works, graph theory has been used mainly in the formulation of network
equations [4]-{6] and, to a limited extent, in analyzing the behavior
of the solutions of these equations [7]-[11]. 1In this paper,lwe will
use graph-theoretic concepts to deduce in a qualitative way the various
properties of dynamic nonlinear networks, and of nonlinear n-ports. This
will involve examination of the graph of the network or n-port, and
examination of the individual circuit elements. We will ﬁot solve, or
form the network or n-port equationms.

This paper is the first of a seriesof three dealing with nonlinear

dynamic networks. The two other papers are [12], "A Qualitative Analysis

of the Behavior of Dynamic Nonlinear Networks: Stability of Autonomous
Networks," and [13], "A Qualitative Analysis of the Behavior of Dynamic
Nonlinear Networks: Steady-State Solutions of Nonautonomous Networks.'
The mathematical methods of these two papers coupled with the graph-
theoretic results given here will lead to an understanding of the
behavior of dynamic nonlinear networks. In particular, we will answer

questions of the following type: Let (Al be @ dynamic nonlinear network.

Under what condition may we conclude that all network voltage and current

waveforms are bounded, or (eventually) uniformly bounded? If;_\lcontains

T-periodic sources, when is there a T-periodic solution of Ai, or a

subharmonic solution of LAf? If VA‘ contains constant independent



voltage and current sources, when does\JAfhave a unique, globally asymp-
totically stable operating point? When<JA'has time-varying independent
sources, under what conditions does(,A[have a unique steady-state solu-
tion (in the same sense as in linear networks)? 1In this case, do the
transients decay exponentially? While answers to some of these questiuns
have been published for various classes of nonlinear differential
equations [14]-[16], they are strictly mathematical in nature and often
contain conditions which are either too strong or impractical when
applied to circuits. The main feature of our results is that mosL of

the theorems are couched in graph- and circuit-theoretic terms so that

they can be easily verified by examining only the network topology and

the elements' constitutive relations. The graph-theoretic properties

to be presented in this paper are crucial to the derivation of these
results.

In Sec. II, we present the model of the dynamic, nonlinear network
bA'. We view LAJ as a resistive np—port N containing resistors and
sources; the capacitors and inductors are attached to the ports of N.

The concepts of passive and increasing resistors are extended and ex-

panded to definitions of a large class of properties of funétions. We
will examine networngK’and np—port N with respect to these properties.
Previous mathematical and graph-theoretic results which will be employed
in developing our results are presented. Especially useful is the

Colored Arc Corollary; this is a special version of the Colored Arc

Theorem [17].
In Sec. III, we discuss the "closure" properties of an np-port N

which contains nonlinear resistors. For example, if the resistors of



N are passive, strictly-increasing, or eventually strictly-passive
(Def. 2), conditions are given so that N has these properties. The

primary condition comes from Theorem 2 -- there is no cutset and no

loop formed by the ports. 1In Sec. IV, we examine the manner in which

these properties of N are affected when independent sources are attached.
In Sec. V, the capacitors and inductors are attached to the ports

of N to form networkg,kL We show that the condition ''there are no

loops of capacitors and no cutsets of inductors" which is often stated

as hypothesis in the literature on nonlinear networks is not necessary;

these loops and cutsets may be deleted without changing the voltages

and currents of the elements ongU. We also give an extension of

Theorem 2.

II. The Dynamic Nonlinear Network; Properties of Functions

The nonlinear, dynamic network gAJis shown in Fig. 1. It contains
0, (possibly coupled) one-port capacitors, and n (possibly coupled)

n n
one-port inductors.1 Let v eR € and Vs ZL’ QLG R L denote

~C? éc’ gc
respectively the capacitor voltages, currents, charges, and the inductor

voltages, currents and fluxes. The constitutive relations of a voltage-

controlled capacitor and a current-controlled inductor are given

respectively by:

9c = £.(vo)
(1)

QL = gL(iL)

1There is no loss of generality in our choice of this network model,
since any multi-port or multi-terminal capacitor (resp., inductor) can
always be modeled as a system of "coupled" one-port capacitors (resp.,
inductors). Observe also that an (n+l)-terminal element can always be
modeled as a '"grounded" n-port.



ct R € EQPC and gL: EQHL + EQHL

(np=nC+nL) (the subscript "p" denotes a "port variable")

whe i
re f . Define the np-vectors

v v 1

v, Eey X T 5 g A

‘Y], .“l"l.t ”p i'l
. (2)
Af*c af9c

Yp = ; Zp =
then (1) becomes

z, = fp(}sp) (3)

fp(°) = [gﬁ(-), f{(')]T (where the superscript "T" denotes transpose).

We view the capacitors and inductors of LAJ‘as attached to an n_-
port N which contains (nonlinear) one-port resistors, (nonlinear) multi-
port resistors,2 and independent voltage and current sources ~- see

n
Fig. 1. The vectors Yp’ }p, Ep’ y. € R P ot Eq. (2) are the port

p

variables of N as well as the capacitor and inductor variables.

2 . . .
N also contains controlled voltage and current sources in the following

sense: we assume every controlled source of N is represented by
"coupling" within multi-port resistors. For example, although tran-
sistors, FET, and operational amplifiers are multi-terminal elements
which are often modeled using controlled sources, they can also be
represented as multi-port resistors. Hence, a transistor can be
characterized by the constitutive relation

1

_ ga VR
= B 2
R VR

o o e



. a . .
Assume resistor R~ of N is an na-port resistor. 1Its voltage and
n .

. a aGRa e 2 . . N
current are, respectively, Vpo iR . In defining its constitutive
relations (when it exists) we assume that for each port of the n -port
resistor either the port voltage or the port current is an independent
resistor variable, and the remaining port variable is a dependent re-

n
. . o o . .
sistor variable. Let KR’ z; € EQ denote respectively the independent

and dependent resistor vectors. The constitutive relation is therefore

Yp = ErCxp) “

Let my be the number of resistors of N, and let np be the number of

all internal resistor ports of N (m if, and only if, all resistors

=n
R R
are two-terminal elements). The composite resistor vectors are

n
Vpo iR cR R representing respectively all internal resistor voltages

and currents. Let the Mo resistors be described by their constitutive
n

relations g;('), gé('),...,é&%-), and let X0 Yr € EZ R denote, respec-

tively, the independent and dependent resistor vectors, then

Y = 8p(xp) (5)

is the composite resistor constitutive relation, where

T
g () 4 18T, 2T, g, e, g (1T

n
Let u_ € R S denote the voltages of the independent voltage

. — . 12 . . . *
Moreover, the function gR(') has the various properties which we in-
. . . Q@
vestigate in this paper. For example, when gR(°) comes from the Ebers-
. . . o . . s
Moll equation of a silicon transistor, then gR(°) is a strictly-passive,

) 2
. ) . 2 y 2
C o =diltcomorphism mapping R onto R j18].

-6-



sources and the currents of independent current sources. The con-
stitutive relation of the "overall resistor" np-port N, when it exists,

is
“g, (x ,uS) | (6)

n
where g _(*,*): EZ p S *‘E{ p’ or if there are no independent sources
y = -g (x) Q)

where gp(-): E{np »nF?p. We will used both forms of gp(-) in the
sequel, and in every case we will make explicit (if necessary) which
equation is being used.

Remarks: 1. Eq. (7) can represent N containing constant sources.
See Theorem 8, Fig. 9.

2. Eqs. (6) and (7) have a negative sign because the
port currents (in Fig. 1) are directed away from the ports on 'voltage-
driven'" (i.e., capacitor) ports, and the port voltages are reversed on
the "current-driven" (i.e., inductor) ports. These reference directions
and polarities are chosen so that they are consistent with those
assigned to capacitoré and inductors.

Using (3) with (6) and (7), we can write the differential equation

dt

gp(-) in (3) is invertible.3 Corresponding to (6) and (7) we have

describing\JM. Note that 4 gp(t)=ép(t)=yp(t), and assume the function

We can rewrite (3) as Xp h (z,) for some function of h (*). This
would avoid using the 1nverse o% f (+) in (8). However, (3) is the
appropriate form to present Theorem 11; this theorem deals with loops

of capacitors and cutsets of inductors. The function h_(+) is used in
[12] and [13]. : ~P



. -1

Zs gp(fp (gp),gs) (8a)
and

2= -g (£ V(z)) (8b)

~p PP *p

The graph theory principles we use in this paper are Kirchoff's
Current and Voltage Laws (KCL, KVL) [3], Tellegen's Theorem [3], and
the following special case of the Colored Arc Theorem [17] which we

call the:

Colored Arc Corollary: Let b be a branch of a (not necessarily

connected) graph g]. Partition the remaining branches of g} into two
arbitrary sets: Set A and Set C. Then, branch b forms a loop exclusively
with branches of Set A if, and only if, it does not form a cutset ex-

clusively with branches of Set C.

We will be using the Colored Arc Corollary extensively, and it is
instructive to discuss the following example of its use. This is also
an illustration of a direct way to prove theAColored Arc Corollary
without resorting to the Colored Arc Theorem.

Let qg)be a node of graph g}, where k > 2 branches are attached at
node ncj. See Fig. 2.

For each branch bj, i = 1,...,k, let Set Aj denote all branches
not attached to ncy and let Set Cj denote all branches attached to nC)

} forms a cutset exclusively with branches of set cl.

except bl. Now, b-
From the Colored Arc Corollary, we conclude b} does not form a loop
exclusively with branches of Set Ad. Indeed, this must be true since

any loop involving b? must also include some other branch attached to

l@-



There are two important properties of resistors which are f
interest to us:
. 4 R™
Def. 1: [19] Let R be an n-port resistor with voltage vp € ,
and current ;R.e R™
(1) R is a passive resistor if, and only if, for all admissible

pairs (vp,ip),
>0 ~ (9a)

(ii) R is an increasing (or incrementally passive) resistor if, and

only if, for all admissible pairs (YR’iR). and (vp,1)"

[y - wpllig - 9] > 0 (9b)

The passive and increasing concepts of resistors may be applied and
extended as properties of functions. In the following, we use both h(*)

and h to represent a function.

Def. 2:The function h: R® s R" is

(i) passive with respect to %o € R™ if, and only if, for all x € R™

(x-%4) h(x) > 0 (10)

(ii) strictly passive with respect to x. € Rrn if, and only if, (10)

~0
is true and the left side is positive for all x # X0

(iii) eventually strictly passive with respect to X e R™ if, and

only if, there exists k. > 0 so that for all “g“ > kos

0

4Resistor R may be a physical (n+l)-terminal element, or an n-port
containing lumped (resistive) elements.

5The norm lell we use in this paper is the Euclidean norm, “x Il =
2.1/2
(60222,

n
any ch01ce of norm in EQ

0f course, the following results remain valid for



(x-%0) h(x) > 0 (an)

Remark: If'>~c0 = 0, we say simply that h is passive, strictly
passive, or eventually strictly passive. Also, note in (i) and (ii)
that [b(o) continuous] ='[b(§0) = 0].

Def. 3: [20] Let D gﬁﬂ%“ be convex. The function h: R, R is

(i) increasing on D if, and only if, for all x',x" € D

&'-x T (& )-h ") > 0 (12)

(ii) strictly increasing on D if, and only if, the left side of

(12) is positive for all x' # x"

(iii) uniformly increasing on D if, and only if, there exists y>0

such that for all x', §" €D
&' -x) T - E") > Yx'-x"l? (13)

There are two more definitions which are of interest:

Def. 4: [21] For any integer p > 0, h: K", R" is a cM-diffeo-
morphism on R® (or is a C“—diffeomorphic function on EQP) if, and

. . e , R® . -1 U
only if, h is injective on » and the functions h,h = are C". Fur-
thermore, h is a Cu-diffeomorphism mapping R" onto K" if, and only
if, b is a C"—diffeomorphism and h is surjective.

Def 5. [11] The Cl—function h: R, R" is a state function if,

oh(x
and only if, its Jacobian 5i‘ is symmetric for all x € R",

The following theorem summarizes the important facets of these

detinitions.  1ts proot, together with a discussion, is given in Lhe

-10-



Appendix.

Theorem A ¢

A-1. [20] The Cl—function h: E{n > Ei“ is

oh(x) .
. - is positive-— semi-

-~

(i) increasing in R™ if, and only if,
definite6 for all x € R"

oh(x A
(ii) strictly increasing on R™ if —;£=2 is positive-definite6 for

~

all x € R™,
(iii) uniformly increasing on R™ if, and only if, for some A > O,
oh(x)
[—35:' - Aln] is positive definite for all x € R™, where 1 1is the

-~

nxn identity matrix.

A-2. [21] For any integer M > 1, h: R™ » R® j5 4 c'-diffeo-
morphism mapping H?n onto E?n if, and only if, the cY-function h has a

nonsingular Jacobian everywhere on E%“, and limfh(x)l = +o.
Ixllow =

A-3. (i) 1f h: R™ » R® is continuous and strictly increasing
on ﬁ%n, it is a Co—diffeomorphism (also called a homeomorphism) on Rr".
(ii) for any integer u > 0, if P: R® » R is a Cu-uniformly—
increasing function on jRn, it is a Cu-diffeomorphism mapping i onto

R".
é:é: If the Cl-function h: .HK“ > R® is either
(a) uniformly increasing on R®

or else

(b) a Cl-strictly-increasing diffeomorphic state function mapping

R® 5o RP

6 nxn . .
A€ R is positive semi-definite (resp., positive definite) if,

T
and only if, x Ax > 0 (resp., >0) for all x # 0.

-11-




then h is eventually strictly passive, and

lim 1 T _
gl Tl X RGO =+ o (14)

~

While we are interested in the properties of np—ports and the
functions gp(') in (6) and (7), at times we will use the following

theorem which guarantees that Eqs. (6) and (7) exist:

Theorem B: [4], [5] Let np-port N contain resistors, and independent
voltage and current sources. For any integer u > 0, (6) describing
N exists, and gp(‘,') is a Cu—function if

(i) There is no loop formed exclusively by voltage-driven ports of
N and independent voltage sources. There is no cutset formed exclusively
by current-driven ports of N and independent current sources.

(ii) Each resistor of N is described by its constitutive relation (4),
where gg(') is a C"-strictly-increasing diffeomorphism mapping EEn“ onto

n
R % for each a = 1,2,...,mR.

ITI, Properties of Resistive n -Ports
P

Let N of Fig. 1 be an np—port containing resistors only; it is
described by (7). We shall prescribe conditions under which N has the
properties of Defs. 1, 2 and 3. 1In the following section, we see how
the addition of independent sources affects these properties. We begin

with

Theorem 1l: Let N be a resistive np—port described by (7); namely,
y = —gp(xp). Both of the following statements are true:
-.p -~ ~
(1) If each internal resistor R® is a passive resistor, then gp(~)

is passive.

. a . . . .
(ii) If each internal resistor R is an increasing resistor, then

-12-




gp (+) is increasing.
Remarké: 1. 1In the proof we show that the hypothesis "each

internal resistor is passive or increasing" implies that N is passive or

increasing using Def. 1, or, equivalently, when each resistor is describaod

by its constitutive relation, we show that the hypothesis "gR(°) is pas-

sive or increasing" implies that gp is passive or increasing using Def. 2.
2. The conclusion that N is passive if (i) is true, or

N is increasing if (ii) is true, holds even if no equation of the form

(7) is valid, or if there is no equation of the form (4) describing the

resistors.

Proof: (i) we will show gp(-) is passive.

First,
T T T
X X )= —=x = -v i . ¥ x (15)
*pp p) = XY, ~p~p’ ~P

where the last inequality comes from the fact that for each port k,

Kk kk
k=1,... = x .
2ereeflpy Vpdy T XY,

Next, using Tellegen's Theorem

T T
i +v.i =0 ¥ i (16a)
YP}P ~R~R (Yp’~p)
or
T, _ T, ,
v i, = velp v (Yp’}p) (16b)

n
where YR’IR e KR represent the resistor voltages and currents.
Now, for each n -port resistor Ra, the function g%(-) is passive,
a ~

by hypothesis, (or, if gg(o) does not exist, R® is passive via Def. 1;

-13-




this does not affect the following conclusion); hence

: o
v
o T ¢y _ ,aT o, _ ,aT a ~R
(YR) (}R) = (15R) (yR) = (:5R) (g(:sR)) >0, V<~.g) (17a)
and
V.
viio > 0, v( R (17b)
~R~R = i
~R
Combining (15), (16b), and (17b), we obtain
T SR S U
}Epgp(}fp) - 'Yp%p YR%R: 0, ¥ §p (18)

(ii) The proof that gp(-) is increasing when the resistors are
increasing is similar conceptually to the proof above. The notation,

n
however, is more involved. First, for any §£ and §; ceR?P
[X' - X"] x') - x" = (x' " 4 " "
Ry = % [gp(~p) gp(~p)] (~p) gp(gp) (§p) gp(§p)
T T
- (x! x") - " t
(x) 8, (x)) (x)) g, (x))

= - ' ,_nTn_'_ |Tn+ nT' (19)
(§p§y 0 (gp) Yo (gp) Yo (§p) Yo

Now, for each port k, k = 1,2,...,np, whether port k is voltage-driven

or current driven,
k 1] k ” k 11) k‘ T ) k \ ] 'k n k 11 'k 1 ]
+ = +
(xp) (yp) (xp) (yp) (vp) (lp) (vp) (1p) (20)
Using (15), (19) and (20), we obtain

l§; - §"IT[gp(§$) - gp(gg)] == [y; - y;]T[i; - i;] (21)

-14-



v ) v "
Next, using Tellegen's Theorem, since (;p) . (;p satisfy KVL, and
i\ i\ ~R ~R
<;p> s <;p) satisfy KCL, we get the fo\llowing four equations of the
~R ~“R
form (16b):

] T I8 ] — 1] T S |
-(yp) (}p) = (vp) (dp)
1 T " _ ) T "
—(u) () = () (p)
(22)
IIT (] - "T (o8 ]
-(yp) (}p) = (vp) (1p)
||T s 10 -— "T "
-(gp) (}p) = (vp) Q)
Thus
~lys - walT L4} - 101 = [y - vRl'[ip - ip] (23)

Finally, for each n -port resistor R%, the function gg(-) is
increasing (or, if g;(-) does not exist, R® is increasing via Def. 1;
this does not alter the following conclusion); hence for any (Yg,i.g)'

and (y;,gg)f, we have

[ - GH"TTIED - ED"] = (D' - GD"TTED' - GD"] >0

R
(24)
where we obtain the inequality of (24) in the same way we obtain
(21). 1t follows from (24) that for all (yR,gR)' and (yR,gR)", we
have
t " .|I.|_v||
lv = vl Hig = Igl -0 (25)

n
Combining (21), (23) and (25), we obtain for all x;, x; R T

=15~



o n T Yy 1]
[x xol [, (xp) — g, (x)] > 0 " (26)

Theorem 1 is used in [12] and [13] to derive a number of important
properties of dynamic nonlinear networks. For example, it is shown in
[12] that if strictly increasing capacitors and inductors are attached to
the ports of a passive np-port N resulting in a network,dA‘described by
(8), then all voltage and current waveforms of tﬁe network are bounded.

If gp(') has some of the other properties of Def. 2, we can obtain
the following even more useful results [12]: If we attach strictly
increasing capacitors and inductors to np-port N described by (7), then
for the resulting network(JA|described by (8):

(i) if gp(') is strictly passive, all current and voltage wave-
forms go to 0 as t > «,

(ii) if gp(-) is strictly increasing, the network has a (unique)
globally asymptotically stable equilibrium point.

(iii) lfg)U is described by (6) and g ( »Ug ) is eventually strictly

passive for all u_ € Ez S, then for any set of bounded, continuous

~S

sources, all voltage and current waveforms are eventually uniformly

bounded. !
In addition, if the sources are T-periodic (i.e., periodic with period

T),LJU has a T-periodic set of voltage and current waveforms [13]. The

additional "strictly" hypothesis motivates the following conjecture:

Conjecture 1: If the resistor functions gg(-) of resistive

np-port N are strictly passive (resp., strictly increasing, eventually

7This means that there exists k > 0 so that for any set of voltage and
current waveforms (v(t),i(t)) of N there exists t0 > 0 such that

l(‘:l'&;) <k, ¥e>e.

-16-



strictly passive) then %p(') describing N in (7) is strictly passive
(resp., strictly increasing, eventually strictly passive).

We will show that this conjecture is false with the help of the
three-port counterexample in Fig. 3.

Remarks: 1. This counterexample would work just as well if the re-
sistors are nonlinear; e.g., we replace linear resistor R1 with a

v/v
diode described by i = Is (e

-1).

2. We will show that the three-port containing strictly
passive internal resistors is not strictly passive. In the same way, it
follows that the three-port is not strictly increasing and is not
eventually strictly passive although the internal resistors have these

properties.

Suppose ports 1 and 2 are voltage-driven and port 3 is current-driven,

then
'3 )
x =|v H =| i ’ 27
£ g ’ Zp g (27)
i v
p P
and
1 1 1
il R +.§3 R3 1 vl
2 )=y =g ) =-|d  Lisloog (B (28)
g ~P ~p ~P R R R g
“p 1 -1 0 ip

The function %p(') is not strictly passive. Indeed, if we choose

1_ 2 .3
vp = vp = 0, and 1p = IO’ where I0 is any constant, then
0 -I 0 -1
vy = 0 3oL = -1, I 0 s Y T -1 (29)
0 I Q) 0

=17~



LT : » X . .
and gpgp(xp) = 0. Hence, this three-port is not strictly passive. In
order to uncover the conditions under which an n-port containing
strictly passivé resistor is itself strictly passive, let us derive

first the following results:

Theorem 2a: Let N be a resistive n_-port with internal resistor

R : 2nR '
voltages and currents i € ﬂ? » and port voltages and currents
v \ 2n “R
ip/<5 R P, Assume there is no loop and no cutset formed exclusively
~p ‘ 2n_x2n
by the ports. Then there is a matrix P € KP whose elements are

+1, -1, and 0, and each row of P has at least one non-zero element, so

v ¥
that for every admissible ip and every corresponding .R
*p ~R
v \
Pl-p( R (30)
i ~11i
~p ~R

v L v "n
i . . . ariables P d ~P
Furthermore, for every pair of admissible port variables i an i )

-,l) r.p
and  flor .every corresponding pair of resistor variables

"
v\ v
~ ‘R
.R and { . }> we have -
r ~R
v ] v 1 v ] v ”
S =05 1= UR) = (2 (31)
R R *p *p

and for

k& el >0 (32)

where [Pl is the matrix norm of P induced by the Euclidean vector norm,

()
Ir

we have

v
i
~P

<k (33a)

-18-



i<

and
v ] v n v, ] "
~p ~p ~R ~R

(33b)

Remark: Equation (30) expresses the important property that each
external port variable of N is linearly dependent on the internal

variables of N. This property is far from obvious because in general,

each port voltage (resp., current) will form loops (resp., cutsets) with

both internal resistors as well as other external ports, Furthermore,
this conclusion is very general in the sense that

1. It is not hecessary that the resistors be described by con-
stitutive relations such as (4). So, for example, there may be more
than one possible resistor current vector éR for a resistor voltage
vector yR. Similarly, it is not necessary that N have a constitutive
relation of the form (7).

2. Equation (30) is independent of the constitutive relation of
the internal elements. In fact, (30) represents any N with arbitrary

resistors so long as the graph g} of N does not change.
v,
i

3. There can be more than one <
R

4. As will be seen in the proof, the matrix P in (30) is not

v b4
necessarily unique. However, the linear mapping ( iR) — <ip) prescribed
R

*p R

R) corresponding toan admissible (

v

1

~

in (30) is unique. That is, for any other matrix ? such that an equation

b4
of the form (30) is tiue, [?—?] iR = 0.
~R

When the resistors are described by their constitutive relations

gg(-) in (4), and N is described by gp(-) in (7), we have the following

extension of Theorem 2a:

-19-
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Theorem 2b: Let N be a resistive np—port described by (7) where

the resistors of N are described by (4). Assume there is no loop and

there is no cutset formed exclusively by the ports. Then there is a
n_x2n .
matrix ?l € 12 P whose elements are +1, -1, and 0, and each row of

P1 has at least one non-zero element so that for every admissible

n
independent port vector xp eERP and for every corresponding set of

2n
independent and dependent internal resistor variables (;SR)E R R, we
~R

ch = ‘I:"l(llR) (34)
IR |

Furthermore, for every pair of independent port variables 5;’ 5; and

have

every corresponding pair of independent and dependent internal resistor

' X "
variables *R , "R > we have:
YR 43

gy = &1 = [zcl') = 15;;] (35)
and for

ky AR >0 (36)
we have

(37a)

uﬁiﬁMz)
(’fR)‘ _(¥R>" u (37b)
IR IR

Moreover, when each resistor function ga(-) is continuous, we have

and

lx' - xll < k
P op — 1
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lim "1( |l = + (38a)
lx llseo

that is, for every 31> 0, there exists 62 > 0 so that

["}fp" > 8,1 = [lx 0 > 8] (38b)

~

X
. . R
Remark: Again in this theorem, there can be more than one <y )
~R
corresponding to §p.

Proof of Theorem 2a:

If we show (30), we are through, for then (31) and (33a) follow
directly. The constant k in (32) is positive since every row of P has
a non-zero element. Equation (33b) is also immediaﬁe since (30) is a
linear equation. Let port j be any port, j = 1,...,np. It forms no

loop with the other ports, so via the Colored Arc Corollary (choose

set A to be the set of port branches not including port j, and choose
set C to be the set of internal resistor branches) we conclude that it

forms a cutset exclusively with the resistors. It follows from KCL

i beng
that there exists a row vector pj eR

-~

containing elements +1, -1,

and 0, such that
i~ =p. - i (39a)

i . . .
Row vector p, must contain a non-zero element, for otherwise port j

~

forms a self-cutset, violating our hypothesis. Similarly, port j forms

no cutset with the other ports. From the Colored Arc Corollary, we

conclude that it forms a loop exclusively with resistors. If follows
. v 1x nR
from KVL, that there exists a row vector pi e R containing elements

-~
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+1, -1, and 0, such that

Vb = DY - Y (39b)

~

where, as with p% above, g; has a non-zero element. Since (39) is
true for all j = 1,...,np, we formulate P in (30) with the row

i v
vectors Py Ej’ j=1,2,...,n . x

Proof of Theorem 2b:

X
The vector<~p) may be obtained by simply reordering the vec-~

v Zp V.
“p . %R (R
tor (i ) Similarly, (y ) may be obtained by reorderuxg(i ) . Thus,

~R
by deleting one-half of the rows of P in (30) and by rearranging the

~

columns of P, we obtain 31 in (34). Then, (35), (36) and (37) follow

from (34) in the same way that (31), (32) and (33) come from (30). We
have only to show (38). Assume (38b) is false, then there exists Bl

such that for every B > 0 there exist X € E{ and Xp € EZ such that
ﬂ§p" > B, 3 H§Rﬂ.g Bl (40)

Since every g;(-) is continuous, the composite function gR(-) (ZR =

gR(§R)) is continuous, and the continuous function
"ZR" = “gR(-)H (41)

attains a maximum denoted by & > 0 on the compact set {gR: "§R" A Bl}-

Thus, from (40) and (37a),

ux 12 ] [( )H
YR
2 2 A N
> [I>5pll < Ky <(‘"|A) + (8) )] (42)

-22-
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which is a contradiction of (40) for arbitrarily large H2 - 0. m

Example: A fourth resistor is attached to the three-port of
Fig. 3 (see Fig. 4). The ports of this three port form no loops and
form no cutsets. Hence from Theorem 2 we conclude that an equation of

the form (30) exists. TIndeed, we have

vl 10000000 11{
v 01000000 vﬁ
vg 00100000 |]v3
Pl = R (43)
ip 00001001 vl‘;
1§ 00000-101 111{
. - 2
1 _°°°°°°11J1R
i3
R
4
R

Moreover, as we shall show following Theorem 5, gp(°) for this network
is strictly passive and strictly increasing.

The converse of Theorem 2 is also true. That is, if there is a
loop or cutset formed exclusively by the ports, then equation (30) is not
true, and the remainder of the conclusions also do not hold. Indeed,
as illustrated by the three-port of Fig. 3, if there is a loop of ports,
there can be a "loop current" of the loop of ports which is not reflected

in the resistor voltages and currents. To make this more explicit, we

have

Theorem 3: Let N be a resistive np—port. Assume there is a loop

and/or a cutsel formed exclusively by the ports of N. Then therc is a

1

VR "~p VR nw~p
resistor vectors{ 7" ), (= such that
r Ir

_23_
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YR L
i (44a)

v [] v "
Pl#(P ,
<}p) (31)) : (44b)

Moreover, for any port j

(1) <vg)' y (vi)“ (45)

only if port j is in a cutset of ports. Furthermore, if port j and

port k are in this cutset and in no other cutset of ports, then
j i k k
(VJI_ VJII=+ v - (v 46
p) (p) _[(p) (p)] (46)

where the sign on the right side of (46) is plus if, and only if, port

j and port k are similarly directed in the cutset.

(ii) <ig)' # (ig)" ‘ (47)

only if port j is in a loop of ports. Furthermore, if port j and port

k are in this loop and each is in no other loop of ports, then
J ] J " k J k "
i - (i =+ [(1 - (i (48)
(p) (p) _[(p) (p)]

where the sign on the right side of (48) is plus if, and only if, port

j and port k are similarly directed in the loop.

Remark: The expression on the left side of (48) can be interpreted

as the "loop current" of the loop of ports. We require that ports j and

k be in only one cutset of ports in (46) and in only one loop of ports in

(48). Otherwise there might be more than one "cutset voltage'" or "loop

current" involved.
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Proof{ Assume there is a loop of ports (if there is no such loop,
but there is.a cutset of ports, the proof is conceptually identical).
1xn v \' 2n
We represent this loop by the row vector b eR P, For any .p eK?P

and corresponding 1R € EQ R, the vector

R
v \"
<~p)
i
~P

ne

() (e

is also an admissible port vector for any IO # 0, since KCL and KVL are
)
v

. e . ~R ‘
satisfied. Furthermore, it has <i as the corresponding resistor
~R
vector. So (44a) is true.

The proof that (45) is true only if port j is in a cutset of ports,
and that (47) is true only if port j is in a loop of ports, is precisely

the same as the derivation of (30) in the proof of Theorem 2a.

We next show (46); the proof of (48) is identical. We apply the
Colored Arc Corollary twice: First, since port j forms a cutset of
ports, it does not form a loop with resistors. Second, since port j
does not form a cutset of ports excluding port k, it forms a loop with
port k and the resistors. This is possible if, and only if, port j
and port k together form a loop with resistor. Then, from KVL and
the fact that all internal resistor voltages are the same (Y' = Ya) we
see that (46) is true. X

We next examine conditions for the inverse of Theorem 2, i.e.,

R j'p

loop and no cutset of resistors, then we can write
v v
iR =B ip (50)
~R ~p

-25-
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2n_x2n
where P € R R

-~

P has elements +1, -1, and O. Thisvequation is de-
rived in the same way (30) is derived. Indeed, if we reverse the role
of resistor and port, (30) becomes (50). However, in many np—ports
the number of resistors is large compared to the number of ports, so
the condition "the resistors form no loops and form no cutsets" is
prohibitively strong. Also, we can use the constitutive relations of
the resistors to obtain a better result. First, we examine a network
where (30) does not have an inverse (see Fig. 5).

In this network, for

1 1 1 "
K L[
v 1

Rl = #l 1 | = VI} (51)
i

; Lo
i -1

R iR

we have

HESEC

V.
In the following theorem, we present a condition so that (TR) is a
i
function Of:<i' - In presenting this theorem, it is convenient to view
P

all resistors as one-port resistors possibly coupled to other one-port

resistors. We make this concept of coupling explicit as follows:

Def. 6: Assume all resistor functions g;(') of N are differentiable.

In viewing all resistors as one-ports, we say that resistor k is coupled

ayﬂ
to resistor j if, and only if, X 0.
BxR

Theorem 4: Let the constitutive relation of each internal resistor

T . "
ol N be a C'=Tunction L-,R(-), where o 1. Then there is a ¢"-Function
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) v
hN such that for every admissable port vector (ip) and corresponding
) ~p
r
internal resistor vector i Jve have
' ~R

Ve v
(1 ) ol 1 (53)
~R ~p

if the following condition is satisfied:

Let the resistors of N be modeled as coupled one-ports. Let f} be
any set of resistors so that any resistor in !} forms a loop and/or
forms a cutset exclusively with other resistors of S;. At least one of
the following statements is true:

(a) There is a resistor RJ in S; which forms a loop exclusively

with resistors of S; but does not form a cutset exclusively with

2

the resistors of &, . 1Its independent variable is its voltage, and no

resistor of S} is coupled to it.8

(b) There is a resistor RJ in S} which forms a cutset exclusively
with resistors of {: but does not form a loop exclusively with resistors

) . . .. .
of ( . TIts independent variable is its current, and no resistor of (}

is coupled to it.

Remark: The condition of this theorem can be verified by inspec-

8Since other resistors may be coupled to RJ, its constitutive relation

may depend on more than one independent variable; namely y% =

i1 n Cs 4
gR(XR"""XR R). Condition (a) requires xi = v, Yp = 1%, and that

3 R
R4 K
for each k = l,2,...,nR, k #j, — # 0 only if resistor variable xp is
xR

that of a resistor not in S;. In the special case when R} is an
"uncoupled" two-terminal resistor, condition (a) is equivalent to

requiring that R} is a voltage-controlled resistor. A dual statement
applies to condition (b).
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tion (for example, the network of Fig. 5 violates the theorem because
neither resistor is voltage-controlled). The folldwing example illustrates
the use and proof of the theorem. See also Corollary 1 for a stronger
though more succinct condition.

Example: We will derive bN of (53) for the two-port of

Fig. 6. In the two-port N of Fig. 6, assume resistor Rl is current con-

1 1,.1 . 4 4 _ 4, 4
R = gR(1R)) and resistor R’ is voltage-controlled (iR = gR(vR)).
A1 2 3 4

We shall derive bN(') of (53); define set (}1 = {R",R",R",R }. Here,

every resistor of 531 forms a loop and/or forms a cutset exclusively

trolled (v

with resistors of S} Now, resistor Rl is a current-controlled re-

1
sistor which does not form a loop with resistors in S;l (condition (b)).
It follows from the Colored Arc Corollary that R1 must form a cutset
with the ports. Indeed, port 1 and Rl form a cutset, and

1_ 1. 1.1, .1 ,
ip=- 1p 3 vp = gR(-lp) (54)

2
Next, let £}2 = {R ,R3,R4} Every resistor in S;Z forms a loop with

‘ o
resistors of 25+ The voltage-controlled resistor R4 does not form a
cutset with resistors in S}z (condition (a)), and, from the Colored
Arc Corollary, it follows that R4 forms a loop with the ports. Indeed,

port 2 and R4 form a loop, and
-2 . 4 _ 4,2
VR TV, 5 dp = gR(vp) (55)

2
Now, resistors R“ and R3 each form a loop and a cutset exclusively with

the ports and with resistors R1 and R4. Using KVL and KCL
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v2 = v1 -v

R P 1

V3 _ v1 _A + v4

R 'p 'R R

2=l e %2 eo
R P R p

i3 - —14 _ i2

R R P

Combining these three equations, we obtain

1 1¢-31

\'/ -
; 2T

vg 1 vp - gR(-lp)

v v vl - gl(-il) + v2
{f B P g p) P
Ve v v2

oo |=hyl Y =] D 67
:2 ' g ? 4 (y2 2
i i -il + ve) + i
: P\ e
i 4 (2
R gg(vy)

Remark: The continuity of bp(-) in (57) is identical to the
continuity of g;(-) and g;(-). Also, for this example, it is not
necessary to describe Rz and R3 by constitutive relations.

Proof of Theorem 4: Let S}l be the (maximal) set of resistors so

that a resistor is in S;l if, and only if, it is in a loop and/or in
a cutset formed exclusively with other resistors of N. (In the pre-

2,R3,R4} contained all the resistors of N.)

vious example, S}l = {Rl,R
c R , .

Let S}l be ‘the resistors not in S;l' Each resistor in E;; does not

form a loop and does not form a cutset exclusively with resistors; thus

from the Colored Arc Corollary, each resistor in S;i forms a loop and

forms a cutset exclusively with the ports. Using KCL and KVL we con-
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clude that the voltage and current of every resistor in 9; is a
cH- (actually, C™-) function of the port voltages and currents.

Assume resistor Rl S Ql satisfies (a) of the theorem (if (b) is
satisfied as in the example, the proof is identical). Using the
Colored Arc Corollary, it forms a loop exclusively with the ports and
resistors in 9(1: Its voltage therefore is a Cu—function of voltages
of the ports and voltages of resistors in Q;, that is, its voltage
is a CY-function of the port voltages. Since only resistors in Q;
can be coupled to resistor Rl, its current is in general a CM-function
of its voltage, and of voltages and currents of resistors in Q;
Thus, the voltage and current of resistor Rle 'Ql is a CH-function of
port voltages and currents.

Let ,92 C ‘Ql be the set of resistors of N so that a resistor is
in 'QZ if, and only if, it forms a loop and/or cutset with resistors

. . 1
excluding resistor R*. Let Q; 2D 9(1: be the remaining resistors of N.

Any resistor other than R1 in Q; and not in Q; forms a loop and forms

a cutset exclusively with the ports, the resistors in Qi, and Rl.
Thus, the voltage and current of every resistor in Q; is a C"-function

of port voltages and currents.
Assume resistor R2 € 82 satisfies (b) of the theorem. Using the

dual of the analysis of Rl € above, we conclude that the voltage and

O
\_)1
current of R2 € QZ is a C"-function of port voltages and currents.

We proceed in this way, forming 83 C ‘92’ '94 - 83, etc. Each
Q]

set '()‘j contains at least one element less than "’j—l' The number of

resistors is finite, so there is an integer 2 > 1, np > 2, (2 =2 in

) .
the example) so that '()Q contains no elements. Then, every resistor
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v, .
of N is in S}g and .R is a CM-function of i F u
£ X
The following corollary prescribes a condition simpler than that
of Theorem 4. However, it is stronger, especially when the number of

resistors in np—port N is much larger than the number of ports.

Corollary 1: Let the constitutive relation of each resistor in
N be represented by a c!-function g%(-), where y > 1. Then there is a
Cu—functioﬁ Pp: Ezznp > ﬂ?an so that (53) is true if the following
two conditions are satisfied:

(i) Each loop of resistors contains a voltage-controlled two-
terminal resistor which is not in a cutset of resistors.

(ii) Each cutset of resistors contains a current-controlled two-
terminal resistor which is not in a loop of resistors. n

We return to the study of properties of pp—ports, applying the
condition "the ports form no loops and form no cutsets' of Theorem 2.

We start with

Conjecture 2: Assume each resistor function g;(-) of resistive

np—port N is eventually strictly passive. Then the composite resistor

T,

. T T
function gR(') = [gé (), gé (*)s--, gg (°),--gR (-)]T is eventually

strictly passive.

This conjecture is false. Assume N contains only the two

resistors characterized by the va - i% curves in Fig. 7.

. 1, . .
Resistor R™ is eventually strictly passive and resistor R2 is
. ‘ )
strictly passive. But, for the composite function gR(~) = g2(+) ) » if
R

we fix v; = 3/2, then for any V; € Ezl,
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1,1
T o1 2 /&R 111 2 2,2
Yrer (V) = (VR’VR)< 2,2,) 7 "R&OR) * VR &)

3126310 + whHE, W] <1

3/2(-3/2) +———}_—2 , |v§| >1 (58)
CVR)

For any vﬁ e_ﬂzl, the right side of (58) is negative; its largest value

is -5/4. Thus, when vl = 3/2, v (YR) < 0 for arbitrarily large “YR“’

T
R "RER
The problem with the resistors of this example is that while gi(-)

is strictly passive, v2 -i; remains bounded as lvél + o, That this is

R
the key to the problem is shown in

Lemma 1: If each resistor function g;(-) is continuous, eventually

strictly passive, and satisfies

Y a.T a, a
lim (x ) 'g (x.) = + » (59)
Ix®lsew ~R “R7-R
~R
T
m

then gR(')= [g%T(Q,..,gRR (O]TTis eventually strictly passive and satisfies

T
lim x g (x,) = + = (60)
"xR[% RZR R

Remark: Condition (59) is weak. For example, for one-dimensional
R . , . . PN .
resistor functions (59) is violated only if }iﬂ |gR(xR)| 0, as in
the case of resistor Rg in Fig. 7. R
Proof : Since each gg(-) is continuous, eventually strictly pas-
a

sive, (5;)T§;(§;) < 0 only for §R in a compact set. Hence, there

exists k1 > 0 so that
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k n
G2 > - —ni vleR ® (61)

¥a-= L,2,....my

(Note that kl in (61) is the same for every o.) Next, because of (59),

for every k2 > 0, there exists k3 > 0 so that
o a\T a, o ] _
["gR" > k3] =°’[(?§R) gR(§R) > kl + k2 ¥ao-= l,...,mR (62)

(again, note that k2 in (62) is the same for every a; this is because
the number mp of resistors is finite).. We are now ready to prove

(60); we will show that for every k4 > 0 there exists ks > 0 so that

[t > k] = [ > 1, (63

Pick in (63)

k, = k3 kg = /n_R ky (64)
If ﬂxRH > k /—_ k3, then there is at least one component xé of the
N k .
vector xR € Ee so that |xJ| > . k,. This component x2 is also a
~ R i 3 R
R

component of a resistor vector x; for some o and ﬂx;".1 |x§| > Ky

So, using (61), (62) and (64)

RgR(x )

DG + Z G gn (x)
2#&

><°‘)T°‘<°‘)-ﬁ< -n )
2 () g Oop) = o (mpom,

v

() BR G - K
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=k, = k, ¥ "§R" > kg « (65)

We are now ready to state when Conjecture 1 is valid.

Theorem 5 Let N be a resistive np-port described by (7), namely,
¥p = _gp(§p)’ and each internal reéistor r® is described by its con-
stitutive relation (4); namely, Z; = g;(fg).

If there is no loop and no cutset formed exclusively by the ports,
then the following statements are true:

(i) If each §;(~) is strictly passive, then gp(o) is strictly
passive.

(ii) If each g;(-) is strictly increasing, then gp(-) is strictly
increasing.

(iii) If each ga(-) is eventually strictly passive, continuous, and
&r y

satisfies (59), then gp(-) is eventually strictly passive and satisfies

lim ng (x) =+ o (66)
Ix I >w PP P

Proof: It suffices to prove (ii) and (iii) since the proof of (i)

is similar to the proof of (ii).

(ii) In the proof of Theorem 1, we showed that for any pair gé, §p

and any corresponding pair gé, ga,

L ] | T ry _ 1] = | I T Yy " 67
[x, - %] lg,(x)) - g, ()] = [xp - xp1 [g (xp) - g (xp)1  (67)
Now, since the resistors are strictly increasing, the right siue of

(67) is positive for all xﬁ # gﬁ. Since there is no loop and no cutset
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of ports, using (31) of Theorem 2, (67) is positive for all gé # x:.

(iii) Again, as in Theorem 1,

gggp (§p) = gEgR(gR) (68)
where, because of the previous Lemma, the right side of (68) tends to
+0 as H§RH > « (this is (60)). Then, using (38a) of Theorem 2, (66)
is true. n

Remark: From Theorem A-4, we know that if each gg(-) is either
a continuous, uniformly increasing-function on Een“, or else a
C];strictly—increasing diffeomorphic state function mapping R aonto
E?rh, then gg(') is eventually strictly passive, satisfies (59) and,
from Theorem 5 (iii) above, gg(o) is eventually strictly passive. We
will use this fact in Theorem 6 below.

Example: The three-port N shown earlier in Fig. 4 contains
linear resistors and satisfies the conditions of Theorem 5. Indeed, it

follows from Theorem 5 that gp(-) below is strictly increasing, strictly

passive, and lim ng (x ) = + .
EN “P*P -P

1 + 1 1 R3 !
Vé Rl R34RY R3+4+RY R3+RY Vp
1 1 1 R3 2
= = —_— == v 69)
B T g 'p R3+RY  RZ T R34R%  RIFRY 3 (
> _R3 -R3 R3RY Vp
| " R3+RE R3+R*  RI+R%_|

The condition that each gi(o) is a strictly-increasing c!-diffeo-
n
morphic function mapping,ﬁ{ o onto EZ ¢ is also used in the Theorem B

which asserts that gp(-) in (7) exists. Thus, we have
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Theorem 6 : Let N be a resistive np-port where each internal resistor
function gz(-) is a Cu-strictly-increasing diffeomorphic function
mapping E%n“ onto HB““. Assume there are no loops and no cutsets
formed exclusively by the ports.

Then gp(-) in (7) describing N exists; it is a strictly-increasing

n n

Cu-diffeomorphism mappipg RP onto Ee P, Furthermore, if each resistor
function is, in addition, either a uniformly increasing function or
else a state function, then §p(°) is eventually strictly passive and

. T
lim x'g (x ) = + o,
ﬂgp"+m “P=P ~-P

Proof! Using Theorem B, we conclude that ?p(') exists and is CV.
It is strictly increasing because of Theorem 5. Now, we reverse the
roles of independent and dependent port variables. Let Xp be the
independent port variable. Then Theorem B is again applicable, and
—gp is a C"—function of yp-g Hence, §p(-) has a C"-inverse. Finally,
using Theorem A-4, we conclude each §;(') is continuous, eventually
strictly passive, and satisfies (59). Hence, from Theorem 5(iii), gp(-)
is eventually gtrictly passive and satisfies (66). X

We conclude this section by examining resistive np—ports with

uniformly increasing resistors.

Conjecture 3: If the functions g%(-) of the internal resistors of
N are uniformly increasing, and the ports form no loops and form no cut-
sets, then gp(-) is uniformly increasing.

This conjecture is false; the one-port shown in Fig. 8 is a counter-

example. The resistor inside the one-port is a uniformly-increasing

= -[-g, -y )1

9Because of the minus sign in (7), ¥p
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1

d
voltage-controlled resistor, since —7 > 1, for all Vé e Eal. However,
dVR _
if we take the inverse function, vp = —gp(ip), where
i i >0
g(i)={p( ) P (70)
-In(1-1 i <0
P P p >

and consider the one-port as current—-driven, then g (+) is not uniformly
dv

increasing since —L2 >0 as i -+ —.
dip P

The above example suggests that we have to require both §§ and its

inverse (g{i‘)-1 to be uniformly inecreasing.

Theorem 7: Let N be a resistive np-port whe?e each resistor
function g; is a Cu-uniformly—increasing function, and (gg)-l is also
uniformly increasing. Assu@e there are no loops and no cutsets formed
exclusively by the ports. Then gp in (7) describing N exists. More-
over, it is a Cu-eventually strictly-passive, uniformly-increasing
diffeomorphism mapping Elnp onto Eznp; g;l is also uniformly increasing,

and

lim g (x = 4+ o : (71)
ﬂx Il-300 ﬂ ﬂ P p p

Remark: Much of the above theorem has been presented in Theorem

A-4, Theorem 5, and Theorem 6. The only part to prove -- that g

-~

and g;1 are uniformly increasing -- is proved in the same way as

in the previous theorems. It need not be repeated here.

IV. Resistive n -Ports Containing Independent Sources
P

We examine the resistive np-port N assuming there are independent
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voltage and current sources inside N. One way of dealing with the
sources is to rearrange them inside N without affecting the port and
resistor voltages and currents, and then analyze the modified np-port.
For example, if two current sources Il(t) and Iz(t) are in parallel, we
can replace themwith one current source I(t) = Il(t) + Iz(t). If cur-
rent source I(t) is in parallel with voltage source E(t), we can
replace the current source with an open circuit. This idea of altering
the np-port is made explicit in the following:

Let N be an np—port (resp.,‘,A‘be a network). We say that N is

an equivalent Ep—port (resp., bA‘is an equivalent network) if, and only

if, N is derived from N (resp., pA‘is derived from pA[) by altering
a few of the circuit elements so that the remaining element voltages

and currents remain the same.

Remark: In this paper, N is derived from N, and()n is derived
from<JA‘in specific ways: 1In this section N contains resistors and
sources, and N is formed by altering the sources. in the next section,
VA[ contains capacitors, inductors, resistors and sources; vﬂ]is formed
by altering the capacitors and inductors. Because of the equivalence
between N and N or between(,A]andaJQ, we can study the-properties of
L}ﬁ or N to determine the properties of(JK‘or of N.

Two well-known results concerning equivalent networks are the

i-Shift Theorem [3]10 and its dual the v-Shift Theorem. Another

OThc i-Shift Theorem is essentially the following: Assume in bA‘(or
in N) that current source I(t) is in a looqu of elements. Then we
can form an equivalent _A| (or N) by replacing I(t) with an open cir-
cuit, and place appropriately directed current sources with value
I(t) in parallel with the other elements of Ly .

-38-



equivalent network theorem asserts that if N is a resistive np-port
containing independent voltage and current sources which violate
neither KCL nor KVL, then, there is an equivalent np—port N formed

from N where there is no loop and no cutset formed exclusively by the
sources. This result applies also to networks. Its proof is straigut-
forward. Essentially, if there is a loop of voltage sources, then from
KVL, the voltages are linearly dependent and we may replace one of them
by an open circuit. While, if there is a loop of sources containing a
current sonrce, we apply the i-shift theorem to the loop. The dual

reasoning applies to cutsets of sources.

Theorem 8: Let N be a resistive np-port containing, in addition
to resistors, independent voltage and current sources which violate
neither KCL nor KVL. Then there is an equivalent np-port N formed from
N such that each voltage source (resp., current source) is in series
(resp., in parallel) with either an external port of N, or a port of an
internal resistor of N. In particular, the independent sources are
attached to the ports of N as shown in Fig. 9a, to the multiport
resistors of N as shown in Fig. 9a, and to the one-port resistors as
shown in Fig. 9b, or Fig. 9d. Furthermore, if the ports of N form no
loops and form no cutsets, then N can be formed where the sources are

attached to the internal resistors only.

Remark: The following proof illustrates the equivalence of N
and N in that the resistors are unaffected; the sources are simply
rearranged.

Proof: First, we show that the order the sources are attached
does not matter. That is, for example, we may attach sources to one-
port resistors as in Fig. 9b or Fig. 9d. To show this, to the current
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source I in Fig. 9b we place in series a voltage source E as in Fig. 9c.
This can be done without affecting the other element voltages and
currents. We then apply the v-Shift Theorem to the voltage sources of
Fig. 9¢ to obtain Fig. 9d.

Let us first transform the sources so that there are no loops and
no cutsets of sources in the resulting equivalent np—port. Then, since
each current source I(t) does not form a cutset with the sources, from
the Colored Arc Corollary I(t) forms a loop with resistors and ports.
Wé apply the i-Shift Theorem to replace the current source I(t) with
an open circuit, and place current sources in parallel with resistors
and ports as in Fig. 9 (specifically, Fig. 9b for one-port elements).
Similarly, to each voltage source E(t) we apply the v-Shift Theorem
to attach the voltage sources to the resistors and ports as in Fig. 9.

Finally, assume that the ports of N form no loops and form no
cutsets. This is still true éfter applying the i-Shift Theorem and
v-Shift Theorem as in the previous paragraph. Then, using the Colored
Arc Corollary, each port forms ahloop and forms a cutset exclusively
with the internal "composite resistor-source" elements of Fig. 9d. We
apply the i-Shift and v-Shift Theorems once again, and eliminate
sources attached to the ports. ™

The attachment of constant sources to the internal resistors of N

A o, o
as in Fig. 9 changes the constitutive reclation from (4) (Y; = gP(§R)) to

a — L0 00 a b sa 2
Yp = 8g(%pthy) + By T gp(xp) (72)

n
o
where 91, 92 €ER (if the sources are time varying, yg

and pg in
(72) become time-varying vector functions). This changing of the

resistor characteristics affects the passive nature of the resistors,
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but not the increasing nature, since this latter property essentially
reflects the "slope" azg/afg in (4) and in (72). Also, in sume cir-
cumstances the eventually strictly passive nature of a resistor remains
unaffected. For example, if the resistor of Fig. 9d is linear, then
for any E, and I, the composite element of Fig. 9d is a uniformly-

increasing, eventually strictly-passive resistor.

Theorem 9: Let N be a resistive np—port containing, in addition
to internal resistors, constant independent voltage and current sources,
which violate neither KCL nor KCL. Let the constitutive relation of each
resistor be represented by a Cu—function 5;(-), where u > 0. We conclude

1.‘ If each gg(-) is increasing, then N is increasing.

2. Assﬁme the ports form no loops and form no cutsets, and N is
described by (7). 1If each g;(~) is strictly increasing, the gp(-) is
strictly increasing.

3. Assume the ports form no loops and form no cutsets, and each
g;(o) is a C“-strictly—increasing diffeomorphism mapping Eanaonto R ?
Then gp(o) in (7) describing N exists, and it is a strictly-increasing
Cu-diffeomorphiSm mapping EZnP onto EZnP.

4. In 3. above, if in addition each gﬁ(-) is a uniformly increasing
function or else a state function, then gp(-) is eventually strictly

passive.

Remark: This theorem is a restatement of Theorems 1, 5 and 6.
Essentially, we are saying that these theorems for np—ports are not
affected by the addition of constant sources.

Proof: It suffices to show 3.; the proofs of 1., 2., and 4. are

similar. We apply Theorem 8 to N, and form the equivalent np—port N where
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constant sources are attached to the resistors as in Fig. 9. The
equation describing each composite resistor is (72). Now, if gg(-)
n

is a strictly-increasing Cu—diffeomorphism mapping R 0"onto R a’ then
%;(‘) has this property also (similarly in 4., if g%(.) is a uniforily
increasing function or is a state function, then so is g;(o)). It
follows from Theorem 6 that there exists a C“—striétly-increasing
diffeomorphism gp(-) mapping EZHP onto Elnp which describes N. Finally,
since N and N are equivalent, they have the same port voltages and
currents, and thus gp(') = gp(‘) describes N. L)

We could apply this theorem to np—ports containing time-varying
resistors. In this case, Q;(') and bg(-) in (72) would become func-

tions of time, and N would be described by

Yy = -gp(gp,t) (73)

instead of (7), where gp(',t) would have the properties of Theorem 9

at each time t. However, when we have time-varying sources, it is
often more convenient to work with the equation Zp==—§p(gp,gs) (this

is Eq. (6)) where gs(t) represents the time-varying sources. To obtain
an equation of this sort, we view N as an (np+ns)-port where sources

are attached to the extracted n_ ports as shown in Fig. 10. Then N

S

is described by

= - (74a)
Yo gp(&p,gs)

= - 74b
Yé §S(§p’95) ( )

where wg in the second equation denotes the currents of time-varying

voltage sources, and the voltages of time-varying current sources. In
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this paper, we are interested in (74a), which is (6). We shall not
discuss (74b).11

The following theorem is similar to the previous theorem; it sum-
marizes the extension of our np—port results to the case where N has

time-varying sources.

Theorem 10: Let N be a resistive np—port containing, in addition
to resiétors, constant and time—varying12 independent sources. Assume
there is no loop formed exclusively by time-varying voltage sources and
ports, and that there is no cutset formed exclusively by time-varying
current sources and ports. Let the constitutive relation of each re-
sistor be represented by the Cu—function 5;(')’ where 1 > 0. We have

1. If N is described by (6) (or (72)) and each §§(~) is increasing,

n

then gp(°,gs) is increasing for all ug eR S.

2. Assume there is no loop and no cutset formed exclusively by

the ports. If N is described by (6) and each g;(°) is strictly increasing,

1
lIn other contexts, (74b) is important. For example, assume that the

capacitors and inductors are attached to the np—ports of N. They are
described by xp = g;l(gp) -- see Eqs. (1) and (3) -- and we have

formed a dynamic, nonlinear, electrical input-output system where
gs(t) is the input, and gs(t) is the output. The Dynamical System

Representation [22] is
. -1
z = -g(f z
Z %(~p (~p)"~’s)
_ -1
Ys géfp (fp)’g )
In the two papers [12] and [13], we place conditions upon the capacitors,

inductors, resistors and sources so that, for example, for every input
gq(t) there is, in the steady-state, a unique output gs(t).

2llere, a source is time-varying if it indeed varies with time, or if it
is a constant source which we want to be represented by a component

of the source vector gs(t), and we do not want it "absorbed" into the
resistors as in Fig. 9.
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n
then gp(o,gs) is strictly increasing for all ug eR S.

3. Assume there is no loop and no cutset formed exclusively by
the ports. If each gi(*) is a Cu-strictly-increasing diffeomorphism

Do, Do
mapping R onto K , then gp(',') in (6) exists, ic is C", and
gp(°’98) is a C"—strictly—increasing diffeomorphism mapping Rr® onto
n

R™ for a11 y, € R °.

4. In 3. above, if in addition each gg(-) is a uniformly-

increasing function or else a state function, then gp(',gs) is

n
eventually strictly passive for all ug € R S.

Remark: This theorem is proved in the same way as Theorem 9; the
proof need not be repeated here, but it is instructive to see how
Tellegen's Theorem is applied to the (np+ns)—port of Fig. 10. As in
Eq. (23),

'_"Tol_-ll '_IIT-l_oll '_IIT"_‘"=0
[v yp] [:-l-'p }p] + [Ys vel [}S }S] + [vp vel lig }R]
(75)
Vg 2nS
where i e R denote the voltages and currents of the time-varying
~S
1 =

é = ig for current sources, or vg = vg for

sources. Now, either i
voltage sources. Thus, (75) reduces to (23), and the increasing nature
of N remains unaffected if sources are attached.

As a final remark, it is assumed without loss of generality in

this Theorem that there is no loop and no cutsets of independent sources

in N.

V. Forming Networkkju by Attaching Capacitors and Inductors to n -Port
| 48

N

To the resistive np-port N containing constant and time-varying
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independent sources, we attach capacitors and inductors as in Fig. 1
to form network<JA‘described by (8). In [12], and [13], we combine
mathematical methods with the results of this paber to predict the
behavior of the solutions of (8). In this section, we give an exten-
sion of Theorem 2, and, in the following theorem, show how networks
with loops of capacitors and éutsets of inductors are equivalent to
networks without such loops and cutsets.

In analyzing dynamic, nonlinear networks, researchers have either
not allowed loops of capacitors and cutsets of inductors [4], or else
have been forced to treat these cases separately [5]. This is because,
for example, if there is a cutset formed by inductors, the inductor
currents are linearly dependent because of KCL, and there is no equation
of the form (8). There have been attempts previously to alter net-
works so as to delete these loops and cutsets. For example, let LJU
be a network where three linear, uncoupled inductors are attached at
node %@~—- see Fig. 1la. It has been shown [23] (this is also an
illustration of Theqrem 12b below) that an equivalent network<¢A!may
be formed which does not contain this cutset of inductors by replacing
inductor L3 with a short circuit, and changing the other two inductors
as shown in Fig. 11b.

By changing LAltoiJﬂ, we have removed the inductor cutset. Let
us examine the way<,A‘and(¢Kiare equivalent. It is easy to argue that
t??(:§twork currents remain unaffected by the change; i.e., we can show

L

if(t) are admissible currents at node rt)for network<dkfand network

i3(e)

pAL Hlowever, the voltages havg changed: 1In Fig. lla the voltage
diI (t)

across nodes r@and n_is L3 at

» while the voltage across nodes
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Qg)and rk) in Fig. 11b is 0. This does not violate our definition of
equivalence because the voltages of all elements other than Ll,L2 and L3
are the same in(,A|ande&L This is because the voltage between nodes
r@ and r@, and between nodes v@ and r@ are the same for;N and JG In
applying KVL, any loop involving node n_. also involves nodes and
ying s y P g ® QD ng

or nodes T@ and ?3r'so the resulting loop equations remain the same.

Theorem lla: Letg,A[be a network containing capacitors, inductors,
resistors, constant independent sources, and time-varying independent
sources. Assume without loss of generality that there is no loop of
voltage sources. All element voltages and currents of(,Ajare continuous
functions of time. Let nC denote the number of capacitors of<,Ah they
are described by the CHM-function fc: Eznc - Elnc, 9 = fc(yc) (this is
1)). Let En € EIHE represent the n, constant voltage sources. Aésume
there are m, f n. linearly independent loops of capacitors and constant

voltage sources. Possibly after reordering the capacitors, these loops

are represented by the rows of the matrix13

| |
B |-B__ 11 (76)
g "0, Mg

m_xn
where all elements are 0, +1, or -1, B € R C E has columns cor-
: ng m.x(n.-m.)
. - R cCC'C
responding to constant voltage sources, §n -n € has
c'cC
columns corresponding to the capacitors, as does the Mo X M, identity

matrix 1 .
~m
C v
An equivalent network(JA[can be formed from<¢A[which has no loops
formed by capacitors and constant voltage sources. vA[is formed by

replacing the capacitors corresponding to the columns of }m with open

13'l‘he minus signs in (76) are introduced solely for convenience.

—46-




circuits, and replacing the capacitors corresponding to the columns

. . u . ~ &enC-mC_’
of -B by those described by the following C"-function fC:
¢
n.,—m,
N Ee C L.
! v
e 1T ~C
. = = = 77
1 gC(YC) [%nc—mC : gnc-mc]fC B _ YC+Bn En (mn
e E"E
: n n
Furthermore, if the original Cu-function fC: ER c -+ E{ c is

(i) a state function
(ii) an increasing function
(iii) a strictly-increasing function
g
(iv) a uniformly-increasing function
(v) a C“—strictly—increasing diffeomorphic-state function mapping
n n
RConto REC (for u > 1)

n_-m n_-m
Then the C"—function fc: Ez cc > E? cc also has the same

14
property.

Remarks: 1. If we included time-varying sources as well as
constant sources in the theorem EC in (77) would be time-varying, and
the remaining conclusions of the theorem still hold.

2. The function EC is unique up to a constant. Indeed, any
capacitor and inductor function is unique up to a constant in the
sense that a capacitor function gC(°) + 99° is equivalent to fc(-) for

n
all go eR C. For example, a linear one-port capacitor described
i.(t) dv.(t)
by q., = Cv_ has the identical voltage and current \v.(t)/ = CHt
C c C vc(t)
as the capacitor described by qC = CVC + qO.

3. If all capacitors are linear so that (1) is q = QYC’ and no

14 - e
Where in (v), of course, gC is a Cu—diffeomorphism mapping R

ne-n
onto E% ¢ C.
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constant voltage sources are involved in the m, loops, then (77)

reduces to

R v (78)

o~

4. TIf there is only one loop (mC=l) then the submatrices in (76)

become row vectors —pn s =b l,and (77) reduces to

E ."“c"
~ < B Ve
= = | f
G = £ (%) }nc-l :Pnc-l ~Clp Vb E (79)

~nC-1 C ~np~Ng

The following is the dual theorem for cutsets of inductors and

constant current sources.

Theorem 11b: Let\/M be a network containing capacitors, inductors,
resistors, constant independent sources, and time-varying independent
sources. Assume without loss of generality that there is no cutset of
current sources. All element voltages and currents of(,A‘are continuous
in time. Let n_ denote the number of inductors oijU; they are de-

; o "L
scribed by the CM-function £ R*"-RK*, ¢ = £.(i,) (this is (1)).

n
Let In E-EZ I denote the nI constant current sources. Assume there
1

are m; < n, linearly independent cutsets of inductors and constant
current sources. Possibly after reordering the inductors, these cut-

sets are represented by the rows of the matrix

| |
]

-B_ 1 -B__ .;] (80)

S A A e
has columns cor-
m[f(n
responding to constant current sources, gn = € Ei
L

columns corresponding to the inductors, as does the mox m

where all elements are 0, +1, or -1, Bn

xn

e R LI
I -m_)
L L has

L identity
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matrix %

An equivalent network p&ican be formed from(JA‘which has no cut-
sets formed by inductors and constant current soﬁrces. LJG is formed
by replacing inductors corresponding to the columns of 1 with short

circuits, and replacing the inductors corresponding to the columns of

(1] p nL_mL
-B _ by those described by the following C" -function fL: R -
"L -
n—
JRLmL;
i i
o ~ . ~L
. =f£@d)=]1 18 £ (81)
L L*~L n-m1tn LM L ~n -mL}L+§n In

n n
Furthermore, if the original C"-function £ R+ R&has any of the
nc—
properties (i)-(v) of Theorem 1la, then the c"~function fL: .WZ 1L >
W{“L-mL

also has the same property.

Proof of Theorem 11: We only have to prove Theorem lla since the

dual proof applies to Theorem 11b. First, observe that since the
matrix (76) describes the linearly independent loops, it follows from

KVL that

Bn *n_ [-Bn —m i }mc ]YC (82)
! :

C
where Yo e R denotes, of course, the voltages of the original n.
capacitors. We proceed now in three steps: (1) For m, = 1, we show
that (79) describes(,Alafter a capacitor has been replaced by an open

circuit. (2) Using induction, assuming (77) describeschlfor m, = k,

C
we show that if there are k + 1 loops, (77) is also true. (3) We show
jc in (77) has the appropriate properties (i)-(v).

Step 1: When m. =1, (76) is a row vector
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- |
13nC-l ! 11 (83)
I

-b
g

We will show that capacitor n. (which corresponds to the last column

of (83)) may be replaced by an open circuit, and the remaining nC—l
capacitors are replaced by those described by EC in (79). See Fig.
12 for illustrations, where the loop described by (83) involves three
capacitors and one constant voltage source. Equation (83) yields the

KVL equation around the loop

"c
v, = b - + b E (84)
C l ~C RUTS
n, nc-l T
where Ve denotes the voltage of capacitor s and v (VC,... c )
n -1 ,
R denotes the voltages of the remaining capacitors.

Now, networkgdﬁk equivalent to LA[is formed by replacing capacitor
n. with a current source I(t) =-%quc(t); see Fig. 12b. Network(dx%
is equivalent toch[because vCC satisfies (84), and by assumption, the
continuous capacitor current is the same as the current~source current.

Next, we apply the i-Shift Theorem to the current source; it is
replaced by an open circuit and other current sources with value I(t)
are placed in parallel with the other elements of the loop; see Fig.
12¢. Any current source in parallel with a voltage source may be
deleted (replaced by an open circuit) without affecting any other

n

element voltages and currents. Current source I(t) = € %

parallel with the jth capacitor of the loop whose voltage and charge

C(t) in

are vé and qé, respectively (Fig. 12d) is replaced by a capacitor whose
n

J and charge is qCC. This is the reversal of the process

voltage is Ve

that originally changed capacitor nC to a current source. Finally, as
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in Fig. 12d, the two parallel capacitors are equivalently replaced by
. n

1 and whose charge is qé + qCC, where

one capacitor whose voltage is Ve

the sign is minus if, and only if, the two capacitors were similarly
directed in the original loop of (83).

We have formed a network(Jﬂ equivalent tocJA‘by replacing
capacitor n. with an open circuit, and the remaining capacitors of

uj“ are described by (see Fig. 12e)

1
q
q. = . +be . e
gC . ~n.—1 9
n -1 C
C
_4¢
n
— l ~ C -
£V T Ne. T
- : * '3nc-1fc (e ve ) (83)
n_~1 n
£C T.v.0)
—"C *C" C

where f% is the jth component of the original capacitor function fC.
Then, combining (84) and (85) gives (79).
Step 2: Assume that if m, = k > 1 (i.e., there are k loops in (76)),

then there is an equivalent(JAlwith n, — k capacitors, where the

C

capacitors are described by (77). We will show using the induction

process that this is also true if mC =k + 1.
Assume o, = k + 1, then (76) is
' i
-B 1 =B 1 (86)
"N i ~nC-(k+1) i ~k+1

Now, by assumption, the theorem may be applied to the k loops denoted
by all but the first row of (86). Hence, we partition the submatrices

in (86) in the following way
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- - (a7

gnc-(k+l) = B,

where B and b are row vectors. Now for the k loops associated
ng ~nC—(k+1)

with the rows of (86), excluding the first row, (76) is

-8 l}“c' (k+1)

-un’
L

1 | (88)

2
=

Applying the theorem, the k capacitors corresponding to the final k
columns of (88) may be replaced by open circuits, and the remaining

nc-k capacitors are now described by (77); namely,

9c = £c(ve)
v =T ' -
1 B v
= ] ~N _(k+1) ! .,,C
[%“c’k e B 2JocE, B e
~n -(k+1)§6 ~C ~n “ng

- n -k n -k
where gC: Ez ¢ > R ¢ . There is still another loop to be dealt
with; this is the loop corresponding to the first row of (86) which is
(compare with (83))
~ I ~ I
[‘PnE i Png- (k) E 11] (90)
We apply the resﬁlt of Step 1; to the networkg,{% described by %(‘) in

(89), we delete the capacitor corresponding to the final column of (90),

and replace the remaining nc—(k+1) capacitor with an equation of the



form of (79);

1 = £,090)
|a | 5T ; s
~n.- I Zp - ~ b
g~ (ktl) 1 ~n - (k+1) [~C b —(k+1)YC+§n E
, c E "E
| gT
\ t ~n_-(k+1)
= |1 iBr 1 e
= - o o ki
-n,, (k+1) | n, (k+1) ng k‘O ..... 0
( ‘:,C
. f b J.4+6 -E
~C | ~nc-(k+l)~C ~nE ~nE _____
{ 10 {}C -
1. | v
gnc-(k+1):? b 54D -E +§nE§n
1 0f[-ng-(k+1)~C ~n ~n
E
= — 20 = 12 -
n, (k+l)il n, (k+l)| n. (k+1)
~ 3
( Ve
“fo |y _enyVetE, E
C n. (k+1)~C ng nE
B v4B E
nc-(k+1)~C ng “ng
v
L ~C
= |
L -Gy 1 B ey |G > o)
¢ - o - (41)Yc*Bn ' E
' C “Mg “0g
which is (77) when m. = k +1
Step 3: When EC is Cu, then EC in (77) is also CY. Define
of . (v.)
A "~C*~C
= — 92
gC(XC) ayc (92)
N 3f . (v.)
I @ s e¥e (93)
~¢ve’ & 5%
Byc

-53-



~

J. exists whenever JC exists, and

~C
~n,.-m T v 1'n -m
@y =|=--C |, =€ €. ¢ (94)
~ee gn -m -C ?n -m YC+§n En 1}n -m
C C C C E E cC C

Thus, EC(-) is symmetric and fc(‘) is a state function whenever EC(.)
is a state fuﬁction.

We will not show that EC(-) has property (ii) or (iii) whenever
fc(-) has either of theée properties. It is enough to show (this is
(iv)) that £,(-) is uniformly increasing if f,(-) is uniformly
increasing.

Using Theorem A-1, (iii), there exists AC > 0 so that for all e €

nC nC
EE s for all x cR » X#0

T T
- A > 95
x Joly)x - Axx > 0 (93)
e
Then, let X € R » X # 0, and using (94),
[ 1 rln -m
¢ ~
REEE S S N Ak
| C C 1 - C _~nC—mC
ol v T T LS
> X i x| -G _Cf %
2 o I ~n_-m C| B X
"¢ | "¢ Tc] Y| ta -m,

T ~
96
Acg (96)

> X

¢ "c™e
which means that for all v € R , for all x € R » X #0

C
I it ~ ~ ~T-~

- 97
x Jo(v)x - A xx >0 (97)

and gc is uniformly increasing.

u s . .
Finally assume as in (v) that for y > 1, f.is a C -strictly-increasing

c
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n n
diffeomorphic state function mapping E? ¢ onto R C. We know that f

C

is a Cu-strictly-increasing state function. It is a homeomorphism on
n.-m,

R because of Theorem A-3. (ii), and it is a Cu—diffeomorphism

for u > 1 because éc(gc) is nonsingular. Thus, invoking Theorem A-2,

we have only to show lim "fc(ﬁc)" = 4o, As in the above equations,
15 [+
~C
n n —m
let v, e R C, §C eRC C, where in this case
';n -m
={--C__C| ;
YC - § - YC (98)
™

Now, first we conclude that "Yc”.l ﬂ?cﬂ . This is because

lv.g? = vy =
M MM
~T~ ~ 2
Then for any OC #0
Lo
vl =5
Yc
1 . 0
A L
Mg g
1 T 9
gl vl Ycic Yc”E B[ ) (00
~ ~C ~nE~nE

Now, since fc(-) is a Cu-strictly~increasing diffeomorphic state
n

n 4
. . C . .
function mapping R ® onto R » So is the function fC ot | =T .

Using Theorem A-4, (b), the right side of (100) tends to += as "YC" > o,
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(

Thus, for vy, in (98),

C

lim 0 (v )0 >  1im 1 T 0 7]
15,0 c~C Il Ty T velolYet 5755
C ~n.~n
| B E]
1 T 0
= lim v-f . [v.+ (:-z-—— = 4o N 101
Ivelse I¥gl Yeel¥c™ B E (101)
E]

In Theorem 2a, conditions are given so that the port vector

v 2n
.p)<5 EQ P of a resistive np-port N is a function of the resistor

R

N by attaching capacitors and inductors to the ports; conditions are

P R g
vector [ .~ )€ R - In the following theorem, we form network<¢Alfrom

v_(t)
then given so that the capacitor and inductor waveforms ip(t)) are
~P

functions of the resistor waveforms (iﬁ;ti). To motivate the non-
trivial nature of the following result, let us consider the examples
of Fig. 13.15

The linear two-port of Fig. 13a has a linear capacitor and linear
inductor connected to the ports. Now, the two-port is not strictly

passive even though the linear resistor is strictly passive, because

(Theorem 2b) the ports form a loop. Indeed,

. i 1l v

i, . Ve ~ R C )
=-gl; )=~ 102

L P\l -1 of\i, (

and is not a strictly passive function. But for any two resistor
"
ve(B)\' fvp(t) .
waveforms and for the two corresponding capacitor
iR(t) ’ iR(t) :

15 . '
In Fig. 13, all elements are linear; this is so that their solutions
may easily be derived. However, these examples and the next theorem
apply equally well to nonlinear networks.

-56-



and inductor waveforms

we have
o)
iR(t)

which is similar to

every vR(°) is a C -

RAGCH
VL(t)
i,(t)

i, (v)
.

—

vC(t) ! vc(f) '

VL(t) , vL(t)

ic(t) ic(t)

iL(t) iL(t)

AN
VR(t))" ve>of= |[u® ] -
1R(t) iC(t)
iL(t)

(31).

function of t, we have

vR(t)
vR(t)
dv_(t)
R
T
dvR(t)
-1/R v_(t) - C ————
R dt
_

ve(B\"
v (t)
i.(t)
i (®)

¥t

0

-
(103)

To show (103) is true, observe that since

(104)

This equation is similar to (30), except that (104) expresses waveforms

of the capacitor and inductor in terms of the waveforms of the internal

resistors.

We cannot write equations similar to (103) and (104) for the net-

work of Fig. 13b; for example, corresponding to the two sets of re-

sistor waveforms

vé(t) ' vé(t) " /0
vé(t) = v}%(t) ={o0) ¥t>o0
vé(t) vg(t) 0

we observe that
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vé(t)' 0 B vé(t) "
v%(t) =0 )J# [ B]) = vé(t) ¥t>0 (105b)
il(e)/ \o 0 1{:(:;)

are two different admissible waveforms for the capacitors and inductor,
for any B8 # O.
Similarly, for the network of Fig. 13c, for the two resistor

voltage waveforms

' = <" =

vp(t) = vp(e) =0 ¥t>0 (106a)
we observe that
1 ' : 1 "

VC(t) ) 1] ] gsin t//LC ) vc(t) (106b)

vé(t) 0 gsin t/VLC vé(t)
are two admissible waveforms for the capacitor for any B # O.

Using the Inductor-Capacitor Loop-Cutset Hypothesis -- henceforth

called the L.C. Hypothesis —- introduced below we will show in Theorem 12

that for networks satisfying this hypothesis we can write equations of the
form (103) and (104). This result plays a crucial role in studying the
behavior of waveforms of dynamic nonlinear networks. In [12] and [13],

we show that dynamic nonlinear autonomous networks (such as that of

Fig. 13a) satisfying the L.C. Hypothesis have unique globally, asymp-

totically stable equilibrium points, and nonautonomous networks satisfying

the L.C. Hypothesis have unique steady state solutions. Conversely,

networks violating the L.C. Hypothesis (such as in Fig. 13b and Fig. 13c)

may have more than one equilibrium point or more than one steady-state

solution.
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Inductor-Capacitor Loop-Cutset Hypothesis

Let(,Afbe a dynamic, nonlinear network containing capacitors,
inductors, resistors and independent sources. The capacitors and in-
ductors are described by ﬁp(') in (3), where fp(’) is a Cl—state
function. Then

(i) Each loop (resp., each cutset) formed by an independent source
exclusively with capacitors, inductors and other independent sources contains

at least one capacitor, at least one inductor, and at least one current

source (resp., voltage source).

(ii) Let S; be any set of capacitors and inductors so that any
capacitor or inductor in S; forms a loop and/or cutset exclusively
with other capacitors and/or inductors of S}. Let at least one of the
following conditions be satisfied:

Q)

(a) There is a capacitor Cj in >, which is in a loop formed
exclusively with elements of S}, but not in a cutset formed exclusively
with elements of g}. This capacitor is not coupled16 to any other
capacitor in SL

(b) There is an inductor Lj in g; which is in a cutset formed
exclusively with elements of_£;, but not in a loop formed exclusively
with elements in.S;. Furthermore, this inductor is not coupled to any
other inductor in Q .

Remarks: 1. As in the condition of Theorem 4, the above con-
ditions can be verified by inspection. (For example, the network of

Fig. 13a satisfies the L.C. Hypothesis, in particular, (a) of (ii) is

satisfied. The networks of Fig. 13b and Fig. 13c violate (ii).)

e e e e i k
X . a4 aq.,
)bThat is, for any other capacitor Ck in {L ——{% g 0.
; J
8VC Ve
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We can replace (ii) with the following more succinct though stronger
condition:

(ii)' Each loop (resp., cutset) formed exclusively by capacitors
and inductors contains a capacitor (resp., inductor) which is a one-
port element and which is not in a cutset (resp., loop) formed exclusively
withAcapacitors and inductors.

2. As part of condition (ii), note that cutsets formed exclusively
by capacitors, and loops formed éxclusively by inductors are prohibited.
On the other hand, loops of capacitors and cutsets of inductors are

allowed.

Theorem 12: Assume gA]satisfies the L.C. Hypothesis. Let

n
ug € Ez S represent the independent sources, and assume that the
voltage and current waveforms of each element of(JAIare Cl—functions

of time. Then, there is a continuous function QV such that for each

y_(t) v (t)
set of network waveforms p and (iR(t)) , we have

}p(t) ug (t)

vp (8 R 107

~pP = h i (t) ( )

i (t) ~M\ R

P ug (1)
yp(t) ' v_(B)\"
Furthermore, for any pair of waveforms }p(t) , and i (1) defined
v (BN vo (E)\"
for t > 0, and the corresponding pair| and | . corresponding
z i () i(0)

to the same gs(t), we have

v, (E\' v, (£)\" v (6)\' v (E)\'
R _["R verol=|(P > ={ P vt > 0| (108)
1 (£) 1, (6) i, () i (6)

ZannS
Remarks: 1. The function h, in (107) is not a map from Ez

N
2np
into R . Rather, for every compact time interval Dt = [tl,tz]

0 < tl < tz, it is a continuous map from elements of the Banach space of
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1 v (*) 2n_+ng 1
C -functions iR(.) :p - R P into the Banach space of C -functions
45 () ve (£0)

v_ () 2n
(1 (+) Dt - R P. That is, suppose at time t, > O, i (t is

0 0’
v _(t,.) gs(to)
known, then s cannot be uniquely determined; indeed, this is

true when the capacitors and inductors form a loop or cutset as is shown

yR(t)

in Theorem 3. However, if the waveform iR(t) defined for t > 0 is

(t) u. (t)
known, then ;hé waveform ( (t )) can be determined using hufin (107).
2. ‘Eguation (107) is a generalization of (104), and is similar
to (30) of Theorem 2 and (53) of Theorem 4. Equation (108) is a
generalization of (103) and is similar to (31) of Theorem 2.
Proof: Ciearly, if QN exists and (107) is correct, then (108)
follows. The proof that Qﬂ»exists is similar to the proof that QN

exists in Theorem 4. We will show that for each capacitor and inductor

the voltage waveform and current waveform depend continuously on

vp(t)
gR(t) . First, we examine the independent sources. Condition (i) means
g (t)

that each voltage source does not form a loop exclusively with capacitors,
inductors and other voltage sources. Then, using the Colored Arc

Corollary, each voltage source forms a cutset exclusively with resistors

and current sources. Thus it follows from KCL that currents of each
voltage source is a continuous (actually CZ) function of the resistor
currents and current source currents. In a dual way the voltage of each
current source is a continuous function of the resistor voltages and
voltage source voltages.
o .
Let 2 be the (maximal) set of inductors and capacitors so that

8 . . )
a capacitor or inductor in S;l forms a loop and/or forms a cutset
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exclusively with other capacitors and inductors. Let {:; be the set of

inductors and capacitors not in ( Each inductor and capacitor in

)

lO
c . . .

u>1 does not form a loop or cutset with capacitors and inductors, so

@

by applying the Colored Arc Corollary, every element of g)i forms a

loop and forms a cutset exclusively with resistors and sources. Thus,

OQc

the voltage and current waveforms of capacitors and inductors in 29

v, (t)
are a continuous (actually CZ) function of iR(t) .
u.(t)
~S
Assume capacitor Cj € S}l satisfies (a) of condition (ii) (if (b)
is satisfied, the proof is identical). Using the Colored Arc Corollary,

we see that the capacitor forms a loop exclusively with resistors,

independent sources, and capacitors and inductors in Q
¥e (£)
applying KVL, vé(t) is a continuous function of gR(t) . Also, because
; ug (t) vp(t)
of the coupling condition, qc(t) is a continuous function of gR(t) .
ug ()

Now, by assumption, the capacitor current ié(t) is a continuously

;. Thus,

differentiable function of time, so waveform il (v) A %Eqé(t) also

c
YR\ 17
depends solely upon waveforms %R(t) .
ug (t)
We proceed as in Theorem 4; let S}Z C S}l be the set of capacitors

and inductors so that every element of forms a loop and/or cutset

O
\_)2
exclusively with other capacitors and inductors excluding Cj' Then

£}§ o) S}; contains all the other capacitors and inductors, and their

17This illustrates why EV in (107) is a map between linear spaces of

waveforms; the only way to have capacitor current i%(t) depend upon
the vector [vé(t), i&(t), ul;(t)]T is to let i%(t) be the time-derivative
of qg(c).
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yR(t)
voltage and current waveforms are continuous functions of 'iR(t) .
ug(e)

Assume that, say, there is an inductor L, satisfying (b) of (ii). As

k

with capacitor C, above, the voltage and current waveforms of Lk are

J
Ve (t)
continuous functions of i) ) We continue in this way; forming sets
~R
ug(®)

‘(_}3 - ‘92, .94 C Qa, etc. Each set ‘Qj contains at least one element

less than set .2%_1. Hence for some integer &, np > 2> 1, 532 is the

empty set; all capacitors and inductors and inductors are in Q‘;, and

v_(t) vp(B)
iE(t) depends continuously on }R(t) .
ug (t)

VI. Conclusion

The majority of the results of this paper are based upon Theorem
2. This theorem, together with its extensions (Theorems 3, 4 and 12)

v
show how to relate the external port variables (~p)of an n_-port N

YR }P
to the internal resistor variables i Under the weak condition
~R

that the ports form neither loops nor cutsets, we are able to derive

(30) of Theorem 2; the port vector is a linear function of the internal
resistor vector. This conclusion is based solely on graph-theoretic
principles, and does not involve the element constitutive relations.
Similar functional relationships hN in (53) of Theorem 4, and h, in
(107) of Theorem 13 also exist where, in these cases, element constitu-
tive relations are used. We believe that these relationships between
internal and external np—port variables have applications beyond their
use in this paper.

When capacitors and inductors are attached to N, thus forming(jU,
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our results lead to interesting conditions concerning how the capacitors
and inductors are attached; loops of capacitors and cutsets of inductors
are allowed, because these loops and cutsets may be deleted upon applira-
tion of Theorem 11. On the other hand, if we wish to use the various
theorems stemming from Theorem 2, then loops of inductors and cutsets
of capacitors are not allowed. This is a reverse type of condition
usually found in theorems dealing with n-ports and state equations. We
interpret this phenomenon in the following way: Assume in network gAjthere
is a loop of capacitors. Then, there is a "redundant" capacitor whose
voltage is linearly dependent upon the other capacitor voltage, and we
may delete this capacitor using the methods of Theorem 11. We form a
new network(,&iwhich has no loop of capacitors and is equivalent to;A[
in the sense that the voltages and currents of the remaining elements
are the same. On the other hand, assume in LAJthere is a cutset of
capacitors. Then the dependent capacitor variables -- the capacitor
currents -- are linearly dependent. In this sense, there is a "redundant"
capacitor, but there is no method analogous to Theorem 11 to delete it,
hence (see Fig. 13b and Eq. (105)) for each set of network resistor
currents and capacitor currents there may be more than one set of
possible capacitor voltages.

In [12] and [13], we analyze the differential equations (8a) and
(8b) describing<,AL We then use the results given here to derive ways
of predicting network behavior by examining the constitutive relations

of the network elements.
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APPENDIX

Discussion of Theorem A

Theorem A-1.

When h: 5{1 *'Ekl is differentiable, and increasing, we know

that its slope Q%ﬁzl is non-negative for all x € E{l. Definition 3

. . . n .
extends the concept of an increasing function to R , and if we view

oh(x »
the positive-definiteness of the matrix 5i“) as the "slope" of the
Cl-function h: R" *’E{n, then Theorem A-1 yields the same conclusion.
We prove (iii) as an illustration of the methods involved.

Proof of Theorem A-1, (iii)

First, if Cl—function h: R™ > R™ is uniformly increasing, then by the

definition of the (Frechet) derivative of a vector-valued function [20],

dh(x
W' h(x) W= leim-l [(h(xtew) - h(x)]
~ ax -~ -~ E ~ Ve
= >0

= lin 5 [Gerew) - 517 [hGrew) - h(x)]
-0

v

lim 17 vleyl?
>0

= ylwl? vweR", and v xe R™ (A-1)

So for any 0 < A < y, the matrix

ah(x) \
) x - ll‘l (A"Z )

is positive-definite for all x € K",

Conversely, if (A-2) is positive-definite for all x € Ein, then

using the Integral Form of the Mean Value Theorem [20],

1
(x' - x"17 ") - e = j[g' -y REEOE ) o
, x
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1
> j‘[}st - }SNIT}‘[}St - JE"]dO'
0

Alx' - xi? x (A-3)

Theorem A-2.
This theorem is known as Palais' Theorem [21], though it is proved

also in [20]. Since h: R® > K™ is a local cM-diffeomorphism at

dh(x)
every x € r" if, and only if, 5x~ is nonsingular, the condition
1lim Ih(x)!l =+» by itself guarantees the injective and surjective nature
Ixll» = ~
of 'h. See [24] for a discussion of the way the condition limlh(x)l =+

I x [0
is derived.

Theorem A-3.

Conclusion (i) is clearly true by definition. We prove (ii). This
will also show that, as in Theorem A-4, if h is uniformly increasing,
then (14) is true.

Proof of Theorem A-3, (ii)

For all x # 0,

Ihl = izl - 1hGo1
2 ﬁr x'h(x)
_. 1 .T } 1 T
= Tl ¥ [BG) - RO+ Tl ¥ h(0)

> Ty YA - n:lar Il - IR

Hence,
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+° x

]

Lio IhGol >  limpr x'hG) > Llim vixl - 10(Q)
D> Il % = oo

(a-5)
Theorem A-4.

We have already shown (14) when h is uniformly increasing. See
[12] for the proof of (14) when h is a CH-strictly-increasing diffeo-

. . . n
morphic state function mapping R onto R".
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FIGURE CAPTIONS

Fig. 1 A Dynamic Nonlinear Network(JAL

Fig. 2 A Set of Branches Connected to a Node p . Illustration of
the Colored Arc Corollary. |

Fig. 3 Counterexample to Conjecture 1. Ports 1 and 2 are Voltage-
Driven. Port 3 is Current-Driven.

Fig. 4 The Three-Port of Fig. 3 with an Extra Resistor Attached.

Fig. 5 (a) A One-Port which has no Inverse of Equation (30); (b) The
Characteristic of Resistor Rl; (c) The Characteristic of
Resistor Rz.

Fig. 6. A Two-Port for Illustrating the Derivation of hN in Equation
(53).

Fig. 7 (a) The Function gé(-); (b) The Function gé(-). These
functions are Eventually Strictly Passive, but the Composite
Function 8r = (g;,gz) is not Eventually Strictly Passive.

Fig. 8 A Current-Driven One-Port Containing a Voltage-Controlled
Uniformly-Increasing Resistor. The One-Port Function gp(-)
is not Uniformly Increasing.

Fig. 9 Illustratioﬁ of Theorem 8. The Sources may be Time-Varying.

Fig. 10 The np—port N with n_ Time-Varying Sources Modeled as an

S
+n_)- .
(np nS) port

Fig. 11 Forming\dklfrom<¢A‘by Short-circuiting an Inductor Originally

Attached to Node T)'

Fig. 12 Illustrations of Proof of Step 1, Theorem 1l1.

Fig. 13 Example and Two Counter-Examples of Theorem 12.
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